

Title	Uniqueness of the most symmetric non-singular plane sextics
Author(s)	Idei, Kunihiro; Doi, Hiroshi; Kaneta, Hitoshi
Citation	Osaka Journal of Mathematics. 2000, 37(3), p. 667-687
Version Type	VoR
URL	https://doi.org/10.18910/5884
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Doi, H., Idei, K. and Kaneta, H.
 Osaka J. Math.
37 (2000), 667–687

UNIQUENESS OF THE MOST SYMMETRIC NON-SINGULAR PLANE SEXTICS

HIROSHI DOI, KUNIHIRO IDEI and HITOSHI KANETA

(Received July 18, 1998)

0. Introduction

Let C be a compact Riemann surface of genus $g \geq 2$. The order of the holomorphic automorphism group $\text{Aut}(C)$ takes the value $84(g-1)$, $48(g-1)$, $40(g-1)$, $36(g-1)$, $30(g-1)$ or less by Hurwitz' theorem ([5, Chap. 6] or [1, Chap. 5]). A homogeneous polynomial $f \in \mathbf{C}[x, y, z]$ with $n = \deg f \geq 1$ defines an algebraic curve $C(f)$ in the projective plane \mathbf{P}^2 over the complex number field \mathbf{C} . As is well known $C(f)$ is a compact Riemann surface of genus $(n-1)(n-2)/2$ if $C(f)$ is non-singular. Particularly a non-singular plane quartic(resp. sextic) has genus $g = 3$ (resp. $g = 10$). Let $\text{Aut}(f)$ be the subgroup of the projectivities $PGL(3, \mathbf{C})$ of \mathbf{P}^2 consisting of all projectivities (A) defined by $A \in GL(3, \mathbf{C})$ such that f_A is proportional to f . Here $f_A(x, y, z) = f((x, y, z)(^t A^{-1}))$ by definition. Clearly $\text{Aut}(f)$ coincides with the projective automorphism group of $C(f)$, if f is irreducible. It is also known that a holomorphic automorphism of a non-singular curve $C(f)$ of degree $n \geq 4$ is induced by a projectivity $(A) \in PGL(3, \mathbf{C})$ [9, Theorem 5.3.17(3)]. Therefore $\text{Aut}(C(f)) = \text{Aut}(f)$ if $C(f)$ is non-singular of degree $n \geq 4$. By abuse of terminology we say that a homogeneous polynomial f is non-singular or singular according as $C(f)$ is.

As is well known, the Klein quartic $f_4 = x^3y + y^3z + z^3x$ is the most symmetric in the sense that $|\text{Aut}(f_4)| = 84 \times (3-1)$. It is also known that if $|\text{Aut}(f)| = 168$ for a non-singular plane quartic f , then f is projectively equivalent to f_4 . A.Wiman has shown that for the following non-singular sextic

$$f_6 = 27z^6 - 135z^4xy - 45z^2x^2y^2 + 9z(x^5 + y^5) + 10x^3y^3,$$

$\text{Aut}(f_6)$ is isomorphic to the simple group $A_6 \simeq PSL(2, 3^2)$ [11], as a result $|\text{Aut}(f_6)| = 40(g-1) = 360$. We call f_6 the Wiman sextic. He has also shown that the group $\text{Aut}(f_6)$ acts transitively on the set of 72 flexes of $C(f_6)$. We can show even that no three flexes are collinear [6]. Our main results are

Theorem. *Let f be a non-singular plane sextic defined over \mathbf{C} . Then*

- (1) $|\text{Aut}(f)| \leq 360$.
- (2) $|\text{Aut}(f)| = 360$ if and only if f is projectively equivalent to the Wiman sextic f_6 .

(1) will be proved in §1 according to [4], while (2) will be shown in §2. We can show that the most symmetric non-singular plane curve of degree 3, 5 or 7 is projectively equivalent to the Fermat curve [7].

We recall a well known fact: Let $R_A: \mathbf{C}[x, y, z] \rightarrow \mathbf{C}[x, y, z]$ be a mapping defined by $R_A f = f_A$ for $A \in GL(3, \mathbf{C})$ and $f \in \mathbf{C}[x, y, z]$. Then R_A is a ring-automorphism of the polynomial ring $\mathbf{C}[x, y, z]$. Since $(f_A)_B = f_{BA}$ for $A, B \in GL(3, \mathbf{C})$, the assignment $A \rightarrow R_A$ is a group homomorphisms of $GL(3, \mathbf{C})$ into $\text{Aut}(\mathbf{C}[x, y, z])$.

We write $a \sim b$ when two quantities a and b such as polynomials or matrices are proportional. E_3 stands for the 3×3 unite matrix, and e_i for the i -th column vector of E_3 ($1 \leq i \leq 3$).

1. The maximum order of the automorphism group of non-singular plane sextics

Let f be a non-singular plane sextic. In this section we will show that the order of the projective automorphism group $\text{Aut}(f)$ can take the value neither 84×9 nor 48×9 (Theorem (1)). Otherwise, for some f $\text{Aut}(f)$ has a subgroup of order 3^3 by Sylow's theorem. Thus it suffices to show the following theorem.

Theorem 1.1. *Let f be a non-singular plane sextic. If $27 \mid |\text{Aut}(f)|$, then $|\text{Aut}(f)| < 360$.*

Our approach is elementary, but involves much computation. There exist exactly five groups of order 27 up to group isomorphism [3, 4.4]. They are three abelian groups and two non-abelian groups: (1) \mathbf{Z}_{27} (2) $\mathbf{Z}_9 \times \mathbf{Z}_3$ (3) $\mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_3$ (4) $a^9 = 1, b^3 = 1, b^{-1}ab = a^4$ (5) $a^3 = 1, b^3 = 1, c^3 = 1, ab = bac, ca = ac, cb = bc$. The group (5) is isomorphic to the matrix group

$$E(3^3) = \left\{ M(\alpha, \beta, \gamma) = \begin{bmatrix} 1 & \alpha & \gamma \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{bmatrix}; \quad \alpha, \beta, \gamma \in \mathbf{F}_3 \right\}.$$

We find projective representations of these groups in the projective plane \mathbf{P}^2 defined over \mathbf{C} , and find a non-singular invariant sextic f , if any. We can manage to estimate the order of the projective automorphism group $\text{Aut}(f)$.

Lemma 1.2. *Let ε be a primitive 9-th root of 1 $\in \mathbf{C}$. If G_9 is a subgroup of $PGL(3, \mathbf{C})$, isomorphic to \mathbf{Z}_9 , then G_9 is conjugate to one of the following three groups in $PGL(3, \mathbf{C})$:*

- (1) $\langle (\text{diag}[1, \varepsilon, \varepsilon]) \rangle$ (2) $\langle (\text{diag}[1, \varepsilon, \varepsilon^2]) \rangle$ (3) $\langle (\text{diag}[1, \varepsilon, \varepsilon^3]) \rangle$.

Proof. By our assumption G_9 is generated by a projective transformation (A), where $A \in GL(3, \mathbf{C})$ satisfies $A^9 = E_3$ and $\text{ord}((A)) = 9$, namely $G_9 = \langle (A) \rangle$. Therefore it is conjugate to $\langle (\text{diag}[1, \varepsilon^i, \varepsilon^j]) \rangle$ for some $0 \leq i \leq j \leq 8$ with $(i, j) \neq (0, 0), (0, 3), (0, 6), (3, 3), (3, 6), (6, 6)$. If $(i, j) = (0, j)$ with $j \not\equiv 0 \pmod{3}$ or $i = j \not\equiv 0 \pmod{3}$, then G_9 is conjugate to (1). If $1 \leq i < j \leq 8$ with $(i, j) \not\equiv (0, 0) \pmod{3}$, then G_9 is conjugate to (2) or (3) according as $(i, j) \in \{(1, 2), (1, 5), (1, 8), (2, 4), (2, 7), (4, 5), (4, 8), (5, 7), (7, 8)\}$ or $(i, j) \in \{(1, 3), (1, 4), (1, 6), (1, 7), (2, 3), (2, 5), (2, 6), (2, 8), (3, 4), (3, 5), (3, 7), (3, 8), (4, 6), (4, 7), (5, 6), (5, 8), (6, 7), (6, 8)\}$. \square

Lemma 1.3. *Let $\lambda_j \in \mathbf{C}$ ($1 \leq j \leq n$) be mutually distinct, and let $f_{j,A} = \lambda_j f_j$ for some $A \in GL(3, \mathbf{C})$ and $f_j \in \mathbf{C}[x, y, z]$. If $f = f_1 + \cdots + f_n \neq 0$ satisfies $f_A = \lambda f$ for some $\lambda \in \mathbf{C}$, then $\lambda = \lambda_i$ for some i , and $f_j = 0$ for $j \neq i$.*

Proof. We have $\lambda^k f = \lambda_1^k f_1 + \cdots + \lambda_n^k f_n$ for $0 \leq k < n$. Multiplying the inverse of the Vandermonde matrix, we get $f_j = c_j f$ ($1 \leq j \leq n$) for some $c_j \in \mathbf{C}$. Thus $c_j(\lambda_j - \lambda)f = 0$. Since f is assumed not to be the zero polynomial, the lemma follows. \square

Proposition 1.4. *Let f be a plane sextic. If $\text{Aut}(f)$ has a subgroup G_9 isomorphic to \mathbf{Z}_9 , then $C(f)$ has a singular point.*

Proof. Let $A_1 = \text{diag}[1, \varepsilon, \varepsilon]$, $A_2 = \text{diag}[1, \varepsilon, \varepsilon^2]$ and $A_3 = \text{diag}[1, \varepsilon, \varepsilon^3]$. By Lemma 1.2 we may assume that $f_{A_j^{-1}} = \lambda_j f$ for some $\lambda_j \in \mathbf{C}$ ($1 \leq j \leq 3$). Since $A_j^9 = E_3$, it follows that $\lambda_j^9 = 1$. In addition any monomial m satisfies $m_{A_j^{-1}} = \varepsilon^i m$ for some i . Suppose that a homogeneous polynomial $f'(x, y, z)$ of degree $d \geq 2$. Then $(1, 0, 0)$ is a singular point of $C(f')$ if and only if f' contains none of three monomials x^d , $x^{d-1}y$ and $x^{d-1}z$. In the following table we summarize the values i such that $m_{A_j^{-1}} = \varepsilon^i m$ for each $j = 1, 2, 3$ and for special 9 monomials. The proposition is immediate from the table.

	x^6	x^5y	x^5z	y^6	y^5x	y^5z	z^6	z^5x	z^5y
(1)	0	1	1	6	5	6	6	5	6
(2)	0	1	2	6	5	7	3	1	2
(3)	0	1	3	6	5	8	0	6	7

\square

Proposition 1.5. *No subgroup of $PGL(3, \mathbf{C})$ is isomorphic to $\mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_3$.*

