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Abstract
We show that for a sufficiently simple surfa& if a right-angled Artin group
A(T") embeds into Mod) thenT" embeds into the curve gragh(S) as an induced
subgraph. WherS is sufficiently complicated, there exists an embedd&@) —
Mod(S) such thatl" is not contained irC(S) as an induced subgraph.

1. Introduction

1.1. Statement of the main results. Let S= §;, be a connected orientable sur-
face of genugg and n punctures, and let Mo&j denote its mapping class group. As
is standard, we will write

£ =max(xy—-3+n,0)

for the complexityof S. It is clear that&(S) is the number of components of a max-
imal multicurve onS. A celebrated result of Birman, Lubotzky and McCarthy is the
following.

Theorem 1 ([1, Theorem A]) The torsion free rank of an abelian group in
Mod(S) is at mosté(S).

In this article, we study a generalization of Theorem 1 fghtiangled Artin sub-
groups of Modg). LetI" be a finite simplicial graph with vertex s®(I') and edge set
E(I"). We will write A(I") for the right-angled Artin groupon I", which is defined by

A(T") = (V(T) | [u, v] = 1 if and only if {u, v} € E(T)).

We will use C(S) to denote thecurve graphof S, which is the 1-skeleton of the
curve complexf S. The vertices of’(S) are isotopy classes of essential, non-peripheral,
simple closed curves 08. Two vertices are adjacent if the corresponding isotopgsea
admit disjoint representatives. Let us denote a comples@hgonn vertices asK,.
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Equipped with this language, we can rephrase Theorem 1 lasvol

If A(K,) embeds into Mod$), thenK,, is an induced subgraph
of C(9).

Our main results are the following:

Theorem 2. Let S be a surface with(S) < 3. If A(I') embeds intdviod(S), then
I is an induced subgraph d@(S).

Theorem 3. Let S be a surface with(S) > 3. Then there exists a finite graph
I such that AT") embeds intdMod(S) but I is not an induced subgraph @f(S).

Note that the converse of Theorem 1 is easily seen to be truee Benerally, the
second author proved the following theorem:

Theorem 4 ([12], Theorem 1.1 and Proposition 7.16)If I" is an induced subgraph
of C(S) then AT) embeds intdMod(S).

Theorems 2 and 3 characterizes the surfaces for which thesxsenof Theorem 4
is true, except for the casgS) = 3. In this latter case, the methods developed in this
paper are ineffective. There are exactly three surfaces &) = 3, though there are
only two different cases to consider among them (see Se8&fion

QUESTION 1. Let S be a surface of complexity 3. Do there exist subgroups
A(") < Mod(S) such thatl" is not an induced subgraph 6{S)?

A clique is a subset of the vertex set which spans a complete subgraghcet
of a triangulation of a manifold means a top-dimensionalpdéx. For a positive inte-
ger N, we will say thatlI' has N-thick starsif each vertexv of I" is contained in two
cliguesK; =~ K; on N vertices ofl" whose intersection is exactly. Equivalently, the
link Lk(v) of v in T' contains two disjoint copies of complete graphsMn-1 vertices.
For example, groper (namely, no two facets share more than one faces) trianguolat
of a compact surface with no triangular links has 3-thicksstdhe following general-
ization is immediate.

Proposition 5. A proper triangulation of a compadiN — 1)-manifold has N-thick
stars if and only if the link of each vertex has at leastHM facets.

Having N-thick stars forces the converse of Theorem 4 to be true.

Theorem 6. Suppose S is a surface wig{S) = N andT is a finite graph with
N-thick stars. If AI') embeds intaViod(S), thenT is an induced subgraph af(S).
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1.2. Notes and references. Throughout this article, graph will always mean a
simplicial 1-complex with vertex sef and edge seE. Let X be a graph. A subgraph
A of X is called aninduced subgraplif A is the subgraph oKX spanned by the ver-
ticesV(A) C V(X). Thus, a pair of vertices imx are adjacent if and only if they are
adjacent inX. We write A < X if A is an induced subgraph of. If X is a simpli-
cial graph, theclique graph X of X is the graph whose verticdax} are nonempty
complete subgraphK < X, and two verticeqvk,, vk,} of X are adjacent if and only
if the corresponding complete subgrapis and K, span a complete subgraph %f
The extension grapH™® of a finite simplicial graphl’ is the graph whose vertices are
given by{gvg| g e AI'), v € V(I")}, and whose edges are given by pairs of vertices
which commute as elements #{I"). The complement(*{”)\ X of a simplicial graph
X is the graph with the same vertex set ¥s but where a pair of vertices spans an
edge in (V(ZX)) \ X if and only if it does not span an edge X. The join X x Y of
two graphsX andY is the graph whose vertex set V& X) U V(Y), and where a pair
of vertices{v, w} is adjacent if and only if the vertices span an edgeXinan edge in
Y, or if one vertex lies inV(X) and the other lies in/(Y).

