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Introduction

In Broué [6] and Okuyama [13] relations between blocks of a finite group and
those of its subgroups are studied. In Section 1 of the present paper, we show the fol-
lowing theorem. Let H be a subgroup of a group G. Let B and b be blocks of G and
H, respectively. Put (B, b) = |G : H|{,(1)/¢(1) for an irreducible character ¢ in B,
where ¢, is the b-component of ¢y.

Theorem 1.7. With the notation above, assume that d(B) > d(b). Let x be the
character of G afforded by a virtually irreducible RG-module in B (in the sense of
Knorr [10]). Then

G:H
'__(i))(b_(“) = o(B,b)wp(a) mod7 for all a € ZRH.
X

Further, the following are equivalent.

i) o(B,b)#0 mod p.

(i) B and b are linked, and B and b have a common defect group.

(For notation and the definition of “linked”, see below.) This theorem reformulates
some of Broué’s results in [6]. Furthermore, some of Brauer’s results in [2] are im-
mediate consequences of this theorem.

In Section 2, we study the invariant o (B, b) in the case when b® = B and d(b) =
d(B).

In Section 3 we consider the canonical characters of Brauer pairs. If P is a p-
subgroup of G and bp is a block of PCgs(P) with defect group P, we call (P, bp)
a Brauer pair in G. Let 6p be the canonical character of bp, i.e. Op is a unique ir-
reducible character in bp which is trivial on P. Let (P, bp) and (Q, bp) be Brauer
pairs such that P > Q. Under this condition, a necessary and sufficient condition
for (bp)PCe(@ = (bp)PCe@ (ie. bp and by are linked) involving the multiplicity
(6o, 0p)c,(py 1s known (Brauer [1, (6D)]). We shall improve that condition slightly and
show that if bp and by are linked, then (6¢, Op)c,(py = £1 (mod p) (Theorem 3.5).
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Notation and terminology

Let us introduce some notation. Let G be a finite group and p a prime. Let
(K, R, k) be a p-modular system. We assume that K contains a primitive |G|-th root
of unity. Let w R be the maximal ideal of R and let v be the valuation of K nor-
malized so that v(p) = 1. For an irreducible character x of G, let w, be the central
character of KG corresponding to x. Let B be a block of G with defect d(B). Put
wp = w, for an irreducible character y in B. Let ep be the block idempotent of RG
corresponding to B. Let G be the set of p’-elements of G. For an R-linear combina-
tion @ of irreducible characters or irreducible Brauer characters in B, we define, ht(6),
the height of 6, by ht(8) = v(8(1)) — v|G| + d(B), and put 6* = > 6(x~")x, where x
runs through G, . For a block b of a subgroup H of G and an R-linear combination
6 of irreducible characters of G, let 6, be the b-component of . An R-linear com-
bination of irreducible characters in B is called an R-generalized character in B.

Let ZRG be the center of RG. Put

Zo(B)={a € ZRG ep; wp(a)# 0 mod r},

where ZRG, is the R-submodule of ZRG spanned by p-regular conjugacy class
sums. Let sy : RG — RH be the R-linear map defined by sy(x) = x if x €
H and sy(x) = 0 if x € G — H. As in [12], we say that B and b are linked if
su(Zo(B))ey, C Zo(b). Let Trf, be the relative trace map, when RG is considered as a
G-algebra in the usual way.

Let (P, bp) be a Brauer pair in G. We call (P, bp) a B-Brauer pair if (bp)® = B.
For the canonical character 6p of bp, we put n(P,bp) = |PCs(P)|/|P|0p(1). Since Op
may be regarded as an irreducible character of defect 0 of PCs(P)/P, n(P,bp) is an
integer prime to p.

For the definition of virtually irreducible RG-modules (lattices) and basic proper-
ties of them, see Knorr [10].

1. Blocks of subgroups and some results on subsections

Throughout this section, we use the following notation: Let G be a finite group
and H a subgroup of G. Let B and b be blocks of G and H, respectively.