Proof. Assume that a subgroup G of $PGL(3, \mathbf{C})$ is isomorphic to $\mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_3$. Then there exist $A_1, A_2, A_3 \in GL(3, \mathbf{C})$ such that $A_1^3 = A_2^3 = A_3^3 = E_3$, $A_i A_j \sim A_j A_i$ for any $1 \leq i < j \leq 3$, and $G = \langle (A_1), (A_2), (A_3) \rangle$. Let ω be a primitive 3rd root of

1. We may assume that G contains (W) of the form $(\text{diag}[1, 1, \omega])$ or $(\text{diag}[1, \omega, \omega^2])$. We will show that the first case implies the second case. Since $WA_j \sim A_j W$, the $(3,1)$, $(3,2)$, $(1,3)$ and $(2,3)$ components of A_j ($j = 1, 2, 3$) vanish. So we can assume that $A_1 = \text{diag}[\omega^m, \omega^n, \omega]$ for some $0 \leq m, n < 3$. If $n = m$, then $n \neq 1$, and $A_2 = \text{diag}[\omega^{m'}, \omega^{n'}, \omega]$ with $n' \neq m'$. Thus $(\text{diag}[1, \omega, \omega^2]) \in G$. We will show that the assumption $(A) = (\text{diag}[1, \omega, \omega^2]) \in G$ leads to a contradiction. Let $P_1 = (1, 0, 0)$, $P_2 = (0, 1, 0)$, and $P_3 = (0, 0, 1)$. Then G fixes 3-point set $K = \{P_1, P_2, P_3\}$, because (A) and (A_j) commute. Since some A_j is not diagonal, the homomorphism φ from G to the permutation group of K cannot be trivial. Since $|G| = 27$, it cannot be surjective. Thus $|\varphi(G)| = 3$, and $|\text{Ker} \varphi| = 9$. In other words every projectivity $(\text{diag}[1, \omega^i, \omega^j])$ belongs to G . Since G is commutative, any element of G is induced by a diagonal matrix of order 3. This implies that $|G| = 9$, a desired contradiction. \square

We turn to the group $E(3^3)$. See the paragraph just below Theorem 1.1 for the definition of the group and its element $M(\alpha, \beta, \gamma)$.

Lemma 1.6. (1) *Let*

$$B_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \omega \end{bmatrix}, \quad B_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{bmatrix}.$$

The map ϕ defined by $\phi(M(\alpha, \beta, \gamma)) = (B_1^\alpha B_2^\beta B_3^{\gamma - \alpha - \beta})$ is an isomorphism of $E(3^3)$ into $\text{PGL}(3, \mathbf{C})$.

(2) *If G is a subgroup of $\text{PGL}(3, \mathbf{C})$ and isomorphic to $E(3^3)$, then G is conjugate to $\phi(E(3^3))$.*

Proof. (1) Let $M_1 = M(1, 0, 0)$, $M_2 = M(0, 1, 0)$, $M_3 = M(0, 0, 1)$. Then $M(\alpha, \beta, \gamma) = M_1^\alpha M_2^\beta M_3^{\gamma - \alpha - \beta}$. First we will prove that ϕ is a homomorphism by showing $\phi(M_j M(\alpha, \beta, \gamma)) = \phi(M_j) \phi(M(\alpha, \beta, \gamma))$. Clearly

$$\begin{aligned} M_1 M(\alpha, \beta, \gamma) &= M(\alpha + 1, \beta, \gamma + \beta) \\ M_2 M(\alpha, \beta, \gamma) &= M(\alpha, \beta + 1, \gamma) \\ M_3 M(\alpha, \beta, \gamma) &= M(\alpha, \beta, \gamma + 1). \end{aligned}$$

On the other hand, $B_j^3 = E_3$, $B_1 B_2 = B_2 B_1 B_3$, $B_3 B_1 = B_1 B_3$, and $B_3 B_2 = B_2 B_3$. So ϕ is a homomorphism. Since B_2 and B_3 are diagonal, it is easy to see that ϕ is injective. Note that $\phi(E(3^3))$ does not depend on the choice of ω , a primitive 3rd root of 1.

(2) Let ϕ' be an isomorphism of $E(3^3)$ into $\text{PGL}(3, \mathbf{C})$, and $\phi'(M_j) = (B'_j)$. We may assume $B'_3 = B_3$ or $B'_3 = B_2$. The latter case is impossible. Since $B'_3 B'_1 \sim B'_1 B'_3$ and $B'_3 B'_2 \sim B'_2 B'_3$, we may assume $B'_1 = \text{diag}[\omega_1, \omega_2, 1]$, and $(1,3)$, $(2,3)$, $(3,1)$ and $(3,2)$ components of B'_2 are equal to zero. It is not difficult to see that $B'_1 B'_2 \sim B'_2 B'_1 B'_3$ is

imposssible. So let $B'_3 = B_3$ and let e_i denote the i -th unit column vector so that $E_3 = [e_1, e_2, e_3]$. A matrix $B \in GL(3, \mathbf{C})$ satisfies $BB_3 \sim B_3B$ if and only if either B is diagonal or takes the form either $[e_2, e_3, e_1]\text{diag}[a, b, c]$ or $[e_3, e_1, e_2]\text{diag}[a, b, c]$. First assume that $B'_2 = \text{diag}[\omega_1, \omega_2, \omega_3]$. We may assume $1 = \omega_1 = \omega_2 \neq \omega_3$ (if necessary, we replace ω by ω^2). Furthermore, we may assume $\omega_3 = \omega$ (if necessary, we replace ω by ω^2) so that $B'_2 = B_2$. Since (B'_2) and (B'_1) do not commute, B'_1 cannot be diagonal. It turns out $B'_1 = [e_3, e_1, e_2]\text{diag}[a, b, c]$. By use of a diagonal matrix, we may assume that $a = b = c$, namely $B'_1 = B_1$. Secondly assume that $B'_1 = \text{diag}[\omega_1, \omega_2, \omega_3]$. We note that the map sending $M(\alpha, \beta, \gamma)$ to $M(\beta, \alpha, \gamma)$ is an anti-isomorphism. Therefore ϕ' gives an isomorphism $\phi''(M(\alpha, \beta, \gamma)) = \phi'(M(\beta, \alpha, \gamma)^{-1})$. ϕ'' is an isomorphism whose type we have discussed. Namely, $\phi'(E(3^3)) = \phi''(E(3^3))$ is conjugate to $\phi(E(3^3))$. Thirdly and finally assume that neither B'_1 nor B'_2 is diagonal. Let $B'_2 = [e_2, e_3, e_1]$ (without loss of generality we may take $a = b = c = 1$). Then we can show that if B'_1 takes the form either $[e_2, e_3, e_1]\text{diag}[a, b, c]$ or $[e_3, e_1, e_2]\text{diag}[a, b, c]$ with $|\{a, b, c\}| = 2$, $ac = b^2\omega$ and $a^2 = bc\omega^2$, then $\phi'(M(\alpha, \beta, \gamma)) = (B'_1{}^\alpha B'_2{}^\beta B'_3{}^{\gamma-\alpha-\beta})$ is an isomorphism (if $|\{a, b, c\}| = 1$ or 3, this ϕ' cannot be an isomorphism). Clearly $\phi'(E(3^3)) = \phi(E(3^3))$. The case $B'_2 = [e_3, e_1, e_2]$ can be reduced to the case $B'_2 = [e_2, e_3, e_1]$ by use of the matrix $[e_1, e_3, e_2]$. \square

Let $f \in \mathbf{C}[x_1, x_2, x_3]$ be a homogeneous polynomial and let h be its Hessian $\text{Hess}(f) = \det[f_{jk}]$, where $f_{jk} = (\partial^2/\partial x_j \partial x_k)f$.

Lemma 1.7. *Let $A = [a_{jk}] \in GL(3, \mathbf{C})$, and let f be a homogeneous polynomial in $\mathbf{C}[x_1, x_2, x_3]$ such that $f_{A^{-1}} = \lambda f$. Then $h_{A^{-1}} = \lambda^3(\det A^{-1})^2 h$, where $h = \text{Hess}(f)$.*

Proof. Let $y_j = \sum_{k=1}^3 a_{jk}x_k$. By our assumption $\lambda f(x_1, x_2, x_3) = f(y_1, y_2, y_3)$. Hence

$$\begin{aligned} \lambda f_j(x_1, x_2, x_3) &= \sum_{\ell} f_{\ell}(y_1, y_2, y_3)a_{\ell j} \\ \lambda f_{jk}(x_1, x_2, x_3) &= \sum_{\ell} \sum_{\ell'} f_{\ell\ell'}(y_1, y_2, y_3)a_{\ell'k}a_{\ell j}. \end{aligned}$$

The second equality yields $\lambda^3 h(x_1, x_2, x_3) = h_{A^{-1}}(x_1, x_2, x_3)(\det A)^2$. \square

Lemma 1.8. *Let the marices B_j be as in Lemma 1.6. A non-singular sextic f is invariant under all (B_j) if and only if*

$$f \sim x^6 + y^6\alpha^2 + z^6\alpha + \kappa(x^3y^3 + y^3z^3\alpha^2 + z^3x^3\alpha),$$

where $\alpha^3 = 1$ with $(\kappa^2 - 4\alpha^2)(\kappa^3 - 3\alpha\kappa^2 + 4) \neq 0$.

Proof. First we will show that a non-singular sextic f invariant under all (B_j) takes the form as in the lemma. Note that $f_{B_3^{-1}} = \omega^j f$ and $f_{B_2^{-1}} = \omega^k f$ for some $j, k \in \{0, 1, 2\}$. One can easily see that unless $(j, k) = (0, 0)$, f is singular. So f takes the form $f = a_1x^6 + a_2y^6 + a_3z^6 + a_4x^3y^3 + a_5y^3z^3 + a_6z^3x^3$. Since $f_{B_1^{-1}} = a_3x^6 + a_1y^6 + a_2z^6 + a_6x^3y^3 + a_4y^3z^3 + a_5z^3x^3$ must be equal to λf , where $\lambda^3 = 1$ (note that $B_1^3 = E_3$), we get $(a_1, a_2, a_3) = \lambda(a_3, a_1, a_2)$, and $(a_4, a_5, a_6) = \lambda(a_6, a_4, a_5)$. Therefore $a_2 = \lambda a_1$, $a_3 = \lambda^2 a_1$, $a_5 = \lambda a_4$, $a_6 = \lambda^2 a_4$. We note that $a_1 \neq 0$, because, otherwise, f is singular.

