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1. Introduction

We investigate in this paper non-commutative local rilys thef smallest length
that are potential counter-examples to the pure semisiiplconjecture.

Throughout the papeR is an associative ring with an iderglgment. We call
R local, if the Jacobson radical R( ) oR is a two-sided maximal ideaé Wénote
by mod(R ) the category of finitely generated right -modulese® a right R -module
Xy of finite length we denote by X ) the length afg

We recall that a ringR is said to be déhite representation typdf R is artinian
and the number of the isomorphism classes of finitely geedratdecomposable right
(and left) R -modules is finite. Following [24] we call a ring right pure semisimple
if every right R -module is a direct sum of finitely generateddules.

It is well known that a ringR is of finite representation typeaifid only if R is
right pure semisimple an® is left pure semisimple (see [21],[[18], [22]-[24]).
It is still an open question, called theure semisimplicity conjecturdf a right pure
semisimple ringR is of finite representation type (see [2] {4, [25], [28]). In [13]
the question is answered in affirmative for rinBs  satisfyingolynomial identity and
for self-injective ringsR (see also [7], [19] and [31]). Theader is referred to [42]
and to the author’s expository papers [30] and [32] for adasickground and histor-
ical comments on the pure semisimplicity conjecture.

It was shown by the author in [28] and [33] that there is a ckatw find
a counter-example&®  to the pure semisimplicity conjecturé Enmight be hereditary
with two simple non-isomorphic modules. The existence obanter-example depends
on a generalized Artin problem on division ring extensions.

In the present paper we are mainly interested in the existehcounter-examples
R to pure semisimplicity conjecture that are local of the dewllength, that is,
of length! Rg ) two or three. This continues our study started2®], [35] and [33].

It is shown in Lemma 3.1 that every such a local riRg  Wa® ?E 0. Therefore
we study representation-infinite right pure semisimplealaéngs R with J R¥ = 0
such that the Auslander-Reiten quivEr (n®d ) is of the form — e —e — e —

* Partially supported by Polish KBN Grant 5 PO 3A 015 21.



986 D. SmsonN

- —e—e by applying our recent results on right pure semisimple dieagy rings
and generalized Artin problem on division ring extensiolgamed in [33] and [36].
Assume thatR is a local ring such that the square of the Janotmtical / =
J(R) of R is zero. ThenF =R/J is a division ring and/J is arf F -bimodule. By
applying the results of [33] and [36] we show in Theorem 3.4ttthe Auslander-
Reiten quiverI’ (modk ) is connected of the form: —e—e—e— .- —e—e
if and only if the infinite dimension-sequenck . (rJr) of the F -F -bimoduleJg
(see Section 2) belongs to the $88,,, (of cardinality 2%) of infinite pure semisim-
ple dimension-sequences = (, v_y, V_g+1, ..., V—2, V_1, Vo, 00) With v; € N con-
structed in [33] (see also Section 2). In this case, we shaw ttie Auslander-Reiten
translation quiverl’ (mo@® ) of the category m&d( ) is connecéedl has any of
the forms (see (3.5) and (3.6))

Moreover, the infinite Jacobson radical fa@nodR) = ~; rad" (modR ) of the cat-
egory modgR ) is non-zero and it is generated by Rll -module draprphisms from
the ringR toL,, , form =0, 1, 2.... The square (rad(modR )Y of rad™®(modR) is
zero.

For the notion of the Auslander-Reiten translation quivee teader is referred
to [3] and [27].

In particular, Theorem 3.4 shows how potential local court@mplesR to
the pure semisimplicity conjecture of lengthRy ) two or thrawould look like, if
the Auslander-Reiten quiver of magl( ) is connected of théowdhg form

e e—0—0— - - - —0—0,

The main results of the paper are presented in Section 3,ew&lso two open
problems are formulated. In Section 2 we collect prelimingacts and notation we
need in this paper.

Throughout this paper we use freely the terminology and timstaintroduced
in [28] and [33]. The reader is referred to [3] and [27] for ackground and termi-
nology on representation theory of finite dimensional atgekand artinian rings.

By the Auslander-Reiten quiver of the category mRd( ) we m#an oriented
graphT (modR )) whose vertices are the isomorphism clas¥esof ifdecomposable
modulesX in modR ) and there exists an arraW [-][Y] in T(mod(R)) if and only
if there exists an irreducible morphisti — Y in mod(R) (see [3], [27]). Usually
we identify the isomorphism classx[ ] i (ma@d ) with the modwein mod(R).
Sometimes we view (moR ) as a translation quiver (see [3,i@edtll.4] and [27,
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11.49]). In this case we draw a dashed edge between indesaigomodulesy and
Z in I'(modR) if there exists an almost split sequence-X — Y — Z — 0.

The Jacobson radical rad = rad(m®d ) of the category ®mod( Phestwo-sided
ideal of the category mod& ) such that padl,( ) consists of afi-mwertible ele-
ments of the group Hom X, Y ) for each pair of indecomposable esdd andY
in mod(R) (see [3] and [27]). The two-sided ideal

rad®(modR) = ﬁ rad’ (modR )

j=0

of the category mod{ ) is called the infinite Jacobson rada¢ainod(R). The reader
is referred to [32] and [37] for some applications of ¥gdnodR ) in the representation
theory of artinian rings.

