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1. Introduction

The concept of sutured manifolds was introduced by Gabai, and it has
been playing an important role in the 3-manifold theory ([3]-[7]). On the
other hand, in [2], Casson and Gordon defined Heegaard splittings of compact
orientable 3-manifolds with boundaries by using compression bodies. We
note that this enables us to define Heegaard splittings for sutured manifolds.
In this paper, we study complementary sutured manifolds for Seifert surfaces
from the viewpoint of this Heegaard splitting.

Firstly, we give the definition of Heegaard splittings for sutured manifolds
following [2]. A compression body Wis a. cobordism rel 3 between surfaces d+W
and 9_W such that W^d+Wxl U 2-handles U 3-handles and d.W has no
2-sphere components. It is easy to see that if d-Wφφ and W is connected,
W is obtained from d-WxI by attaching a number of 1-handles along the
disks on d^Wx{\} where d-W corresponds to d-Wx{0}. We denote the
number of these 1-handles by h(W). Let (M, 7) be a sutured manifold such
that R+(Ύ) U -R-(Ύ) has no 2-sρhere components and T(y)=φ. We say that
(W, W) is a Heegaard splitting of (M, 7) if both W and W are compression
bodies, M=WΌW with WΓlW'=d+W=d+W', d-W=R+(y), and d.W'=
i?_(γ). Assume that R+(y) is homeormorphic to R-{y). Then we define the
handle number h(M, 7) of (M, 7) as follows:

h(M, 7) = min {h(W)\ (W, W) is a Heegaard splitting of (M, 7)}.

Note that h(M, 7) corresponds to the Heegaard genus of a closed 3-mani-
fold.

For the definitions of a 2/z-Murasugi sum and a complementary sutured
manifold, see Section 2. Let R be a Seifert surface in S3 obtained by a 2n-
Murasugi sum of two Seifert surfaces Rλ and R2 whose complementary sutured
manifolds (Mh y{) (i=i, 2) are irreducible. Let (M, 7) be the complementary
sutured manifold for R. In this paper, we consider the relations between h
(Mi} 7, ) ( i=l , 2) and h(M, 7). In fact, we prove:
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Theorem 1. Under the above notation, we have

h(Mu Ύι)+KM29 y2)-(n-l)<h(M, y)<h(Mlf

We say that an oriented surface R in S3 is a fiber surface if dR is a ίibered
like with R a fiber. Then we have:

Theorem 2. If R: is a fiber surface, then h(M, y)=h(M2> y2).

Note that R is a fiber surface if and only if h(My y)=0. Thus as a con-
sequence of Theorem 1, we obtain the next fact.

Corollary ([3], [15]). If JR2 and R2 are fiber surfaces, then R is a fiber sur-

face.

Theorem 2 means that h(Myy)=h(M1,y1)+h(M2,y2) if Rt is a fiber
surface. Moreover in Section 5, we give examples to show that the inequality
of Theorem 1 is best possible for any n. We note that Theorem 1 corresponds
to the additivity of the Heegaard genus under a connected sum proved by Haken
([8], [10]). In fact, it is proved by using Haken type results for a disk properly
embedded in a sutured manifold (see Section 3).

I would like to express my gratitude to Professor Tsuyoshi Kobaysahi and
Professor Makoto Sakuma for their helpful suggestions and constant encourage-
ments.

2. Preliminaries

Throughout this paper, we work in the piecewise linear category and mani-
folds are oriented. For the definitions of standard terms of 3-dimensional topo-
logy, see [9]. For a topological space B, §B denotes the number of components
of B. Let H be a subcomplex of a complex K. Then N(H; K) denotes a
regular neighborhood of H in K. Let N be a manifold embedded in a mani-
fold M with dim N=dim M. Then FrMiV denotes the frontier of N in M.

We recall the definition of a sutured manifold [4]. A sutured manifold
(My y) is a compact 3-dimentional manifold M together with a set y(ddM) of
mutually disjoint annuli A(y) and tori T(y). In this paper, we treat the case
of T(rγ)=φ. The core curves of A(y)y say ί(τ), are the sutures. Evefy compo-
nent of R(y)=dM— Int A(γ) is oriented, and R+(y)(R^(y) resp.) denotes the
union of the components whose normal vectors point out (into resp.) M. More-
over, the orientations of R(Ύ) must be coherent with respect to the orientations
ofs(y).