Let $f = x^6 + y^6\alpha^2 + z^6\alpha + \kappa(x^3y^3 + y^3z^3\alpha^2 + z^3x^3\alpha)$, where $\alpha^3 = 1$. Obviously f is invariant under all (B_j) . We will discuss when $C(f)$ has a singular point. Simple computation yields

$$\begin{aligned} f_x &= 3x^2(2x^3 + \kappa y^3 + \kappa\alpha z^3) \\ f_y &= 3y^2(\kappa x^3 + 2\alpha^2 y^3 + \alpha^2\kappa z^3) \\ f_z &= 3z^2(\alpha\kappa x^3 + \alpha^2\kappa y^3 + 2\alpha z^3). \end{aligned}$$

If (a, b, c) is a common zero of the three linear forms in x^3, y^3, z^3 above, then the determinant of the coefficient matrix vanishes, namely $\kappa^3 - 3\alpha\kappa^2 + 4 = 0$. Conversely, if this determinant vanishes, then $C(f)$ has clearly a singular point. If the determinant does not vanish and $C(f)$ has a singular point (a, b, c) , then one of a, b, c is equal to zero and $4\alpha^2 - \kappa^2 = 0$. It is clear that $C(f)$ has a singular point if $4\alpha^2 - \kappa^2 = 0$. Thus $C(f)$ has a singular point if and only if $(\kappa^3 - 3\alpha\kappa^2 + 4)(4\alpha^2 - \kappa^2) = 0$. \square

Lemma 1.9. $|\text{Aut}(f)| < 360$, where f is a non-singular sextic given in Lemma 1.8.

Proof. The Hessian $h = \text{Hess}(f)$ takes the form $54h_1h_2$, where $h_1 = xyz$ and

$$\begin{aligned} h_2 &= 20\alpha\kappa^2(x^9 + y^9 + z^9) + (-5\alpha\kappa^3 + 20\alpha^2\kappa^2 + 100\kappa)(x^6y^3 + y^6z^3 + z^6x^3) \\ &\quad + (-5\alpha^2\kappa^3 + 20\kappa^2 + 100\alpha\kappa)(x^3y^6 + y^3z^6 + z^3x^6) + (35\kappa^3 - 75\alpha\kappa^2 + 500)x^3y^3z^3. \end{aligned}$$

We consider a set of lines $L = \{\ell; \ell \text{ is a line such that } \ell|h\}$. By Lemma 1.7 $\text{Aut}(f)$ acts on L as $(A)\ell = \{(A)P; P \in \ell\}$. Denoting the line $x = 0$ by ℓ_x , let $G_x = \{(A) \in \text{Aut}(f); (A)\ell_x = \ell_x\}$. Obviously $|\text{Aut}(f)\ell_x| \leq |L| \leq 12$. By the way we remark that $|L| = 12$ for $f' = x^6 + y^6 + z^6 - 10(x^3y^3 + y^3z^3 + z^3x^3)$ (Indeed, the 3×3 matrix B whose row vectors are $[1, 1, 1]$, $[1, \omega, \omega^2]$ and $[1, \omega^2, \omega]$, ω being a primitive the third root of 1, satisfies $f'_{B^{-1}} = -27f'$). Assume $(A) \in G_x$. Without loss of generality A takes the form

$$A = \begin{bmatrix} 1 & 0 & 0 \\ a & b & c \\ a' & b' & c' \end{bmatrix} \in GL(3, \mathbf{C}).$$

Putting $Y = by + cz$ and $Z = b'y + c'z$, we get $f_{A^{-1}} = p_0x^6 + x^5p_1(Y, Z) + x^4p_2(Y, Z) + x^3p_3(Y, Z) + x^2p_4(Y, Z) + xp_5(Y, Z) + p_6(Y, Z)$. Since this polynomial is proportional to f , $p_5(Y, Z) = 6a\alpha^2Y^5 + 3\kappa\alpha^2(a'Y^3Z^2 + aY^2Z^3) + 6a'\alpha Z^5$ must vanish, namely $a = a' = 0$. Now $f_{A^{-1}} = x^6 + \kappa x^3(Y^3 + Z^3\alpha) + Y^6\alpha^2 + \kappa Y^3Z^3\alpha^2 + Z^6\alpha$. Assuming first $\kappa \neq 0$, we will show that $|G_x| = 18$ to the effect that $|\text{Aut}(f)| \leq 18 \times 12 = 216$. By simple computation $Y^3 + Z^3\alpha = y^3(b^3 + b'^3\alpha) + 3y^2z(b^2c + b'^2c'\alpha) + 3yz^2(bc^2 + b'c'^2\alpha) + z^3(c^3 + c'^3\alpha)$.

Since this must be equal to the polynomial $y^3 + z^3\alpha$, it follows that $b^2c + b'^2c'\alpha = 0$, and $bc^2 + b'c'^2\alpha = 0$. Multiplying c and b to each equality and then by subtraction, we get $b'c'(cb' - bc') = 0$, namely $b'c' = 0$, because A is non-singular. If $b' = 0$, then $c = 0$, $b^3 = 1$, $c'^3 = 1$. It can be immediately seen that with these values (A) really belongs to G_x . If $c' = 0$, then $b = 0$, $b'^3 = \alpha^2$, $c^3 = \alpha$. It can be also verified that with these values (A) belongs to G_x . Thus, if $\kappa \neq 0$, then $|G_x| = 2 \times 9$. If $\kappa = 0$, then $h = \text{const}x^4y^4z^4$, in particular, $L = \{x, y, z\}$. One can see easily that G_x consists of 2×6^2 points. Since $\text{Aut}(f)$ acts transitively on L , we have $|\text{Aut}(f)| = |L| \times |G_x| = 216$ (see [10, p. 171] or [8] for the automorphism group of the Fermat curves). \square

2. Uniqueness of sextics with $|\text{Aut}(f)|=360$

In the previous section we have shown that $|\text{Aut}(f)| \leq 360$ for a non-singular plane sextic f . It is, therefore, reasonable to call a non-singular plane sextic f satisfying $|\text{Aut}(f)| = 360$, the most symmetric. The Wiman sextic

$$f_6 = 27z^6 - 135z^4xy - 45z^2x^2y^2 + 9z(x^5 + y^5) + 10x^3y^3$$

is known to be the most symmetric [11]. The aim of this section is to prove the

Theorem 2.1. *The most symmetric sextics are projectively equivalent to the Wiman sextic.*

As a byproduct another proof of $|\text{Aut}(f_6)| = 360$ will be given (see Proposition 2.22).

There are five groups of order 8 up to isomorphism ([3, chap. 4]):

- 1) \mathbf{Z}_8
- 2) $\mathbf{Z}_2 \times \mathbf{Z}_4$
- 3) $\mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$
- 4) Q_8 , which is generated by a and b satisfying $a^4 = 1$, $b^2 = a^2$, and $ba = a^{-1}b$
- 5) D_8 , which is generated by a and b satisfying $a^4 = 1$, $b^2 = 1$, and $ba = a^{-1}b$.

In a series of lemmas we will show that if f is the most symmetric sextic, then the Sylow 2-subgroup of $\text{Aut}(f)$ is isomorphic to D_8 .

Lemma 2.2. *A subgroup G_8 of $\text{PGL}(3, \mathbf{C})$ is isomorphic to \mathbf{Z}_8 , if and only if G_8 is conjugate to one of the following groups:*

- (1) $\langle(\text{diag}[1, 1, \varepsilon])\rangle$
- (2) $\langle(\text{diag}[1, \varepsilon, \varepsilon^2])\rangle$
- (3) $\langle(\text{diag}[1, \varepsilon, \varepsilon^3])\rangle$
- (4) $\langle(\text{diag}[1, \varepsilon, \varepsilon^4])\rangle$.

Proof. Suppose that G_8 and \mathbf{Z}_8 are isomorphic. Then there exists an $A \in GL(3, \mathbf{C})$ such that $G_8 = \langle(A)\rangle$. Since (A) is of finite order, A is diagonalizable; $T^{-1}AT \sim \text{diag}[1, \varepsilon^i, \varepsilon^j](0 \leq i < j \leq 7)$, where ε is a primitive 8-th root of 1. Clearly $(i, j) \notin \{(0, 2), (0, 4), (0, 6), (2, 4), (2, 6), (4, 6)\}$. If $i = 0$, then G_8 is conjugate to (1). If $(i, j) \in \{(1, 2), (1, 7), (2, 5), (3, 5), (3, 6), (6, 7)\}$, then G_8 is conjugate to (2). If $(i, j) \in \{(1, 3), (1, 6), (2, 3), (2, 7), (5, 6), (5, 7)\}$, then G_8 is conjugate to (3). Finally if $(i, j) \in \{(1, 4), (1, 5), (3, 4), (3, 7), (4, 5), (4, 7)\}$, then G_8 is conjugate to (4). \square

Lemma 2.3. *The projective automorphism group $\text{Aut}(f)$ of a non-singular sextic f has a subgroup isomorphic to \mathbf{Z}_8 , if and only if f is projectively equivalent to a sextic of the form $f' = x^6 + Bx^2y^2z^2 + y^5z + yz^5$ with $B^3 + 27 \neq 0$.*

Proof. Assume that $\text{Aut}(f)$ has a subgroup isomorphic to \mathbf{Z}_8 . Let A denote one of the following four matrices; $\text{diag}[1, 1, \varepsilon]$, $\text{diag}[1, \varepsilon, \varepsilon^2]$, $\text{diag}[1, \varepsilon, \varepsilon^3]$, $\text{diag}[1, \varepsilon, \varepsilon^4]$, where ε is a primitive 8-th root of 1. By Lemma 2.2 f is projectively equivalent to a sextic f' such that $f'_{A^{-1}} = \varepsilon^j f'$ for some $0 \leq j < 8$. One can easily see that such an f' is singular except for the case $(A, j) = (\text{diag}[1, \varepsilon, \varepsilon^3], 0)$ (see the proof of Proposition 1.4). In this exceptional case f' is a linear combination of monomials $x^6, x^2y^2z^2, y^5z, yz^5$. Since f' is assumed to be non-singular, it takes the form $x^6 + Bx^2y^2z^2 + (y^5z + yz^5)$ up to projective equivalence. Suppose that $C(f')$ has a singular point (a, b, c) . It is immediate that $abc \neq 0$. It is a common zero of $f_1 = 3x^4 + By^2z^2$, $f_2 = 2Bx^2yz + 5y^4 + z^4$ and $f_3 = 2Bx^2yz + y^4 + 5z^4$. Being on $C(f_2)$ and $C(f_3)$, (a, b, c) satisfies $Ba^2c + 3b^3 = 0$ and $Ba^2b + 3c^3 = 0$, hence $B^2a^4 = 9b^2c^2$. Since $B^2f_1(a, b, c) = 0$, we get $(27 + B^3)b^2c^2 = 0$, namely $B^3 + 27 = 0$. Conversely, if $B^3 + 27 = 0$, then $(\sqrt{-3/B}, 1, 1)$ is a singular point of $C(f')$. \square

We cite two theorems concerning a flex of a plane curve.