Given two indecomposable moduleg ad in mdd( ) we view thdiabe
group

Irr(X, Y) = radg (X, Y )/ radk (X, Y)

as an End( )J End(Y )-End{ YJ End(X )-bimodule, and we call it &imodule of ir-
reducible morphism$rom X to Y (see [27, Section 11.1]).

Some of the results of this paper were presented on the Yarha@ionference
“The 32nd Symposium on Ring Theory and Representation JheorOctober 1999
(see [34]).

2. Bimodules and pure semisimple dimension sequences

We start this section by recalling from [33] some definiti@rsl notation we need
throughout this paper.
Assume thatF and; are division rings apd/g is a non-zEr&¢ - -bimeodu
We recall that the matrix ring
_(F rMg
2 r= (1)

is hereditary and the moduleX in maylf ) can be identified withles X =
(X%, XZ, 1), where X, X/, are finite dimensional vector spaces over ard |, re-
spectively, andr X' ®r Mg — X{ is a G-linear map. We write X, X¢) instead

of (X}, XZ, t), if the choice oft is an obvious one. The vector

dim X = (dim X}, dimX}) € 72

is called thedimension vectoof X.
Given an F G -bimodulerNs we set. IdilM ) = dipiv and rdim( ) =
dimNg; and we define the right dualisation and the left dualisatof rNg to be
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the G -F -bimodule
(2.2) N*" =Homg (+Ng, G) and N* =Homg (+Ng, F)

respectively. To any bimoduleM; we associate a sequence ratéte right dualisa-
tions of pMg by settingM© = M and MU) = (MUD)* for j < —1. The sequence
of iterated left dualisations of Mg is defined by the formug?) = (MU-D)* for
j > 1 We also set

. . F M@) G M@+
(23)  a =rdmp®), R2j:(0 ; ) R2,+1:(O F)

for any j € Z.
With any F -G -bimoduler M for which there exists an integer> 0 such that

(2.4) d¥ =r.dimM is finite for all j < m andd}; = r.dimm®*? = oo
we associate thanfinite dimension-sequence
(2.5) doac(pMg) = (..., d—j(M),...,d—2(M),d_1(M), do(M), o)
where do(M) = d)f = r.dimM™ andd; M) =d) ; = r.dimM®=) for all j > 1.
The numbern is called thi#gerated dimension height of M.

Our idea is to study the indecomposable modules over anyl loght pure
semisimple ringR with radical square zero in terms of the itdidimension-sequence

d_oo(rJF) Of the F-F -bimodulerJr =/ R ), wherd" R/J(R).
For this purpose we recall from [5] that the set

(2.6) D=D,UDzU---UD,U---

of dimension-sequencdds, ..., d,), m > 1, is defined inductively to be the minimal
set satisfying the following two conditions:

() D2={(0,0)} andDs = {(1, 1, 1)}.

(i) If the setD,, is defined we definéd,,,; to be the set of all sequences of the form

§[+1(dla D) dm) = (dl’ E) di—l5 di + la :L di+1 + 1’ dl'+2’ E) dm)v

where ¢, ...,dy) € D,y andi =1 ..., m — 1.

We note that for eaclz the s&, of dimension-sequences of lengih is closed
under the action of cyclic permutations.

We recall from [28] that a sequencé,(...,d,) is said to be asimple restriction
of a dimension-sequengkit is obtained from a dimension-sequenceZnby omitting
the last coordinate.
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Note that the setDV of simple restriction of dimension-sequences contains

the following sequences and their reversions: (0), (1 1)2,1), (2 1 2), (1 2 2 1),
(2,213),(2131).

It was shown in [29, Proposition 3.1] that in the case the rRyg is right pure
semisimple and representation-infinite there exists aggertm > 0 such that
() dpy =00 andd}y < oo for all j < m, and
(b) for any pairs < m andr > 2 the sequenced(’,, d” ., ...,d" dM) is not
a simple restriction of a dimension-sequence.

The following definition was introduced in [33] in relationittv an idea of con-
structing a large family of potential counter-examples lie pure semisimplicity con-
jecture.

DerinmioN 2.7. The set opure semisimple infinite dimension-sequerisethe set
DSpss = DSE. UDSA),, where DS, and DSP), are defined as follows.

pss pss? pss pss

The setDS(), is a minimal set of sequences

v = ( ey Vems Vtly - - - V=2, V1, V0, OO),

with v_; € N non-zero for anyj € N, satisfying the following two conditions:
() @=(..,2,2...,2,2 10x)ecDSH

(i) if v=(...,v_m,...,v_1,v0, ) is a sequence iIMS{); then all sequences of
the form
Sfm(v) = ( s Vom—1, 1 + V_m, 15 1 +v—m+1’ V_m+2y - -5 V-2, V_1, V0, OO)
belong toDSEY, for all m > 1.
Given a dimension-sequence = (,u_j, u_js1, ..., u_2, u_1, o, 00) in DS

we define thedepthof » to be the minimal integef u( » 0 such thatu_; = 2 for all
J=1+1).