We say that a sutured manifold (M, γ) is a product sutured manifold
[6] if {My γ) is homeomorphic to (Fxl, dFxI) with R+(y)^Fx {1},
R-(y)=Fx {0}, A(y)=dFχI, where F is a surface and / is the unit interval
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[0, 1]. Let L be an oriented link in S3 and jf? a Seifert surface for L. The
exterior E(L) of L is the closure of S3—N(L; S3). Then R Π E(L) is homeomor-
phic to R, and we often abbreviate Rf)E(L) to R. (N, 8)=(N(R; E(L)),
N(dR; dE(L))) has a product sutured manifold structure (Rxl, dRxI). (iV, δ)
is called the product sutured manifold for R. The sutured manifold (N\ 8C)=
(cl(E(L)-iV), cl(9£(L)-δ)) with R+(8C)=R_(8) is the complementary sutured
manifold for R. Let R be a Seifert surface in S3 and (M, γ) the complementary
sutured manifold for R. Then R is a fiber surface if and only if (M, y) is a pro-
duct sutured manifold, that is, k(M, y)=0.

Sutured manifold decomposition is an operation to obtain a new sutured
manifold (M', γ') from a sutured manifold (M, γ) by decomposing along an
oriented proper surface S (see [4]). The notation for this operation is as fol-
lows:

(M, γ) Λ (M', γ')

This paper focuses on a very special type of a sutured manifold decomposi-
tion (see Figure 2.2) . A properly embedded disk D in (M, γ) is a product disk
if 3Z>Π^4(7) consists of two essential arcs in A(y). A product decomposition

(M, γ) -> (M', γ r) is a sutured manifold decomposition along a product disk D.
Note that each compression body W can be regarded as a sutured manifold with
A(y)=d(d-W)xl. In this sense, we define a product disk and a product
decomposition for (IF, γ) in this paper.

Next, we recall some definitions of Casson and Gordon [2]. Let W be a
compression body. If W'\s homeomorphic to 3_PFx/, we say that W is trivi-
al. A complete disk system D for a compression body W is a disjoint union of
disks (ΰ 2, ΘZ)2)c(ίF, d+W) such that IF cut along D is homeomorphic to either
a 3-call or θ_IFχ/ according to whether d-Wis empty or not. In this paper,
we treat the case of 8_JFΦφ.

Let (M, γ) be a sutured manifold and (W, Wr) a Heegaard splitting of
(M, γ). We say that IF Π W'=F is a Heegaard surface of (IF, IF'). Then dF=
d(d+w)=d(d+w')=s(y).

The next theorem follows from [2].

Theorem ([2]). Let (M, γ) be a sutured manifold such that i?+(γ) U R-{Ύ)
has no 2-sphere components arid T(γ)=φ. Then (M, γ) has a Heegaard splitting.

EXAMPLE 2.1. Let R be an unknotted annulus in 5 3 with «-full twists and
(My γ) the complementary sutured manifold for R. Then M is homeomorphic
to a solid torus and A(y) is the union of two annuli which wrap dM long-
itudinally w-times and meridionally once.

Case 1: n~ί.
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In this case, dR is a Hopf link and it is easy to see that (M,
/, 3i?+(γ)x/). Hence (M, γ) is a product sutured manifold and λ(Λf, γ ) = 0 .

Case 2: n>2.

In this case, firstly we show that (M, γ) is not a product sutured manifold,
so that h(M, γ)>0. Let a be a generator of ^(^+(7)) and β a generator of
π^M). If (M, γ) is a product sutured manifold, the homomorphism between
fundamental groups z#: π^R+^y)) π-> 7tλ{M) induced by the inclusion i: R+(y) H->
M is an isomorphism. However, i*(a)=βn or /3~Λ (n>2), a contradiction.
Hence A(M, γ)>0. Now we split M into two components as follows. Take an
essential arc a on R-(y) and push a a into M so that

R . ( γ )

H. (γ)

A(γ)

I I I I

Figure 2.1

Let X=:ΛΓ(i2+(γ) \Ja;M), Y=d(M-X), then (X, J (γ) ΠX) and (F, A(γ)
Γ\Y) are homeomorphic to (AnnulusX/U 1-handle, 9(Annulus)x/). Hence
(X, Y) is a Heegaard splitting of (M, γ), and we have h(M, γ ) = l .

A surface R(czS3) is a 2n-Murasugί sum of two surfaces i?j and i?2 in S3

R=Ri U z> ^2, where D is a 2τz-gon, i.e., dD=μ1 U ̂  U ••• U μn U ẑ Λ (possibly
w = l ) , where / ;̂ (^ resp.) is an arc properly embedded in Rι(R2 resp.).
There exist 3-balls Bu B2 in S3 such that:
(i) B1ΌB2=S3, B1f]B2=dB1=dB2=S2; a 2-sphere,

When

if:

(1)

(2)

(ii) R1ciBly R2aB2 and R1Π S2=R2 Π S2=D.
When D is a 2-gon, the Murasugi sum is known as a connected sum.

D is a 4-gon, the Murasugi sum is known as a plumbing.