Theorem 2.4 ([2, p. 70]). *A point P on an irreducible plane curve $C(f)$ is a simple point if and only if the local ring $\mathcal{O}_P(f)$ is a discrete valuation ring. In this case, if $L = ax + by + cz$ is a line through P different from the tangent to $C(f)$ at P , then the image ℓ of L in $\mathcal{O}_P(f)$ is a uniformizing parameter for $\mathcal{O}_P(f)$.*

Theorem 2.5 ([2, p. 116]). *Let h be the Hessian of an irreducible f .*

- (1) *P lies both on $C(h)$ and $C(f)$, if and only if P is a flex or a multiple point of f .*
- (2) *The intersection number $I(P, h \cap f)$ is equal to 1 if and only if P is an ordinary*

flex. (Note that if P is a simple point of $C(f)$ and $C(\ell)$ is the tangent at P to $C(f)$, then $I(P, h \cap f) = \text{ord}_P^f(h)$ [2, p. 81], which is equal to $I(P, \ell \cap f) - 2 = \text{ord}_P^f(\ell) - 2$ [2, Proof on p. 116].)

The following lemma shows that a Sylow 2-subgroup of $\text{Aut}(f)$ of the most symmetric sextic f cannot be isomorphic to \mathbf{Z}_8 .

Lemma 2.6. *If $f' = x^6 + Bx^2y^2z^2 + y^5z + yz^5$ with $B^3 + 27 \neq 0$, then $|\text{Aut}(f')| < 360$.*

Proof. Since $f'(x, 1, z) = x^6 + Bx^2z^2 + z + z^5$, $P = (0, 1, 0)$ is a flex of $C(f')$. The tangent to $C(f')$ at P is $C(z)$. Since $\text{ord}_P^{f'}$ is a discrete valuation of the local ring $\mathcal{O}_P(f')$, and x is a uniformizing parameter of the ring, namely $\text{ord}_P^{f'}(x) = 1$, we get $\text{ord}_P^{f'}(z) = 6$. Simple calculation yields the Hessian $h' = \text{Hess}(f')$, which takes the form $-360B^2x^8y^2z^2 - 750x^4\{y^8 + z^8 + (10500 + 40B^3)y^4z^4\} - 160b^2x^2(y^7z^3 + y^3z^7) - 50B(y^{10}z^2 + y^2z^{10}) + 700By^6z^6$. So $I(P, h' \cap f') = \text{ord}_P^{f'}(h') = 4$. This value can be obtained as $\text{ord}_P^{f'}(z) - 2$ by Theorem 2.5 (2). Let $G_P = \{(A) \in \text{Aut}(f'); (A)P = P\}$. Since $(A) \in G_P$ fixes P as well as the tangent $C(z)$, we may assume that

$$A = \begin{bmatrix} a & 0 & c \\ a' & b' & c' \\ 0 & 0 & 1 \end{bmatrix}.$$

The condition $f'_{A^{-1}} \sim f'$ implies that $a' = c' = 0$, because $5(b'y)^4(a' + c'z)z$ must vanish in $f'_{A^{-1}}$. Such an (A) belongs to G_P if and only if $b'^4 = 1$, $a^6 = b'$, and $Ba^2b' = B$. Thus $|G_P|$ is equal to 8 or 24 according as $B \neq 0$ or $B = 0$. In the case $B \neq 0$, we evaluate the order of the group $\text{Aut}(f')$ as follows:

$$4 \left(\frac{|\text{Aut}(f')|}{|G_P|} \right) = I(P, h' \cap f') \left(\frac{|\text{Aut}(f')|}{|G_P|} \right) \leq \sum_Q I(Q, h' \cap f') = 12 \times 6.$$

Thus $|\text{Aut}(f')| \leq 144$.

Suppose $B = 0$. In this case $h' = -750x^4(y^8 - 14y^4z^4 + z^8)$, and h' contains 9 linear factors; x with multiplicity four, and $\sqrt{-1}^j(7 \pm 4\sqrt{3})y - z$ ($0 \leq j \leq 3$) with multiplicity one. Let $G_x = \{(A) \in \text{Aut}(f'); (A)\ell_x = \ell_x\}$, where ℓ_x stands for the line $C(x)$. By Lemma 1.7 $G_x = \text{Aut}(f')$. We shall show that $|G_x| = 144$. Assume that $(A) \in G_x$. (A) fixes both $C(f)$ and $C(x)$. Note that each tangent to $C(f)$ at the intersection $\in C(f) \cap C(x)$ passes through $(1, 0, 0)$. So (A) fixes $(1, 0, 0)$ as well. Thus A takes the form

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & b & c \\ 0 & b' & c' \end{bmatrix}$$

up to constant multiplication. Putting $Y = by + cz$, $Z = b'y + c'z$, we write $f'_{A^{-1}}$ as $Y^5Z + YZ^5 + x^6$. Now (A) belongs to G_x if and only if $y^5z + yz^5 = Y^5Z + YZ^5$. The right-hand side takes the form $y^6(b^5b' + bb'^5) + \dots + z^6(c^5c' + cc'^5)$. Therefore $bb'(b^4 + b'^4) = 0$, and $cc'(c^4 + c'^4) = 0$. If $b = 0$, then it follows immediately that $c' = 0$, and $c^5b' = cb'^5 = 1$. The number of such an (A) is equal to 24. Similarly the case $b' = 0$ gives another 24 elements of G_x . The case $cc' = 0$ does not give new $(A) \in G_x$. We turn to the case $bb'cc' \neq 0$. In this case $b^4 + b'^4 = c^4 + c'^4 = 0$. Since the coefficient of y^4z^2 vanishes, $b^2c^2 + b'^2c'^2 = 0$. Under these conditions the coefficients of y^2z^4 , y^3z^3 vanish. The coefficients of y^5z and yz^5 yield the condition $1 = -4b^4(bc' - b'c)$ and $1 = 4c^4(bc' - b'c)$ respectively. In particular $c^4 = -b^4$. Therefore if $bb'cc' \neq 0$, then $(A) \in G_x$ if and only if $b^4 + b'^4 = 0$, $c^4 + c'^4 = 0$, $b^4 + c^4 = 0$, $b^2c^2 + b'^2c'^2 = 0$, and $4b^4(-bc' + b'c) = 1$. Thus $b' = \sqrt{-1}^j(1 + \sqrt{-1})b/\sqrt{2}$, $c' = \sqrt{-1}^k(1 + \sqrt{-1})c/\sqrt{2}$ with $0 \leq j, k \leq 3$ and $j + k \equiv 0 \pmod{2}$, $c = \sqrt{-1}^\ell(1 - \sqrt{-1})b/\sqrt{2}$ with $0 \leq \ell \leq 3$ such that $4b^6(\sqrt{-1}^j - \sqrt{-1}^k)\sqrt{-1}^\ell = 1$. It is easy to see that each j gives one admissible value of k , that ℓ can be arbitrary, and that b can take six values for an admissible (j, k, ℓ) . Consequently there exist $4 \times 4 \times 6$ $(A) \in G_x$ such that $bb'cc' \neq 0$. Hence $|G_x| = 24 + 24 + 96 = 144$. This completes the proof of Lemma 2.6. \square

Lemma 2.7. *A subgroup G_8 of $PGL(3, \mathbf{C})$ is isomorphic to $\mathbf{Z}_2 \times \mathbf{Z}_4$, if and only if G_8 is conjugate to one of the following two groups:*

- (1) $\langle (\text{diag}[-1, 1, 1]), (\text{diag}[1, \sqrt{-1}, \sqrt{-1}]) \rangle$
- (2) $\langle (\text{diag}[-1, 1, 1]), (\text{diag}[1, \sqrt{-1}, \sqrt{-1}^2]) \rangle$.

Proof. Assume that G_8 is isomorphic to $\mathbf{Z}_2 \times \mathbf{Z}_4$. Then there exist commuting (A) , and (B) in $PGL(3, \mathbf{C})$ of order 2 and 4 respectively. We may assume that $A^2 = E_3$ and B takes the form either $\text{diag}[1, 1, \sqrt{-1}]$ or $\text{diag}[1, \sqrt{-1}, \sqrt{-1}^2]$. First suppose that $B = \text{diag}[1, 1, \sqrt{-1}]$. Since $AB \sim BA$, $(1,3), (2,3), (3,1)$ and $(3,2)$ components of A vanish. We may assume that $(3,3)$ component of A is equal to 1. Since A is diagonalizable, we may assume that $A = \text{diag}[-1, 1, 1]$. Secondly assume that $B = \text{diag}[1, \sqrt{-1}, \sqrt{-1}^2]$. Since $AB \sim BA$, and A is involutive, it follows that A is diagonal; $A = \text{diag}[a, b, 1]$. If $a = b$, then $a = -1$. There exists a $T \in GL(3, \mathbf{C})$ such that $T^{-1}AT \sim \text{diag}[-1, 1, 1]$ and $T^{-1}BT \sim \text{diag}[1, \sqrt{-1}^3, \sqrt{-1}^2]$, hence $T^{-1}B^3T \sim \text{diag}[1, \sqrt{-1}, \sqrt{-1}^2]$. The case $a \neq b$ can be dealt with similarly. \square

Lemma 2.8. *If a plane sextic is invariant under the group (1) or (2) in Lemma 2.7, then it is singular.*

Proof. Let $A = \text{diag}[-1, 1, 1]$, $B_1 = \text{diag}[1, 1, \sqrt{-1}]$, $B_2 = \text{diag}[1, \sqrt{-1}, \sqrt{-1}^2]$, and let B denote either B_1 or B_2 . As in the proof of Proposition 1.4 we can show easily that a sextic f satisfying $f_{B^{-1}} \sim f$ and $f_{A^{-1}} \sim f$ is singular. Indeed, if f contains x^6 , then $f_{B^{-1}} = f$, hence three monomials z^6 , z^5x , z^5y or three monomials y^6 ,

y^5x, y^5z do not appear in f according as $B = B_1$ or $B = B_2$. Suppose the monomial x^6 does not appear in f . If f contains x^5y , then $f_{A^{-1}} = -f$ and $f_{B^{-1}} \sim f$ so that three monomials z^6, z^5x, z^5y do not appear in f , namely $(0, 0, 1)$ is a singular point of $C(f)$. If f contains x^5z , then $f_{A^{-1}} = -f$ and $f_{B^{-1}} \sim f$ so that three monomials z^6, z^5x, z^5y do not appear in f . Finally if f contains none of three monomials x^6, x^5y , and x^5z , then $(1, 0, 0)$ is a singular point of $C(f)$. \square

Lemma 2.9. *No subgroup of $PGL(3, \mathbf{C})$ is isomorphic to $\mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$.*

