<table>
<thead>
<tr>
<th>Title</th>
<th>On subsections of blocks and Brauer pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Murai, Masafumi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 37(3) P.719-P.733</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5873</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5873</td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive : OUKA</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/
ON SUBSECTIONS OF BLOCKS AND BRAUER PAIRS

MASAFUMI MURAI

(Received May 9, 1997)

Introduction

In Broué [6] and Okuyama [13] relations between blocks of a finite group and those of its subgroups are studied. In Section 1 of the present paper, we show the following theorem. Let H be a subgroup of a group G. Let B and b be blocks of G and H, respectively. Put $\sigma(B, b) = [G : H \xi_b(1)/\xi(1)]$ for an irreducible character ξ in B, where ξ_b is the b-component of ξ_H.

Theorem 1.7. With the notation above, assume that $d(B) > d(b)$. Let χ be the character of G afforded by a virtually irreducible RG-module in B (in the sense of Knörr [10]). Then

$$\frac{|G : H|\chi_b(a)}{\chi(1)} \equiv \sigma(B, b)\omega_b(a) \mod \pi$$

for all $a \in ZRH$.

Further, the following are equivalent.
(i) $\sigma(B, b) \not\equiv 0 \mod p$.
(ii) B and b are linked, and B and b have a common defect group.
(For notation and the definition of “linked”, see below.) This theorem reformulates some of Broué’s results in [6]. Furthermore, some of Brauer’s results in [2] are immediate consequences of this theorem.

In Section 2, we study the invariant $\sigma(B, b)$ in the case when $b^G = B$ and $d(b) = d(B)$.

In Section 3 we consider the canonical characters of Brauer pairs. If P is a p-subgroup of G and b_P is a block of $PC_G(P)$ with defect group P, we call (P, b_P) a Brauer pair in G. Let θ_P be the canonical character of b_P, i.e. θ_P is a unique irreducible character in b_P which is trivial on P. Let (P, b_P) and (Q, b_Q) be Brauer pairs such that $P \triangleright Q$. Under this condition, a necessary and sufficient condition for $(b_P)^{PC_G(Q)} = (b_Q)^{PC_G(Q)}$ (i.e. b_P and b_Q are linked) involving the multiplicity $(\theta_Q, \theta_P)_{CG(P)}$ is known (Brauer [1, (6D)]). We shall improve that condition slightly and show that if b_P and b_Q are linked, then $(\theta_Q, \theta_P)_{CG(P)} \equiv \pm 1 \mod p$ (Theorem 3.5).
Notation and terminology

Let us introduce some notation. Let G be a finite group and p a prime. Let (K, R, k) be a p-modular system. We assume that K contains a primitive $|G|$-th root of unity. Let πR be the maximal ideal of R and let v be the valuation of K normalized so that $v(p) = 1$. For an irreducible character χ of G, let ω_χ be the central character of KG corresponding to χ. Let B be a block of G with defect $d(B)$. Put $\omega_B = \omega_\chi$ for an irreducible character χ in B. Let β_B be the block idempotent of RG corresponding to B. Let G_p be the set of p-elements of G. For an R-linear combination θ of irreducible characters or irreducible Brauer characters in B, we define, $ht(\theta)$, the height of θ, by $ht(\theta) = v(\theta(1)) - v|G| + d(B)$, and put $\theta^* = \sum \theta(x^{-1})x$, where x runs through G_p. For a block b of a subgroup H of G and an R-linear combination θ of irreducible characters of G, let θ_b be the b-component of θ_H. An R-linear combination of irreducible characters in B is called an R-generalized character in B.

Let ZRG be the center of RG. Put

$$Z_0(B) = \{a \in ZRG| e_B; \omega_B(a) \not\equiv 0 \mod \pi\},$$

where ZRG_p is the R-submodule of ZRG spanned by p-regular conjugacy class sums. Let $s_H : RG \to RH$ be the R-linear map defined by $s_H(x) = x$ if $x \in H$ and $s_H(x) = 0$ if $x \in G - H$. As in [12], we say that B and b are linked if $s_H(Z_0(B))e_b \subseteq Z_0(b)$. Let Tr_H^G be the relative trace map, when RG is considered as a G-algebra in the usual way.

Let (P, b_P) be a Brauer pair in G. We call (P, b_P) a B-Brauer pair if $(b_P)^G = B$. For the canonical character θ_P of b_P, we put $n(P, b_P) = |PC_G(P)|/|P|\theta_P(1)$. Since θ_P may be regarded as an irreducible character of defect 0 of $PC_G(P)/P$, $n(P, b_P)$ is an integer prime to p.

For the definition of virtually irreducible RG-modules (lattices) and basic properties of them, see Knörr [10].

1. Blocks of subgroups and some results on subsections

Throughout this section, we use the following notation: Let G be a finite group and H a subgroup of G. Let B and b be blocks of G and H, respectively.