Let R be a 2/z-Murasugi sum of Rx and R2> and let (M, 7), (Mly yt) and
(Λf2, 72) be the complementary sutured manifolds for R, Rλ and i?2 respectively.
By the definition of a 2/z-Murasugi sum, there is a 2-sphere *S2 along which R
is summed and the summing disk D. Let S be the 4/z-gon *S
IntiV(3i?)), then we have:
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Lemma 2.2. (cf. [5]). (Ml9 γ x) and {M2) Ύ2) are obtained from (M, γ)

by the sutured manifold decomposition along S with an appropriate orientation.

3 n c α r c i T c

Π I C D I ι///f. E cm i

(Λ/.7)

Figuae 2.2

Proof. View S2 as i?2 U °° where dR Π S2 is a set of evenly spaced points
*iι •• >*2« o n ^ e unit circle and S is the disk in Λ2-Int N(dRΠR2; R2). Let

ai(Ύ)=s(y) ί l S b e a point for xt{i=lf 2, - , In). View ΛΓ(S2; S3) as S2X/ with
5 2 =S 2 x{l/2}, S2x{0}c JB1,ΛΓ(S2;S3)Π3Λ-(9i?nS2)x7. We can take i ^ x J
so that Rιχ{l}ΓiSΛ=D and R,χ {0} Π ( S 2 x / ) c S 2 χ {0}. JFor the sutured
manifold (M1} γ^, we can regard that M1 is c l ^ — i ? ! x/) U 5 B2 and ί(γj) is ob-
tained from s(rγ)f]B1 by attaching the subarc of the unit circle connecting α, (γ),
α i+1(γ) for i odd by choosing a cyclic ordering of x\s well. Similarly, for (Λf2, γ2)>
we can regard that M2 is cl(.B2—R2xl) U s -Bi and s(γ2) is obtained from ί(γ) Π
B2 by attaching the subarc of the unit circle connecting ^(7), ai+ι(j) for i even.
Note that c l ^ — R x X l ) U s B2 is homeomorphic to c l ^ — R x x l ) f and cl(jB2—
/ ? 2 X ^ ) U 5 J B I is homeomorphic to cl(B2—B2χl). On the other hand, we see
that the sutured manifold obtained from (M, γ) by the sutured manifold decom-
position along S with an appropriate orientation is equivalent to the disjoint
union of (c l^—RiXl) , Ύi) and (d(B2—R2XI), <y2). This completes the proof
of Lemma 2.2. (see Figure 2.3)

In this paper, we call S in Lemma 2.2 a cross section disk.

Let P be a properly embedded surface in a compression body W. P is

called boundary compressible toward d+W if there exists a disk D in W such that

DΓϊP=a; an arc in dD and Df]d+W=β , an arc in 9D, with α Π / 3 = 9 α =

9/3, αUβ=dD, and either α is essential in P or α is inessential in P and the

boundaries of all disk components of cl(P—a) intersect d(d-W)xL If P is

not boundary compressible toward d+W, then we say that P is boundary incom-

pressible toward d+W.

Now, let P be a connected surface properly embedded in a compression

body W such that each component of 9Pfl9(9-.PF)x7 is an essential arc in
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Figure 2.3

Lemma 2.3. Assume that dPΠd+W^φ and P is incompressible and

boundary incompressible toward d+W. Then P is either

(1) an annulus such that one boundary component is contained in d+W and

the other is contained in dJW.

(2) a disk whose boundary component is contained in d+W, or

(3) a product disk in W.

Proof. Firstly, we will show the special case.

Claim. Assume that W is trivial, then P is either (1), (2) or (3).

Proof. If dP is contained in only d+W and d-W, (1) or (2) occurs by the

proof of Lemma 1.1 in [2]. Thus we suppose that there is an arc component in

dP Π d+W. By moving P by an isotopy, if necessary, we may suppose that each

component of dP Π d(d-W) X/ is a vetical arc with respect to the product struc-

ture of W. Let ax be a component of Pf)d(d-W)xl, and β a component of

PΓ\d-W such that βΠcCi^φ. Then there is another component a2 of Pfl

3(9-W)Xl such that a2Γiβφφ. We note that α^U/SUα^ is an arc properly

embedded in cl(dW— d+W). Let cx and c2 be the components of Frc](dw_d+W)

iV(αj Uαr2ΓΊ β cl(dW— d+W)), and At a product disk in W such that c{ is con-

tained in dAi(i=ί9 2). Each component of A{ f] P is a circle or an arc such that

the boundary is contained in d+W. Since W is irreducible and P is incompres-

sible and boundary incompressible toward d+W, we can suppose that A{ f)P=

φ(i=lf 2) by standard innermost circle and outermost arc argument. Then we

have conclusion (3) of the claim.

Let ΰ be a complete disk system for W. By standard innermost circle

and outermost arc arguments, we see that P is isotopied so that DΓϊP=φ (cf.