Proof. Let (A) and (B) be mutually distinct commuting involutions. We may assume that $A = \text{diag}[-1, 1, 1]$, and $B = \text{diag}[1, -1, 1]$. Assume that an involution (C) commutes with both of them. Then C is diagonal, hence $(C) \in \langle (A), (B) \rangle$. Namely, mutually distinct three commuting involutions in $PGL(3, \mathbf{C})$ generate a subgroup of order 4. \square

Lemma 2.10. *A subgroup G_8 of $PGL(3, \mathbf{C})$ is isomorphic to Q_8 , if and only if G_8 is conjugate to $\langle (\text{diag}[1, \sqrt{-1}, \sqrt{-1}^3]), ([e_1, e_3, e_2]\text{diag}[1, \sqrt{-1}, \sqrt{-1}]) \rangle$, where e_i is the i -th column vector of the unit matrix E_3 .*

Proof. G_8 is isomorphic to Q_8 , if and only if it is generated by some (A) of order 4 and (B) such that $(B)^2 = (A)^2$ and $(B)(A) = (A)^{-1}(B)$. Suppose that G_8 is isomorphic to Q_8 . Since (A) has order 4, we may assume that A takes the form either $\text{diag}[1, 1, \sqrt{-1}]$ or $\text{diag}[1, \sqrt{-1}, \sqrt{-1}^3]$, for subgroups $\langle (\text{diag}[1, \sqrt{-1}^j, \sqrt{-1}^k]) \rangle (0 < j < k < 4)$ are mutually conjugate. If $A = \text{diag}[1, 1, \sqrt{-1}]$, we can show easily that no $B \in GL(3, \mathbf{C})$ satisfies $ABA \sim B$. If $A = \text{diag}[1, \sqrt{-1}, \sqrt{-1}^3]$, then, up to constant multiplication, $B = [e_1, e_3, e_2]\text{diag}[1, b, c]$ with $bc = -1$ alone satisfies $B^2 \sim A^2$ and $ABA \sim B$. Transforming B by a diagonal matrix we get the lemma. \square

Lemma 2.11. *Any Q_8 -invariant sextic is singular.*

Proof. Let $A = \text{diag}[1, \sqrt{-1}, \sqrt{-1}^3]$ and $B = [e_1, e_3, e_2]\text{diag}[1, \sqrt{-1}, \sqrt{-1}]$, and f is a sextic. Suppose $f_{A^{-1}} = \sqrt{-1}^j f$ for some $0 \leq j \leq 3$. f is a linear combination of monomials m in x, y, z satisfying $m_{A^{-1}} = \sqrt{-1}^j m$. If $j = 2$, then f contains none of x^6, x^5y , and x^5z so that $(1, 0, 0)$ is a singular point of $C(f)$. If $j \in \{1, 3\}$, then x divides f . Finally if $j = 0$, then f is a linear combination of eight monomials: $x^6, x^2y^4, x^2y^2z^2, x^2z^4, x^4yz, y^5z, y^3z^3, yz^5$. Since we also require that $f_{B^{-1}} \sim f$, f is either a linear combination of the leading four monomials or a linear combination of the remaining four monomials. In either case f is reducible. \square

We have so far shown that a Sylow 2-subgroup of $\text{Aut}(f)$ of the most symmetric sextic f is isomorphic to D_8 . We turn to the study of a Sylow 5-subgroup of $\text{Aut}(f)$

of the most symmetric sextic f .

Lemma 2.12. *A subgroup G_5 of $PGL(3, \mathbf{C})$ is isomorphic to \mathbf{Z}_5 if and only if G_5 is conjugate to either $G_{5,1} = \langle \text{diag}[1, 1, \varepsilon] \rangle$ or $G_{5,2} = \langle \text{diag}[1, \varepsilon, \varepsilon^2] \rangle$, where ε is a primitive 5-th root of 1.*

Proof. We can argue as in the proof of Lemma 2.2. \square

Proposition 2.13. *Let f be a non-singular sextic. If $\text{Aut}(f)$ contains a subgroup conjugate to $G_{5,1}$ in Lemma 2.12, then $|\text{Aut}(f)| < 360$.*

Proof. Let a sextic f satisfy $f_{A^{-1}} = \varepsilon^j f$, where $A = \text{diag}[1, 1, \varepsilon]$. It turns out that unless $j = 0$, f is singular. In the case $j = 0$, f is a linear combination of monomials $x^{6-k}y^k$ ($0 \leq k \leq 6$), xz^5 and yz^5 . By change of variables $x' = ax + by$ and $y' = cx + dy$, we may assume that

$$f = C_0x^6 + C_1x^5y + C_2x^4y^2 + C_3x^3y^3 + C_4x^2y^4 + C_5xy^5 + C_6y^6 + xz^5,$$

where $C_6 = 1$, because if $C_6 = 0$, then f is reducible. So $P = (0, 0, 1)$ is a flex of $C(f)$, $C(x)$ is the tangent there to $C(f)$, y is a uniformizing parameter of $\mathcal{O}_P(f)$, and $\text{ord}_P^f(x) = 6$. Let $h = \text{Hess}(f)$. By Theorem 2.5 (2) $I(P, h \cap f) = \text{ord}_P^f(x) - 2 = 4$. Using Bezout's theorem we get $4|\text{Aut}(f)P| \leq \sum_Q I(Q, h \cap f) = 72$. Let $G_P = \{(B) \in \text{Aut}(f); (B)P = P\}$. If $|G_P| < 20$, then $|\text{Aut}(f)| = |\text{Aut}(f)P||G_P| < 360$. We will try to show that $|G_P| < 20$. Let $(B) \in G_P$. Then the first, the second and the third row of B takes the form $[a, 0, 0]$, $[b, 1, 0]$, and $[a', b', c]$. Since $f_{B^{-1}} \sim f$, $a' = b' = 0$. Now $f_{B^{-1}}$ is of the following form:

$$\begin{aligned} f_{B^{-1}} = & x^6(C_0a^6 + C_1a^5b + C_2a^4b^2 + C_3a^3b^3 + C_4a^2b^4 + C_5ab^5 + C_6b^6) \\ & + x^5y(C_1a^5 + 2C_2a^4b + 3C_3a^3b^2 + 4C_4a^2b^3 + 5C_5ab^4 + 6b^5) \\ & + x^4y^2(C_2a^4 + 3C_3a^3b + 6C_4a^2b^2 + 10C_5ab^3 + 15b^4) \\ & + x^3y^3(C_3a^3 + 4C_4a^2b + 10C_5ab^2 + 20b^3) \\ & + x^2y^4(C_4a^2 + 5C_5ab + 15b^2) \\ & + xy^5(C_5a + 6b) + y^6 + xz^5ac^5. \end{aligned}$$

This polynomial is proportional to f , hence, equal to f . Therefore $ac^5 = 1$, and $b = C_5(1 - a)/6$. Substituting b in the coefficients of x^2y^4 , we get $(a^2 - 1)(C_4 - 5C_5^2/12) = 0$. If $C_4 \neq 5C_5^2/12$, then $a^2 = 1$, hence $|G_P| \leq 10$. Suppose $C_4 = 5C_5^2/12$. Comparing the coefficients of x^3y^3 , we get $(a^3 - 1)(C_3 - 5C_5^3/54) = 0$. Suppose $C_3 = 5C_5^3/54$ (otherwise, $|G_P| \leq 15$). Now

$$f = \left(x \frac{C_5}{6} + y \right)^6 + x^6 \left(1 - \frac{C_5^6}{6^6} \right) + x^5y \left(C_1 - \frac{C_5^5}{6^4} \right) + x^4y^2 \left(C_2 - \frac{C_5^4}{2 \cdot 6^3} \right) + xz^5.$$

By change of variables $x' = x$, $y' = xC_5/6 + y$, and $z' = z$, we get a projectively equivalent sextic, which will be denoted by f again: $f = D_0x^6 + D_1x^5y + D_2x^4y^2 + y^6 + xz^5$. If $(B) \in G_P$, then $B = \text{diag}[a, 1, c]$, where

$$D_0a^6 = D_0, \quad D_1a^5 = D_1, \quad D_2a^4 = D_2, \quad \text{and} \quad ac^5 = 1.$$

If $D_1D_2 \neq 0$, then $a = 1$, hence $|G_P| = 5$. If $D_1 = 0$ and $D_2 \neq 0$, then $D_0 \neq 0$, hence $a^2 = 1$ so that $|G_P| = 10$. Finally suppose that $D_1 \neq 0$, $D_2 = 0$ and that f is non-singular, namely $6^6D_0^5 \neq 5^5D_1^6$. Then the line $C(z)$ intersects $C(f)$ at distinct six points. Besides $h = \text{Hess}(f) = 250z^3h'$, where $h' = -3y^4z^5 + 24(3D_0x + 2D_1y)x^4y^4 - 2D_1^2x^9$. Note that h' has no linear factors. Indeed, none of linear factors $z - \alpha x - \beta y$, $x - \alpha y$, and $y - \beta x$ divides h' . Let $G_z = \{(B) \in \text{Aut}(f); (B) \text{ fixes the line } C(z)\}$. Since $\text{Aut}(f) \subset \text{Aut}(h)$ by Lemma 1.7, $(B) \in \text{Aut}(f)$ fixes a line $C(z)$ and hence the point P (see the proof of Lemma 2.6). In particular $G_z = \text{Aut}(f) = G_P$, and B takes the form $\text{diag}[a, 1, c]$, where $a^5 = 1$ and $ac^5 = 1$. In particular $|\text{Aut}(f)| = |G_P| \leq 5 \times 5$. \square

Lemma 2.14. *Let f be a non-singular sextic. The automorphism group of f contains a subgroup conjugate to $G_{5,2}$, if and only if f is projectively equivalent to one of the following forms:*

- (1) $x^6 + C_1x^3yz^2 + C_2y^2z^4 + C_3x^2y^3z + x(y^5 + z^5)$
- (2) $z^6 + Bz^4xy + Cz^2x^2y^2 + Dz(x^5 + y^5) + Ex^3y^3$

If f is the sextic (1), then $|\text{Aut}(f)| < 360$.

