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Introduction

In Broue [6] and Okuyama [13] relations between blocks of a finite group and

those of its subgroups are studied. In Section 1 of the present paper, we show the fol-

lowing theorem. Let H be a subgroup of a group G. Let B and b be blocks of G and

//, respectively. Put σ(B,b) = \G : H\ζb(l)/ζ(l) for an irreducible character ζ in B,

where ζt, is the ^-component of £#.

Theorem 1.7. With the notation above, assume that d(B) > d{b). Let χ be the

character of G afforded by a virtually irreducible RG -module in B (in the sense of

Knόrr [10]). Then

| G : H l x * ( f l ) = σ(β, b)ωb(a) mod π for all a e ZRH.

Further, the following are equivalent,

(i) σ(B, fc) # 0 mod p.

(ii) B and b are linked, and B and b have a common defect group.

(For notation and the definition of "linked", see below.) This theorem reformulates

some of B roue's results in [6]. Furthermore, some of Brauer's results in [2] are im-

mediate consequences of this theorem.

In Section 2, we study the invariant σ(B,b) in the case when bG = B and d(b) =

d(B).
In Section 3 we consider the canonical characters of Brauer pairs. If P is a p-

subgroup of G and bP is a block of PCG(P) with defect group P, we call (P, bP)

a Brauer pair in G. Let ΘP be the canonical character of bP, i.e. ΘP is a unique ir-

reducible character in bP which is trivial on P. Let (P,bP) and (Q,bQ) be Brauer

pairs such that P > Q. Under this condition, a necessary and sufficient condition

for (bP)
PCc(Q) = ΦQ)PCG{Q) (i.e. bP and bQ are linked) involving the multiplicity

(0Q, ΘP)CG(P) is known (Brauer [1, (6D)]). We shall improve that condition slightly and

show that if bP and bQ are linked, then (ΘQ, ΘP)CG(P) = ±1 (mod p) (Theorem 3.5).
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Notation and terminology

Let us introduce some notation. Let G be a finite group and p a prime. Let

(K, R,k) be a /^-modular system. We assume that K contains a primitive |G|-th root

of unity. Let πR be the maximal ideal of R and let v be the valuation of K nor-

malized so that v{p) - 1. For an irreducible character χ of G, let ωχ be the central

character of KG corresponding to χ. Let B be a block of G with defect d(B). Put

coB = ωχ for an irreducible character χ in B. Let ββ be the block idempotent of RG

corresponding to B. Let Gp< be the set of //-elements of G. For an /^-linear combina-

tion θ of irreducible characters or irreducible Brauer characters in B, we define, ht(θ),

the height of 0, by ht(θ) = v(0(l)) - υ|G| + d(B), and put 0* = Σθ(x~ι)x, w h e r e *

runs through Gp>. For a block & of a subgroup H of G and an /^-linear combination

0 of irreducible characters of G, let θt> be the Z?-component of 0#. An ^-linear com-

bination of irreducible characters in B is called an R-generalized character in B.

Let ZRG be the center of RG. Put

Zo(B) = {aeZRGp>eB; ωB(a)^0 modjr},

where ZRGP> is the /^-submodule of ZRG spanned by /^-regular conjugacy class

sums. Let SH RG —> RH be the R-linear map defined by SH(X) = x if x £

H and sH{x) = 0 if x e G — H. As in [12], we say that B and b are linked if

sH(Z0(B))eb c Zo(b). Let Tr^ be the relative trace map, when RG is considered as a

G-algebra in the usual way.

Let (P, fep) be a Brauer pair in G. We call (P, &/>) a 5-Brauer pair if (Z?P)
G = 5.

For the canonical character ΘP of bP, we put n(P, bP) = |PC G (P) | / |P |#p( l ) . Since 0/>

may be regarded as an irreducible character of defect 0 of PCG(P)/P, n(P, bP) is an

integer prime to p.

For the definition of virtually irreducible RG -modules (lattices) and basic proper-

ties of them, see Knorr [10].

1. Blocks of subgroups and some results on subsections

Throughout this section, we use the following notation: Let G be a finite group

and H a subgroup of G. Let B and b be blocks of G and //, respectively.

Lemma 1.1. Let θ be an R-generalίzed character in B. Let ξ be an irreducible

character of height 0 in b. Then, for a e ZRH, θb(a)/ξ(l) lies in R and

θb(a) 0,(1)

m = —ωξ(a) mod,.