[2], [10]). Then we have the conclusion of Lemma 2.3.
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Similarly, we have:

Lemma 2.4. Let (W, 7) be a sutured manifold and (W\yf) the sutured
manifold obtained from {W, γ) by a product decomposition. Then (W,y) is a
compression body if and only if (W, γ') is a compression body. Moreover, h(W)=
h(W).

3. Haken type results for disks properly embedded in sutur-
ed manifolds

Let (M, γ) be an irreducible sutured manifold such that R+(Ύ) U R-(Ύ) contain
no closed surfaces and T(fγ)=φ. Let (W, W) be a Heegaard splitting for
(M, γ) and E a properly embedded disk in (M, γ) such that each component of
dE Π Λ(y) is an essential arc in A(y) and F & Heegaard surface of (W, W).

The purpose of this section is to show the next proposition.

Proposition 3.1. We can assume that each component of E Π W is a pro-
duct disk by moving F by an isotopy rel 3.

Figure 3.1

Before the proof of this proposition, we give a lemma and definitions.

Lemma 3.2. By moving F by an isotopy rel d, we may suppose that every
component of E f)W is a disk as in Figure 3.2.

Proof. Let au -~,<xp be arcs embedded in W such that each α, is obtained
from a core of 1-handles of W by extending to 3_ W xl vertically (hence 3αt C
3_ W). F is isotopic to F%/ iV(3_ W U (U at) W) rel 3. Then we may sup-
pose that iV(3_W'U(Uαt ); W')nE=N((d-Wf\J(Uai))nE; E). Hence every
component of E Π W is a disk as in Figure 3.2. This completes the proof of
Lemma 3.2.

Let Bl9 •••, Bm be the components of E Π W which are contained in Int E,
and Bm+U ~,Bm+n be other components of Ef)W such that dBm+1ΓidE9 •••,
dBm+n Π dE are on dE in this order (see Figure 3.2) and cr, = F r £ Bh Σ^Πσ,-.
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Figure 3.2

Let Q be E Π W and α an arc properly embedded in 0 with 3 α c Σ . We say
that a is an innesseniial arc in £) if it is homotopic to an arc in Σ rel 3. If a is
not inessential, then it is essential. Suppose that a is an essential arc in Q. We
say that a is of type / (type // resp.) if a joins a component of Σ (two different
components of Σ resp.). Let {aly •••,£*«} be a system of mutually disjoint
essential arcs in Q. {aly •••, an} is a complete system of arcs for Q if the closure
of each component of Q—(LJiV(αt ; Q)) is a disk. Set # = U# t and let σ be a
component of Σ. We say that σ is a distinguished circle related to cί if each
component of cί meeting σ is of type //.

Proof of Proposition 3.1

Let D be a complete disk system of W and Df a union of product disks in
W such tht that D Π D'=Φ, (dQ Π 3- W) Π Z5'=φ and each component of cl(PF—
N(D\J D')) is a 3-cell. By using a standard innermost circle argument, we may
suppose that each component of Q\J(D\jDf) is an arc since M is irreducible.
We denote the system of arcs Qf\(D\J D') by a and we suppose that #(E Π W)
is minimal.

Assume that some component of E Π W is contained in IntE^i.e., m> 1).

Claim 3.3. We may assume that cί is a complete system of arcs for Q.

Proof. By replacing D\jDf if necessary, we can suppose that each compo-
nent of cί is an essential arc on Q (cf. [13]). By the irreducibility of M and
the minimality of #(2? Π W')> we see that Q is incompressible in W. Then
we have this claim.

We can easily verify the following

C l a i m 3.4. There exists at least one distinguished circle σ, ( / = l , 2, •••, m)

in Σ related to a.
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For the proof of the next claim, see [13].

Claim 3.5. If at least one of the circles σu " ,σm is a distinguished circle
related to a, then there exists a disk Ef in M with #(F ΠE')<m+n—l such that
E' is isotopic to E and that each component of E' Π W is a disk.

If some component of E Π W is contained in IntJS, it contradicts the mi-
nimality of #(£Π W) by Claims 3.3, 3.4 and 3.5. Then we have Proposition
3.1.

4. Proof of Theorems

The purpose of this section is to prove Theorems stated in Section 1.

Proof of Theorem 1

Case 1. Connected sum.

Let F be a Heegaard surface of (W, W) which realizes h(M, γ) and S the
cross section disk. By Proposition 3.1, we may assume that S Γ\F consists of an
arc. Let W^W'i resp.) ( i=l , 2) be the components obtained by cutting W(W
resp.) along S Π W(S Π W presp.). Then W{ and Wί(i=l, 2) are the compres-
sion bodies by Lemma 2.4. Therefore, we can assume that (Wl9 Wί) and
(W2, W2) give a Heegaard splitting of (Mlf γ2) and (M2y γ2) respectively. Then,
we have h(M, Ύ)=h(W1)+h(W2)>h(Mu y^+^M^ γ2). By a similar argument,
we have h(M, y)<h(Mu γ1)+A(Λf2, Ύ2). This completes the proof in Case 1.