Lemma 1.1. Let θ be an R-generalized character in B. Let ξ be an irreducible character of height 0 in b. Then, for $a \in ZRH$, $\theta_b(a)/\xi(1)$ lies in R and

$$\frac{\theta_b(a)}{\xi(1)} \equiv \frac{\theta_b(1)}{\xi(1)} \omega_\xi(a) \mod \pi.$$
Proof. Put $\theta_b = \sum r_\eta \eta$, where $r_\eta \in R$ and η ranges over the irreducible characters in b. Then

$$
\frac{\theta_b(a)}{\xi(1)} = \sum r_\eta \frac{\eta(a) \eta(1)}{\eta(1) \xi(1)} = \sum r_\eta \omega_\xi(a) \frac{\eta(1)}{\xi(1)} \mod \pi \\
= \frac{\theta_b(1)}{\xi(1)} \omega_\xi(a) \mod \pi,
$$

as required. \qed

Lemma 1.2. Let θ be an R-generalized character in B. Let ζ be an irreducible character of height 0 in B. Then

$$
\omega_\zeta(\theta^*) = \frac{\theta(1)}{\zeta(1)} \omega_\zeta(\zeta^*) \mod \pi.
$$

Proof. A direct computation shows that $\omega_\zeta(\theta^*) = \theta(\zeta^*)/\zeta(1)$. So the result follows from Lemma 1.1 (with $H = G$, $b = B$, $\xi = \zeta$ and $a = \zeta^*$). \qed

The following proposition is proved in Osima [14, Lemma 1]; the proof below is just a slight modification of Osima's.

Proposition 1.3. Let χ be an irreducible character of height 0 in B. Then

$$
\frac{|G|\chi(1)}{\text{rank}_R RGe_B} \equiv \omega_\chi(\chi^*) \not\equiv 0 \mod p.
$$

Proof. Put $\theta = \sum |G|^{-1} n(\phi) \phi$, where ϕ ranges over the irreducible Brauer characters in B and $n(\phi)$ is the degree of the projective cover of a module affording ϕ. Then θ is the restriction on $G_{\rho'}$ of an R-generalized character in B. So, by Lemma 1.2,

$$
\omega_\chi(\theta^*) \equiv \frac{\theta(1)}{\chi(1)} \omega_\chi(\chi^*) \mod \pi.
$$

Also $\nu(\theta(1)/\chi(1)) \geq 0$. Further, we have $e_B = \theta^*$. Thus $\omega_\chi(\theta^*) = 1$. Hence $\nu(\theta(1)/\chi(1)) = 0$ and $\chi(1)/\theta(1) \equiv \omega_\chi(\chi^*) \mod \pi$. Since $\theta(1) = \text{rank}_R RGe_B/|G|$ and $\omega_\chi(\chi^*)$ is a rational integer, the result follows. \qed

Remark 1.4. Theorem 1.3 of [12] follows from Lemma 1.2 and Proposition 1.3. The proof of the following lemma is a simple application of known facts, cf. Broué [6, (P1) in Section 1.1].
Lemma 1.5. Let \(\chi \) be the character afforded by a virtually irreducible RG-module in \(B \) and let \(\zeta \) be an irreducible character in \(B \). Let \(a \in \text{ZRH} \). Then
\[
(i) \quad |G : H| \chi_b(a)/\chi(1) \text{ lies in } R.
(ii) \quad |G : H| \chi_b(a)/\chi(1) \equiv |G : H| \zeta_b(a)/\zeta(1) \mod \pi.
\]
Proof. Clearly we may assume \(a \in \text{ZRH}e_b \). Define \(\omega : RG \to K \) by \(\omega(x) = \chi(x)/\chi(1), x \in RG \). Then, for \(x \in \text{ZR}G \),
\[
(1) \quad \omega(x) \in R,
(2) \quad \omega(x) \equiv \omega(x) \mod \pi,
\]
cf. 1.7 Remark of [10]. Then for \(a \in \text{ZRH}e_b \),
\[
(3) \quad \omega(\text{Tr}^G_H(a)) = |G : H| \chi_b(a)/\chi(1).
\]
So (i) follows from (1). Since a formula similar to (3) holds for \(\omega_\zeta \), (ii) follows from (2).

Lemma 1.6. Assume that \(d(b) = d(B) \). Then the following are equivalent.
\[
(i) \quad B \text{ and } b \text{ are linked.}
(ii) \quad \text{For every } R\text{-generalized character } \theta \text{ in } B \text{ with } \text{ht}(\theta) = 0, \theta_b \text{ is of height } 0.
(iii) \quad \text{For some } R\text{-generalized character } \theta \text{ in } B, \theta_b \text{ is of height } 0.
(iv) \quad \text{For some irreducible character } \zeta \text{ in } B \text{ with } \text{ht}(\zeta) = 0, \zeta_b \text{ is of height } 0.
(v) \quad \text{For some } a \in \text{Z}_0(B), s_H(a)e_b \in \text{Z}_0(b).
\]
Further, if these conditions are satisfied, then \(B \) and \(b \) have a common defect group.