A sequencev  =.(.,V_m, V_m+1, - .-, V_2, U_1, Vo, 00) belongs toDS@), if there
exists a sequence of positive integgrs (1), , (2), j(s), ... such that
(a) for everym > 0 the set{s € N; j(s) =m} is finite,
(b) lim_oc & ;o€ 1y & j@®@) = v, where lim_. w" = w means that there
exists a sequencedry <r, < --- <r, < --- of positive integers such thadzg) = wo,
W =w g =,
(c) for every integers > O there exists an integet, > s such thatj £ )> 1+

It 08— jern ) §—j0)(@).

It was shown in [33] that the cardinality of the sBXS@) is continuum. The set
DSW is constructed from the principal sequence

pss

0=0..,22...,2,2 1)
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in a similar way as the seb of dimension-sequences was constructed in [5] starting
from the trivial dimension-sequence, (1 1 1). In particukach of the countably many
sequences

(...2,2...,2,23 1 200),
(+,2,2...,2,231512 2x),
(.,22...,2231512512 20),
(-,22...,2231512512512,72),
(...22...,22315125125125,1,2,20),

belongs toDS(.. The setDS@) is constructed from the principal sequense by ap-
plying infinitely many operation§_ ), ..., §_j), ... with the fast growth of the se-
quencej (1)..., j(s),... described by the property (c) in Definition 2.7. Note that

the sequence

(.,215...,2152152 151 2x)

belongs to the seDS?)

pss”
3. Small right pure semisimple local rings

Our investigation of potential counter-examples to theepsemisimplicity conjec-
ture of length two or three depends on the following usefudeniation.

Lemma 3.1. Let R be a right pure semisimple local ring of infinite repretsen
tion type. 1f2 < I(Rg) < 3, then J(R)?> = 0.

Proof. If [(Rg) = 2, thenJ =J R ) is a simple righR -module and therefo
J2 = 0. Letl(Rz) = 3 and assume to the contrary tht # 0. Letx € J be such
that its squarex® € J2 is not zero. It follows that/3 = 0, J2 is a simple right ideal,
J? = xR and thereforex ¢ J2. Sincel Rz ) = 3 andJ? # 0, it follows thatJ/J?
is a simple module generated by the cosetf x and therefore/ =R %2R = xR.
This shows thatR is right serial. Sincde is of infinite repreagan type, R is not
left serial, by [8]. On the other hand® is right pure semidenand right serial. It
then follows from [26, Theorem 2.2] that?> = 0, and we get a contradiction. This
finishes the proof. U

The above lemma shows that right artinian local rings oftrighgth two or three,
that are potential counter-examples to the pure semigiihplconjecture, are square
zero radical rings. Therefore we assume throughout thisosethat R is a local right
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artinian ring such that K 2)= 0. It follows that F =R/J(R) is a division ring and
J =J(R) is an F F -bimodule in a natural way.
Following Gabriel [10], we associate witR  the hereditanyhti artinian ring

R = R/IT w/ndwn\ _ (F plr
/ 0 R/J 0 F

and the reduction functor
(3.2 F : mod(R)— mod(R;)

defined by attaching to any module  in m&d( ) the triple) = (Y’, Y”, 1), where
Y'=Y/YJ andY” = YJ are viewed as righR/J-modules and Y’ ®g/; Jr/; —
Y,Q’/J is a R/J-homomorphism defined by formulay ® r) =y -r for y =y +J and
r € J. The tripleF(Y) is viewed as a righi®; -module in a natural way.fif Y:— Z
is an R -homomorphism we s&\( 1) = (f/, f"'), where f”: Y"” — Z" is the restriction
of ftoY”"=YJ and f': Y' — Z' is the R/J-homomorphism induced by

Now we collect the main properties of the functBrwe need later.

Lemma 3.3. Let R be a local right artinian ring such thaff (R)?> = 0. Let us
view J = J(R) as an F + -bimodulewhere F = R/J(R) is a division ring. Under the
notation introduced above the functér (3.2) has the following properties.

() F is full and establishes a representation equivalence batweod(R) and
the categoryimF, that is a homomorphisny : X — Y is an isomorphism if and only
if F(f) is an isomorphism.

(i) A right R;-moduleX belongs ttmF if and only if X has no non-zero summand
isomorphic to a simple projective righR; -module.

(iii) The functorF preserves the indecomposabilifyrojectivity and the length. More-
over, F defines a bijection between the isomorphism classes of ong@zsable mod-
ules inmod(R ) and the isomorphism classes of indecomposable modulesd(R; ),
which are not simple and projective.

(iv) The functorF carries a homomorphisnf: ¥ — Z in mod(R) to zero if and only
if Imf C ZJ. For any pair Y, Z of indecomposable modules immod(R;, ) the functor
F induces ring isomorphisms

End(Y )/J End(Y )= End(F(Y))/J End(F(Y))
and
End(Z)/J EndZ )= End(F(Z))/J End(F(Z)).