Lemma 1.1. Let 6 be an R-generalized character in B. Let & be an irreducible
character of height 0 in b. Then, for a € ZRH, 0y(a)/§(1) lies in R and

Bo(a) _ 0,(1)
§1) ~ &M

wg(a) mod .
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Proof. Put 6, =) r,n, where r, € R and n ranges over the irreducible characters
in b. Then

Op(a) Z n(a) n(1)

g0 -~ ED
1
EZr,,wg(a)é% mod 7
O,(1)
= ;(1) wg(a) mod 7,
as required. O

Lemma 1.2. Let 6 be an R-generalized character in B. Let { be an irreducible
character of height 0 in B. Then

o_ 60
W (0%) = 2)_(l)cog(g ) modm.

Proof. A direct computation shows that w;(60*) = 6(¢*)/¢(1). So the result fol-
lows from Lemma 1.1 (with H=G, b=B, € ={ and a = ¢*). O

The following proposition is proved in Osima [14, Lemma 1]; the proof below is
just a slight modification of Osima’s.

Proposition 1.3. Let x be an irreducible character of height O in B. Then

IGlx(1)
—_— = * d p.
rankg RGep @r(x7)#0 mod p

Proof. Put 8 =) |G [~'n(¢)¢, where ¢ ranges over the irreducible Brauer char-
acters in B and n(¢) is the degree of the projective cover of a module affording ¢.
Then 6 is the restriction on G, of an R-generalized character in B. So, by Lemma
1.2,

0(1)

wy(6%) = ma)x(x*) mod 7,

Also v(0(1)/x(1)) = 0. Further, we have eg = 6*. Thus w,(6*) = 1. Hence

v(@(1)/x(1)) = 0 and x(1)/6(1) = wy(x*) mod . Since (1) = rankgRGep/|G]|
and w,(x*) is a rational integer, the result follows. O

REMARK 1.4. Theorem 1.3 of [12] follows from Lemma 1.2 and Proposition 1.3.
The proof of the following lemma is a simple application of known facts,
cf. Broué [6, (P1) in Section 1.1].
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Lemma 1.5. Let x be the character afforded by a virtually irreducible RG-
module in B and let ¢ be an irreducible character in B. Let a € ZRH. Then
(i) |G : Hlxp(a)/x(1) lies in R.
() |G : Hlxp(a)/x(1) =G : H|gp(a)/¢(1)  mod 7.

Proof. Clearly we may assume a € ZRHe,. Define w : RG — K by w(x) =
x(x)/x(), x € RG. Then, for x € ZRG,
(1) w(x) e R, and
(2) o(x)=w;/(x) modm,
cf. 1.7 Remark of [10]. Then for a € ZRHe,,
(3) o(Tr§(a) = |G : Hlxp(@)/x(1).
So (i) follows from (1). Since a formula similar to (3) holds for w,, (ii) follows from

2). O

Lemma 1.6. Assume that d(b) = d(B). Then the following are equivalent.
(1) B and b are linked.
(ii)  For every R-generalized character 6 in B with ht(6) =0, 6, is of height O.
(iii) For some R-generalized character 0 in B, 6, is of height 0.
(iv) For some irreducible character ¢ in B with ht(£) =0, ¢ is of height O.
(v) For some a € Zy(B), sy(a)e, € Zy(b).
Further, if these conditions are satisfied, then B and b have a common defect

group.

Proof. (i) & (ii) : See [12, Corollary 1.5].
(i) = (iii) : Trivial.
(iii) = (iv) : It follows that there is an irreducible character { such that ht(g,) = O.
Then, since |G : H|¢p(1)/¢(1) lies in R, we see ht(¢) =0.
(iv) = (ii) : Put 6 = er X, where x ranges over the irreducible characters in B and
ry € R. Then, applying Lemma 1.5 with a = ¢;, we obtain

Op(DIG| _ Zr xsDIG| x (1)
- X

c(DIH| x(DIH] <)
&(DIG| 6(1)
= — 0 d .
C(DIH T 70 Mol

So 6, is of height 0.
(v) = (iii) : There is an R-generalized character 6 such that 6* =a by [12, Corollary
1.4]. Then (6p)* = su(a)ey, € Zo(b). So ht(6y) =0 by [12, Theorem 1.3].
(i) = (v) : Trivial.

If B and b are linked, then the standard argument using defect classes of blocks
shows that a defect group of b is contained in a defect group of B. So the last asser-
tion follows. This completes the proof. U
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For the character x of G afforded by a virtually irreducible RG-module in B, put
o(B,b) = |G : H|xp(1)/x(1). By Lemma 1.5, o(B, b) lies in R, and o(B, b) modulo
p is determined uniquely by B and b only (and does not depend on the choice of ).