Proof. (i) \(\Leftrightarrow \) (ii) : See [12, Corollary 1.5].
(ii) \(\Rightarrow \) (iii) : Trivial.
(iii) \(\Rightarrow \) (iv) : It follows that there is an irreducible character \(\zeta \) such that \(\text{ht}(\zeta_b) = 0 \). Then, since \(|G : H| \zeta_b(1)/\zeta(1) \text{ lies in } R \), we see \(\text{ht}(\zeta) = 0 \).
(iv) \(\Rightarrow \) (ii) : Put \(\theta = \sum r_\chi \chi \), where \(\chi \) ranges over the irreducible characters in \(B \) and \(r_\chi \in R \). Then, applying Lemma 1.5 with \(a = e_b \), we obtain
\[
\frac{\theta_b(1)|G|}{\zeta(1)|H|} = \sum r_\chi \frac{\chi_b(1)|G|}{\chi(1)|H|} \frac{\chi(1)}{\zeta(1)}
\equiv \frac{\zeta_b(1)|G|}{\zeta(1)|H|} \frac{\theta(1)}{\zeta(1)} \not\equiv 0 \mod \pi.
\]
So \(\theta_b \) is of height 0.
(v) \(\Rightarrow \) (iii) : There is an \(R\text{-generalized character } \theta \) such that \(\theta^* = a \) by [12, Corollary 1.4]. Then \((\theta_b)^* = s_H(a)e_b \in \text{Z}_0(b) \). So \(\text{ht}(\theta_b) = 0 \) by [12, Theorem 1.3].
(i) \(\Rightarrow \) (v) : Trivial.

If \(B \) and \(b \) are linked, then the standard argument using defect classes of blocks shows that a defect group of \(b \) is contained in a defect group of \(B \). So the last assertion follows. This completes the proof.
For the character χ of G afforded by a virtually irreducible RG-module in B, put $\sigma(B, b) = |G : H|\chi_b(1)/\chi(1)$. By Lemma 1.5, $\sigma(B, b)$ lies in R, and $\sigma(B, b)$ modulo p is determined uniquely by B and b only (and does not depend on the choice of χ).

The following theorem may be considered as a reformulation of some of Broué’s results in [6], see Remark 1.8 below. See also Okuyama [13, Corollary 1].

Theorem 1.7. Assume that $d(B) \geq d(b)$. Let χ be the character of G afforded by a virtually irreducible RG-module in B. Then

$$\frac{|G : H|\chi_b(a)}{\chi(1)} \equiv \sigma(B, b)\omega_b(a) \mod \pi$$

for all $a \in ZRH$.

Further, the following are equivalent.

(i) $\sigma(B, b) \not\equiv 0 \mod p$.
(ii) B and b are linked, and B and b have a common defect group.

Proof. To prove the first assertion, we may assume $a \in ZRH_\epsilon b$. Let ζ be an irreducible character of height 0 in B. Then, by Lemma 1.5, we get

$$\frac{|G : H|\chi_b(a)}{\chi(1)} \equiv \frac{|G : H|\zeta_b(a)}{\zeta(1)} \mod \pi.$$

Let ξ be an irreducible character of height 0 in b. We can write $|G : H|\zeta_b(a)/\zeta(1) = (|G : H|\zeta(1)/\zeta(1)) (\zeta_b(a)/\zeta(1))$. Then $|G : H|\zeta(1)/\zeta(1)$ lies in R, since $d(B) \geq d(b)$. Further

$$\frac{\zeta_b(a)}{\xi(1)} \equiv \frac{\zeta_b(1)}{\xi(1)} \omega_{\xi}(a) \mod \pi$$

by Lemma 1.1. So we get

$$\frac{|G : H|\chi_b(a)}{\chi(1)} \equiv \frac{|G : H|\zeta(1)}{\zeta(1)} \frac{\zeta_b(1)}{\xi(1)} \omega_{\xi}(a) \mod \pi$$

$$\equiv \frac{|G : H|\zeta_b(1)}{\zeta(1)} \omega_{\xi}(a) \mod \pi.$$

Since $|G : H|\zeta_b(1)/\zeta(1) \equiv \sigma(B, b) \mod \pi$, the first assertion is proved. Further, since

$$\nu \left(\frac{|G : H|\zeta_b(1)}{\zeta(1)} \right) = d(B) - d(b) + ht(\zeta_b),$$

we see that $\sigma(B, b) \not\equiv 0 \mod \pi$ if and only if $d(B) = d(b)$ and $ht(\zeta_b) = 0$. Since $ht(\zeta) = 0$, the last condition is equivalent to (ii) by Lemma 1.6. This completes the proof. \qed
Remark 1.8. (i) Proposition 2.1.1 (b) of Broué [6] states if \(d(B) \geq d(b) \), then

\[\text{Tr}^G_H(J(ZRH)e_b)e_B \subseteq J(ZRG)e_B. \]

The formula in the above theorem, namely,

\[\frac{|G : H|\chi_b(a)}{\chi(1)} = \sigma(B, b)\omega_b(a) \mod \pi \quad \text{for all } a \in ZRH, \]

may be considered as a restatement of (1.1). In fact, if \(a = e_b \), then (1.2) is true by definition. On the other hand, if \(a \in J(ZRH)e_b \), then (1.2) yields \(|G : H|\chi_b(a)/\chi(1) = 0 \mod \pi\), which is (1.1).

(ii) By Proposition 2.2.2 (a) of Broué [6], if \(d(B) \geq d(b) \), we obtain

\[\sigma(B, b) = \lambda(B, b)\omega_b(s_H(e_B)) \mod \pi, \]

where \(\lambda(B, b) = |G : H|^2\text{rank}_R RHe_b/\text{rank}_R RG e_B \). From this, we can obtain the equivalence (i) \(\iff \) (ii) in Theorem 1.7. In fact,

\[\text{(i) } \iff d(B) = d(b) \quad \text{and} \quad \omega_b(s_H(e_B)) \not\equiv 0 \mod \pi \quad \text{(by (1.3))} \]

\[\iff \text{(ii) (by Lemma 1.6 (v))}. \]

For the value of \(\sigma(B, b) \), see Section 2 below.