Proof. Let $A = \text{diag}[1, \varepsilon, \varepsilon^2]$. Then each of the two sextics (1) and (2), say f , satisfies $f_{A^{-1}} \sim f$. Assume that $(A) \in \text{Aut}(f)$ for a sextic f , namely $f_{A^{-1}} = \varepsilon^j f$ ($j = 0, 1, 2, 3, 4$). If $j = 3$ or $j = 4$, f is singular. According as $j \in \{0, 2\}$ or $j = 1$, f takes the form (1) or (2) up to projective equivalence. Assuming that f takes the form (1), we shall show that $|\text{Aut}(f)| < 360$. $P = (0, 1, 0)$ is a flex of f , and $C(x)$ is the tangent there. So z is a uniformizing parameter of $\mathcal{O}_P(f)$. Since $\text{ord}_P^f(x) \geq 4$, we can estimate the intersection number: $I(P, h \cap f) = \text{ord}_P^f(x) - 2 \geq 2$, where h is the Hessian of f . Let $G_P = \{(B) \in \text{Aut}(f); (B)P = P\}$. If $(B) \in G_P$, then the first, the second and the third row of B takes the form $[1, 0, 0]$, $[a, b, c]$, and $[a', 0, c']$ respectively, because (B) fixes the line $C(x)$ (i.e. $[1, 0, 0]B \sim [1, 0, 0]$) and $(B)P = P$. Since $f_{B^{-1}} \sim f$ and $C_2 \neq 0$, we get $c = 0$, $a = 0$, $a' = 0$, $b^5 = 1$ and $c' = b^2$. Thus $|G_P| = 5$. By Bezout's theorem $2|\text{Aut}(f)|/|G_P| = 2|\text{Aut}(f)P| \leq \sum_Q I(Q, h \cap f) \leq 72$, that is, $|\text{Aut}(f)| \leq 180$. \square

By Lemma 2.14 the most symmetric sextic is projectively equivalent to the following sextic :

$$f = z^6 + Bz^4xy + Cz^2x^2y^2 + Dz(x^5 + y^5) + Ex^3y^3.$$

Let $I = [e_2, e_1, e_3]$, where $E_3 = [e_1, e_2, e_3]$ is the unit matrix. Clearly $f_I = f$. If f is the most symmetric sextic, then any Sylow 2-subgroup of $\text{Aut}(f)$ is isomorphic to the group D_8 . By Sylow's theorem the involution (I) belongs to a Sylow 2-subgroup of $\text{Aut}(f)$.

Lemma 2.15. (1) *If g is an involution of D_8 , then there exists an involution $g' \in D_8 \setminus \{g\}$ such $gg' = g'g$.*

(2) *Let g and g' be mutually distinct commuting involutions of D_8 . Then one of the following cases takes place.*

- 1) *There exists an element $c \in D_8$ of order 4 such that $c^2 = g$, $g'cg' = c^{-1}$.*
- 2) *There exists an element $c \in D_8$ of order 4 such that $c^2 = g'$, $gcg = c^{-1}$.*
- 3) *There exists an element $c \in D_8$ of order 4 such that $c^2 = gg'$, $gcg = c^{-1}$.*

Proof. Let a, b be generators of D_8 such that $a^4 = 1$, $b^2 = 1$ and $ba = a^{-1}b$. So a generates a cyclic group H of order 4, and $D_8 = H + bH$. An element $g \in D_8$ is an involution if and only if $g \in \{a^2\} \cup bH$. (1) If $g = a^2$, then we can take $g' = ba^2$. If $g = ba^j$, we can take $g' = ba^{j+2}$. (2) If $g = a^2$, then $g' \in bH$. So we can take $c = a$. If $g' = a^2$, then we can take $c = a$. Finally if $g, g' \in bH$, then $gg' = a^2$. So we can take $c = a$. \square

Lemma 2.16. *Assume that $f = z^6 + Bz^4xy + Cz^2x^2y^2 + Dz(x^5 + y^5) + Ex^3y^3$ is non-singular. If there exists an involution $(A) \in \text{Aut}(f) \setminus \{(I)\}$ such that $(A)(I) = (I)(A)$, then A takes the form*

$$\begin{bmatrix} \alpha & \beta & \gamma \\ \beta & \alpha & \gamma \\ \lambda & \lambda & 1 \end{bmatrix}, \text{ where } \alpha + \beta + 1 = 0, \alpha\beta + 1 = 0, \gamma\lambda = 2,$$

and

$$(\star) \quad \gamma^2 B = 12 - \gamma^5 D, \quad \gamma^4 C = 48 + \gamma^5 D, \quad \gamma^6 E = 64 - 2\gamma^5 D.$$

Conversely, if (\star) holds for some $\gamma \neq 0$, then the above matrix A gives an involution $(A) \in \text{Aut}(f) \setminus \{(I)\}$ such that $(A)(I) = (I)(A)$.

Proof. Suppose that $\text{Aut}(f)$ contains an involution $(A) \neq (I)$ commuting with (I) . Let $A = [a, b, c]$, where $a = [a_j]$, $b = [b_j]$ and $c = [c_j]$ are column vectors. We claim that $c_3 \neq 0$. Otherwise the condition $AI \sim IA$ yields $b_1 = \delta a_2$, $b_2 = \delta a_1$, $b_3 = \delta a_3$, and $c_2 = \delta c_1$. Since $A^2 \sim E_3$, we get $\delta = 1$, $a_1 + a_2 = 0$, and $c_1 a_3 = 2a_1^2$. However, $(A) \notin \text{Aut}(f)$, because $f_{A^{-1}} = \sum z^j C_j$ with $C_1 = 10a_1^7 a_3 D(x+y)(x-y)^4 \not\sim D(x^5 + y^5)$. Note that $D \neq 0$ because of non-singularity of f . Thus we may assume that $c_3 = 1$. The condition $AI \sim IA$ implies that $a_2 = b_1$, $a_1 = b_2$, $a_3 = b_3$ and $c_2 = c_1$. We claim that $c_1 \neq 0$. If $c_1 = 0$, then the condition $(A) \in \text{Aut}(f)$ yields

$a_3 = 0$ and $a_1 b_1 = 0$. Besides, by the condition $A^2 \sim E_3$, we get $A \sim E_3$ or $A \sim I$. Similarly $a_3 \neq 0$. For the sake of simplicity of notation we put $\alpha = a_1$, $\beta = b_1$, $\gamma = c_1$, and $\lambda = a_3$. Since $A^2 \sim E_3$, $\alpha + \beta + 1 = 0$, $2\alpha\beta + \gamma\lambda = 0$, and $\gamma\lambda \notin \{0, -1/2\}$. Under these conditions $A^2 = (2\gamma\lambda + 1)E_3$. Let $W = \text{diag}[1, 1, 1/\gamma]$, $A' = W^{-1}AW$, and $f_{W^{-1}} = \gamma^{-6}f'$. $(A') \in \text{Aut}(f')$, because $f'_{A'} = (f_{W^{-1}})_{A'} = f_{A'W^{-1}} = f_{W^{-1}A} = (f_A)_{W^{-1}} = (\text{const}f)_{W^{-1}} = \text{const}f_{W^{-1}} = \text{const}f'$. By the next lemma $(A') \in \text{Aut}(f')$ implies (\star) . Conversely suppose (\star) holds. Let $f_{W^{-1}} = \gamma^6f'$. By the next lemma there exists an involution $(A') \in \text{Aut}(f') \setminus \{(I)\}$ such that $(A')(I) = (I)(A')$. Since $f'_W \sim f$, $A = WA'W^{-1}$ gives an involution $(A) \in \text{Aut}(f) \setminus \{(I)\}$. \square

Lemma 2.17. *Let f be as in Lemma 2.16, and let*

$$A = \begin{bmatrix} a & b & 1 \\ b & a & 1 \\ d & d & 1 \end{bmatrix}, \quad \text{where } a + b + 1 = 0, \quad 2ab + d = 0, \quad d \notin \left\{0, -\frac{1}{2}\right\}.$$

Then $f_{A^{-1}} \sim f$ if and only if

$$d = 2, \quad B = 12 - D, \quad C = 48 + D, \quad E = 64 - 2D.$$

Proof. We note that coefficients of $f_{A^{-1}}$ can be written without using a and b . In fact we get the following formula.

$$\begin{aligned} f_{A^{-1}} = & z^5(x + y)\{6d + B(4d - 1) + C(2d - 2) + D(2d - 5) + E(-3)\} \\ & + z^4(x^2 + y^2)\{15d^2 + B(-9/2 + 6d)d + C(1 - 5d + d^2) + D(10 + 5d) \\ & + E(3 - (3/2)d)\} \\ & + z^3(x^3 + y^3)\{20d^3 + B(-8d^2 + 4d^3) + C(3d - 4d^2) + D(-10 - 5d + 10d^2) \\ & + E(-1 + 3d)\} \\ & + z^3(x^2y + xy^2)\{60d^3 + B(4d - 16d^2 + 12d^3) + C(-2 + 9d - 4d^2) \\ & + D(25d - 10d^2) + E(-9 - 3d)\} \\ & + z^2(x^4 + y^4)\{15d^4 + B(-7d^3 + d^4) + C((3 + (1/4))d^2 - d^3) \\ & + D(5 - (25/2)d^2) + E((-3/2)d + (3/4)d^2)\} \\ & + z^2(x^3y + xy^3)\{60d^4 + B(6d^2 - 16d^3 + 4d^4) + C(-5d + 5d^2) \\ & + D(-20d - 10d^2) + E(3 - 3d - 3d^2)\} \\ & + z(x^4y + xy^4)\{30d^5 + B(4d^3 - 7d^4) + C(-4d^2 - (1/2)d^3) \\ & + D((15/2)d + (15/4)d^2 - (15/2)d^3) + E(3d + (9/4)d^2)\} \\ & + z(x^3y^2 + x^2y^3)\{60d^5 + B(12d^3 - 6d^4) + C(2d - 4d^2 - d^3) \\ & + D(-25/2)d^2 + 5d^3) + E(-3 - 3d - (3/2)d^2)\} \\ & + (x^6 + y^6)\{d^6 + B(-(1/2)d^5) + C((1/4)d^4) \end{aligned}$$

$$\begin{aligned}
& + D(-1 - (5/2)d - (5/4)d^2)d + E(-(1/8)d^3)\} \\
& +(x^5y + xy^5)\{6d^6 + B(d^4 - d^5) + C(-d^3 - (1/2)d^4) \\
& \quad + D(-d + (5/2)d^3) + E((3/4)d^2 + (3/4)d^3)\} \\
& +(x^4y^2 + x^2y^4)\{15d^6 + B(4d^4 + (1/2)d^5) + C(d^2 - (1/4)d^4) \\
& \quad + D((5/2)d^2 + (5/4)d^3) + E(-(3/2)d - 3d^2 - (15/8)d^3)\} \\
& +z^6\{1 + B + C + 2D + E\} \\
& +z^4xy\{30d^2 + B(1 - 7d + 12d^2) + C(4 - 6d + 2d^2) + D(-30d) + E(9 + 3d)\} \\
& +z^2x^2y^2\{90d^4 + B(12d^2 - 18d^3 + 6d^4) + C(1 - 6d + (15/2)d^2 + 2d^3) \\
& \quad + D(45d^2) + E(9 + 9d + (9/2)d^2)\} \\
& +z(x^5 + y^5)\{6d^5 + B(-3d^4) + C(3/2)d^3 \\
& \quad + D(-1 + (5/2)d + (35/4)d^2 + (5/2)d^3) + E(-3/4)d^2\} \\
& +x^3y^3\{20d^6 + B(6d^4 + 2d^5) + C(2d^2 + 2d^3 + d^4) \\
& \quad + D(-5d^3) + E(1 + 3d + (9/2)d^2 + (5/2)d^3\}.
\end{aligned}$$

