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M. Berger gave a curvature free upper bound for the first eigenvalue in terms of
injectivity radius and dimension for a compact Riemannian manifold admitting a fixed
point free, isometric involution [2]. P. Bérard and G. Besson [1] extended this result
to homogeneous and globally harmonic Riemannian manifolds. C. Croke [4] improved
Berger’s estimate for the Dirichlet problem with a bound in terms of convexity radius
which gave as a corollary an upper bound for compact manifolds. In this note we give
an estimate (Theorem 3) which is sharper than those mentioned above with the addi-
tional hypothesis of an upper curvature bound but without global hypothesis on the
injectivity radius. Moreover, this estimate is sharp with equality holding only in the
case of spheres of constant curvature and gives bounds for higher eigenvalues if the
dimension is at least three. If the manifold is homeomorphicto certain -dimensional
spherical space forms and the bounds on the injectivity radius and sectional curvature
hold globally, then we can give an upper bound for the th eigenvalue (Theorem 4).

A sharp lower bound for the sum of the reciprocals of the first three eigenvalues
of 2 was made by Hersch [10] in terms of area alone. P. Yang and S.-T. Yau [17]
generalized this estimate to compact surfaces in terms of genus and area. Both of
these results give an upper bound for the first eigenvalue which is sharp in the case
of spheres. P. Li and S.-T. Yau [12] reproduced this estimateby employing a confor-
mal invariant, the conformal area. They were also able to give a sharp estimate in the
case of the real projective plane and for the conformal classof the square, flat torus
also only in terms of area. In higher dimensions their estimates require ( ) to be
conformally equivalent to an immersed, minimal submanifold of the standard sphere of
dimension ≥ . Examples of H. Urakawa [15] and J. Dodziuk [5] show that for di-
mension at least three, there does not exist an upper bound for the first eigenvalue in
terms of volume alone. Other upper estimates forλ1 involve either a lower bound on
curvature [3], [7], or hold only for surfaces [6], [9], [10],[14]. See [11] for a survey
of eigenvalue bounds.

We will use the following notation. The metric ball of radius at a point
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will be denoted ( ). For Riemannian manifold ( ), denote‖ ‖ =
√

( ), by
d (· ·) the distance, andµ the Riemannian measure. The2 inner product and norm
with respect to this measure will be written (· ·)2 and ‖ · ‖2, respectively. Letσ( ) =
Vol( 2 ( ) )−Vol( ( ) ), and τ ( ) =

∫
( ) cos2 {(π/2 ) d ( )} µ ( ). In the

special case of the simply connected, -dimensional space form of constant curvature
κ, we write σ(κ ) = σ( ·) and, τ (κ ) = τ ( ·). The eigenvalues of the Lapla-
cian of a compact, Riemannian manifold ( ) will be denoted 0 =λ0 < λ1 ≤ λ2 ≤
· · · ≤ λ ≤ · · · and corresponding eigenfunctions{ϕ } ≥0 are chosen so as to form
an orthonormal basis of the Hilbert space2( µ ). For a point ∈ we denote
its antipode by− .

Lemma 1. Let ( ) be a smooth, compact, connected, Riemannian manifold of
dimension ≥ 2. If for ≥ 1 there exists a continuous mapψ : → such that
d (ψ( ) ψ(− )) ≥ 2 > 0 for all ∈ , then there exists ∈ such that for

= ψ( ) and ′ = ψ(− ),

λ +
π2

4 2 ≤ π2

4 2 · Vol( ( ) ) + Vol( ( ′) )
τ ( ) + τ ( ′)

(1)

where τ ( ) is defined above.

Proof. As in [2, 4], we use a test function that approximates an eigenfunction
(with lowest non-zero eigenvalue) of the Laplacian on spheres of constant curvature.
For any ∈ and = 0, 1, denote = ( ) =ψ((−1) ). Let ( ) =
cos
(
π /(2 )

)
and consider the function on ,

( ) = (d( 0) )χ0 − (d( 1) )χ1

where χ is the characteristic function of ( ). Note that by construction, − =
− .