The following theorem may be considered as a reformulation of some of Broué’s
results in [6], see Remark 1.8 below. See also Okuyama [13, Corollary 1].

Theorem 1.7. Assume that d(B) > d(b). Let x be the character of G afforded
by a virtually irreducible RG-module in B. Then

H
&Ell’)"’—(“) =0(B,b)wy(@) modrm forall a € ZRH.
X

Further, the following are equivalent.
(i o(B,b)#0 mod p.
(i) B and b are linked, and B and b have a common defect group.

Proof. To prove the first assertion, we may assume a € ZRHep,. Let { be an
irreducible character of height O in B. Then, by Lemma 1.5, we get

|G : H|xp(a) _ |G : H|Ep(a)
x (1) ¢(D)
Let £ be an irreducible character of height 0 in b. We can write |G : H|{p(a)/¢(1) =

(IG : HIEM)/&(1))(&p(a)/E(1)). Then |G : H|E(1)/¢(1) lies in R, since d(B) > d(b).
Further

mod 7.

&) _ &)
51 &)

wg(a) mod

by Lemma 1.1. So we get

|G : Hlxp(a) _ |G : H|E(1) &p(1)

xh () ED”
_ 1G 1 Hig()

¢(1)

Since |G : H|¢p(1)/¢(1) = o(B, b) mod 7, the first assertion is proved. Further, since

£(a) modm

wg(a) mod .

v (IG tH (g (1)
¢()

we see that o(B,b) # 0mod 7 if and only if d(B) = d(b) and ht(¢,) = 0. Since
ht(¢) = 0, the last condition is equivalent to (ii) by Lemma 1.6. This completes the
proof. O

) =d(B) —d(b) + ht(5),
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REMARK 1.8. (i) Proposition 2.1.1 (b) of Broué [6] states if d(B) > d(b), then
(L.1) Tr?,(J(ZRH)eb)eB C J(ZRG)ep.

The formula in the above theorem, namely,

G:H
(1.2) # =o0(B,b)wp(a) modm for all a e ZRH,
X
may be considered as a restatement of (1.1). In fact, if a = e¢,, then (1.2) is

true by definition. On the other hand, if a € J(ZRH)ep,, then (1.2) yields |G :
H|xp(a)/x(1) = 0 mod 7, which is (1.1).
(i) By Proposition 2.2.2 (a) of Broué [6], if d(B) > d(b), we obtain

(1.3) o(B, b) = AM(B, b)wp(sy(eg)) mod m,

where A(B,b) = |G : H|2rankRRHeb/rankRRGeB. From this, we can obtain the equiv-
alence (i) < (ii) in Theorem 1.7. In fact,

(i) & d(B)=d(b) and wy(sglep))#0 modm (by (1.3))
<= (ii) (by Lemma 1.6 (v)).

For the value of o(B, b), see Section 2 below.
The following corollary (and Lemma 1.5) extends Brauer [2, (3E)(i), (iii), (3F),
(40)] and Okuyama [13, Theorem 1].

Corollary 1.9. Let x be the character of G afforded by a virtually irreducible
RG-module in B. Then, for x € H,

v(xp(x)) = v|Ch(x)| — d(B) + ht(x).

If d(B) > d(b), then the equality holds if and only if B and b are linked, B and b
have a common defect group and wp(K,) # 0 mod 7r, where K, denotes the class sum
of the conjugacy class of H containing x.

Proof. Apply Lemma 1.5 (i) and Theorem 1.7 with a = K,. U

The following is a special case of Corollary 1.9. For different proofs, see Broué
[5, Proposition 3.4.1], Watanabe [16, Lemma] (see also Corollary 2.6 below).

Corollary 1.10 (Brauer [2, (4C)]). Let u be a p-element of G. Let B be a block
of G and let b be a block of Cg(u) such that b° = B and that d(b) = d(B); that is,
(u, b) is a major subsection associated with B. Let x be an irreducible character in
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B. Then

v(xp()) = v|Cg(u)| — d(B) + ht(x).
In particular, x,(u) #0.