SUBSECTIONS OF BLOCKS AND BRAUER PAIRS 721

Proof. Put θb = Σfη1!' where rη e R and η ranges over the irreducible characters

in b. Then

θb(a) y^ η(a)

— mod π

modπ,= cύξifl

as required. D

Lemma 1.2. Let θ be an R-generalized character in B. Let ζ be an irreducible

character of height 0 in B. Then

ωζ(β*) = ?^±ωξ(ζ*) modπ.

Proof. A direct computation shows that ωζ(θ*) = 0(?*)/?(l). So the result fol-

lows from Lemma 1.1 (with H = G, b = B, ξ = ζ and a = ?*). D

The following proposition is proved in Osima [14, Lemma 1]; the proof below is

just a slight modification of Osima's.

Proposition 1.3. Let χ be an irreducible character of height 0 in B. Then

= ω x ( χ * ) ^ 0 mod p.

Proof. Put θ = 5Z |G| ιn(φ)φ, where φ ranges over the irreducible Brauer char-

acters in B and n(φ) is the degree of the projective cover of a module affording φ.

Then θ is the restriction on Gp> of an R-generalized character in B. So, by Lemma

1.2,

^ x ( χ * ) mod r,

Also v(0(l)/χ(l)) > 0. Further, we have eB = θ*. Thus ωx(#*) = 1. Hence

v(0(l)/χ(l)) = 0 and χ(l)/0(l) Ξ ω x (χ*) mod r. Since (9(1) = mnkRRGeB/\G\

and ω x (χ*) is a rational integer, the result follows. D

REMARK 1.4. Theorem 1.3 of [12] follows from Lemma 1.2 and Proposition 1.3.

The proof of the following lemma is a simple application of known facts,

cf. Broue [6, (PI) in Section 1.1].
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Lemma 1.5. Let χ be the character afforded by a virtually irreducible RG-

module in B and let ζ be an irreducible character in B. Let a e ZRH. Then

(i) \G : H\χb(a)/χ(l) lies in R.

(ii) \G : H\χb(a)/χ(l) = \G : H\ζb(a)/ζ(l) mod π.

Proof. Clearly we may assume a e ZRHeb. Define ω : RG -+ K by ω(x) =

χ(*)/χ(l) , x e RG. Then, for x e ZRG,

(1) ω(x) e R, and

(2) ω(x) = ωζ(x) mod π,

cf. 1.7 Remark of [10]. Then for a e ZRHeb,

(3) ω(Jτ°(a)) = \G:H\χb(a)/χ(l).

So (i) follows from (1). Since a formula similar to (3) holds for ωξ, (ii) follows from

(2). D

Lemma 1.6. Assume that d(b) = d(B). Then the following are equivalent.

(i) B and b are linked.

(ii) For every R-generalized character θ in B with ht(θ) = 0, θb is of height 0.

(iii) For some R-generalized character θ in B, θb is of height 0.

(iv) For some irreducible character ζ in B with ht(ζ) = 0, ζb is of height 0.

(v) For some a e ZQ(B), sH(a)eb e Z0(b).

Further, if these conditions are satisfied, then B and b have a common defect

group.

Proof, (i) & (ii) : See [12, Corollary 1.5].

(ii) =ϊ (iii) : Trivial.

(iii) ==» (iv) : It follows that there is an irreducible character ζ such that ht(ζb) = 0.

Then, since \G : H\ζb(l)/ζ(l) lies in R, we see ht{ζ) = 0.

(iv) =>• (ii) : Put θ = Σ rχ X» where χ ranges over the irreducible characters in B and

rχ e R. Then, applying Lemma 1.5 with a = eb, we obtain

mod7r.

ζ(l)\H\ ^ λ χ(\)\H\

= ft(l)|G|fl(l) _
~ ζ{\)\H\ ζ{\) J

So θb is of height 0.

(v) =Φ- (iii) : There is an R-generalized character θ such that θ* = a by [12, Corollary

1.4]. Then (θbf = sH(a)eb e Z0(b). So ht(θb) = 0 by [12, Theorem 1.3].

(i) => (v) : Trivial.