The following corollary (and Lemma 1.5) extends Brauer [2, (3E)(i), (iii), (3F), (4C)] and Okuyama [13, Theorem 1].

Corollary 1.9. Let \(\chi \) be the character of \(G \) afforded by a virtually irreducible \(RG \)-module in \(B \). Then, for \(x \in H \),

\[v(\chi_b(x)) \geq v|C_H(x)| - d(B) + ht(\chi). \]

If \(d(B) \geq d(b) \), then the equality holds if and only if \(B \) and \(b \) are linked, \(B \) and \(b \) have a common defect group and \(\omega_b(\hat{K}_x) \not\equiv 0 \mod \pi \), where \(\hat{K}_x \) denotes the class sum of the conjugacy class of \(H \) containing \(x \).

Proof. Apply Lemma 1.5 (i) and Theorem 1.7 with \(a = \hat{K}_x \).

The following is a special case of Corollary 1.9. For different proofs, see Broué [5, Proposition 3.4.1], Watanabe [16, Lemma] (see also Corollary 2.6 below).

Corollary 1.10 (Brauer [2, (4C)]). Let \(u \) be a p-element of \(G \). Let \(B \) be a block of \(G \) and let \(b \) be a block of \(C_G(u) \) such that \(b^G = B \) and that \(d(b) = d(B) \); that is, \((u, b)\) is a major subsection associated with \(B \). Let \(\chi \) be an irreducible character in
B. Then

\[v(\chi_b(u)) = v|C_G(u)| - d(B) + ht(\chi). \]

In particular, \(\chi_b(u) \neq 0. \)

Proof. We apply Corollary 1.9 for \(C_G(u) \) and \(u \) in place of \(H \) and \(x \). Since \(b^G = B \), \(B \) and \(b \) are linked ([12, Proposition 1.6]). So it suffices to show that \(\omega_b(u) \equiv 0 \mod \pi \). But this is verified immediately. \(\square \)

The following extends Brauer [2, (5G), (5H)]. For a different proof of [2, (5H)], see Broué [5, Proposition 3.4.2].

Corollary 1.11. Let \(u \) be a central \(p \)-element of \(H \). Assume that \(b^G \) is defined. Let \(\chi \) be the character of \(G \) afforded by a virtually irreducible \(RG \)-module in \(B \) and let \(\zeta \) be an \(R \)-generalized character in \(B \). Then

\[v \left(\sum_y \chi_b(uy)\zeta_b(u^{-1}y^{-1}) \right) \geq v|H| - d(B) + ht(\chi), \]

where \(y \) runs through \(H \). Further, if \(d(B) \geq d(b) \), then the equality holds if and only if \(b^G = B \), \(d(b) = d(B) \) and \(ht(\zeta) = 0 \).

Proof. We put \(\psi(y) = \zeta_b(u\psi^*) \), \(y \in H \). Then the left side of the above inequality is \(v(\chi_b(u\psi^*)) \). Applying Lemma 1.5 (i) with \(a = u\psi^* \), we get the inequality. Further, since \(b^G \) is defined, \(b^G = B \) if and only if \(B \) and \(b \) are linked ([12, Proposition 1.6]). Thus, by Theorem 1.7, the result follows if we show that \(\omega_b(u\psi^*) \equiv 0 \mod \pi \) if and only if \(ht(\zeta) = 0 \). Now \(\omega_b(u\psi^*) \equiv \omega_b(\psi^*) \mod \pi \) and

\[\omega_b(\psi^*) \equiv 0 \mod \pi \]

\[\iff ht(\psi) = 0 \text{ (by [12, Theorem 1.3], since } \psi \text{ belongs to } b) \]

\[\iff ht(\zeta_b) = 0 \text{ (by Lemma 1.1)} \]

\[\iff ht(\zeta) = 0 \text{ (by [12, Proposition 1.7 (ii)]).} \]

This completes the proof. \(\square \)

Corollary 1.12 (Brauer and Feit [4]). Let \(\chi \) and \(\zeta \) be irreducible characters in \(B \). Assume that \(\zeta \) is of height 0. Then

\[v \left(\sum_y \chi(y)\zeta(y^{-1}) \right) = v|G| - d(B) + ht(\chi), \]
where \(y \) runs through \(G_{p'} \).

Proof. In Corollary 1.11, let \(H = G, b = B \) and \(u = 1 \).

As an application of Lemma 1.1, we have the following.

Proposition 1.13. Assume that \(b^G \) is defined. Let \(\chi \) be an \(R \)-generalized character in \(B \) and let \(a \in \text{ZRH} \). Then

\[
v(\chi b(a)) \geq v|H| - d(b)
\]

and the equality holds if and only if \(b^G = B, \, \text{ht}(\chi) = 0 \) and \(\omega_b(a) \not\equiv 0 \mod \pi \).

