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Abstract
Spectral measures of Wigner matrices are investigated. Wigmer semicircle
law for spectral measures is proved. Regard this as the lalargé number, the
central limit theorem moments of spectral measures is atstvetl. The proof is
based on moment method and combinatorial method.

1. Introduction

This paper concerns with real Wigner matricég of the form

it

Here{& }1<i and{&j}1<i~j are two i.i.d. (independent identically distributed) seqces
of mean zero (real) random variables. We require in additi@at all moments of;;
andé;, are finite andt;, has unit variance, that i&[|£12]?] = 1.

Let A(lN) < A(ZN) <= A%,N) be the eigenvalues oXy and

Xn(j, 1) = XN, j) = 1<i<j<N.

1 N
Ly = N ; 8A§N)

be the empirical distribution (measure) Xf,, wheres denotes the Dirac measure. Then
the Wigner semicircle law claims that & tends to infinity,Ly converges weakly, in
probability, to the semicircle distribution. This meansttifior any bounded continuous
function f: R — R, (L, f) converges in probability tdo, f). Here the semicircle dis-
tribution, denoted by, is the probability distribution supported on2, 2] with density

o(x) = %\/4—x2, (-2<x<2).

There are many proofs of the Wigner semicircle law. Let ustioarhere Wigner’s
original one which based on combinatoric arguments. Siheesemicircle distribution
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142 T.K. Duy

o has compact support, in order to prove the Wigner semicieskg it is sufficient to
show that all moments of y converges in probability to the corresponding moments
of o, namely, fork =0, 1, 2,.. .,

1) (Ln, X4 = (o, XX} in probability as N — oo,

where (i, f) = [ f(x) du(x) for a measurg: and an integrable functiori. The k-th
moment of Ly can be written as

N

1 Lo ok,
(L, XK) = NZ(’\(J'N))I( = NZXK,(], i),
j=1

=1

and combinatoric arguments are used here to investigateeits and variance. See [2,
Section 2.1] for more details. Thus, in some respects, thecéele law states that the
average of the diagonal elements X converges in probability tdo, x).

With a little modification, one can show that each diagonaiment of Xk does
converge to(o, x) as N tends to infinity. In particular, fok =0, 1, 2,.. .,

2) XK (1, 1) — (o, x¥) in probability as N — oo.
On the other hand, there is a probability measujeon R satisfying
(vn, XKy = XK(1,1), k=0,1,2,...,

called the spectral measure oy, &), wheree; = (1,0,...,0)" e RN, It then follows
that the spectral measung, also converges weakly, in probability, to the semicircle
distribution because of the compact support of the sentécilcstribution.

Regard the convergence in probability of moments as the falarge numbers, the
central limit theorem for moments of the empirical disttibns Ly has been derived.
It is known that scaled by,

N({(Ln, X) = E[(Ln, X))

converges weakly to the Gaussian distribution whose vegiatepends on the second
and fourth moments of;; andé&;,. This and the multidimensional version were studied
in [1]. The main purpose of this paper is to investigate thetred limit theorem for
moments of the spectral measumag, or just the central limit theorem for diagonal
eIementsX',‘\,(l, 1). The main result is as follows.

Theorem 1.1. Let

Suk = VN({vn, X¥) —E[{vn, X)]) = VN(X§ (L, 1)— E[X§(L, 1))).
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Then there exists a sequence of jointly Gaussian randorahas{n}k=2,3... independ-
ent of ¢ which has the same distribution &g, such that the following hold.
(i) For even k

é,\,ykink as N-— oo.
(i) For odd k> 3,

Suk>ac +m as N-— oo,

where @ is a constant. . ) .

(i) For fixed K, the joint distribution of(Sy 1, Sn,2, --., Su,k) converges to that of
(¢ m2, @8 + 13, -+ ).

Here the symbo[‘i” is used to denote the convergence in distribution of random
variables.

The moment method is used to prove the central limit theor&mncompare with
combinatoric arguments in [1], the big difference is thaergvword starts at 1, as
we will see in the next section. To overcome this difficultye wefine method in [1]
using some idea from [6]. The central limit theorem mh(l, 1) is actually a spe-
cial case of a more general one in [5], which claims that fomi&e’ function f,
VN(f(Xn)ij —E[f(Xn)ij]) converges in distribution adl — oo. Such result, in case
of Wigner matrices with Gaussian entries, was consideref3jn More recently, it
is extended to Wigner matrices with non-identically dimtted [4]. However, the ap-
proach in this paper are different from all of those. The autwould like to thank
Professor Greg W. Anderson for letting him know these refees and would like to
thank the referee for valuable comments.

The paper is organized as follows. Section 2 deals with soomebmatorics ob-
jects such as Wigner words, CLT sentences and key combinat@uments. We prove
in Section 3 the Wigner semicircle law for spectral measaras investigate the central
limit theorem in Section 4.