If, in addition Y is not isomorphic to a direct summand &J théh induces
an End(y )/J End(Y YEnd(Z )/J End(Z }bimodule isomorphism

Irr(Y, ) = Irr(F(Y), F(Z)).
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In particular, the functorF carries irreducible morphisms imod(R) to irreducible
morphisms or to zero.
(v) F carries rad}'e to rad}'ej for all j > 2 and carriesrady” to radg, in such a way
that

e rad;” 7 0 if and only ifrady, # 0, and

e (rady)? # 0 if and only if (rady))? # O.
(vi) The ring R is right pure semisimpl@esp. of finite representation typé and only
if R, is right pure semisimplgresp. of finite representation type

Proof. The statements (i)—(iv) are essentially proved 0, [$ection 9] (see also
[3, Lemma X.2.1]).

(vi) It follows easily from (iii) that R is of finite represenian type if and only
if R, of finite representation type. To finish the proof of (vi) wecall from [22]
and [23] that a right artinian ring is right pure semisimpleand only if the ideal
rady = rad(modR ) is right T-nilpotent, that is, for every seggeX; EiY Xy — - —
X, EL Xn+1 — -+ oOf indecomposable moduleX¥;, X,,... in modR connected by
non-isomorphismsfi, fo, ... there existsn > 2 such thatf, f,—1--- fof1 = 0 (see
also [12]). Hence, in view of (iii), the ring® is right pure semple if and only if
R, is right pure semisimple.

(v) Apply a well-known and standard arguments used in [1G;ti&e 9] and [3,
Section X.2]). The details are left to the reader. O

Our main result of this section is the following.

Theorem 3.4. Assume thatR is a local right artinian ring such that every in-
decomposable non-projective modute rnmd(R) admits an almost split sequence
0—- X —- Y — Z — 0. Assume that/(R)?> = 0 and viewJ = J(R) as a bimod-
ule over the division ringF = R/J(R). Thend/ = r.dimJ) < oo for all j < 0 and
the following conditions are equivalent.

(&) The ring R is of infinite representation type and the Auslari@eiten quiver
'(modR) of mod(R) is connected of the form- - —e—e—e— ... —e—ae

(b) There exists an integem > O such thatd,,, = rdimJ™?b = oo, 4] =
r.dimJY¥ < o for all j < m and the Auslander-Reiten translation quivE(modR)
of the categorymod(R ) has the form

(3.5)
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if m > 1is odd and the form
(3.6)

if m > 0 is even where L] = R, Lo is a unique simple rightR -module and
L1 = Eg(Lo) is an injective envelope aof,. Here we draw a dashed edge between
indecomposable modules  arl  if they are connected by an tlspbis sequence
O—-X—-Y—Z—0.
(c) There exists an integem > O such thatd;,, = rdimJh = oo, df =
r.dimJ() < oo for all j < m and the infinite dimension-sequende .. (yJr) of
the F -F -bimodules J» belongs to the SBXS,,, = DS() UDSE).
(d) The infinite radicalrady = rad™(modR) of the categorymod(R) is non-zerg
whereas its squarg¢rady)? is zero.

If any of the conditions(a)—(d) is satisfied then the infinite Jacobson radical
rady’ of mod(R) is generated by allR -module homomorphisths — L;+1 and all
R-module homomorphisms! — L; for j =0, 1,2... andi > 1.

Proof. Consider the reduction functéy : mod(R)— mod(R;) of (3.2) associ-
ated with R , where
_(F FJr
w=(o 7 )

is hereditary and right artinian. We claim that every indeposable non-projective
module L in modR, ) admits an almost split sequence-OM — N — L — Q.
For, sinceL is not projectivel is in the image Bfand according to Lemma 3.3
there exits a non-projective indecomposable modalle  in ®Rpd(ch thatL = F(Z).
By our assumption, there exists an almost split sequenee X — ¥ — Z — 0O
in mod(R) and applying Lemma 3.3 (v) one shows that the derseguence 0—
F(X) — F(Y) — F(Z) — 0 in mod®, ) is almost split. In view of the isomorphism
L = F(Z) our claim follows. It follows from [25, Corollary 1.9] thiathe number
df =r.dimJ" is finite for any j <O0.

(c) = (b) Assume (c) is satisfied. By Theorem 4.16, Proposition7 4ahd
Corollary 4.18 of [33] the hereditary ringR, is of infinite regzentation type,
the Auslander-Reiten translation quivér (mRgd ) of nRd( ) Iha® connected
components and is of the form
(3.7)

0 0 0 0
oo o S RETer o - 0
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if m>1is odd, and of the form
(3.8)
PO e SR REEEE 09 ----- of

0] 0 0; 0
PO e PO L 09 oo 0©

if m > 0 is even, where the left hand component is preprojective fanite, whereas
the other one is preinjective and infinite. The infinite radliad;, = rad™(modR; ) of
the category mod{, ) is non-zero, whereas its square;’ﬁ)éds Zero.

Since R, is of infinite representation type, in view of Lemma @iB the module
09 is in the image of the functoF for any m > 0, because it follows from [6] that
none of the module®©® is simple projective. For any € N and 1<i <m +1, we
denote by

(3.9) L; =F QYY) and L} = F(P)

an indecomposable module in mad( ) corresponding, via tmetfu I, to Qs.o) and
to P,.(O) in C(modR; ), respectively, that isL; anfl] are indecomposable modules
in mod(R) such thaff(L,) >~ @ andF(L}) = P¥ (apply Lemma 3.3 (ii)).