Case 2. Other cases.

Firstly, we will show that h(My y)<h(MΊ, 7i)+A(M2, γ2) Let S be the
cross section disk as in the proof of Lemma 2.2. Since (Mu y^ and (Ml9 72)
are obtained from (M, γ) by a sutured manifold decomposition along S, we
call M{ in M the part of M{ ( ί = l , 2). Let 5Ί(52 resp.) be the component of
FrMN(S; M) in the part of Mj (the part of M2 resp.). Then we may suppose
that N(S;M)=SxI, S = S x {1/2}, S1=Sx{0} and S2=Sx{l}. Moreover
we can suppose that each componnet of s(y) f)N(S; M) is of the form α fx/,
and set ^}=a,X {0} and a2i=a{x {1} ( ί = l , •••, 2ή). (For ah see Lemma 2.2.).
In the following, we identify (M,, γ2) ((M2, γ2) resp.) with the component of
the sutured manifold decomposition from (M, γ) by decomposing along S2(SX

resp.) which contains the part of MX(M2 resp.). Further we assume that each
component of *Sf

2Πί(7i)(ASf

1Πί(72) resp.) joins a2

iy a
2

i+ι(a}, a)+ι resp.) for i odd
(for i even resp.).

A Heegaard surface F(Fj(j==l, 2) resp.) is said to be a nice Heegaard surface
of (M, y)((Mj, Ύj) (j=l> 2) resp.) if it satisfies the following conditions:
(1) S1f]F(S1Γ\Fj resp.) consists of arcs joining a] and a}+i for / even
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(2) S2 Π F(S2 Π Fj resp.) consists of arcs joining a] and aUi for i odd
(3) FΠ(SχI)(Fj Π (Sx /) resp.) is a disk.

< - •

Figure 4.1

A d-compressing hierarchy for a properly embedded disk Eo in a com-
pression body W is a finite sequence

A A A

of boundary compressions toward d+W ίor which
(1) each Z), is a boundary compressing disk toward d+W for E^ly

(2) E{ is obtained from E^λ by boundary compression toward d+W along Z)f,
(3) each component of Ek is boundary incompressible toward d+W.

The feflgtfA of α d-compressing hierarchy is the number of boundary com-
pressing disks D{.

Let (Wl9W{)((W29Wί) resp.) be a Heegaard splitting of (Ml9 71) ((M2,
72) *esρ.). We denote a Heegaard surface of (Wly W{) ((W2, W'2) resp.) by
ί 1 !^ resp.). We may assume that each component of 52Π WX{SX Π W2 resp.) is
a "product disk", then each component of S1Γ\W1(S2ΠW2resp.) is a product
disk too as illustrated in Figure 4.2.

Lemma 4.1. The Heegaard surface Fj(j=l>2) is ambient isotopic rel
7/(/=l, 2) to a nice Heegaard surface.
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(Λ/2,y2)

Figure 4.2

Proof. We prove this lemma for (Wly W[). Put E0=S Π ίFί Then Eo is a
properly embedded disk in W{ such that dE0Π d-W{ consists of n arcs. Hence,

Dx D2 Dn.γ

by L e m m a 2.3, there is a 3-compressing hierarchy Eo-* E1-> ••' > EH^.

(Note that the length of the 3-compressing hierarchy is n—\ since #Ef +1=j{J?f + l
for each z.) We denote £ t _] (Ί Df by a{ and we can assume that a{ Γi aj=φ by
an isotopy. Hence we may consider that aly " ,ocn-i are arcs properly em-
bedded in S Π W{. We can assume that D{ Π (Sx [0, 1/2]) is of the form at X
[0, 1/2], where S corresponds to Sx {1/2}. Let β4 be an arc Dt Π (52Π W[) on
Df corresponding to aiy and Z); be a subdisk of D{ such that D^c^D,.— Z)t (Ί
(SxO, 1/2])). Since α, Πα y =Φ, we may suppose that β^β^φ. Then
Z>ί, •••, Z)«_i determines a 3-compressing hierarchy for 52 Π H {̂. Do the 3-com-
pressing hierarchy of D{, •••, £)«_! for 5Ί Π Wί, but in this case, we consider that
we move Fλ by compressing along Ώ\, i.e., slide F1f)D'i across D\ and pass β{.
Then we can see that the final surface is a nice Heegaard surface.

Now suppose that (Wly W{)((W2, W'2) resp.) satisfies
(h(W2)=h(M2, 72) resp.). By Lemma 4.1, F1 and F2 are nice and we may
assume F^N^, M)=F2ΓϊN(S, M). Thus F1\JF2 forms a surface F in M
as illustrated in Figure 4.1.