2. Words, sentences

This section deals with basic notions and key combinatoruments needed in
the paper.

We begin with the definition of words. A worth = {s;, S, ..., &} is a finite
sequence of positive integer numbers called letters. A vimrdiosed if the first and
the last letters are the same. The lengthuofs denoted by/(w) := k. The support,
denoted by suppf), is the set of letters appearing in, and the weightwt(w), is
defined as the cardinality of supp). If we restrict the condition tha$;, s, ..., & €
{1, 2,..., N}, we callw an N-word, whereN is a positive integer number.

Two words w; and w, are called equivalent, denoted by ~ w, if there is a
bijection from supp@,) onto supp(,), which mapsw; to wo.
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A word w is associated with an undirected gragh, = (Vy, Ey), with wt(w)
verticesV,, = suppfv) and k — 1) edgesk,, = {(S,S+1), i =1,2,...,k—1}. Then
the wordw defines a path/walk on the connected gr&p. We define the set of self
edges aE] = {ec E,: e= (u,u),u € V,,} and the set of connecting edges &% =
E, \ E}. Foree€ E,, we useNY to denote the number of times this path traverses
the edgee (in any direction). Note that equivalent words generateséime graphs (up
to graph isomorphism§5,, and the same passage coul.

A sentencea = (wy, wo, ..., wy) is a finite sequence of words of at least one word
long. The support of is defined as supp) = J;_; suppfvi), and the weight ofa,
wt(a), is just the cardinality of supp]. Two sentences; anda, are called equivalent,
denoted bya; ~ a, if there is a bijection from supp() onto supp#,), which maps
a; to ay.

A graph G, = (Va, E;) associated with a sentenee= (w1, wy, . .., wy), Where
wi = (8}, 8, ..., Sy) | =1,2,...,n, is the graph with vertice¥/, = supp@) and
undirected edges

Ea=1{(s,5,): ] =1....w)—1,i=12...,n}h

We define the set of self edges B§ = {e € Ea: e = {u, U}, u € V,} and the set of
connecting edges asS = E, \ ES.

In words, the graph associated with a sentence is obtaingadayng together the
graphs of the individual words. Thus, the graph of a sentenag be disconnected.
Note that the sentence definesn paths in the graplG,. Fore e E,, we useN2 to
denote the number of times the union of these paths travénsesdgee (in any dir-
ection). We note that equivalent sentences generate the geaphsG, and the same
passage counthiZ.

The paper deals with closed words starting at 1. V) be the set of allN-
words starting at 1. Le/™ := {w e WN): ES = @} be the subset oFV™) consisting
of words with no self-edge, antd™) := WM\ y/N), Set

W:OWWU:GMWV:GW%
N=1 N=1

N=1

Henceforth, the setsVi, W™, 1, U™, Vi, VIV with a subscriptk, are used to de-
note the corresponding subsets consisting of words of tekgt 1.

A closed wordw is called a weak Wigner word ifv visits each edge o6, at
least twice. Assume that is a weak Wigner word. Since the gra@, = (Vy, E»)
of w is connected and each edge is visited at least twice, itvislithat

(w)—1 _ e(w)+1

wt(w) =#V,, <14+#E, <1+ 5 5

A weak Wigner wordw of weight wt(w) = (¢(w)+ 1)/2 is called a Wigner word. We
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also call a single letter word a Wigner word. Note thats a Wigner word only if its
length is an odd number.

Here are some properties of a Wigner ward (see [1] or [2, Section 2.1] for
more details):
(i) the graphG, is a tree, that is, a connected graph with no loop;
(i) the set of self edge€? is empty;
(ii) the path w visits each connecting edge exactly twid¢)’ = 2 for all e € E,,.

A pair of words {1, wy) is called a weak CLT pair if
(P1) N& = 2, for all e € E4, wherea = (w1, wy);
(P2) Ey, N Ey, # 0.

To study properties of weak CLT pairs, we need the followimgpde but useful
property. It is a special case of the so called “the paritpgple” (see [1, Lemma 4.4]).

Lemma 2.1 (Closed walk on a tree) A closed walk on a tree visit each edge an
even of times.

Lemma 2.2. Let a= (wy, wy) be a weak CLT pair. Then

f(wa) + €(wz)

wt(a) < >

1.
Proof. LetG, = (Va, E;) be the graph of the sentenae Since the pairi, wy)
visits each edge at least twice, it follows that

< K(u}]_) -1+ K(U)Q) - 1

#Ea 5

In addition, wt(a) < 1+ # E, because the grapB, is connected.