By Lemma 3.3 (i)—(v), the preinjective componentIdof (mBg( cdrresponds to
the part of the Auslander-Reiten translation quiver of nijdformed by the mod-
ules Lo, L1, ..., Ly, ... shown in (3.5) and (3.6). It follows from Lemma 3.3 (iii) that
the moduleLg is simple, and thereford R( ¥ Lo® --- & Lo (a direct sum of dinyg
copies ofLg). Since the inclusion so®( ) # R( < R is an irreducible morphism and
Lo is a direct summand of R ), there is an irreducible morphism_Lo :— R such
that F(«) = 0. The preprojective component &f (mag( )) starts witlo tprojective
modules

©,F)= P — PO =(F, Jr).

It follows from Lemma 3.3 (i)—(iii) thatF(R) = P and P{*) is not in the im-
age of F. We recall from Lemma 3.3 (iv) thaF carries irreducible morphisms to
irreducible ones or to zero. Consequently, the AuslandgteR translation quiver
of mod(R) is obtained fronT" (mof&t; ) vi& as a gluing of the preprojective com-
ponent of modR; ) with its preinjective component by the idfégdtion of Péo) with
0. It follows thatT" (modR ) is connected and has the required stsiwn in (3.5)
and (3.6). This finishes the proof of the implication=a)).

(c)=(d) Apply Lemma 3.3 (v) and the facts used above in the proahefimpli-
cation (c}(b).

(d)=(c) By Lemma 3.3 (v), the infinite radical rgg= rad™”(modR;) of the cat-
egory modR; ) is non-zero, whereas its square }’\(jr)fdis zero. It follows from [32,
Theorem 4.4] and [36] that there exists an integer > 0 such thatd/,, =
r.dimJ* = oo, d/ = r.dimJU) < oo for all j < m and the infinite dimension-
sequenced_ . (rJr) of the F -F -bimodulerJr belongs to the s&S,,, = DSY, U

pss



LocAL RIGHT PURE SEMISIMPLE RINGS 995

DS](,%?Y and R; is of infinite representation type. This yields (c).

The implication (b)= (a) is obvious.

(@) = (c) Assume that (a) holds and let Y: — Z be an irreducible mor-
phism in modR ) withY andZ indecomposable modules such fhgf) = O.
By Lemma 3.3 (iv), Imf C ZJ and thereforeZ is projectivef is injective and
the monomorphism Inf C ZJ splits. Hence, in view of Lemma 3.3 (iv), either
F(f) is irreducible, or elséf(f) = 0, Z = R andY is a simple direct summand
of SocRg = J(R)g. It then follows that the Auslander-Reiten quivEr (nmRgd 3dsh
at most two components and one of them is finitd"if (nRgd ) is motnected, be-
causel’ (modk ) is connected of the form--- —e—e—e— ... —e—e, by our
assumption. Sinc&k is of infinite representation type, atingrto Lemma 3.3 (vi),
the ring R; is also of infinite representation type. We also lieiteat the dimension
df =r.dimJY is finite for all j <O0.

In order to prove (c), we assume to the contrary #hat . = r.dithis finite for
all n > 0. It follows from [17], [25, Section 1] and [33, Propositich6] that there
exists a sequence of reflection functors

ST, STy
-+ S modR_;) — modR_;+1) S --- S modR_1) —
Z; S,
So Spa
mod(Ry )e—— modRy) = -+ S ModR,—1) — mModR,)S ...
0 Sp-1

which is infinite to the left and infinite to the right, and th&re the preprojective
modules form an infinite connected componént of I'(modR; ) of the form

and the preinjective modules form an infinite connected corept Q; of I'(modR;)
of the form shown in (3.7) such thd®; # Q, andT" (modR; ) =P; U Q;. This is
a contradiction, because we have observed above that onge afomponents should
be finite.

Consequently, there exists an integer> 0 such thatd?,, = r.dimJ*D = oo
andd/ = tdim/{) < oo for all j < m. It then follows from [33, Proposition 2.6]
and the remarks made above that there exist a finite prepivgecomponentP,
of the form (3.7) or (3.8), and an infinite preinjective compat Q; of I'(modR;)
such thatl' (mod; ) =P; U Q,, becausel' (moft; ) has at most two components.
By [32, Theorem 4.4] and [36], the infinite dimension-seqe&ed_ ., (rJF) of the
F-F-bimodule s Jr belongs to the s@S,,, = DS, UDSR).. This finishes the proof
of the implication (a)= (c), and consequently, the statements (a)—(d) are equoivale

Since the final statement of the theorem follows from the Bsin 3.10 (f) be-
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low, the theorem is proved. O