If B and b are linked, then the standard argument using defect classes of blocks

shows that a defect group of b is contained in a defect group of B. So the last asser-

tion follows. This completes the proof. D
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For the character χ of G afforded by a virtually irreducible RG-modulc in B, put

σ(B,b) = \G : H\χb(l)/χ(l). By Lemma 1.5, σ(B,b) lies in /?, and σ(B,b) modulo

p is determined uniquely by B and b only (and does not depend on the choice of χ).

The following theorem may be considered as a reformulation of some of B roue's

results in [6], see Remark 1.8 below. See also Okuyama [13, Corollary 1].

Theorem 1.7. Assume that d(B) > d{b). Let χ be the character of G afforded

by a virtually irreducible RG-module in B. Then

| G : H)[Xb(~a) = σ(β, b)ωb{a) mod π for all a e ZRH.

Further, the following are equivalent.

(i) σ(£,Z?)#0 mod/?.

(ii) B and b are linked, and B and b have a common defect group.

Proof. To prove the first assertion, we may assume a e ZRHeb. Let ζ be an

irreducible character of height 0 in B. Then, by Lemma 1.5, we get

\G : H\χb(a) \G : H\ζb(a)
= mod π.

x(D ζiX)

Let ξ be an irreducible character of height 0 in b. We can write \G : H\ζb(a)/ζ(l) =

(\G : H\ξ{\)/ζ(\))(ζb(a)/ξ(\)). Then \G : H\ξ(l)/ζ(l) lies in R, since d(B) > d(b).

Further

ζb(a) ζb(\)
= ω(a) mod.£0)

by Lemma 1.1. So we get

\G : H\χb(a) = \G : H\ξ(l) ζb(\)^

χ{\) ~ ζ{\) ξ(l)C

\G : H\ζb(l)
= — a>ξ(a) modπ.

Since \G : H\ζb(\)/ζ(1) = σ(B, b) mod π, the first assertion is proved. Further, since

mod7Γ

we see that σ(B, b) ψ 0 mod π if and only if d(B) = d(b) and ht(ζb) = 0. Since

ht(ζ) = 0, the last condition is equivalent to (ii) by Lemma 1.6. This completes the

proof. D
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REMARK 1.8. (i) Proposition 2.1.1 (b) of Broue [6] states if d(B) > d(b), then

(1.1) ΊιG

H{J{ZRH)eh)eB c J(ZRG)eB.

The formula in the above theorem, namely,

(1.2) ' — ' - — ^ — = σ(B, b)ωb(a) mod π for all a e ZRH,
(l)

may be considered as a restatement of (1.1). In fact, if a = eb, then (1.2) is

true by definition. On the other hand, if a e J(ZRH)eb, then (1.2) yields \G :

H\χb(a)/χ(l) = 0 mod π, which is (1.1).

(ii) By Proposition 2.2.2 (a) of Broue [6], if d(B) > d(b), we obtain

(1.3) σ(B, b) = λ(B, b)ωb(sH{eB)) mod 7r,

where λ(B, b) = \G : H\2x?LV>kRRHeb/mvΐkRRGeB. From this, we can obtain the equiv-

alence (i) <s> (ii) in Theorem 1.7. In fact,

(i) <=> d(B) = dφ) and ωb(sH(eB)) # 0 mod π (by (1.3))

(ii) (by Lemma 1.6 (v)).

For the value of σ(B, b), see Section 2 below.

The following corollary (and Lemma 1.5) extends Brauer [2, (3E)(i), (iii), (3F),

(4C)] and Okuyama [13, Theorem 1].

Corollary 1.9. Let χ be the character of G afforded by a virtually irreducible

RG-module in B. Then, for x e H,

v(χb(x))>v\CH(x)\-d(B) + ht(χ).

If d(B) > d(b), then the equality holds if and only if B and b are linked, B and b

have a common defect group and ωb(Kx) ψ 0 mod π, where Kx denotes the class sum

of the conjugacy class of H containing x.

Proof. Apply Lemma 1.5 (i) and Theorem 1.7 with a = Kx. D

The following is a special case of Corollary 1.9. For different proofs, see Broue

[5, Proposition 3.4.1], Watanabe [16, Lemma] (see also Corollary 2.6 below).

Corollary 1.10 (Brauer [2, (4C)]). Let u be a p-element of G. Let B be a block

of G and let b be a block of CG(u) such that bG = B and that d(b) = d(B); that is,

(u,b) is a major subsection associated with B. Let χ be an irreducible character in



SUBSECTIONS OF BLOCKS AND BRAUER PAIRS 725

B. Then

In particular, χb(u) φ 0.