For background on mapping class groups, we refer the readgf].t We briefly
recall that every mapping classA v € Mod(S) is eitherfinite order, infinite order re-
ducible or pseudo-Anosqwaccording to whether it has finite order in M&)( fixes the
homotopy class of a multicurve o8, or neither. This is called thd&lielsen—Thurston
classificationof surface diffeomorphisms.

The relationship between right-angled Artin groups and pirap class groups of
surfaces has been studied by many authors from various gutrggs (see [5], [6], [4],
[12], [10] and the references therein, for instance). Ourspective stems from the
following theorem, which can be obtained by combining a Iteglithe authors with a
result of the second author (see [12] and [9] or [10]):

Theorem 7 (See [11]) LetT be a finite graph and let S be a surface.
(1) Let i be an embedding df into C(S) as an induced subgraph. Then for all suf-
ficiently large N the map

i.n: AT — Mod(S)

given by sending to the N power of a Dehn twist i?i) is injective.
(2) If A(l") embeds intaMod(S), thenT is an induced subgraph af(S)x.

Observe that the first part of Theorem 7 is a more preciseorersi Theorem 4.
As defined above, the gragh{S)k denotes the clique graph 6{S). From a topological
perspectiveC(S)k can be defined as the graph whose vertices are isotopy clagses
essential, non-peripheral multicurves & and where two vertices are adjacent if the
corresponding multicurves are component-wise paralledlisjoint. Theorem 3 shows
that C(S)k in Theorem 7 cannot be replaced ByS) for a general surface.
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In [10], in [9] and in [11], the authors develop an analogdusotry of curve graphs
for right-angled Artin groups. In particular, a verbatimatogue of Theorem 7 holds
with Mod(S) replaced by a right-angled Artin group(A) and the curve grapli(S)
replaced by the extension graptf of A. For many classes of graphs, it is known that
A(T") embeds intoA(A) if and only if T is an induced subgraph of®; for instance,
this statement holds when is triangle-free [9], or whemA is C4- and Ps-free [2].
However Casals—Ruiz, Duncan and Kazachkov proved thatighiet always the case:

Theorem 8 ([2]). There exist finite graph§ and A such that AI') embeds into
A(A) but T is not an induced subgraph af®.

Thus, Theorem 3 can be viewed as an analogue of Theorem 8 fopingaclass
groups. We note briefly that Theorem 8 does not imply Theorerfor3even if a par-
ticular graphl" embeds inC(S), the graphC(S)« is vastly more complicated thal.
However, our example in Section 3 gives another examplé&(af) embedded inA(T")
such thatA is not an induced subgraph oF; see the remark following Lemma 14.

The concept ofN-thick stars used in Theorem 6 is related to the well-studied
graph-theoretic notion of guasi-line (see [3], for instance). A graph is a quasi-line
if the star of each vertex is the union of two complete graphs.

2. Proof of Theorem 2

Let S be a surface with punctures. A mapping class Mod(S) is called amulti-
twist if ¢ can be represented by a multiplication of powers of Dehntsaédong dis-
joint pairwise-non-isotopic simple closed curves. We eatkgular neighborhood of the
union of those simple closed curves as thupportof ¢.

For two groupsG and H, we will write G < H if there is an embedding from
G into H. As defined above, we will writeA < T" for two graphsA and T if A
is isomorphic to an induced subgraph Bf The following is a refinement of [10,
Lemma 2.3].