Proof. Let \(\xi \) be an irreducible character of height 0 in \(b \). Then by Lemma 1.1, \(\chi_b(a)/\xi(1) \in R \), so the inequality follows. Also

\[
\frac{\chi_b(a)}{\xi(1)} \equiv \frac{\chi_b(1)}{\xi(1)} \omega_b(a) \mod \pi.
\]

Thus the equality holds if and only if \(\text{ht}(\chi_b) = 0 \) and \(\omega_b(a) \not\equiv 0 \mod \pi \). Since \(b^G \) is defined, \(\text{ht}(\chi_b) = 0 \) if and only if \(b^G = B \) and \(\text{ht}(\chi) = 0 \) by [12, Proposition 1.7 (ii)]. This completes the proof. \(\square \)

The following strengthens Broué [7, Proposition 1] (see also Brauer [2, (3B)]).

Corollary 1.14. Let \(u \) be a central \(p \)-element of \(H \). Assume that \(b^G \) is defined. Let \(\chi \) be an \(R \)-generalized character in \(B \). Then

\[
v(\chi_b(u)) \geq v|H| - d(b)
\]

and the equality holds if and only if \(b^G = B \) and \(\text{ht}(\chi) = 0 \).

Proof. In Proposition 1.13, let \(a = u \). \(\square \)

The following extends [12, Proposition 1.13] and Broué [7, Corollary 2].

Corollary 1.15. Let \(u \) be a central \(p \)-element of \(H \). Assume that \(b^G \) is defined. Let \(\chi \) and \(\zeta \) be \(R \)-generalized characters in \(B \). Then

\[
v \left(\sum_y \chi_b(uy)\zeta_b(u^{-1}y^{-1}) \right) \geq v|H| - d(b),
\]

where \(y \) runs through \(H_{p'} \). Further, the equality holds if and only if \(b^G = B, \, \text{ht}(\chi) = 0 \) and \(\text{ht}(\zeta) = 0 \).
Proof. Put $\psi(y) = \zeta_{b}(u^{-1}y)$, $y \in H_p$. The left side of the above inequality is $v(\chi_{b}(u\psi^*))$. So, applying Proposition 1.13 with $a = u\psi^*$, we get the inequality. It remains to show $\omega_{b}(u\psi^*) \neq 0 \mod \pi$ if and only if $ht(\xi) = 0$. This is proved as in the proof of Corollary 1.11. \hfill \square

Proposition 1.16 (Broué [7, (C)]). Let u be a central p-element of H. Assume that b^G is defined and equal to B. Let χ be an R-generalized character in B. Then

$$\frac{|G|\chi(1)}{\text{rank}_{R}RGe_B} \equiv \frac{|H|\chi_{b}(u)}{\text{rank}_{R}RHe_b} \mod \pi.$$

Proof. If χ is an irreducible character of positive height in B, then both sides are congruent to 0 modulo π by Proposition 1.3 and Corollary 1.14. So we may assume that χ is an irreducible character of height 0 in B. Then by Proposition 1.3,

$$\frac{|G|\chi(1)}{\text{rank}_{R}RGe_B} = \omega_{\chi}(\chi^*) \mod \pi.$$

On the other hand, if ξ is an irreducible character of height 0 in b, then

$$\frac{|H|\chi_{b}(u)}{\text{rank}_{R}RHe_b} \equiv \frac{\chi_{b}(u)}{\xi(1)} \omega_{\xi}(\xi^*) \mod \pi \text{ (by Proposition 1.3)}$$

$$\equiv \frac{\chi_{b}(1)}{\xi(1)} \omega_{\xi}(\xi^*) \mod \pi \text{ (by Lemma 1.1)}$$

$$\equiv \omega_{\xi}(\chi_{b}^*) \mod \pi \text{ (by Lemma 1.2)}$$

$$\equiv \omega_{\chi}(\chi^*) \mod \pi \text{ (since } b^G = B).$$

So the result follows. \hfill \square

2. The invariant $\sigma(B, b)$

Let B be a block of a group G with defect group D. Let b be a block of a subgroup of G. In this section we consider the value of $\sigma(B, b)$ in the case when $b^G = B$ and $d(b) = d(B)$. Of course the most fundamental is the case when b is the Brauer correspondent of B in $N_G(D)$. In this case we have the following, which is a variant of Sylow's Third Theorem (consider the case of principal blocks). We note that this theorem is a consequence of the formula (35) in the proof of Theorem III.8.19 of [11]. Here we give an alternative (character-theoretical) proof.

Theorem 2.1. Let B' be the Brauer correspondent of B in $N_G(D)$. Then $\sigma(B, B') \equiv 1 \mod p$.

Proof. Let χ and ξ be irreducible characters of height 0 in B and B', respec-
tively. Since $B^G = B$, we get by Lemma 1.2,

$$\omega_x(\chi^*) \equiv \omega_\xi((\chi_B)^*) \equiv \frac{\chi_B(1)}{\xi(1)} \omega_\xi(\xi^*) \mod \pi. \tag{2.1}$$

Let S be a set of representatives of the p'-conjugacy classes of G with defect group D. We choose S so that $C_G(y) \supseteq D$ for $y \in S$. Let K_y be the conjugacy class of G containing y, $y \in S$. Then, as is well-known,

$$\omega_x(\chi^*) \equiv \sum_{y \in S} \omega_x(K_y)(\chi(y^{-1}) \mod \pi. \tag{2.2}$$