Proof. We apply Corollary 1.9 for C;(u) and u in place of H and x. Since b® =
B, B and b are linked ([12, Proposition 1.6]). So it suffices to show that wp(u)
0 mod m. But this is verified immediately. O

The following extends Brauer [2, (5G), (SH)]. For a different proof of [2, (SH)],
see Broué [5, Proposition 3.4.2].

Corollary 1.11. Let u be a central p-element of H. Assume that b® is defined.
Let x be the character of G afforded by a virtually irreducible RG-module in B and
let ¢ be an R-generalized character in B. Then

v (Z xb<uy);b<u-‘y—‘>) > v|H| ~ d(B) +hi(x),
y

where y runs through H,. Further, if d(B) > d(b), then the equality holds if and only
if b° = B, d(b) = d(B) and ht(¢) = 0.

Proof. We put ¥(y) =&u™'y), y € H, . Then the left side of the above inequal-
ity is v(xp(uy*)). Applying Lemma 1.5 (i) with a = uy*, we get the inequality. Fur-
ther, since b® is defined, b = B if and only if B and b are linked ([12, Proposition
1.6]). Thus, by Theorem 1.7, the result follows if we show that w,(uy*) % 0 mod
if and only if A7(¢) = 0. Now wp(uy™) = w,(¥*) mod 7w and

wp(¥*)#Z0 mod
<= ht(yy) =0 (by [12, Theorem 1.3], since i belongs to b)
<= ht(¢)=0 (by Lemma 1.1)
<= ht(¢) =0 (by [12, Proposition 1.7 (ii)]).

This completes the proof. OJ

Corollary 1.12 (Brauer and Feit [4]). Let x and ¢ be irreducible characters in
B. Assume that ¢ is of height 0. Then

v (Z x(y)s“(y“)) = V|G| — d(B) + ht(x),
y
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where y runs through G .
Proof. In Corollary 1.11,let H=G, b=B and u = 1. O
As an application of Lemma 1.1, we have the following.

Proposition 1.13. Assume that bC is defined. Let x be an R-generalized charac-
ter in B and let a € ZRH. Then

v(xp(a)) = v|H| — d(b)
and the equality holds if and only if b® = B, ht(x) =0 and wy(a) # 0 mod 7.

Proof. Let & be an irreducible character of height O in 5. Then by Lemma 1.1,
xp(a)/E(1) € R, so the inequality follows. Also

xo(@) _ xp(1)
£ &)

Thus the equality holds if and only if ht(x,;) = 0 and w,(a) % 0 mod 7. Since b¢ is
defined, At(x,) = 0 if and only if b° = B and ht(x) = 0 by [12, Proposition 1.7 (ii)].
This completes the proof. O

wp(a) mod .

The following strengthens Broué [7, Proposition 1] (see also Brauer [2, (3B)]).

Corollary 1.14. Let u be a central p-element of H. Assume that b® is defined.
Let x be an R-generalized character in B. Then

v(xp(w)) = v|H| —d(b)

and the equality holds if and only if b° = B and ht(x) = 0.
Proof. In Proposition 1.13, let a = u. O
The following extends [12, Proposition 1.13] and Broué [7, Corollary 2].

Corollary 1.15. Let u be a central p-element of H. Assume that bC is defined.
Let x and ¢ be R-generalized characters in B. Then

v (Z xb(uy)mu—‘y")) > v|H| — d(b),
y

where y runs through H,. Further, the equality holds if and only if b =B, ht(x)=0
and ht(¢) =0.
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Proof. Put ¥(y) = &u™'y),y € H,. The left side of the above inequality is
v(xp(uy™)). So, applying Proposition 1.13 with a = uy*, we get the inequality. It re-
mains to show w,(uy*) % 0 mod 7 if and only if A#(¢) = 0. This is proved as in the
proof of Corollary 1.11. O

Proposition 1.16 (Broué [7, (C)]). Let u be a central p-element of H. Assume
that b® is defined and equal to B. Let x be an R-generalized character in B. Then

IGIx(1)  _  [Hlxp(m)
rankgRGeg  rankgRHe,

mod 7.