Lemma 9. Let X be a finite graph. If &) < Mod(S) then there exists an em-
bedding f: A(X) — Mod(S) satisfying the following
(i) The map f maps each vertex of X to a multi-twist
(i) For two distinct vertices u and of X, the support of fu) is not contained in the
support of f(v).

Proof. Let fy be an embedding ofA(X) into Mod(S). By raising the generators
to powers if necessary, we may assume that the image of eatdx veis written as
195 - - ¢y, Where eachy” is either a Dehn twist or a pseudo-Anosov on a connected
subsurface ang”’s have disjoint supports. Choose a minimal collectign, ..., ¥m}
Mod(S) such that for every andv, the mapping clasg’ is a power of somey;. By
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[12] (see also [4]), there existd > 0 and a grapty with V(Y) = {vq,...,un} such that
the mapgo: A(Y) — Mod(S) defined bygo(v;) = ij is an embedding. Moreover, we
can find simple closed curves, ..., ym such thaty;, C suppy; and suppy Nsuppy; =
@ if and only if 4 Ny; = @ for everyi and j. By raising N further if necessary, we
have an embedding: A(Y) — Mod(S) defined byv; — Ty?‘. We may assume that
f = goh for someh: A(X) — A(Y), by further raising the image of each(v) for
v € X to some power. Themg o h is an embedding fromA(X) to Mod(S) such that
each vertex maps to a multi-twist. Note thatuifand v are adjacent vertices iX then
the multi-curves corresponding tb(u) and f (v) also form a multi-curve.

Now among the embeddingk: A(X) — Mod(S) that map each vertex to a multi-
twist, we choosef so that

> #suppf (w)

is minimal. Here, # of a support of a multi-twist denotes thienber of components. Sup-
pose that supp(u) < suppf (v) for two distinct verticesl, v of X. Since [f (u), f (v)] =1,
we have {1, v] = 1. If w € Lkx(v), then each curve in supf(w) is equal to or disjoint
from each curve in supp(v). This implies that {, u] = 1 for eachw € Lkx(v) and
hence, Lk (v) € Stx(u). For each non-zer®, Q, we have a map : A(X) - A(X) de-
fined r(w) = w for w # v andt(v) = uPv?. If Q = 1, such a map is calledteansvec-
tion automorphism; see [14]. For a genef@) the mapr is a monomorphism, since it
is obtained from a transvection by pre-composing with theemeorphismv — v° and
w — w for w # v. We claim that there exif®, Q such that #supp(uPv?Q) < #suppf (v).
Once the claim is proved, we have tha}, # suppf o r(w) < >, #suppf (w) and a con-
tradiction to the minimality.

The argument for the claim is similar to [10, Lemma 2.3], aral necall the details
for the convenience of the reader. Wrifdu) = Tg; and f(v) = T, g, so thatg,,
g, are multi-twists whose supports are disjoint framand supm; C suppg,. Then
suppf (uPv®) C suppg, = suppf (v) \ {«} and this proves the claim. O]

REMARK. In the above lemma, if supf(v) is a maximal clique irC(S) then the
condition (ii) implies thatv is an isolated vertex.

DEerFINITION 10. An embedding of a right-angled Artin group into a mapping
class group is calledtandardif conditions (i) and (ii) in Lemma 9 are satisfied.

The lowest complexity surfaces with nontrivial mappingsslayroups arey 4 and
S11 (so thaté(S) = 1). Both of these surfaces admit simple closed curves, hitihare
admits a pair of disjoint isotopy classes of simple closed/est Because of this fact,
most authors define edges@S) to lie between curves with minimal intersection (two
or one intersection point, respectively). This definitienniot suitable for our purposes
and we will keep the standard definition of curve graphs, si &{S) is an infinite
union of isolated vertices in both of these cases.
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WAV WA

Fig. 1. Two graphd’y and I';.

Proof of Theorem 2. Suppose first thatS) = 1. We have that’(S) is discrete,
since there are no pairs of disjoint simple closed curvesSoithe conclusion follows
from that Mod@) is virtually free; see [7], Sections 2.2.4 and 2.2.5. Nowwug assume
£(S) =2, so thatS= S, or S= &5 We note thatC(S) contains no triangles.