Since z^5x does not appear in f , we have $3E = 6d + B(4d - 1) + C(2d - 2) + D(2d - 5)$. Since the coefficients of z^4x^2 , z^3x^3 , z^3x^2y vanish, and $d \neq -1/2$, we get a system of linear equations on B , C , and D as follows:

$$\begin{aligned}
B(-2d + 1) + C(1) + D\left(\frac{1}{2}d - 5\right) &= 6d, \\
B\left(4d^2 - 6d + \frac{2}{3}\right) + C\left(-2d + \frac{4}{3}\right) + D\left(12d - \frac{50}{3}\right) &= -20d^2 + 4d, \\
B(12d^2 - 26d + 6) + C(-6d + 8) + D(-12d + 30) &= -60d^2 + 36d.
\end{aligned}$$

The determinant of the coefficient matrix is equal to $50(4d + 2)(-d + 2)/3$. We claim that $d = 2$. Assume the contrary. Cramer's formula yields $B = 6d$, $C = 12d^2$, and $D = 0$. On the other hand $D \neq 0$, because f is assumed to be non-singular. Thus $d = 2$. The above system of linear equations on B , C , and D , together with the equality $3E = 6d + B(4d - 1) + C(2d - 2) + D(2d - 5)$ yields equalities $B = 12 - D$, $C = 48 + D$, and $E = 64 - 2D$. By easy computation we get $f_{A^{-1}} = 125f$. \square

Suppose f is the most symmetric sextic. By Lemma 2.14 we may assume that f takes the form given in Lemma 2.16. By Lemma 2.16, we may further assume that $B = 12 - D$, $C = 48 + D$, $E = 64 - 2D$.

Lemma 2.18. *Let f be a sextic of the form $z^6 + Bz^4xy + Cz^2x^2y^2 + Dz(x^5 + y^5) + Ex^3y^3$ with $B = 12 - D$, $C = 48 + D$, $E = 64 - 2D$. Let $M = \text{diag}[1, 1, m](m \neq 0)$. Then $f_{M^{-1}}$ is the Wiman sextic*

$$f_6 = 27z^6 - 135z^4xy - 45z^2x^2y^2 + 9z(x^5 + y^5) + 10x^3y^3,$$

if and only if $[D, 1/m] = [(9 \pm 15\sqrt{15}\sqrt{-1})/2, (-3 \pm \sqrt{15}\sqrt{-1})/12]$. In particular if $D^2 - 9D + 864 = 0$, then f is projectively equivalent to the Wiman sextic.

Proof. It is evident that f satisfies the condition if and only if the following 4 equalities hold:

$$(1) \quad (12 - D)/m^2 = -135/27$$

$$(2) \quad (48 + D)/m^4 = -45/27$$

$$(3) \quad D/m^5 = 9/27$$

$$(4) \quad (64 - 2D)/m^6 = 10/27.$$

The equalities (2) and (3) imply $(48 + D)m/D = -5$, while (3) and (4) yield $(64 - 2D)/Dm = 10/9$. Thus $(48 + D)(64 - 2D) + 50D^2/9 = 0$, namely $D^2 - 9D + 864 = 0$.

$m^{-1} = -(48 + D)/(5D)$ gives the value of m^{-1} . Conversely, since

$$m^{-2} = -(1 \pm \sqrt{15}\sqrt{-1})/24, \quad m^{-4} = (-7 \pm \sqrt{15}\sqrt{-1})/288,$$

$$12 - D = 15(1 \mp \sqrt{15}\sqrt{-1})/2, \quad \text{and} \quad 48 + D = 15(7 \pm \sqrt{15}\sqrt{-1})/2,$$

(1) and (2) hold, hence (3) and (4) as well. \square

Lemma 2.19. *Let f be as in Lemma 2.18, and let*

$$A = \begin{bmatrix} a & b & 1 \\ b & a & 1 \\ 2 & 2 & 1 \end{bmatrix}, \quad \text{where } a + b + 1 = 0, \text{ and } ab + 1 = 0,$$

$$B = \text{diag}[\delta, \delta^4, 1], \quad \text{where } \delta \text{ is a primitive 5-th root of 1.}$$

Then $(AB^2) \in \text{Aut}(f)$ and $\text{ord}((AB^2)) = 3$.

Proof. Let G be the subgroup of $\text{Aut}(f)$ generated by (A) , (I) and (B) . Let $P_1 = (1, 0, 0)$. It is a flex of $C(f)$. We can show that the orbit GP_1 consists of $2+5+5$ points, hence $|G| = 12 \times 5$. So it is no wonder that there is an $(M) \in G$ of order 3. By Lemma 2.17 $(A) \in \text{Aut}(f)$. Clearly $(B) \in \text{Aut}(f)$. We will show that $c, c\omega, c\omega^2$ are the characteristic roots of AB^2 for some constant c . Let $\sqrt{5}$ be a solution to $x^2 = 5$ (we do not assume $\sqrt{5} > 0$). To get a solution to $x^4 + x^3 + x^2 + x + 1 = 0$, put $y = x + x^{-1}$. Then $y^2 + y - 1 = 0$. So $y = (-1 \pm \sqrt{5})/2$, and $x^2 - yx + 1 = 0$. Let $a = (-1 + \sqrt{5})/2$, and $b = (-1 - \sqrt{5})/2$. Let δ be a solution of $x^2 - ax + 1 = 0$. Then $\delta^2 = a\delta - 1$, $\delta^3 = -a\delta - a$, $\delta^4 = a - \delta$, and $\delta^5 = 1$. AB^2 now takes the form

$$AB^2 = \begin{bmatrix} a^2\delta - a & \delta + 1 & 1 \\ -\delta - b & -a^2(\delta + 1) & 1 \\ 2(a\delta - 1) & -2a(\delta + 1) & 1 \end{bmatrix}.$$

By careful computation we get $\det(AB^2 + \sqrt{5}\mu) = 5\sqrt{5}(\mu^3 - 1)$. As is well known, if $AB^2 v_j = -\sqrt{5}\omega^j v_j$ and $v_j \neq 0$, then $V = [v_0, v_1, v_2]$ diagonalizes AB^2 ; $V^{-1}AB^2V =$

$-\sqrt{5}\text{diag}[1, \omega, \omega^2]$. For example we may take

$$v_0 = \begin{bmatrix} (3 + \sqrt{5})\delta - 1 - \sqrt{5} \\ -(3 + \sqrt{5})\delta \\ 2 \end{bmatrix}, \quad v_1 = \begin{bmatrix} (3 - \sqrt{5})\omega\delta + 2\omega + \sqrt{5} - 1 \\ (-3 + \sqrt{5})\omega\delta + 2(\sqrt{5} - 1)\omega + \sqrt{5} - 1 \\ 4 \end{bmatrix}.$$

Substituting ω^2 for ω in v_1 , we get v_2 . \square

Lemma 2.20. *Let f be the sextic in Lemma 2.18, and let $V = [v_0, v_1, v_2] \in GL(3, \mathbf{C})$ be as in the proof of Lemma 2.19. Set $U = 2V$. Then*

$$\begin{aligned} f_{U^{-1}} = & 10240[x^6(-170 - 76\sqrt{5})(-27 + D) + (y^6 + z^6)(100 - 40\sqrt{5})D \\ & + x^3(y^3 + z^3)(-200 - 100\sqrt{5})D + y^3z^3(20 - 8\sqrt{5})(864 - 17D) \\ & + x(y^4z + yz^4)(-75 + 75\sqrt{5})D + x^4yz(75 + 33\sqrt{5})(108 + D) \\ & + x^2y^2z^2(5 + \sqrt{5})(1296 - 63D)]. \end{aligned}$$

Proof. Let $\lambda = 2\delta$. Then $\lambda^2 - (-1 + \sqrt{5})\lambda + 4 = 0$. So the coefficients of $f_{U^{-1}}$ are \mathbf{Z} -linear combinations of $\sqrt{5}^j \omega^k \lambda^\ell$. Using computer, we get the result. \square

REMARK. Let $f' = f_{U^{-1}}$. The involution $(B^{-1}IB) \in \text{Aut}(f)$ gives rise to an involution $(J) = (U^{-1}B^{-1}IBU) \in \text{Aut}(f')$, where $E_3 = [e_1, e_2, e_3]$, $I = [e_2, e_1, e_3]$ and $J = [e_1, e_3, e_2]$.

The next lemma completes the proof of Theorem 2.1.

Lemma 2.21. *Let f be the most symmetric sextic of the form in Lemma 2.18. Then $D^2 - 9D + 864 = 0$.*

Proof. A Sylow 3-subgroup of $\text{Aut}(f)$ cannot be isomorphic to \mathbf{Z}_9 by Proposition 1.4. Therefore any Sylow 3-subgroup of $\text{Aut}(f)$ is isomorphic to $\mathbf{Z}_3 \times \mathbf{Z}_3$ [3]. By Sylow's theorem there exists a Sylow 3-subgroup which contains $(X) = (AB^2)$ in Lemma 2.19. So there exists a $(Y) \in \text{Aut}(f) \setminus \{(X)\}$ of order 3 such $(X)(Y) = (Y)(X)$. Let $f_{U^{-1}} = 10240f'$, $(X') = (U^{-1}XU)$ (see Lemma 2.20 for the definition of U). We may assume that $X' = \text{diag}[1, \omega, \omega^2]$. Then there exists a $(Y') \in \text{Aut}(f') \setminus \{(X')\}$ such that $X'Y' \sim Y'X'$, and $Y'^3 \sim E_3$. So without loss of generality $T = Y'$ takes the form either $\text{diag}[1, 1, \omega]$ or $[e_2, e_3, e_1]\text{diag}[a, b, 1]$. The former case is impossible, because $f'_{T^{-1}} \sim f'$ implies $f'_{T^{-1}} = f'$ despite the fact that $f'_{T^{-1}} \neq f'$ (note that $D \neq 0$, for f must be non-singular). Assume the second case for T . According as the monomial $x^2y^2z^2$ appears in f' or not, we proceed as follows. $[x^jy^zk^\ell]$ denotes the coefficient of $x^jy^zk^\ell$ in f' . If $[x^2y^2z^2] = 0$, i.e. $D = 144/7$, then f' does not have an automorphism of the form (T) . Indeed, the assumption $f'_{T^{-1}} = \text{const}f'$ leads to a contradiction.

as follows. Since $([x^6]x^6)_{T^{-1}} = \text{const}[z^6]z^6$, $\text{const} = [x^6]/[z^6] = (161 + 72\sqrt{5})/32$. By the two equalities $a^4b[xy^4z] = \text{const}[x^4yz]$, and $ab[x^4yz] = \text{const}[xyz^4]$, we get $a^3 = [x^4yz][x^4yz]/([xyz^4][xy^4z]) = 5(161 + 72\sqrt{5})/4^2$. On the other hand $a^6[y^6] = \text{const}[x^6]$ gives $a^6 = \text{const}[x^6]/[y^6] = (161 + 72\sqrt{5})^2/32^2$. Hence $a^6 \neq (a^3)^2$.