Except on a set of measure zero,

‖ ‖2 ( ) =
π2

4 2

[
1− 2(d( 0) )

]
χ0 +

π2

4 2

[
1− 2(d( 1) )

]
χ1

Therefore,

∫
‖ ‖2 µ ≤ π2

4 2

[
Vol( ( 0) ) −

∫

( 0)

2(d( 0) ) µ ( )

]

+
π2

4 2

[
Vol( ( 1) ) −

∫

( 1)

2(d( 1) ) µ ( )

]
(2)
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In addition,

∫
2 µ =

∫

( 0)

2(d( 0) ) µ ( ) +
∫

( 1)

2(d( 1) ) µ ( )(3)

Now we will show the existence of a point ∈ such that ( ϕ )2 = 0 for all
= 0 . . . − 1. Define a map : → R by

( ) =
(

0( ) 1( ) . . . −1( )
)

where ( ) =
(

ϕ
)

2. By construction (− ) = − ( ). An easy corollary of the
Borsuk-Ulam theorem (see, for example [13]) gives that musthave the value zero
for some point ∈ . Hence, 0( ) = 1( ) = · · · = −1( ) = 0. Since is
Lipschitz and has compact support the minimax principle applies, and by (2) and (3),
we have (1).

In the case ( ) is a standard sphere with constant curvatureκ, and ϕ is the
identity map, the functions are eigenfunctions of the Laplacian and equality is re-
alized in (1).

REMARK. The Borsuk-Ulam theorem gives that if there exists a continuous, injec-
tive map : → R then for any mapϕ : → there exists a point ∈ such
that ϕ( ) = ϕ(− ). So Lemma 1 can be applied to estimateλ for ≤ − 1 at the
very most. In particular, a theorem of Whitney[16] shows that ≤ 2 − 1.

Lemma 2. Let be a smooth, compact manifold. Ifψ : → is continuous
and has the property thatψ( ) 6= ψ(− ) for all ∈ , then for any Riemannian
metric on , and any > 0 with 2 ≤ inj( ) there exists a mapψ̄ : →
homotopic toψ such thatd (ψ̄( ) ψ̄(− )) ≥ 2 for all ∈ .

Proof. If d (ψ( ) ψ(− )) ≥ 2 then define ( ) =ψ( ) for all ∈ [0 1].
Otherwise, there exists a unique, normal, minimal geodesicγ : [− ] → , and ∈
(0 ), with γ(± ) = ψ(± ). Let ( ) = γ((1 − ) + ). The continuity of bothψ
and the exponential map ensure that is continuous. We have that ( 0) = ψ( )
and that d ( ( 1) (− 1)) ≥ 2 for all ∈ .

Now we apply the lemmas to give an upper bound for small eigenvalues in terms
of volume, injectivity radius and an upper bound for sectional curvature.
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Theorem 3. Let ( ) be a smooth, compact, connected, Riemannian manifold
of dimension . Fix 0 ∈ and for ρ0 ≥ inj( 0) let be the closed ball with centre

0 and radiusρ0. Let κ andρ be, respectively, the maximum of the sectional curvature
and the minimum of the injectivity radius on . If0< 2 ≤ ρ then,

λ −1 +
π2

4 2 ≤ π2 Vol( )
8 2τ (κ )

with equality if and only ifκ > 0, 2 = π/
√
κ and ( ) is isometric to the sphere

of constant curvatureκ.

Proof. As 2 ≤ inj( 0), the map 7→ exp
0
( ) restricted to the unit tangent

sphere at 0 has the property that images of anti-podal pairs are a distance 2 apart.
Applying Lemma 1 yields a pair of points ,′ such that (1) applies for = − 1.
Next observe that

Vol( ( ) ) + Vol( ( ′) ) ≤ Vol( )(4)

and furthermore that

τ ( ) ≥ τ (κ ) and τ ( ′) ≥ τ (κ )(5)

by comparison of the volume form as expressed in normal coordinates at and ′

(see, for example, the proof of the Bishop-Gunther comparison theorem in [8]). The
desired upper bound follows from (4) and (5).