The conclusion of the theorem holds fBrif and only if it holds for each compo-
nent of I". This is an easy consequence of the fact @) has infinite diameter and
that a pseudo-Anosov mapping class 8rexists. So, we may suppose tHatis con-
nected and contains at least one edge. By Lemma 9, we carrfiaisume to have a
standard embedding : A(T'") — Mod(S). Sincel” has no isolated vertices a{S) is
triangle-free, the remark following Lemma 9 implies thatlearertex maps to a power
of a single Dehn twist. This gives a desired embeddihg> C(S). ]

3. High complexity surfaces

The strategy for dealing with high complexity surfaces f@tes S for which
£(S) > 3) is to build an example which works for surfaces witS) = 4 and then
bootstrapping to obtain examples in all higher complesitidn particular, we will
take the three surfaces wit(S) = 4 and build graphd’y and I'; such thatA(Tg) <
A(T1) < Mod(S) but such thatl'y £ C(S). We will then usel'y and I'; to build cor-
responding graphs for surfaces of complexity greater thoam. f

The source of our examples in this section will be the graphsnd 'y shown in
Fig. 1. Observe that the grafdh, is obtained from the graplf; by collapsinge and
f to a single vertexg and retaining all common adjacency relations. We will denot
by C,4 the 4-cycle spanned bfa, b, c, d}.

3.1. An algebraic lemma. Let us consider the magp: A(Tg) — A(I'1) defined
by ¢: g — ef and which is the identity on the remaining vertices.

Lemma 11. The mapg¢: A(l'o) — A('1) is injective.

Proof. We first claim that the restrictiotr: (C4, g, h) — (Cg4, ef, h) of ¢ is an
isomorphism. Here, we meaC4, q, h) = (a, b, ¢, d, g, h) < A(I'g) and (Cy, ef, h) =
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mirror:

(€) &1

(@ S.7

Fig. 2. Complexity four surfaces.

(a,b,c,d,ef,h) < A(T'1). To see this, consider the projectigm (Cy, €, f,h) — (C4,€,h)
defined byp(f) = 1. The claim follows from thatp o ¥ is an isomorphism.

Now supposew is a reduced word in ker\ {1}. Sincey is an isomorphismg or
g~! appears inw. From the assumption thagt(w) = 1, the occurrences aj or g~ in
¢(w) can be paired, so that each pair consistg @nd g~* and thatg commutes with
the subword ofp(w) between the pair. This is due to the solution to the word lgrob
in right-angled Artin groups; see [6, 8] for more details.efd must exist a pair of
andg! in ¢(w) so that there does not exist any maye@r g~ between the pair; such
a pair is called arinnermost{g, g~1}-pair in the cancellation diagrani6, 8]. In other
words, we can writew = wogtw.1gT w» so thatw, € (Vo) \ {g}) = (C4, g, ) and
¢(wi1) € Z(9) N (V(I'2) \ {g}) = (a, b, c, €).

It follows that

o(w1) € $p(C4q, q, h)y N (a, b, c, &) = (Cy, ef, h) N ((a, c) x (b) x (e)).
Since ¢(w1) € (a, b, c, €), the exponent sum of in ¢(wq) is zero. From¢(wy) €
(Cq4, ef, h), it follows that the exponent sum @& in ¢(w;) is also zero. Sincée) is a

direct factor of(a, b, c, €), we seep(w;) € (a, b, c). Combined with the claim in the
first paragraph, we have

wy € ¢ 1(a, b, c)N(Cy q,h) =y a, b,c) = (ab,c).
This contradicts the fact that is reduced. O

3.2. The caseé(S) = 4. Let S be a connected surface with complexity four.
This meansS is one of § 7, S.4 and S 1.

Lemma 12. The graphl"; embeds inta’(S) as an induced subgraph.
Proof. The corresponding surfaces are shown in Fig. 2. lrad) (c), the curves

for the verticesa, ¢, e and h are given by the mirror images of those fbr d, f
and g, respectively. One can verify that the curves with the shaenfiguration have
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the minimal intersections by observing that the intersecthumbers are either 0, 1
or 2. Ul

Now suppos€a, b, ¢, d} are simple closed curves d(here we still have (S) =
4) which form a four-cycle inC(S) with this cyclic order. LetS, be a closed regular
neighborhood of the curves and ¢ along with disks glued to null-homotopic boundary
components. Similarly we defing for b andd so thatS, N S = @. Define& as the
closure of S\ (S US). By isotopically enlargings, andS; if necessary, we may assume
that wheneverA is an annulus component & then both components @fA intersect
S U S (i.e. no component of is a punctured disk). Note thg(S,), £(S) > 1, since
they both contain a pair of non-isotopic simple closed csinf&inceS is connected and
at least one component & intersects each o and S, we have thaty, has at least
two boundary components.