Proof. If x is an irreducible character of positive height in B, then both sides are
congruent to 0 modulo m by Proposition 1.3 and Corollary 1.14. So we may assume
that x is an irreducible character of height 0 in B. Then by Proposition 1.3,

|Gl (1)

—_— = * d .
rankgk RGep @x(x7)  modz

On the other hand, if £ is an irreducible character of height O in b, then

|Hlxp() _ xo(u)
rankg RHe, &)
xp(1)
&(1)
w:((xp)*) mod w (by Lemma 1.2)

wg(€*) mod m (by Proposition 1.3)

i

wg(§*) mod r (by Lemma 1.1)

I

wy(x*) mod 7 (since b° = B).
So the result follows. O

2. The invariant o (B, b)

Let B be a block of a group G with defect group D. Let b be a block of a sub-
group of G. In this section we consider the value of o (B, b) in the case when b® = B
and d(b) = d(B). Of course the most fundamental is the case when b is the Brauer
correspondent of B in Ng(D). In this case we have the following, which is a vari-
ant of Sylow’s Third Theorem (consider the case of principal blocks). We note that
this theorem is a consequence of the formula (35) in the proof of Theorem II1.8.19 of
[11]. Here we give an alternative (character-theoretical) proof.

Theorem 2.1. Let B’ be the Brauer correspondent of B in Ng(D).
Then o(B, B’) =1 mod p.

Proof. Let x and & be irreducible characters of height 0 in B and B’, respec-
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tively. Since B’C = B, we get by Lemma 1.2,

xg (1)
(1)

2.1) wy(x") = we((xp)") = wg(§*) mod 7.

Let S be a set of representatives of the p’-conjugacy classes of G with defect group
D. We choose S so that Cg(y) > D for y € S. Let K, be the conjugacy class of G
containing y, y € S. Then, as is well-known,

2.2) oy (X" =Y o R)x(y™") mod .

yes

Put L, = K, N Cg(D), y € S. Then it is also well-known that {L,;y € S} is exactly
the set of p’-conjugacy classes of Ng(D) with defect group D. Then, as in (2.2), we
have

(2.3) we(E*) = ng(l:y)‘g‘(y_') mod 7.

yeS§

On the other hand, we have
(2.4) wy(Ky) = wg(L,) mod 7.

Further, since a formula similar to (2.4) is true for y~! in place of y, y € S, we obtain

DINc(D
25  xO7) = %wdw £ Co(») N NG(D)EG™")  mod 7
_ xIND)| .,
= i @) medm

since D is a p-Sylow subgroup of Cg(y). On substituting (2.4) and (2.5) into (2.2),
we obtain by (2.3),

x(DING(D)|
§(DIG]

Comparison of (2.1) and (2.6) shows that

(2.6) wy(x") = wg(§*) mod 7.

xp(DIG|
—————— =1 modm,
x(DINg(D)|
since wg(§*) # 0 mod 7 (by Proposition 1.3). This completes the proof. O

REMARK 2.2. (i) In fact, Theorem 2.1 and Corollary 2.4 (i) below follow from
Brauer [2, (2D)].
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(ii) Still another proof of 2.1 is available; by Remark 1.8 (ii)

G : Ng(D)|*rankg RNg(D)ep
o(B.B) = | 6(D)|*rankg RNG(D)ep mod p.
rankg RGep

As an R[G x G]-module, RGep is indecomposable and its Green correspondent with
respect to (G x G, A(D), Ng(D) x Ng(D)) is RNg(D)ep, where A(D) = {(x, x);x €
D}. From this, the result follows.

Let (D, bp) be a B-Brauer pair. Let e(B) be the inertial index of B.

Corollary 2.3. We have o(B, bp) =e(B) mod p.

Proof. Let B’ be the Brauer correspondent of B in Ng(D). Let T be the inertial
group of bp in Ng(D). Then it is easy to see

(XB)pCo(D) = Z Xy = Z(th)x

where x runs through a transversal of T in Ng(D). From this we get the result by
Theorem 2.1. O

Corollary 2.4. Let x be an irreducible character of height O in B. Let 6p be
the canonical character of bp. Then
(1)  As Brauer characters, xp, = mfp, where m is an integer such that

e(B)|DCg(D)|x(1)
|G1op(1)

m

li

mod p

(i)  (G|/IDIx(1)wy(x*) = e(B)n(D, bp)* mod p.

Proof. (i) This follows from Corollary 2.3.
(ii) Put @ =6p. Since (bp)¢ = B, we get by Lemma 1.2

Xbp (1)
6(1)

wy (x™) = ws((xp,)") = we(0*) mod .