If equality holds for 0< ≤ ρ, we must have equality in (4) and (5). The
former gives that is homeomorphic to as follows. The set ( )∪ ( ′) is
of full measure in . For ≤ ρ/2, exp is injective on 3 /2( ), and similarly for
′. Hence the mapψ = exp−1

′ ◦ exp restricted to{ ∈ | ‖ ‖ = } is injec-
tive. It is also onto{ ∈ ′ | ‖ ‖ = } since if ∈ ′ , with ‖ ‖ = ,

ǫ(exp ′(1 + 2ǫ) ) ∩ ( ) 6= ∅, for all ǫ > 0 sufficiently small. Thus there exists a
sequence{ } ⊂ ( ) with → exp ′ . Therefore there exists ∈ with
ψ( ) = and ‖ ‖ = . It quickly follows that is homeomorphic to . From
equality in (5), we have that the volume form expressed in normal coordinates at
and ′ is, up to distance , equal to that of the metric ball of radius in the space
form with constant curvatureκ. Since ≤ κ, by a standard argument, we have that

≡ κ on ( )∪ ( ′), so this holds on all of and since is homeomorphic to
we must have thatκ > 0 and ( ) is isomorphic to with constant curvature

κ.

In the case that is homeomorphic to a sphere or has the sphere as universal
cover such that the covering map is injective on anti-podal pairs, the following esti-
mate onλ holds.
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Theorem 4. Let ( ) be a smooth, Riemannian manifold of dimension≥ 2
with injectivity radius inj( ) ≥ 2 > 0 and sectional curvature bounded above byκ.
If is homeomorphic to / where G is a discrete group of diffeomorphisms that
acts properly and freely on such that no orbit of contains an anti-podal pair,
then

λ +
π2

4 2
≤ π2Vol( ) − σ(κ )

4 2τ (κ )

Equality is realized in the case of standard spheres of constant curvature.

Proof. The quotient mapψ : → / is continuous andψ( ) 6= ψ(− ) for all
∈ . By Lemma 2 there exists a map̄ψ : → such that d (̄ψ( ) ψ̄(− ) ≥ 2

for all ∈ . Apply Lemma 1 and, as in Theorem 3, a comparison argument on the
volume form in normal coordinates gives Vol( )−Vol( ( ) ) ≥ Vol( 2 ( ) )−
Vol( ( ) ) ≥ σ(κ ). Also, τ ( ) ≥ τ (κ ) and both these estimates hold at
′ as well. It is easy to check that equality holds for spheres ofconstant curvature.

With global bounds on sectional curvature and injectivity radius, and a set of
points whose pairwise distances are at least inj(g) (for example if diam( )≥ inj( )),
we can improve Theorem 3 as follows.

Proposition 5. If ( ) is compact with sectional curvature bounded above by
κ, and we can find points 1 . . . with d ( ) ≥ 2 for all 6= for some
0< ≤ inj( )/2, then

λ −1 +
π2

4 2 ≤ π2 Vol( )
8 2τ (κ )

Proof. For each point , by the proof of Lemma 1 we can find∈ with
‖ ‖ = and the following property. If ( ) = (d( ) )χ − (d( ) )χ̄ ,
then ( ϕ )2 = 0 for = 0 . . . − 2. Here, = exp ( ), = exp (− ) andχ ,
χ̄ are the characteristic functions of ( ) ( ), respectively. Note that ( )2 =
0 for all 6= . Let = 1 + · · · + . We have that (ϕ )2 = 0 for all = 0 . . . −2.
Then,

∫
‖ ‖2 µ ≤ π2

4 2

∑

=1

[Vol( ( ) ) + Vol( ( ) ) − 2τ (κ )]

≤ π2

4 2
Vol( ) − π2

2 2
τ (κ )

Also,
∫

2 µ =
∑

=1 ‖ ‖2
2 ≥ 2 τ (κ ), and the conclusion follows by the mini-

max principle.
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