Put $L_y = K_y \cap C_G(D)$, $y \in S$. Then it is also well-known that $\{L_y ; y \in S\}$ is exactly the set of p'-conjugacy classes of $N_G(D)$ with defect group D. Then, as in (2.2), we have

$$\omega_\xi(\xi^*) \equiv \sum_{y \in S} \omega_\xi(L_y)(\xi(y^{-1}) \mod \pi. \tag{2.3}$$

On the other hand, we have

$$\omega_x(K_j) \equiv \omega_\xi(L_j) \mod \pi. \tag{2.4}$$

Further, since a formula similar to (2.4) is true for y^{-1} in place of y, $y \in S$, we obtain

$$\chi(y^{-1}) \equiv \frac{\chi(1)|N_G(D)|}{\xi(1)|G|} |C_G(y) : C_G(y) \cap N_G(D)| \xi(y^{-1}) \mod \pi \tag{2.5}$$

since D is a p-Sylow subgroup of $C_G(y)$. On substituting (2.4) and (2.5) into (2.2), we obtain by (2.3),

$$\omega_x(\chi^*) \equiv \frac{\chi(1)|N_G(D)|}{\xi(1)|G|} \omega_\xi(\xi^*) \mod \pi. \tag{2.6}$$

Comparison of (2.1) and (2.6) shows that

$$\frac{\chi_B(1)|G|}{\chi(1)|N_G(D)|} \equiv 1 \mod \pi,$$

since $\omega_\xi(\xi^*) \not\equiv 0 \mod \pi$ (by Proposition 1.3). This completes the proof. \qed

Remark 2.2. (i) In fact, Theorem 2.1 and Corollary 2.4 (i) below follow from Brauer [2, (2D)].
(ii) Still another proof of 2.1 is available; by Remark 1.8 (ii)

\[\sigma(B, B') \equiv \frac{|G : N_G(D)|^2 \text{rank}_R R N_G(D) e_B}{\text{rank}_R R G e_B} \mod p. \]

As an \(R[G \times G] \)-module, \(R G e_B \) is indecomposable and its Green correspondent with respect to \((G \times G, \Delta(D), N_G(D) \times N_G(D)) \) is \(R N_G(D) e_B \), where \(\Delta(D) = \{(x, x); x \in D\} \). From this, the result follows.

Let \((D, b_D)\) be a \(B \)-Brauer pair. Let \(e(B) \) be the inertial index of \(B \).

Corollary 2.3. We have \(\sigma(B, b_D) \equiv e(B) \mod p \).

Proof. Let \(B' \) be the Brauer correspondent of \(B \) in \(N_G(D) \). Let \(T \) be the inertial group of \(b_D \) in \(N_G(D) \). Then it is easy to see

\[\left(\chi_{B'} \right)_{D C_G(D)} = \sum \chi_{(b_D)^x} = \sum \chi_{b_D)^x} \]

where \(x \) runs through a transversal of \(T \) in \(N_G(D) \). From this we get the result by Theorem 2.1. \(\square \)

Corollary 2.4. Let \(\chi \) be an irreducible character of height 0 in \(B \). Let \(\theta_D \) be the canonical character of \(b_D \). Then

(i) As Brauer characters, \(\chi_{b_D} = m \theta_D \), where \(m \) is an integer such that

\[m \equiv \frac{e(B)|D C_G(D)|\chi(1)}{|G|\theta_D(1)} \mod p. \]

(ii) \((|G|/|D|\chi(1))\omega(\chi^*) \equiv e(B)n(D, b_D)^2 \mod p \).

Proof. (i) This follows from Corollary 2.3.

(ii) Put \(\theta = \theta_D \). Since \((b_D)^G = B \), we get by Lemma 1.2

\[\omega(\chi^*) = \omega_{b_D}(\chi_{b_D})^* \equiv \frac{\chi_{b_D}(1)}{\theta(1)} \omega_{b_D}(\theta^*) \mod \pi. \]

Then, since \(\omega_{b_D}(\theta^*) = |D C_G(D)|/|D|\theta(1) \), the result follows from (i). \(\square \)

Proposition 2.5. Let \(b \) be a block of a subgroup \(H \) of \(G \). Assume that \(b^G \) is defined and equal to \(B \) and that \(b \) has defect group \(D \). Let \((D, \beta_D)\) be a \(b \)-Brauer pair in \(H \). Then

\[\sigma(B, b) \equiv \frac{e(B)n(D, b_D)^2}{e(b)n(D, \beta_D)^2} \mod p, \]

where \(n(D, \beta_D) \) is an integer defined in a manner similar to \(n(D, b_D) \).
Proof. Let \(\chi \) and \(\xi \) be irreducible characters of height 0 in \(B \) and \(b \), respectively. Since \(b^G = B \), we get by Lemma 1.2

\[
\omega_\chi(\chi^*) \equiv \omega_\xi((\chi_b)^*) \equiv \frac{\chi_b(1)}{\xi(1)} \omega_\xi(\xi^*) \mod \pi.
\]

Then, applying Corollary 2.4 (ii) twice, we get

\[
|G|^{-1}D|\chi(1)e(B)n(D, b_D)^2 \equiv |H|^{-1}D|\chi_b(1)e(b)n(D, \beta_D)^2 \mod \pi.
\]

This yields the result. \(\square \)

The following extends Brauer \[2, (4B)\] and Watanabe \[16, Lemma\].