Then, since wq(6*) = |DCg(D)|/|D|6(1), the result follows from (i). O

Proposition 2.5. Let b be a block of a subgroup H of G. Assume that bC is
defined and equal to B and that b has defect group D. Let (D, Bp) be a b-Brauer
pair in H. Then

_ e(Bn(D, bp)?
7B D)= oD, Bo)?

where n(D, Bp) is an integer defined in a manner similar to n(D, bp).

mod p,
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Proof. Let x and & be irreducible characters of height O in B and b, respectively.
Since % = B, we get by Lemma 1.2

x6(1)
&)

ox(x") = w:((xp)") = we(§*) mod 7.

Then, applying Corollary 2.4 (ii) twice, we get
G|~ IDIx(De(B)n(D, bp)* = |H|™'|D|xp(De(b)n(D, fp)*  mod .
This yields the result. O
The following extends Brauer [2, (4B)] and Watanabe [16, Lemma].

Corollary 2.6. Let b be a block of a subgroup H of G. Let Q be a defect group
of b. Assume that C5(Q) < H and that b% = B. Let by be a root of b in QCg(Q)
and let T be the inertial group of by in Ng(Q). Let x be the character of G afforded
by a virtually irreducible RG-module in B. Then, for any x € H, we have

x®IGI T

Xx(DICH ()| = T N leb(Kx) mod 7,

where K, is the class sum of conjugacy class of H containing x.

Proof. Applying Theorem 1.7 with a = K., we get

X(0)|G| -
———————— =0(B,b)wy(K,) mod .
X(DICH@) b
So it suffices to show
@.1) o(B.b)= — mod p.
ITNH|

If d(b) =d(B), (2.1) follows from Proposition 2.5. On the other hand, if d(b) < d(B),
then o(B,b) = Omod p by Theorem 1.7. Thus it suffices to prove |T|/|T N H| is
divisible by p. Assume the contrary. Then, since |T N H|/|QCgs(Q)| is prime to p,
IT|/|QCs(Q)| is prime to p. This yields d(b) = d(B), a contradiction. Thus (2.1) is
proved and the proof is complete. O

3. Canonical characters of Brauer pairs

Let G be a group. Let (P, bp) and (Q, by) be Brauer pairs in G such that P >
Q. Under this condition, a necessary and sufficient condition for (bp)F¢Q = (bo)PC(@
involving the multiplicity (B¢, 6p)c(p) is known (Brauer [1, (6D)]). (In this section,
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C(P) and C(Q) will denote C(P) and Cg(Q), respectively.) For alternative proofs,
see Passman [15, Theorem 7], Feit [8, Theorem V.5.4 (iii)]. Here we give a slightly
improved condition and a congruence for the multiplicity.

For two Brauer pairs (P, bp) and (Q, bp), we write (P, bp) > (Q, bg), if they are
linked, and (P, bp) 2 (Q, by), if there exist Brauer pairs (P;, bp), 1 < i < n, such
that (P, bp) = (Py, bp,) > (P2, bp,) > - > (P, bp,) = (Q, bg).

Lemma 3.1. Let (P, bp) and (Q, bg) be Brauer pairs such that P > Q > Z(P).
Then (6, 6p)c(p) equals the multiplicity of (6p)cp) in (Bg)c(py as Brauer characters.

Proof. Let bp® be the block of C(P) covered by bp. So Z(P) is a defect group
of bp®. Since Z(P) < Z(Q) and O¢ is trivial on Z(Q), (Og)c(p) is trivial on Z(P).
Then, since bp° contains a unique block of C(P)/Z(P) (of defect 0), we see (0g),,0
is a multiple of (6p)c(p). So the result follows. O

Corollary 3.2. Let (P,bp) and (Q,bg) be Brauer pairs such that (P,bp) 2
(Q, bg). Then (Bg,0p)cpy equals the multiplicity of (0p)cpy in (Og)cpy as Brauer
characters.

Proof. By the Brauer-Olsson theorem [3, (4K)], we get P > Q > Z(P). So
Lemma 3.1 yields the result. O

Proposition 3.3. Let (P, bp) and (Q, bg) be Brauer pairs such that P > Q and
bg is P-invariant. Then the following are equivalent.
@) (bp)PC@ = (o)€@,
(i) Cp(Q) < Q and (B¢, Op)c(p) is prime to p.
(iii)) Z(P) < Q and (69, Bp)c(p) is prime to p.