We show that F is a Heegaard surface of (M, γ). Let W and W be the clo-
sure of the components of M—F as illustrated in Figure 4.1. Then W(W
resp.) can be naturally regarded as a sutured manifold, and S2Γ\W(S1{]W)
is a disjoint union of n product disks of W{W resp.). The sutured manifold
obtained form W by decomposing along S2 (Ί W is a disjoint union of Wλ and
W'2=W2f)cl(M2—N(S; M2)). Note that Wλ and Pϊ^ are compression bodies,
since W2 is a component of the sutured manifold obtained from the compression
body W2 by decomposing along the product disks S2f)W (see Lemma 2.4).
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Hence, by Lemma 2.4, W is a compression body, and h(W)=h(W1)+h(W2)=
^iW^)-{-h(W^. Similarly, W is also a compression body and therefore (W, W)
gives a Heegaard splitting of (M, 7). Thus we have A(M, 7 ) ^

Next, we will show that h(Ml9 <y^)+h(M2y 72)~(n— l)<h(M, 7). Let
ϊF') be a Heegaard spotting of (M, 7).

Lemma 4.2. Suppose that (WyW) be a Heegaard splitting of (M, 7)
which has a nice Heegaard surface. Then (W, W) induces Heegaard splittings
{Wh W'i) of(Mh 7,.) ( i = l , 2) jifcλ Aίαί h{W)=h{Wι)+h{W2).

Proof. Since (W,W) has a nice Heegaard surface, we may suppose that
each component of Wf]S2 and W'ΓϊSj is a product disk. Let WX(W{ resp.)
be the submanifold of W(W resp.) obtained by cutting along S2 such that the
part of M1 is contained in Wx U PFί By using Lemma 2.4, we see that both Wλ

and W[ are compression bodies, and therefore (Wu W{) is a Heegaard splitting
of (Ml9 7i). Let W2(W'2 resp.) be the submanifold of PF(W resp.) obtained
by cutting along S1 such that the part of M2 is contained in W2l) W2. Simi-
larly, (W2, W2) is a Heegaard splitting of (M2, 72). Since FΓl(SxI) is a disk,
h(W)=h(W1)+h(W2). Then we have the conclusion of Lemma 4.2.

By Proposition 3.1, we may suppose that every component of S Π W and
SΓi W is a disk as in Figure 3.1 and that each component of S ΠF joins aiy

ai+ί for i even (see Figure 4.3).

Let IF be Eo and n^ be a 3-comρiessing hierarchy.

Figure 4.3
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We assume that the part of M( is defined for S before the boundary compression.
If D{ is contained in the part of M2y we say that Z), is good, and if Ώ{ is contain-
ed in the part of Mx we say that D, is bad. Let α, be the arc JJ. ̂ Π A If
N{cLi Di) is contained in the part of M2 and Z)t is not good, we say that D{ is
semi good . If N(a{ Z)f ) is contained in the part of M1 and D{ is not bad, we
say that D{ is semi bad. If Dly •••, Z)n_] are all good, we say that this 9-com-
pressing hierarchy is good.

We denote £,-_! Π A by α, and we can assume that aif)aj=φ by an iso-
topy. Hence we may consider that aly •• •,(£„_! are arcs properly embedded
in S Π W.

By the proof of Lemma 4.1, we have:

Lemma 4.3. If S Π W has a good d-compressίng hierarchy, (W, W) has a
nice Heegaard surface.

We suppose that D{ is bad or semi bad some /. Let F be a surface ob-
tained from F by attaching 1-handles in the neighborhood of a{ contained in
the part of M2 for all bad or semi bad disks D{ as illustrated in Figure 4.4, and
let W, W' be the closure of the components of M—F corresponding to W, W
respectively.

1-handle

Figure 4.4

Then we have:

Claim 4.4. (W, W') is a Heegaard splitting of (M} γ).