Corollary 2.6. Let \(b \) be a block of a subgroup \(H \) of \(G \). Let \(Q \) be a defect group of \(b \). Assume that \(C_G(Q) \leq H \) and that \(b^G = B \). Let \(b_0 \) be a root of \(b \) in \(QC_G(Q) \) and let \(T \) be the inertial group of \(b_0 \) in \(N_G(Q) \). Let \(\chi \) be the character of \(G \) afforded by a virtually irreducible RG-module in \(B \). Then, for any \(x \in H \), we have

\[
\frac{\chi_b(x)|G|}{\chi(1)|C_H(x)|} \equiv \frac{|T|}{|T \cap H|} \omega_b(\bar{K}_x) \mod \pi,
\]

where \(\bar{K}_x \) is the class sum of conjugacy class of \(H \) containing \(x \).

Proof. Applying Theorem 1.7 with \(a = \bar{K}_x \), we get

\[
\frac{\chi_b(x)|G|}{\chi(1)|C_H(x)|} \equiv \sigma(B, b)\omega_b(\bar{K}_x) \mod \pi.
\]

So it suffices to show

\[
(2.1) \quad \sigma(B, b) \equiv \frac{|T|}{|T \cap H|} \mod p.
\]

If \(d(b) = d(B) \), (2.1) follows from Proposition 2.5. On the other hand, if \(d(b) < d(B) \), then \(\sigma(B, b) \equiv 0 \mod p \) by Theorem 1.7. Thus it suffices to prove \(|T|/|T \cap H|\) is divisible by \(p \). Assume the contrary. Then, since \(|T \cap H|/|QC_G(Q)|\) is prime to \(p \), \(|T|/|QC_G(Q)|\) is prime to \(p \). This yields \(d(b) = d(B) \), a contradiction. Thus (2.1) is proved and the proof is complete. \(\square \)

3. Canonical characters of Brauer pairs

Let \(G \) be a group. Let \((P, b_P) \) and \((Q, b_Q) \) be Brauer pairs in \(G \) such that \(P \triangleright Q \). Under this condition, a necessary and sufficient condition for \((b_P)^{PC(Q)} = (b_Q)^{PC(Q)}\) involving the multiplicity \((\theta_Q, \theta_P)_{C(P)}\) is known (Brauer \[1, (6D)\]). (In this section,
$C(P)$ and $C(Q)$ will denote $C_G(P)$ and $C_G(Q)$, respectively.) For alternative proofs, see Passman [15, Theorem 7], Feit [8, Theorem V.5.4 (iii)]. Here we give a slightly improved condition and a congruence for the multiplicity.

For two Brauer pairs (P, b_P) and (Q, b_Q), we write $(P, b_P) \triangleright (Q, b_Q)$ if they are linked, and $(P, b_P) \supseteq (Q, b_Q)$, if there exist Brauer pairs (P_i, b_{P_i}), $1 \leq i \leq n$, such that $(P, b_P) = (P_1, b_{P_1}) \triangleright (P_2, b_{P_2}) \triangleright \cdots \triangleright (P_n, b_{P_n}) = (Q, b_Q)$.

Lemma 3.1. Let (P, b_P) and (Q, b_Q) be Brauer pairs such that $P \geq Q \geq Z(P)$. Then $(\theta_Q, \theta_P)_{C(P)}$ equals the multiplicity of $(\theta_P)_{C(P)}$ in $(\theta_Q)_{C(P)}$ as Brauer characters.

Proof. Let b_P^0 be the block of $C(P)$ covered by b_P. So $Z(P)$ is a defect group of b_P^0. Since $Z(P) \leq Z(Q)$ and θ_Q is trivial on $Z(Q)$, $(\theta_Q)_{C(P)}$ is trivial on $Z(P)$. Then, since b_P^0 contains a unique block of $C(P)/Z(P)$ (of defect 0), we see $(\theta_Q)_{b_P^0}$ is a multiple of $(\theta_P)_{C(P)}$. So the result follows. □

Corollary 3.2. Let (P, b_P) and (Q, b_Q) be Brauer pairs such that $(P, b_P) \supseteq (Q, b_Q)$. Then $(\theta_Q, \theta_P)_{C(P)}$ equals the multiplicity of $(\theta_P)_{C(P)}$ in $(\theta_Q)_{C(P)}$ as Brauer characters.

Proof. By the Brauer-Olsson theorem [3, (4K)], we get $P \geq Q \geq Z(P)$. So Lemma 3.1 yields the result. □

Proposition 3.3. Let (P, b_P) and (Q, b_Q) be Brauer pairs such that $P \triangleright Q$ and b_Q is P-invariant. Then the following are equivalent.

(i) $(b_P)_{PC(Q)} = (b_Q)_{PC(Q)}$.

(ii) $C_P(Q) \leq Q$ and $(\theta_Q, \theta_P)_{C(P)}$ is prime to p.

(iii) $Z(P) \leq Q$ and $(\theta_Q, \theta_P)_{C(P)}$ is prime to p.