Proposition 3.10. Assume thaiR is a local right artinian ring such th#&{R)? =
0 and viewJ = J(R) as a bimodule over the division ring® = R/J(R). As-
sume also that there exists an integer > 0 such thatd’,, = r.dimJ¢* = o,
d{ = rdimJ) < oo for all j < m and the dimension-sequenct o(rJrF) =
(- d_j(J),...,d_1(J), do(J), o) belongs toDS,,, = DS, UDSE,. Then the fol-
lowing statements hold.
(&) The ring R is right pure semisimple of infinite representatiype that is R is
a counter-example to the pure semisimplicity conjecture.
(b) The ring R is not self-injective and the global dimension Bf iidinite.
The lengthi(Rg) of the right R -moduleRg isl + dimJg.
(c) The Auslander-Reiten translation quivE{modR) of the categorymod(R) con-
sists of the modules; anf; (3.9)with j > 0and0 <i <m+ 1 It has the form
(8.5) if m is odd, and the form(3.6) if m is even where L7 = R, Lo is a unique
simple right R -module and.; = Eg(Lo) is an injective envelope dfy.
(d) For anys > 2 and 0 <n <m — 1 there exist almost split sequencesnmd(R )

0—L,— (Lsfl)di'v — Ly 2—0
and
0— Ly — (Ljs))% — Liy—0,

where d/ = r.dimJ@, L, and L} are the moduleg3.9), and we setL{ = Lo and
L] =R.

(e) There is no almost split sequence imod(R) starting from an indecomposable
moduleL if and only ifL is isomorphic té1, L, or L} ;.

(f) The infinite Jacobson radicalady’ of mod(R) is generated by allR -module ho-
momorphisms fronLo to L;+1 and all R-module homomorphisms froff to L; for
j=0,1,2... and arbitrary i > 1.

(@ fd o(pJrp)=w=(..,2,2...,2,2 2 1 ), then J(R) = L‘é‘f, I(L))=2j+1
for j > 0, I(R) =I(L]) = 1+dJ, I(L}) = 1+jd] for j = 1,...,m+1, all irre-
ducible morphismd.,, — L,,_1 are surjective all irreducible morphismsL; — L*,,
are injective and the number of indecomposable modulesnimd(R ) of lengths isO,

1 or 2, for everys > 1.

Proof. Consider the reduction functdf: modR) — modR;) (3.2) with
the properties collected in Lemma 3.3, wheke (57 ).
(a) Sinced_oo(rJr)=(...,d—;j(J), ..., d-1(J), do(J), o0) belongs to the seDS,, =
DSH) U DSB,, Theorem 4.16, Proposition 4.17 and Corollary 4.18 of [38plg to

the hereditary ringR; . In particular, it follows tha; is rightire semisimple of in-
finite representation type and therefore the riRg is alsbtriure semisimple of in-
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finite representation type, by Lemma 3.3.
(b) Let Lo denote a unique simple righR -module. Singe is a local nopkd
ring, Lo = R/J is not projective. It follows that the semisimple rigi® -nubel
J ¥ Lo®---@ Lo, a direct sum of (g ) copies ok, is not projective and the global
dimension ofR is infinite. In view of (a), we conclude thRt st self-injective, be-
cause self-injective right pure semisimple rings are fimgpresentation type, by [13,
Corollary 5.3]. The remaining statement of (b) is obviouscduses R 3= 0.

The statement (c) is a consequence of Theorem 3.4.
(d) Fix s > 2. By Theorem 3.4, the Auslander-Reiten translation quisemod(R )
has one of the forms (3.5) and (3.6) and is obtained via theuctemh func-
tor F: mod(R) — mod(R,) of (3.2) from the Auslander-Reiten translation quive
of mod(R;) shown in (3.7) and (3.8). The rinQ; is of infinite regeatation type.
It follows from [33, Corollary 2.11] applied toF  rMg FJr aniy R,
that there exist ring isomorphisms E@Z@) ~ F, End(Q(z(;)ﬂ) >~ F for all j > 0O,
an F -F -bimodule isomorphism 1rg®, 0©.) >~ Homg, (@@, 0©,) = -1 and
an almost split sequence

(3.12) 0— 00 £ (0@ ) P, 00, 0

in mod(R, ), whered” , = r.dimJ9) = I.dimJ =D = 1.dimir(Q©, 0©,). Since
Qﬁ.o) > F(L;) for j > 0 and the functor is full, there existR -module homomor-
phisms

fs T g
Ly — (Lsfl)d_'v R L >

such thatg, f; = O, = F(f;) and ¢, = F(g;), that is,F carries the above sequence
to the exact sequence (3.11), up to isomorphism. Hence, blyiag the definition
of the functorlF, we easily conclude that the sequence

(3.12) 0— Ly 5 (Ly )™ 2L, 5 —0

is exact in modR ). By Lemma 3.3 (v) and the observation madwebthere is a ring
isomorphism End{, )J End(L,) =~ End(F(L,))/J EndF(L,)) =~ End(@©®) ~ F, and
an F -F -bimodule isomorphisms

IM(Ly, Ly—1) = Irr (F(Ly), F(Ls—1)) = Irr(Q©, 0@ ) = g5,
(L1, Ly—2) = 1 (F(Ly—1), F(Ls—2)) = Irr (@9, 0©,) = s,

and J(—=D =~ Homg (9, F). It follows that

[.dim J(s—1
r.dimJ®

= di

= r.dimlrr(Ly_1, Ls_2).

ldimlrr(Lg, Ly_1)
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Hence, in view of [27, Proposition 11.13] applied to the gatg A = modR), we
conclude that (3.12) is an almost split sequence in Rod( ).