Lemma 13. The triple(S,S,S) satisfies exactly one of the following conditipns
possibly after switching the roles of @nd S.
() S e{S2Ssh Se{S1, D S~ S and 3 intersects both Sand S.
(i) S, S e{S4 S1}, S~ S3 and $ intersects each of ;Sand S at only one
boundary component.
(i) S, S € {4, S~ S2]] 2 and each component ofy Sntersects both S
and S.
V) (S, D) € (S0 S.9): (D4 S0}, S approx$ 2] [ S,2, and one component oy S
intersects each of,;Sand $ at only one boundary componenthile the other compo-
nent of g intersects § at two boundary components.
V) (S, € (9494, (4 S0} and $ ~ S 2] [ S,3 such that the &, component
intersects both Sand $ and the §3 component is disjoint from,;Sand moreover
S)'3 N S_l ~ Sl.

Proof. Leta be the number of free isotopy classes of boundary compor@nts
S that are contained irf5; U S,. We havea > 0 sinceS is connected ang, N S =
. Then&(S) = £(S) + £(S) + £() + «; here, () is defined as the sum of the
complexities of the components & [1]. It follows that 2< £(S)) + £(S) < 3.

Let us first assumé(S) + £(S) = 3. Fromé(S) + o = 1, we see thay is an
annulus joiningS, and S,. Case (i) is immediate.

Now we assumé&(S) = £(S) = 1. If « =1, thenS is forced to be an annulus
and we have a contradiction of the fact tl§&) + « = 2. So we have(S) = 0 and
a =2. If § is connected, then = 2 implies thatS cannot be an annulus, and hence,
Case (ii) follows. So we may assun$g is disconnected.

SupposeS =~ S 2] 2. If each component ofy intersects both of§ and S,
then eachS has at least two boundary componentsifet 1,2. In particular,§ # S 1
and Case (iii) follows. Without loss of generality, let usame that one component of
S intersects onlyS,. Then S, # S 1 and we have Case (iv).
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Let us finally assume&y ~ $2] | S.3- This is the only remaining case, far= 2.
The subsurfac& 3 can contribute only one ta. In particular,S 3 is glued to sayS
but notS,. The annulus component & joins S and S and thereforeS # S ; and
Case (v) follows. O

The following special case of Theorem 3 will be central to digcussion of sur-
faces with&(S) > 4.

Lemma 14. Let S be a surface with(S) = 4. There exists an embedding from
A(Tp) into Mod(S), but I'y, does not embed int6(S) as an induced subgraph.

Proof. The first half of the conclusion follows from Lemmas add 12, com-
bined with Theorem 7 (1). For the second half, let us asstigmes C(S) and regard
the verticesa, b, c, ... as simple closed curves 08 From C4 < I'y, we have one
of the five cases in Lemma 13. From the adjacency relationggjnwe observe that
gNng, qnh,gnN$, hnNnS andgnh are all non-empty, and also thgtc & and
gNS=hnNsg =2a.

In Case (i), the annulu§ connectsS, and S. This implies thatg € S, hC€ §
and so,g N h = @. This is a contradiction. In Case (iii) and (iv), we similambbtain
a contradiction froog N h = @.

In Case (i), the curvel must be boundary parallel if&. Hence, it must be either
SNS or NS By symmetry, we may assune= SN . Thenq separatess
from S, and so,gNq C gNS = @. This is a contradiction. The proof for Case (V) is
similar and goes as follows. The subsurfégeseparatess, and 3 € S. This forces
gC S, sothatgNngcgnN S =a. ]

REMARK. Sincel’; < C(S), we havel'] < C(S) by [10]. Hence we have another
example of graphg’o £ I'] but A(Tp) < A(I'1); see [9, 2].