Proof. Since W' is obtained from a compression body W by attaching

1-handles on d+W, W is a compression body. So we have only to prove that
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Wis a compression body. Let Div , Dit(ίx< ••• <it) be the bad or semi bad
disks and Hly~-,Ht by be the corresponding 1-handles. Put FQ=F and let
Fι{l<l<f) be the surface obtained from Ft_x by attaching the 1-handle Ht. Let
Wι be the closure of the component of M—Ft corresponding to W. Then we
have Ft=F and Wt=W. For each Dh there is a 3-cell C: such that C, is home-
omoiphic to D{ xl with; D, corresponds to Z>, x{l/2};α,-X/cS; cl(3Df—a{)X
IczF. Then we may suppose that for j>i, each component of D Π Ct (if exists)
is of the form Z>, X {a point} in Cf . In this case, we say that a subdisk of Dj is
parallel with the trace of Z), . Moreover we may suppose that Dj intersects each
of the attaching solid 1-handle (^Z)2X/) in disks of the form (arcs)x/. Now
we show inductively that Wι{\<l<t) is a compression body. Let Diχ be a disk
obtained from Diχ by extending aiχ to H1 vetically in S X /. Cut Wi along Z)^,
then we get a compression body homeomorphic to W. Hence Wx is a compres-
sion body. Assume that W^x is a compression body. Then we attach the /-th
1-handle in a neighborhood of α t . If D{ is semi bad, we have two cases, i.e.,
whether D^ contains subdisks which are parallel with the trace of bad or semi
bad disks DfaKjKij) or not. If D{ is a bad disk, or a semi bad disk which
does not contain subdisks which are parallel with the trace of bad or semi bad
disks, Wι is a compression body by the same argument in case of Wv If D^ is
a semi bad disk which contains subdisks which are parallel with the trace of bad
or semi bad disks, let Bly ~',Bm be disk components of D{ f](solid 1-handles)
and D{ be a disk obtained from D{ by extending to au to Ht vetically in S X /
and D'i ==cl(J5f — D^). Let D'^ be the component of cl(Z)^— U Bh) which con-
tains air Then Int DVy Π (1 -handles)=φ. Let D be a disk Z>< U Z)^. Cut H^
along D, then we get a compression body homeomorphic to H^-i Hence HP̂  is
a compression body. Then we have the conclusion.

Claim 4.5. S (Ί W has a good 9-compressing hierarchy.

Proof. If D{ is bad or semi bad, let J9t be the disk as in the proof of Claim
4.4 and let Ώ\ be a disk c l ^ — D{). Replace D{ by Z)£, then we get a good
boundary compressing disk D'i toward F. If D{ is semi good, Z)x contains sub-
disks which are parallel with the trace of bad or semi bad disks Dj(ί<j<i).
Let Bly '",Bh be disk components of D{ Π(l-handles). Let Ώ'i denote a sub-
disk of Dj where Ώ'i is the component of ĉ Z),-— U Bm) which contains (Xj. Then
D'i is a good boundary compressing disk and replace D{ to D'i. Then it is
clear that these boundary compressing disks constitute good 3-compressing
hierarchy.

Lemma 4.6. h(Mly <γ^+h(M2, y2) — t<h(M, γ), where t is the number
of the bad or semi bad disks.
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Proof. Suppose that (W, W) is a Heegaard splitting of (Λf, γ) such that

h(W)=h(M, 7). By Claims 4.4, 4.5, and Lemma 4.3, (W, W) has a nice He-

egaard surface. Then (W, W) induces Heegaard splittings (Wly W{) of (Ml9 7X)

and (ίV2y Wί) of (Λf2, y2) such that A(^)=A(J^)+W2), by Lemma 4.2.

Since h(W)=t+h(W)=t+h(M, 7) and h{Wi)>h{Mh 7,) ( ι = l , 2), f+λ(Λf, 7)>

j , 7i)+A(Λf2, 72). Hence we have the conclusion.

By Lemma 4.6 and the fact that S Γ\W has a 3-compressing hierarchy
of length n— 1, we have /^M^ γ^+Z^Mg, γ2)—(n— l)<h(My γ). This com-
pletes the proof of in Case 2.

Proof of Theorem 2

We note that the idea of the proof of Theorem 2 is due to ([6] proof of
Theorem 3.1). Let E=S2—Int D, where D is an attaching disk and S2 is a
2-sphere of a 2/z-Murasugi sum, and T the surface obtained by summing Rx

and R2 along E. After a tiny isotopy, we may suppose that R Π T=φ (see
Figure 4.5).

B2

Figure 4.5

T is a properly embedded in (M, 7) and 3Γ=5(7). We assume that+
side and —side of R and Γ are as in Figure 4.5. R and T separates (M, 7)
into two sutured manifold (M\ 7') and (M", 7"), where M\M" resp.) is the
closure of the component of M—T between T and R^(ry)(R+(tγ) resp.). Let
7 '=7ΓlM / (7"=ΎnM / / ) and D\{DY resp.) be the product disks in (Λf', 7')
((M", 7") resp.) corresponding to μf χ/(ϊ/ fχ/ resp.) for l<z'<w. Then the
product disks U^Γ decompose (M", 7") into a product sutured manifold
((/?2—IntΛΓ(O))χ/, 3(i?2—Int N(D))X I) and a sutured manifold homeomor-
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phic to (Mj, 72). Since RΛ is a fiber surface, (Mly γ2) is a product sutured mani-
fold, and hence (M", γ") is a product sutured manifold by Lemma 2.4. Hence
(ΛΓ, γ ' )^(M, γ). The product disks \J D'i decompose (ΛΓ, γ') into a pro-
duct sutured manifold ((i? rInt N(D)) X /, 9(i?!—Int N(D))χI) and a sutured
manifold homeomorphic to (M2, γ2) Thus by the proof of Theorem 1 for the
case n = l , we see h(M\rγ')=h(M2yy2). Hence we have h(M, γ)=k(M2, 72)
This completes the proof of Theorem 2.