The existence of the second almost split sequence in (d) egordved in a sim-
ilar way by applying the functoi and using an almost split sequence

0— PO 22 (POY% 2 PO, 0

in mod(R, ) for 0<n <m — 2 (see [33, Corollary 2.11]).
(e) Apply (d) and the shape of the Auslander-Reiten traiosiaquiver of modR ) de-
scribed in (3.5) and (3.6).
(f) First we show that Hom K, L;) = rady (L}, L) for all s > 0 andi > 1.
Assume thats > 2 and leth :L] — L,_, be a non-zeroR -homomorphism. Note
that L; is not isomorphic ta;, becauseF(L}) is preprojective, whileF(L;) is not
preprojective for allj > 0. Since (3.12) is an almost split sequence, there iskan -
module homomorphism¢—3 = (hs.s’l)): LY — (Ly_1)™ of h such thath =g,h¢~1
and hﬁ.s’l): L} — L, 1 belongs to rad(mo& ) for alj . It follows that®~Y also
belongs to rad(mo& ). Since (3.12) is an almost split seqiegic is an irreducible
morphism and thereforg, belongs to rad(nibd ). Consequéentlyg,2¢~1 belongs
to the square of rad(ma® ). Applying the above arguments ot @ the homomor-
phismsh$™: Lf — L,_;, we show that:? ™ belongs to the square of rad(mad ).
It follows that h®~1 belongs to the square of rad(mB8d ) and consequehtly =
g:h“~D belongs to the cube of rad(m@d ). Continuing this way we shioat & be-
longs to rad (modR ) for anyj > 0, and thereforeh € rad™(modR) (compare
with [40]).

The above arguments also yield Hpnio( L,+1) = rady (Lo, Ly+1) for all s > 0.
Consequently, rgfl contains the set

x = J | Homg (L}, L,) U Homg (Lo, Ly+a).
i>15>0

Now we show thatt' generates the infinite radical rgdof mod(R ). For this pur-
pose we note first that an -module homomorphism rad™(L,, L;) has a factori-
sation through a direct sum of monomorphisms Bpe— L, for somer > 1. Assume
for simplicity thatn < j. ThenF(h) € Homg, (F(L,), F(L;)) = 0 and according to
Lemma 3.3,h factorises through;J C socL; C L; as we required. The remaining
cases follow in a similar way. Since the monomorphismspe- L; is a sum of ho-
momorphismsLy < L;, it follows that rad®(L,, L;) is contained in the two-sided
ideal of modR ) generated by the s&t

Further we note that an® -module homomorphigne rad™(L}, LT) has a fac-
torisation through a direct sum of monomorphisms Epe— L; for somer > 1, and
thereforeh has a factorisation through a homomorphigm- socL;, which is a sum
of homomorphismsl.!? — Lo. It follows that rad®(L}, L) is contained in the ideal
of mod(R) generated by the séf.
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Finally, take any homomorphisrh € rad™(L;, L;). SinceF(h) = 0, according to
Lemma 3.3,h factorises through}J C socL; C L. It follows that there is a fac-
torisation s =h"h', whereh’ € rad™(L;, socL,). Consequentlys’ is a sum of ho-
momorphisms in rad(L;, Lo). It follows that rad°(L;, L;) is contained in the ideal
of mod(R) generated by the saf. This finishes the proof of (f).

(g) Since we assume thdt (s Fr) = w, d{ =2 for all j <m—1,d,, =1 andd,),, =

oo, wherem > 0. Recall that the Auslander-Reiten translation quiver afd(R,) has
one of the forms (3.5) or (3.6), the modufg” is simple injective and2{" is the in-

jective envelope ofP{®) =~ (0, F). It follows that ¥ = (F,0), 0 ~ (J2, F)

(see [25]) and therefordlm 09 = (1,0), dim @ = (47,,1) = (2 1). Furthermore,
the almost split sequence (3.11) in m&d( ) yields

dim Q© =4’ dim 0@, — dim 0%, = 2dim 0@, — dim 0'?,

for all s > 2. Hence, fors =2, we gedim Q% = 2dim 0¥ — dim 0¥ = (3, 2), and
applying inductively the above equality yieldsm Q@ = (s +1,5) andl Q@) =25 +1
for any s > 0. Hence, in view of Lemma 3.3 (iii), we conclude tHaL;( J E(L,)) =
1(Q©) = 25 + 1. We recall that every irreducible morphism betweereauwnposable
modules is either injective or surjective (see [3, Lemmd arid [27, Section 11.1]).
It follows that any irreducible morphisnh; — L,_; is surjective fors > 1, because it
is not injective.
Now we note that the second almost split sequence in (d) sjield

I(Lyio) = d I(Lyey) = 1(Ly) = 2 (Lyyiq) — U(Ly)

forn=0,1...,m—1. SinceL is simple andL] = R, [(L{) =1 andl {]) = 1+dJ <

3. Hence we gel IG) = I(L]) — l(L )=2(1+dJ)—1=1+2], and inductively we

show that/ (}) = 1+jdg for j=1,...,m+1. Consequently the statement (g) follows.
O

The following corollary shows how potential local coungstamplesR to the pure
semisimplicity conjecture of length two or three shouldKdike, and gives the struc-
ture of their Auslander-Reiten translation quiver (mdbd ).