Proof. We apply Corollary 1.9 for CG(u) and u in place of H and x. Since bG =

B, B and b are linked ([12, Proposition 1.6]). So it suffices to show that ωb(u) ψ

0 mod π. But this is verified immediately. D

The following extends Brauer [2, (5G), (5H)]. For a different proof of [2, (5H)],

see Broue [5, Proposition 3.4.2].

Corollary 1.11. Let u be a central p-element of H. Assume that bG is defined.

Let x be the character of G afforded by a virtually irreducible RG-module in B and

let ζ be an R-generalized character in B. Then

> v\H\ - d(B) + ht(χ),

where y runs through Hp>. Further, if d(B) > d(b), then the equality holds if and only

if bG = B, d(b) = d(B) and ht(ζ) = 0.

Proof. We put ψ(y) = ζb(u~xy), y e Hp>. Then the left side of the above inequal-

ity is v(χb(uψ*)). Applying Lemma 1.5 (i) with a = uψ*, we get the inequality. Fur-

ther, since bG is defined, bG = B if and only if B and b are linked ([12, Proposition

1.6]). Thus, by Theorem 1.7, the result follows if we show that ωb(u\jf*) ψ 0 mod π

if and only if ht(ζ) = 0. Now ωt,(u\l/*) = ωb(ψ*) mod π and

ωb(ψ*) ψ 0 mod π

ht(ψ) = 0 (by [12, Theorem 1.3], since ψ belongs to b)

ht(ζb) = 0 (by Lemma 1.1)

ht(ζ) = O (by [12, Proposition 1.7 (ii)]).

This completes the proof. D

Corollary 1.12 (Brauer and Feit [4]). Let χ and ζ be irreducible characters in

B. Assume that ζ is of height 0. Then

= v
 I G I -
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where y runs through Gp>.

Proof. In Corollary 1.11, let H = G, b = B and u = 1. D

As an application of Lemma 1.1, we have the following.

Proposition 1.13. Assume that bG is defined. Let χ be an R-generalized charac-

ter in B and let a e ZRH. Then

v(χb(a))>v\H\-d(b)

and the equality holds if and only if bG = B, ht(χ) = 0 and ωb(a) φ 0 mod π.

Proof. Let ξ be an irreducible character of height 0 in b. Then by Lemma 1.1,

χb(a)/ξ(l) e R, so the inequality follows. Also

m o d , .

Thus the equality holds if and only if ht(χb) = 0 and ωb{a) φ 0 mod π. Since bG is

defined, ht(χb) = 0 if and only if bG = B and ht{χ) = 0 by [12, Proposition 1.7 (ii)].

This completes the proof. D

The following strengthens Broue [7, Proposition 1] (see also Brauer [2, (3B)]).

Corollary 1.14. Let u be a central p-element of H. Assume that bG is defined.

Let χ be an R-generalized character in B. Then

v{χb(u))>v\H\-d(b)

and the equality holds if and only if bG = B and ht(χ) = 0.

Proof. In Proposition 1.13, let a = u. D

The following extends [12, Proposition 1.13] and Broue [7, Corollary 2].

Corollary 1.15. Let u be a central p-element of H. Assume that bG is defined.

Let x and ζ be R-generalized characters in B. Then

v\YJXb{uy)ζb{u-λy-χ)\ >v\H\-d(b),

where y runs through Hp>. Further, the equality holds if and only if bG = B, ht(χ) = 0

and ht(ζ) = 0.
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Proof. Put ψ(y) = ζb(u~ιy), y e Hp>. The left side of the above inequality is
v(Xb(uψ*)). So, applying Proposition 1.13 with a = uψ*, we get the inequality. It re-

mains to show ωb(uψ*) ψ 0 mod π if and only if ht(ζ) = 0. This is proved as in the

proof of Corollary 1.11. D

Proposition 1.16 (Broue [7, (C)]). Let u be a central p-element of H. Assume

that bG is defined and equal to B. Let χ be an R-generalized character in B. Then

\G\χ(l) \H\χb(u)
— m o d 7Γ.

rank/? RGeβ rank/? 7?//^

Proof. If χ is an irreducible character of positive height in B, then both sides are

congruent to 0 modulo π by Proposition 1.3 and Corollary 1.14. So we may assume

that χ is an irreducible character of height 0 in B. Then by Proposition 1.3,

IGlxO)
= ωχ(X ) mod7Γ.rank/? RGeB

On the other hand, if ξ is an irreducible character of height 0 in b, then

\H\χb(u) χb(u)
= ωt(ξ ) mod π (by Proposition 1.3)

rankRRHeb ξ(l)
Ύu(λλ

ξ(ξ*) mod7Γ (by Lemma 1.1)

= o)ξ((χhT) mod π (by Lemma 1.2)

= ω x (/*) mod π (since bG = B).