Proof. Since (i) implies Cp(Q) < Q [3, (3A)] (and hence Z(P) < @), in order
to prove the assertion, it suffices to show that

if Z(P) < Q, then (bp)PC©@ = (bg)PC@

3.1 . . L
3.1 if and only if (8p, Op)c(p) is prime to p.

Assume Z(P) < Q, then by Lemma 3.1, (6p, fp)c(p) equals the multiplicity of
(Bp)c(py in (Bg)c(py as Brauer characters. Then the conclusion of (3.1) follows from
the proof of [12, Proposition 1.9]. This completes the proof. U

Proposition 3.4. Let (P,bp) and (Q, bg) be Brauer pairs such that (P,bp) 2
(Q, bg). Then

n(P,bp) = xn(Q,bg) mod p.
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Proof. By induction on [P : Q|, we may assume (P, bp) > (Q, bg). Put b* =
(bp)FCQ. So b* = (b)FCD and P is a defect group of b*. We claim that 6 extends
to PC(Q). In fact, let by be a unique block of QC(Q)/Q contained in by. Then b,
has defect 0 and 6y is a unique irreducible character in b;. Since 0g is PC(Q)/Q-
invariant, any irreducible character of height 0 in the block of PC(Q)/Q covering b,
is an extension of 6y to PC(Q)/Q. So the claim follows. Let x be such an extension.
Since x lies in b* and ht(x) = 0, applying Corollary 2.4 (ii) for PC(Q), b*, bp in
place of G, B, bp, we see that

[PC(Q)I

ma)x(x*) = e(b*)n(P, bp)2 mod p.

3.1
We claim (PC(Q) N Ng(P))/PC(P) is a p-group. In fact, let x be a p’-element of
PC(Q) N Ng(P). Then x centralizes Q. On the other hand, Q is self-centralizing in
P by [3, (3A)]. Hence x centralizes P, cf. [9, X.1.2]. So the claim is proved. Thus,
in particular, e(b*) = 1. (This last fact also follows from the fact that b* is a nilpo-
tent block.) Now |PC(Q)|/|P| = |QC(Q)|/|Q], since Cp(Q) < Q. Further, we have
wy(x*) =n(Q, by). In fact,
10C6(Q)|

wy (X7) = wgy ((00)") = 10160() =n(Q, bg).

Thus (3.1) yields
n(Q,bg)* = n(P,bp)* mod p

and the result follows. This completes the proof. O
For the multiplicity we have the following.

Theorem 3.5. Let (P,bp) and (Q,by) be Brauer pairs such that (P,bp) >
(Q, bg). Then

n(P,bp) _

————— =41 mod p.
n(Q, bo) P

(GQ, OP)C(P) =

Proof. Put b* = (bp)P(?). As in the proof of Proposition 3.4, there is an exten-
sion x of 8p to PC(Q). Applying Corollary 2.4 (i) for PC(Q), b*, bp, 0p in place of
G, B, bp, 0p, we see that if m is the multiplicity of 6p in xc(p) as Brauer characters,
then

b*)|PC(P 1
3.1 m = e(b")|PC(P)|x(1) mod p

[PC(Q)I0p(1)
As we have seen in the proof of Proposition 3.4, e(b*) = 1. Then, since |PC(Q)| =
[QC(Q)I|P : @I, the right side of (3.1) equals n(P, bp)/n(Q, bg). So, by Proposition
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3.4, we get m = £1 mod p. Since m equals the multiplicity of (8p)c(p) in (Bg)c(p) as
Brauer characters, we get m = (8g, 0p)c(py by Corollary 3.2. Thus the result follows.
O

RemMARk 3.6. (i) From the proof of Passman [15, Theorem 7] (or Brauer [I,
(6D)], Feit [8, Theorem V.5.4 (iii)]), we see that
n(Q, bg)
0,6 = — d p,
©g, 0p)ccp) 2P bp) mod p
which also yields Theorem 3.5 by Proposition 3.4.
(i) In Theorem 3.5, both values £1 mod p are possible in general.
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