Corollary 3.13. Assume thatR is a local right pure semisimple ring of infinite
representation type such th&t< I(Rg) < 3. ThenJ(R)?=0, J =J (R) is a bimodule
over the division ringF = R/J(R), there exists an integem > O such thatd!,, =
r.dim ™ = oo, df = r.dimJ) < oo for all j < m, the infinite dimension-sequence
d_oc(pdp) =(..,d—j(J), ..., d-1(J),do(J), o), with d_;(J) :d,{,_j, (2.5) is defined
and the following conditions are equivalent
(@) The Auslander-Reiten quiver(modR) of mod(R) is infinite and connected of

the form ... —e—e—e— ... —e—e.
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(b) The infinite dimension-sequenck. . (rJr) of pJr belongs to the seDS,, =
DSEH UDSA.

(c) The infinite radicalrady = rad”(modR) of the categorymod(R) is non-zero
whereas its squarg¢rady’)? is zero.

If any of the conditions(a)—(c) is satisfied then R is a counter-example to
the pure semisimplicity conjectyréhe Auslander-Reiten translation quiv&@{modR )
has one of the form¢3.5) or (3.6), and R has the properties presented Broposi-
tion 3.10.

Proof. We know from Lemma 3.1 that R(? ¥ 0. SinceR is right pure semisim-
ple, according to [25, Proposition 2.4] every indecomptesaion-projective module
in mod(R) admits an almost split sequence0X — Y — Z — 0 and Theorem 3.4
and Proposition 3.10 apply. ]

In connection with [28, Remark 2.4] the following obsereatiis useful.

Corollary 3.14. AssumeF C G are division rings such thatF =~ G,
dimr G = 0o and that the associated infinite dimension-sequethcg, (rGg) (3.2) of
the F -G -bimoduler G belongs t®S,,, = DSG) UDSB,. Then
(a) the trivial extensionT; = F x pGg of F by rGs is a local ring and it is
a counter-example to the pure semisimplicity conjecturéenfith two(that is I(7g) =
2, whenTg; is viewed as a righf; -modije
(b) the ring T is not self-injective
(c) the global dimension of; s infiniteind
(d) the Auslander-Reiten quiver'(modZs) of mod(fz) is connected of the form

e —e—0— - - - —0—0,
Proof. Apply Theorem 3.4. O
Remark 3.15. Since for anyw =.(.,v_p,...,v_1,v0,00) € DS, there ex-

ists j > 1 such thatv_; = 1, according to [28, Remark 4.5] the existence of
an F -G -bimodule Mg such thal _..(rMg) = v is an infinite version of the Artin
problem for division ring extensions studied in [4], [20R8] and [29] (see [28, Sec-
tion 4]). In the situation we study in Corollary 3.14 we assuin addition thatfF’ =

G.

We hope that, by applying a modification of the bimodule amalgrings con-
struction of Schofield [21, Chapter 13], one can construcivésidn ring embedding
F C G = F such thatd_(rGg) = v for some of the dimension-sequencesc
DS pss.

A solution of this problem is strongly related with the maimolplems stud-
ied in [15], [38] and [39] of finding special classes of afinirings without self-
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extensions (compare with [1], [41]).
We finish the paper by raising the following problems relabgth the one stated
in [33, Problem 4.21] for hereditary rings of the forRy, (2.1).

Problem 3.16. Assume thatR is a right artinian local ring with the Jacobson
radical J =J R ), such that? = 0, F = R/J and the associated infinite dimension-
sequenced_ (¢ Jr) of (2.5) associated to thé& F- -bimoduje/y belongs to the set
DS pss :DS§,1S)S UDS%S. Let Lo, L1, Lo, ..., L, ... be pairwise non-isomorphic inde-

composableR -modules shown in (3.5) and defined by (3.9) (be®rém 3.4).
(a) Find a decomposition of the riglR -module

(3.17) L(R) = ﬁLm/éLm
m=0 m=0

in a direct sum of indecomposable modules.
(b) Give a characterization of local ringg  for which tiRe -medL(R) is projec-
tive.

In [16] a partial solution of the problem [33, Problem 4.24]presented for hered-
itary rings of the formR,, (2.1).
The following interesting problem stated in [31, Probler@]3emains unsolved.

Problem 3.18. Give a characterisation of semiperfect rings for which ev-
ery indecomposable righe -module is pure-projective oregujective. Is every such
a ring R right artinian or right pure semisimple?

Let us finish the paper by the following open question relatéth Theorem 3.4.

Problem 3.19. Prove that under the assumption in Theorem 3.4 the statefagnt
is equivalent to the following one:
(&) The Auslander-Reiten quivaf (ma@d ) is infinite and connecte
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