So the result follows. D

2. The invariant σ(B,b)

Let B be a block of a group G with defect group D. Let b be a block of a sub-

group of G. In this section we consider the value of σ(B, b) in the case when bG = B

and d(b) = d(B). Of course the most fundamental is the case when b is the Brauer

correspondent of B in NG(D). In this case we have the following, which is a vari-

ant of Sylow's Third Theorem (consider the case of principal blocks). We note that

this theorem is a consequence of the formula (35) in the proof of Theorem III.8.19 of

[11]. Here we give an alternative (character-theoretical) proof.

Theorem 2.1. Let B' be the Brauer correspondent of B in NG(D).

Then σ(B, B') = 1 mod p.

Proof. Let χ and ξ be irreducible characters of height 0 in B and Bf, respec-
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tively. Since B'G = B, we get by Lemma 1.2,

(2.1) ωχ(χ*) = ωξ((χB>)*) = J ^ ω ^ m o d n '

Let S be a set of representatives of the ^'-conjugacy classes of G with defect group

D. We choose S so that CGO>) > D for y e S. Let ^ be the conjugacy class of G

containing y, y e S. Then, as is well-known,

(2.2) ω x (χ*) = Σ ω χ ( k 1

yeS

Put Ly = Ky Π C G Φ ) , J G 5 . Then it is also well-known that {Ly\ y e S} is exactly

the set of //-conjugacy classes of NG(D) with defect group D. Then, as in (2.2), we

have

) mod π.
yeS

On the other hand, we have

(2.4) ωχ(Ky) = ωξ(Ly) mod π.

Further, since a formula similar to (2.4) is true for y~ι in place of y, y e S, we obtain

-1 χ(l)\NG(D)\ _1

(2.5) χ(y ι) = — W 1 λ l ^ , — \ C G ( y ) : CG(y) Π NG(D)\ξ(y ι) mod π

mod 7Γ,

since £> is a /?-Sylow subgroup of CG(y). On substituting (2.4) and (2.5) into (2.2),

we obtain by (2.3),

(2.6) ω x (χ ) = — — < ^ ( £ ) mod 7Γ.

Comparison of (2.1) and (2.6) shows that

x ω i S i Ξ ! mod;r'
since ω^(^*) # 0 mod π (by Proposition 1.3). This completes the proof. D

REMARK 2.2. (i) In fact, Theorem 2.1 and Corollary 2.4 (i) below follow from

Brauer [2, (2D)].



SUBSECTIONS OF BLOCKS AND BRAUER PAIRS 729

(ii) Still another proof of 2.1 is available; by Remark 1.8 (ii)

,n D'Λ \G:NG(D)\2r<mkRRNG(D)eB,σ(B, B') = — - — mod p.
rank;? RGeB

As an R[G x G]-module, RGeB is indecomposable and its Green correspondent with

respect to (G x G, Δ(D), NG(D) x NG(D)) is RNG(D)eB>, where Δ(D) = {(*, x)\x e

D}. From this, the result follows.

Let (D, bo) be a 5-Brauer pair. Let e(B) be the inertial index of B.

Corollary 2.3. We have σ(B, bD) = e(B) mod p.

Proof. Let B' be the Brauer correspondent of B in NG(D). Let T be the inertial

group of bo in NG(D). Then it is easy to see

(XB')DCG(D) =

where x runs through a transversal of T in NG(D). From this we get the result by

Theorem 2.1. D

Corollary 2.4. Let χ be an irreducible character of height 0 in B. Let θβ be

the canonical character of bp. Then

(i) As Brauer characters, χt,D = mθo, where m is an integer such that

e(B)\DCG(D)\χ(l)
m = mod p.

\G\θD(l)

(ii) ( |G|/ |D|χ(l))ω x (χ*) = e(B)n(D, bDf mod p.

Proof, (i) This follows from Corollary 2.3.