5. Examples

In this section, we give examples of Murasugi sums for which we have h(Mu γ^
+h(M2, γ2)—(n— 1)=A(M, γ) for any rc.

Let L be the pretzel link L=P(4,4, •••, 4) in S3 and i? a Seifert surface for
L as illustrated in Figure 5.1.

Figure 5.1

Let J?bea Seifert surface obtained from two copies of R by a 2n-Murasugi
sum as in Figure 5.2.

Figure 5.2

Let (M, γ) and (M, 7) be the complementary sutured manifolds for R
and R respectively. Then we have:
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Claim 5.1. h(M,y)=n-l.

Proof. Note that M is a cube with (n— 1) handles, since the product sutur-

ed manifold for R is a cube with (n—1) handles normally embedded in *S3. At

first, we show that h(My y)>n—ί. Let (JV, δ) be a product sutured manifold

for R and we take the free basis lu •••, ln_u mly •••, mw_j of H^dN) and the free

basis al9 •••, «„_! of H^R.fi)) as illustrated in Figure 5.3.

m,, , m7i

Figure 5.3

Let /t be the elements of Hλ{M) represented by m,i{l<i<n—\). Then

{?!, •••, 7w_i} is the free basis of Hλ(M)y and we have a1=4rl1—2/2, aέ=— 2/l _1 +

4/ t —2l i + ι (2<i<n—2), Λ»-I=—27 n _ 1 +47 n _ 1 . Now, assume that h(M,y)<n—

2, then M ^ i ? + ( γ ) x / U ( f t - 2 ) 1-handles U(ft-2) 2-handles. Since HΊ(R+(y))^

<fli> •• ,αw_ 1>,wehave/ί 1(M)^<fl 1, ~-,an.lyhly —, ^ - 2 ! ^ , •• ,r f f . 2 >, where A,.(l<

/<w—2) is a generator corresponding to attaching 1-handle and rj(l<j<n—2)

is a relation arising from a 2-handle. Then, /iΓ

1(M)/ίHίί/"1(i?+(γ))«</?!, # ,λΛ_2

ki> ">r»-2X a n d t n i s abelian group is generated by (ft—2) elements. On

the other hand, H^M)/^, —, Λ Λ _ 1 > » < 7 1 , —, 7II_1|471—2/2, —2/!+4/ 2—2/ 3, —,
w-2

—2/M_3+4/Λ_2—2/w_!, —2/ w _ 2 4-4/ w ^ 1 >«0Z 2 0Z 2 κ , and this abelian group cannot

be generated by less than (ft—1) elements by the fundamental theorem on the

abelian group. This is a contradiction, and hence h(My y)>n—l.
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Next, we show that h(M, rγ)=n—\. We consider properly embedded arcs
aly •••, an^ in (M, 7) such that daidR_(ry)=R+(δ) as illustrated in Figure 5.4.

Figure 5.4

Put X=R-(γ)χI\jN(ai;Άί), then X is a compression body with h(X)=
n—ί. On the other hand, Figure 5.5 shows that cl (M—X) is also a compres-
sion body with h(d(M—X))=n— 1. Then h(M, γ ) = n — 1.

Cut

M

Figure 5.5
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Claim 5.2. h(M, j)=n—l.

Proof. We assume that +side and —side of R are as in Figure 5.2. Let
(N, δ) be a product sutured manifold for R and xx, " >x2n-2 the free basis of

φ)) as illustrated in Figure 5.6.

Figure 5.6

We consider properly embedded arcs βu •••, /?„_! in (M, γ) such that 9/3,-C
R+(y)=R_φ) as illustrated in Figure 5.6. Put X=i? + (γ)χ J U Λ ^ . ; M), then
Xis a compression body with h(X)=n— 1. Put Y=cl(M— X), and let </t be a
properly embedded disk in Y corresponding to the dual of ΛfyS,-; M) (l<i<n—
1). We may choose d{ so that Xi(l<ί<n— 1) crosses transversely dt (l<z'<n— 1)
once. Then cutting M along d{ and moving by an isotopy, we can assume that
xl9 •••, xw_i do not cross other meridian disks in M and we can see that Xi(n<i<
2n—2) crosses transversely a meridian disk of M once. By an argument similar
to the proof of Claim 5.1, Y is homeomorphic to R-(y)xI\J (n— 1) 1—handles.
Thus we have h(M> j)<n—l, on the other hand, by Theorem 1, n—l<h(M, y)
<2n—2. Hence we have h(M, <γ)=n—\.
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