3.3. Surfaces with complexity larger than four. For a graphX, let us define
n(X) to be the minimum oft(S) among connected surfacés satisfying X < C(S).
Note thatn(X) is at least the size of a maximal clique . Lemma 14 implies
n(lg) > 4, and we see from Fig. 3 tha(l'g) = 5.

A graph isanti-connectedf its complement grapt(v(zx)) \ X is connected. Note
that the graphd’g andI'; are both anti-connected.

Lemma 15. If X is a finite anti-connected graph and =0, then n(X * K) >
n(X) +n.

Proof. Choose a surfac® such thatt(S) = n(X % K;)) and X« K, <C(S). Let N
denote a regular neighborhood of curveskp. Since the graphX is anti-connected,
the curves inV(X) must fill a connected subsurface & Indeed, otherwise there
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|~

d

mirror:

Fig. 3. Realizingl'y in C(S,2). The curvesa, c, h are the mirror
images ofd, b, g.

would be a nontrivial partitiorV (X) = J; U J,, where every vertex of; is adjacent to
every vertex ofJ,, which violates the assumption that is anti-connected. It follows
that the curves irV(X) are contained in a componeff of S\ N. Since X < C(S),
we haveg(S) = £(S\ N) + n > &(S) + n=> n(X) +n. O

Put A, =Ty * K,_4 for n > 4. Theorem 3 is an immediate consequence of the
following.

Proposition 16. If S is a surface witlk¥(S) = n, then AA,) embeds intdMod(S)
but A, is not an induced subgraph @f(S).

Proof. Choose a multicurvX on S with n —4 components such th&)\ X has
a connected componer® of complexity at least four. We have th&{S) contains a
copy of I'y, so thatA(I';) x Z"~4 embeds in Modg). It follows that A(Tg) x Z"* =~
A(An) embeds in Mod§). On the other hand, Lemma 15 implies thgi\,) > n(T'o) +
n—4>n. O

4. Proof of Theorem 6

In this section, we give a proof of Theorem 6. For a multi-euy on a surface
S, we denote by(A) the subgroup of Mod§) generated by the Dehn twist about the
curves inA.

Proof of Theorem 6. By Lemma 9, there exists a standard ennggd A(I') —
Mod(S). Let v be an arbitrary vertex of’. Write K and L for two disjoint cliques
of I such thatK ] [{v} and L [ ]J{v} are cliques onN vertices. The support ap(K)
is a multi-curve, sayA. Similarly we write B = supp¢(L) and C = supp¢(v). Since
£(S) = N, the multi-curvesAUC and BUC are maximal. Note tha{C) is a subgroup
of (AUC) N (BUC). In the diagram below, we see tha{v) is of finite-index in
(C) = ZI°l and hence|C| = 1. It follows that the support op(v) consists of exactly
one curve onS. Thus, the mad” — C(S) given by sending a vertex to the unique
curve in the support op(v) is a well-defined map of graphs. This map realifesis
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an induced subgraph @f(S), since¢ is an injective map of groups and must therefore
send nonadjacent vertices to Dehn twists which do not comrmutMod(S). L]

¢(A(T")) = Mod(S)

/

\
finie- mdex\ /
T | /

oK, v)Neo(L,v) =0¢{v)=Z

(AUC) = (BUC) =~

finite-index

5. Remarks on intermediate complexity surfaces

There are only three surfaces of complexity thr&yp, S 3 and S From the
perspective of Theorem 3, these three surfaces collapseatntnost two cases:

Lemma 17. Either conclusion ofTheorem 2or 3 holds for S~ & ¢ if and only
if it holds for S~ S 0.

Proof. It is well-known that Mod%, o) and Mod& ) are commensurable (see [7],
Theorem 9.2, for instance). It follows th&(I") < Mod(S,) if and only if A(T) <
Mod(S,¢). It is also well-known (see [13], for instance) that theveucomplexe€ (S o)
andC(S,e) are isomorphic (in fact, the fact that the mapping classigsoare commen-
surable implies that the curve graphs are isomorphic; ség [lemma 3 and Propos-
ition 4). In particular, the two curve graphs have the samigefisubgraphs. The lemma
follows immediately. 0
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