(ii) Put θ =ΘD. Since (bD)G = B, we get by Lemma 1.2

ωx(χ*) = ωθ((XbDT) = * ^ U ( 0 * ) mod π.

Then, since ω (̂6>*) = \DCG(D)\/\D\θ(l), the result follows from (i). D

Proposition 2.5. Let b be a block of a subgroup H of G. Assume that bG is

defined and equal to B and that b has defect group D. Let (D, βo) be a b-Brauer

pair in H. Then

e(B)n(D,bD)2

σ(B, b) = mod p,

where n(D, βo) is an integer defined in a manner similar to n(D, bo).
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Proof. Let / and ξ be irreducible characters of height 0 in B and b, respectively.

Since bG = B, we get by Lemma 1.2

ωχ(χ*) = ωξ((χb)*) = -j-—ωξ(ξ*) mod π.

Then, applying Corollary 2.4 (ii) twice, we get

\GΓι \D\χ(l)e(B)n(D, bDf = \H\-χ\D\χb(\)eQ>)n{D, βDf mod π.

This yields the result. D

The following extends Brauer [2, (4B)] and Watanabe [16, Lemma].

Corollary 2.6. Let b be a block of a subgroup H of G. Let Q be a defect group

of b. Assume that CG(Q) < H and that bG = B. Let b0 be a root of b in QCG(Q)

and let T be the inertial group of bo in NG(Q) Let χ be the character of G afforded

by a virtually irreducible RG-module in B. Then, for any x e H, we have

χb(x)\G\ \T\ ,
- τωb(Kx) modπ ,| \TΠH\

where Kx is the class sum of conjugacy class of H containing x.

Proof. Applying Theorem 1.7 with a = Kx, we get

XbW\G\

X(l)\CH(x)\

So it suffices to show

= σ(B, b)ωb(Kx) mod π.

\T\
(2.1) σ(B,b)=——— mod/7.

If d(b) = d(B), (2.1) follows from Proposition 2.5. On the other hand, if d(b) < d(B),

then σ(B,b) = 0 mod p by Theorem 1.7. Thus it suffices to prove \T\/\T Π H\ is

divisible by p. Assume the contrary. Then, since \T Π H\/\QCc(Q)\ is prime to /?,

\T\/\QCG(Q)\ is prime to p. This yields d(b) = d(B), a contradiction. Thus (2.1) is

proved and the proof is complete. D

3. Canonical characters of Brauer pairs

Let G be a group. Let (P, bP) and (g, bQ) be Brauer pairs in G such that P >

Q. Under this condition, a necessary and sufficient condition for (bp)pc^ = ( £ β ) P C ( β )

involving the multiplicity (ΘQ,ΘP)C(P) is known (Brauer [1, (6D)]). (In this section,
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C(P) and C(β) will denote CG(P) and C G (β), respectively.) For alternative proofs,

see Passman [15, Theorem 7], Feit [8, Theorem V.5.4 (iii)]. Here we give a slightly

improved condition and a congruence for the multiplicity.

For two Brauer pairs (P, bP) and ( β , bg), we write (P, bP) > ( β , bQ), if they are

linked, and (P,bP) 2 ( β , &ρ), if there exist Brauer pairs (Pi,bp.)9 I < i < n, such

that (P, M = (Pi, 6P l) > (P2, ftft) > > (Pπ, fepj = ( β ,

Lemma 3.1. Lei (P, £/>) αw*/ (β , feβ) be Brauer pairs such that P > Q > Z(P).

Then (ΘQ, θp)c(P) equals the multiplicity of (θp)c(p) in (ΘQ)C(P) as Brauer characters.

Proof. Let bP° be the block of C(P) covered by bP. So Z(P) is a defect group

of bp°. Since Z(P) < Z(Q) and ΘQ is trivial on Z(β), (θQ)C{p) is trivial on Z(P).

Then, since bP° contains a unique block of C(P)/Z(P) (of defect 0), we see (θQ)bpo

is a multiple of (θP)c(p). So the result follows. D

Corollary 3.2. Let (P,bP) and (Q,bQ) be Brauer pairs such that (P,bP) D

(Q,bς)). Then (ΘQ,ΘP)C(P) equals the multiplicity of (θp)c(p) in (ΘQ)C(P) as Brauer

characters.