Suppose that $[x^2y^2z^2] \neq 0$. Then $f'_{T^{-1}} = a^2b^2f'$. Equivalently following nine equalities hold:

$$\begin{aligned} a^2b^2[x^6] &= [y^6]a^6, & a^2b^2[x^3y^3] &= [y^3z^3]a^3b^3, & a^2b^2[x^4yz] &= [y^4zx]a^4b \\ a^2b^2[y^6] &= [z^6]b^6, & a^2b^2[y^3z^3] &= [z^3x^3]b^3, & a^2b^2[xy^4z] &= [yz^4x]ab^4 \\ a^2b^2[z^6] &= [x^6], & a^2b^2[z^3x^3] &= [x^3y^3]a^3, & a^2b^2[xyz^4] &= [yzx^4]ab. \end{aligned}$$

The second and the ninth equalities imply

$$0 = [x^3y^3][xyz^4] - [y^3z^3][x^4yz] = -6480(3 + \sqrt{5})(D^2 - 9D + 864).$$

For the sake of completeness we will determine the values of a and b in the case $D^2 - 9D + 864 = 0$. By the second equality above we get $ab = [x^3y^3]/[y^3z^3]$. The eighth equality above yields $a = b^2$. So $b^3 = [x^3y^3]/[y^3z^3] = \{-100(2 + \sqrt{5})D\}/\{(20 - 8\sqrt{5})(864 - 17D)\}$. Conversely if $a = b^2$ and $b^3 = \{-100(2 + \sqrt{5})D\}/\{(20 - 8\sqrt{5})(864 - 17D)\}$ with $D^2 - 9D + 864 = 0$, then above nine equalities hold. Clearly the second and the ninth equalities hold. Because $a^3 = b^6 = ([x^3y^3]/[y^3z^3])^2 = [x^6]/[y^6] = [x^6]/[z^6]$, the first and the seventh equalities hold. The third and the fifth ones hold too, because $ab = b^3 = [x^3y^3]/[y^3z^3] = [x^4yz]/[y^4zx] = [z^3x^3]/[y^3z^3]$. Since $[y^6] = [z^6]$, $[xy^4z] = [yz^4x]$, and $[x^3y^3] = [z^3x^3]$, the fourth, the sixth and the eighth ones hold. \square

For the sake of completeness we will show the following proposition, which, together with Lemma 2.18, assures us that $|\text{Aut}(f_6)| = 360$.

Proposition 2.22. *Let f be a sextic of the form $z^6 + Bz^4xy + Cz^2x^2y^2 + Dz(x^5 + y^5) + Ex^3y^3$ with $B = 12 - D$, $C = 48 + D$, $E = 64 - 2D$, where $D^2 - 9D + 864 = 0$. Then $|\text{Aut}(f)| = 360$.*

Proof. By Lemma 2.14 $|\text{Aut}(f)|$ is a multiple of 5. By the proof of Lemma 2.21 $|\text{Aut}(f)|$ is a multiple of 9. In view of Theorem (1) in the introduction it suffices to show that $\text{Aut}(f)$ contains a subgroup isomorphic to D_8 . Let $I = [e_2, e_1, e_3]$ and A be as in Lemma 2.19. Clearly $(I) \in \text{Aut}(f)$, and $(A) \in \text{Aut}(f)$ by Lemma 2.17. We will show that there exists an $(M) \in \text{Aut}(f)$ such that $(M)^2 = (I)$, and $(AM)^2 = (E_3)$ (see Lemma 2.15 (2)). It is natural to diagonalize A and I . Taking $a = (-1 + \sqrt{5})/2$, and $b = (-1 - \sqrt{5})/2$, we define

$$U = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & \sqrt{5} + 1 & \sqrt{5} - 1 \end{bmatrix},$$

and $W = UV$. Then $A'' = W^{-1}AW = \sqrt{5}\text{diag}[1, 1, -1]$, and $I'' = W^{-1}IW = \text{diag}[-1, 1, 1]$. Put $f' = f_{U^{-1}}$, and $f'' = f'_{V^{-1}}$. We look for an $M'' \in GL(3, \mathbf{C})$ such that $M''^2 \sim I''$, $A''M''^2 \sim E_3$ and $(M'') \in \text{Aut}(f'')$ (see Lemma 2.15(2)). Since M'' and I'' commute due to the first condition, we may assume that the first, the second and the third rows of M'' take the form $[\sqrt{-1}, 0, 0]$, $[0, a, b]$, and $[0, c, d]$ respectively. Either $a + d = 0$ or $a + d \neq 0$, $c = d = 0$ due to the condition $M''^2 \sim I''$. The second case is impossible, because M'' cannot be diagonal. Now the condition $A''M''^2 \sim E_3$ yields $a = d = 0$ and $bc = 1$. By careful computation we get the explicit form of f'' :

$$\begin{aligned}
f'' = & x^6(-E) \\
& + x^4[y^2\{3E + 10(1 + \sqrt{5})D + (6 + 2\sqrt{5})C\} + yz\{-6E - 20D + 8D\} \\
& \quad + z^2\{3E + 10(1 - \sqrt{5})D + (6 - 2\sqrt{5})C\}] \\
& + x^2[y^4\{-3E + 20(1 + \sqrt{5})D - 2(6 + 2\sqrt{5})C - (56 + 24\sqrt{5})B\} \\
& \quad + y^3z\{12E + 20(-4 - 2\sqrt{5})D + 8(1 + \sqrt{5})C - 16(6 + 2\sqrt{5})B\} \\
& \quad + y^2z^2\{-18E + 120D + 0C - 96B\} \\
& \quad + y^3z\{12E + 20(-4 + 2\sqrt{5})D + 8(1 - \sqrt{5})C - 16(6 - 2\sqrt{5})B\} \\
& \quad + z^4\{-3E + 20(1 - \sqrt{5})D - 2(6 - 2\sqrt{5})C - (56 - 24\sqrt{5})B\}] \\
& + x^0[y^6\{E + 2(1 + \sqrt{5})D + (6 + 2\sqrt{5})C + (56 + 24\sqrt{5})B + 16(36 + 16\sqrt{5})\} \\
& \quad + y^5z\{-6E - 2(6 + 4\sqrt{5})D - 8(2 + \sqrt{5})C - 16(1 + \sqrt{5})B + 192(7 + 3\sqrt{5})\} \\
& \quad + y^4z^2\{15E + 10(3 + \sqrt{5})D + 10(1 + \sqrt{5})C - 40(1 + \sqrt{5})B + 480(3 + \sqrt{5})\} \\
& \quad + y^3z^3\{-20E - 40D + 0C + 0B + 1280\} \\
& \quad + y^2z^4\{15E + 10(3 - \sqrt{5})D + 10(1 - \sqrt{5})C - 40(1 - \sqrt{5})B + 480(3 - \sqrt{5})\} \\
& \quad + yz^5\{-6E - 2(6 - 4\sqrt{5})D - 8(2 - \sqrt{5})C - 16(1 - \sqrt{5})B + 192(7 - 3\sqrt{5})\} \\
& \quad + z^6\{E + 2(1 - \sqrt{5})D + (6 - 2\sqrt{5})C + (56 - 24\sqrt{5})B + 16(36 - 16\sqrt{5})\}].
\end{aligned}$$

We will show that $(M'') \in \text{Aut}(f'')$ for some b and c . The coefficients of x^4yz , x^2y^3z , x^2yz^3 , y^5z , yz^5 and y^3z^3 in f'' vanish. Note that $E = 64 - D \neq 0$, for $D^2 - 9D + 864 = 0$. So such b and c exist if and only if $f''|_{M''=1} = -f''$. Let us denote by $[x^jy^kz^\ell]$ the coefficient of the monomial $x^jy^kz^\ell$ in f'' . Then the following equalities hold:

$$(1) \ b^2[x^4y^2] = -[x^4z^2] \quad (2) \ b^4[x^2y^4] = [x^2z^4] \quad (3) \ b^6[y^6] = -[z^6] \quad (4) \ b^2[y^4z^2] = -[y^2z^4].$$

We can show that the equality (1) implies (2) through (4). To be more precise, assume that b is a solution to (1) for given D . (1) gives $b^4[x^4y^2]^2 = [x^4z^2]^2$, which implies (2), because $[x^4y^2]^2[x^2z^4] - [x^4z^2]^2[x^2y^4] = 0$. (1) and (2) give $b^6[x^4y^2][x^2y^4] = -[x^4z^2][x^2z^4]$, which implies (3). (4) is exactly the same condition as (1). This completes the proof of Proposition 2.22. \square

ACKNOWLEDGEMENT. We would like to thank Prof. S. Yoshiara at Osaka Kyoiku University who kindly informed us the structure of finite groups. We owe many im-

provements in the representation to the referee, especially in the proof of Proposition 1.4.

References

- [1] H.M. Farkas and I. Kra: *Riemann Surfaces*, 2nd ed., Springer, 1992.
- [2] W. Fulton: *Algebraic Curves*, Addison-Wesely, 1989.
- [3] M. Hall, Jr.: *The Theory of Groups*, Macmillan, New York, 1968.
- [4] K. Idei: *The maximum order of the automorphism groups of non-singular plane sextics*, MS Thesis, Okayama Univ., 1998.
- [5] S. Iitaka: *Algebraic Geometry II*(in Japanese), Iwanami, 1977.
- [6] H. Kaneta, S. Marcugini and F. Pambianco: *On arcs and curves with many automorphisms*, preprint.
- [7] H. Kaneta, S. Marcugini and F. Pambianco: *The most symmetric non-singular cubics, quintics and septic*, preprint.
- [8] H. W. Leopoldt: *Über die Automorphismen Gruppe des Fermatkörpers*, J. Number Theory, **56** (1996), 256–282.
- [9] M. Namba: *Geometry of Projective Algebraic Curves*, Marcel Dekker, 1984.
- [10] M. Namba: *Geometry of Algebraic Curves*(in Japanese), Gendai-suugaku-sha, 1991.
- [11] A. Wiman: *Übere eine einfache Gruppe von 360 ebenen Collineationen*, Math. Annalen, bd. **47** (1896), 531–556.

H. Doi
 Department of Mathematics
 Faculty of Science
 Okayama University
 Okayama 700-8530, Japan

K. Idei
 CJK CO., LTD
 5-3 Kouji-machi
 Chiyoda-ku
 Tokyo 102-0083, Japan

H. Kaneta
 Department of Mathematical Sciences
 College of Engineering
 Osaka Prefecture University
 Sakai, Osaka 599-8531, Japan