Proof. Since (i) implies $C_P(Q) \leq Q$ [3, (3A)] (and hence $Z(P) \leq Q$), in order to prove the assertion, it suffices to show that

\begin{equation}
\text{if } Z(P) \leq Q, \text{ then } (b_P)_{PC(Q)} = (b_Q)_{PC(Q)} \text{ if and only if } (\theta_Q, \theta_P)_{C(P)} \text{ is prime to } p.
\end{equation}

Assume $Z(P) \leq Q$, then by Lemma 3.1, $(\theta_Q, \theta_P)_{C(P)}$ equals the multiplicity of $(\theta_P)_{C(P)}$ in $(\theta_Q)_{C(P)}$ as Brauer characters. Then the conclusion of (3.1) follows from the proof of [12, Proposition 1.9]. This completes the proof. □

Proposition 3.4. Let (P, b_P) and (Q, b_Q) be Brauer pairs such that $(P, b_P) \supseteq (Q, b_Q)$. Then

\[n(P, b_P) \equiv \pm n(Q, b_Q) \mod p. \]
Proof. By induction on \(|P : Q|\), we may assume \((P, b_P) \triangleright (Q, b_Q)\). Put \(b^* = (b_P)^{PC(Q)}\). So \(b^* = (b_Q)^{PC(Q)}\) and \(P\) is a defect group of \(b^*\). We claim that \(\theta_Q\) extends to \(PC(Q)\). In fact, let \(b_1\) be a unique block of \(QC(Q)/Q\) contained in \(b_Q\). Then \(b_1\) has defect \(0\) and \(\theta_Q\) is a unique irreducible character in \(b_1\). Since \(\theta_Q\) is \(PC(Q)/Q\)-invariant, any irreducible character of height \(0\) in the block of \(PC(Q)/Q\) covering \(b_1\) is an extension of \(\theta_Q\) to \(PC(Q)/Q\). So the claim follows. Let \(\chi\) be such an extension. Since \(\chi\) lies in \(b^*\) and \(ht(\chi) = 0\), applying Corollary 2.4 (ii) for \(PC(Q), b^*, b_P\) in place of \(G, B, b_D\), we see that

\[
\frac{|PC(Q)|}{|P|} \omega_{\chi}(\chi^*) \equiv e(b^*)n(P, b_P)^2 \mod p.
\]

We claim \((PC(Q) \cap N_G(P))/PC(P)\) is a \(p\)-group. In fact, let \(x\) be a \(p'\)-element of \(PC(Q) \cap N_G(P)\). Then \(x\) centralizes \(Q\). On the other hand, \(Q\) is self-centralizing in \(P\) by [3, (3A)]. Hence \(x\) centralizes \(P\), cf. [9, X.1.2]. So the claim is proved. Thus, in particular, \(e(b^*) = 1\). (This last fact also follows from the fact that \(b^*\) is a nilpotent block.) Now \(|PC(Q)|/|P| = |QC(Q)|/|Q|\), since \(C_P(Q) \leq Q\). Further, we have \(\omega_{\chi}(\chi^*) = n(Q, b_Q)\). In fact,

\[
\omega_{\chi}(\chi^*) = \omega_{\theta_Q}((\theta_Q)^*) = \frac{|QC_G(Q)|}{|Q|\theta_Q(1)} = n(Q, b_Q).
\]

Thus (3.1) yields

\[
n(Q, b_Q)^2 \equiv n(P, b_P)^2 \mod p
\]

and the result follows. This completes the proof.

For the multiplicity we have the following.

Theorem 3.5. Let \((P, b_P)\) and \((Q, b_Q)\) be Brauer pairs such that \((P, b_P) \triangleright (Q, b_Q)\). Then

\[
(\theta_Q, \theta_P)_{C(P)} \equiv \frac{n(P, b_P)}{n(Q, b_Q)} \equiv \pm 1 \mod p.
\]

Proof. Put \(b^* = (b_Q)^{PC(Q)}\). As in the proof of Proposition 3.4, there is an extension \(\chi\) of \(\theta_Q\) to \(PC(Q)\). Applying Corollary 2.4 (i) for \(PC(Q), b^*, b_P, \theta_P\) in place of \(G, B, b_D, \theta_D\), we see that if \(m\) is the multiplicity of \(\theta_P\) in \(\chi_{C(P)}\) as Brauer characters, then

\[
m \equiv \frac{e(b^*)|PC(P)|\chi(1)}{|PC(Q)|\theta_P(1)} \mod p.
\]

As we have seen in the proof of Proposition 3.4, \(e(b^*) = 1\). Then, since \(|PC(Q)| = |QC(Q)||P : Q|\), the right side of (3.1) equals \(n(P, b_P)/n(Q, b_Q)\). So, by Proposition
3.4, we get \(m \equiv \pm 1 \mod p \). Since \(m \) equals the multiplicity of \((\theta_p)_{C(P)} \) in \((\theta_Q)_{C(P)} \) as Brauer characters, we get \(m = (\theta_Q, \theta_P)_{C(P)} \) by Corollary 3.2. Thus the result follows.

\[\square \]

Remark 3.6. (i) From the proof of Passman [15, Theorem 7] (or Brauer [1, (6D)], Feit [8, Theorem V.5.4 (iii)]), we see that

\[(\theta_Q, \theta_P)_{C(P)} \equiv \frac{n(Q, b_Q)}{n(P, b_P)} \mod p, \]

which also yields Theorem 3.5 by Proposition 3.4.

(ii) In Theorem 3.5, both values \(\pm 1 \mod p \) are possible in general.

References