Proof. By the Brauer-Olsson theorem [3, (4K)], we get P > β > Z(P). So

Lemma 3.1 yields the result. D

Proposition 3.3. Let (P, bP) and ( β , bQ) be Brauer pairs such that P > β and

bq is P-invariant. Then the following are equivalent.

(i) (bP)
PC«» = φQ)PC«>\

(ii) Cp(Q) < β and (ΘQ, θP)C(p) is prime to p.

(iii) Z(P) < Q and (ΘQ, θP)C(p) is prime to p.

Proof. Since (i) implies CP(Q) < Q [3, (3A)] (and hence Z(P) < β), in order

to prove the assertion, it suffices to show that

( 3 1 } if Z(P) < β, then

if and only if (ΘQ, θP)C(p) is prime to p.

Assume Z(P) < β, then by Lemma 3.1, (ΘQ,ΘP)C(P) equals the multiplicity of

(θp)c(P) in (ΘQ)C(P) as Brauer characters. Then the conclusion of (3.1) follows from

the proof of [12, Proposition 1.9]. This completes the proof. D

Proposition 3.4. Let (P,bP) and (Q,bQ) be Brauer pairs such that (P,bP) 5

(Q,bQ). Then

n(P, bP) = ±n(Q, bQ) mod p.
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Proof. By induction on \P : β|, we may assume (P,bP) D> (Q,bQ). Put Z?* =

(bP)
PC(Q\ So Z?* = (bQ)PC(Q) and P is a defect group of b*. We claim that ΘQ extends

to PC(Q). In fact, let Z?i be a unique block of QC(Q)/Q contained in bQ. Then b\

has defect 0 and ΘQ is a unique irreducible character in b\. Since #0 is PC(Q)/Q-

invariant, any irreducible character of height 0 in the block of PC(Q)/Q covering b\

is an extension of ΘQ to PC(Q)/Q. So the claim follows. Let χ be such an extension.

Since χ lies in Z?* and ht(χ) = 0, applying Corollary 2.4 (ii) for PC(β), Z?*, Z?/> in

place of G, B, bo, we see that

\PC(Q)\ 2
(3.1) ωγ(χ) = e(b)n(P,bp) mod p.

| P | χ ( l ) x Λ

We claim (PC(Q) Π NG(P))/PC(P) is a /?-group. In fact, let x be a ^'-element of

PC(Q) Π Nc(P) Then JC centralizes β. On the other hand, β is self-centralizing in

P by [3, (3A)]. Hence x centralizes P, cf. [9, X.1.2], So the claim is proved. Thus,

in particular, e(b*) = 1. (This last fact also follows from the fact that Z?* is a nilpo-

tent block.) Now | P C ( β ) | / | P | = | β C ( β ) | / | β | , since CP(Q) < β. Further, we have

In fact,

= \QCG(Q)\

\Q\θQ(Ό

Thus (3.1) yields

n(Q, bQ)2 = n(P, bP)
2 mod p

and the result follows. This completes the proof. D

For the multiplicity we have the following.

Theorem 3.5. Let (P, bP) and ( β , bQ) be Brauer pairs such that (P, bP) >

(Q,bQ). Then

m a ^ n(P,bP)
fe^Ξ^)Ξ±1 m θ ά p

Proof. Put Z?* = (Z7g)PC(e). As in the proof of Proposition 3.4, there is an exten-

sion χ of ΘQ to PC(Q). Applying Corollary 2.4 (i) for PC(Q), b*, bP, ΘP in place of

G, B, bo, ΘD, we see that if m is the multiplicity of ΘP in χc(P) as Brauer characters,

then

, . n =e(b*)\PC(P)\χ(l)
yj. L) ffl —

As we have seen in the proof of Proposition 3.4, e(b*) - 1. Then, since | P C ( β ) | =

\QC(Q)\\P : β |, the right side of (3.1) equals n(P,bP)/n(Q, bQ). So, by Proposition
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3.4, we get m = ± 1 mod p. Since m equals the multiplicity of (θp)c(P) in (ΘQ)C(P) as

Brauer characters, we get m = (ΘQ,ΘP)C(P) by Corollary 3.2. Thus the result follows.

D

REMARK 3.6. (i) From the proof of Passman [15, Theorem 7] (or Brauer [1,

(6D)], Feit [8, Theorem V.5.4 (Hi)]), we see that

' Q mod p,
)

which also yields Theorem 3.5 by Proposition 3.4.

(ii) In Theorem 3.5, both values ±1 mod p are possible in general.
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