Now, if wt(a) < #E,, then the conclusion immediately follows. Thus, we only
need to consider the caset(a) = 1 + # E,, in which G, is a tree. Sincaw;, w, are
closed walks on the tre@,, each wordwi,w; Visits any edgee € E, an even of times.
Consequently, a common edge ©f and w, is visited at least four times. Therefore,

< Z(wl) -1+ Z(wz) -1 _

#Ea >

11

and hence the conclusion follows. O

A pair (wy, wy) is called a CLT pair if it is a weak CLT pair and in addition,

0w + Lwa)

1.
2

wt((w1, w)) =
Denote byl k, @ set of representatives for equivalence classes of CLE fiaiuy),
whereu; andu; are k; + k2)/2-words of lengthk; andk;, respectively, provided that
ki + ko is even. Wherk; + k; is odd, we set/, x, = 9.
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The following lemma introduces some properties of CLT paird/e omit an
easy proof.

Lemma 2.3. Let a= (u1, Up) € U, k, With ki, ko > 2, and k + ky being even.
Then eitherwt(a) = 1 + # E; or wt(a) = # E5. Moreovey the following hold.
(i) If wt(@) =1+ #E,, then G, is a tree and

(@ Ny =2,foralleeE,,i =12

(b) NZ =2, for all e € E, except one edgepewith NS = 4.
(i) If wt(@) = #E,, then

(@ N' =1, for some ee E,, i =1, 2;

(b) N& =2, for all e € E,.

A sentencea = (wy, ..., wp) is called a weak CLT sentence if the following con-
ditions hold
(S1) Ng¢ = 2, for all e € Eg;
(S2) for alli, there existsj # i such thatg,, N E,, # 0.

Lemma 2.4. Let a= (wy,..., wy) be a weak CLT sentence. Then
U e(wi) -2
t(a) <1 7 =

A sentencea = (wy,...,wy) is called a CLT sentence # is a weak CLT sentence
and the above equality holds, namely,

wt(@) =1+ W.
i=1

Lemma 2.5. Let a= (ws,...,wn) be a CLT sentence witly; e U, i =1,2,...,n.
Then the following hold.
() For each i there exists unique # i such that E, N E,; # 9.
(i) The number n is even and there exists a perfect matahiggS, such that

(@) a = (Wo@-1), We(2)) iIs @ CLT pairi =1, 2,...,n/2,

(b) {Ei}i”f1 are disjoint setswhere G = (V;, E;) denotes the graph ofia

© (Vi \{1}}}]5 are disjoint sets.

Proof of Lemma 2.4. This lemma is a special case of [2, Lemria&32]. How-
ever, we mention the proof here because it will be used in theé lemma. Leta =

{1,2,...,¢(wj)—1} and letA be ann rows left-justified table whose entries are the edges
of a, namely,

Aij =(s, S,j+1), @, j)el.
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Let G, = (Va, Ea) be the graph of the sentenee Note thatG, is a connected
graph because every word is a closed word starting at 1. Qlet (V', E’) be any
spanning tree inG,. Then we havewt(a) = 1 + #E’ and so in order to proof the
lemma, we just have to boundE¢.

Now let X = {Xj}i,j)er be a table of the same “shape” #@s but with all en-
tries equal either to 0 or 1. We cal an edge-bounding table if the following condi-
tions hold:

(E1) for all ¢, j) eI, if Xj; =1, thenAjj € E';

(E2) for eache € E’, there exist distincti(, j1), (i2, j2) € | such thatX;, j, = Xi,j, =1
and A=A, =€

(E3) for eache € E’ and indexi € {1,...,n}, if e appears in thé-th row of A, then
there existsi( j) € | such thatA; = e and X;; = 1.

For an edge-bounding tablk¢, the corresponding quantity,(:t)z(i'j)EI Xij bounds
#E’, whence the terminology. At least one edge-bounding takikts namely the table
with a 1 in position {, j) for each {, j) € | such thatAjj € E’ and 0’s elsewhere. Now
let X be an edge-bounding table such that for some ingedl the entries ofX in the
io-th row are equal to 1. Then all egdes ©f, belongs toE’. In other words,wj, is
a closed walk in the tre€&’, hence every entry in thg-th row of A appears there
an even number of times andfartiori at least twice. Now chooség( jo) € | such
that A, j,) € E’ appears in more than one row éf LetY be the table obtained by
replacing the entry 1 oK in position {g, jo) by the entry 0. Then it is not difficult to
check thatY is again an edge-bounding table. Proceeding in this way wefiod an
edge-bounding table with O appearing at least once in evesy and hence we have

_ T —2)

1
#E < Z(#I —
= ;@I =n) 2

The lemma is proved. O

Proof of Lemma 2.5. (i) Assume that= (wq,...,wy) is a CLT sentence with
wi €U, i =1,2,...,n Let G;, G’ be the graph ofa and the spanning tree as in
the proof of Lemma 2.4. Moreover, leX be an edge-bounding table satisfying the
condition that at least one entry is 0 in each row. Then, rebat

1 Sisa(e(wi) = 2)
#E <2 Y Xy < =S
2 (e 2

Therefore, the above two inequalities must become ecemliiy the definition of CLT
sentence. Consequently, the edge-bounding tablbeas exactly one 0O-entry in each
row. For eachi, let ¢ denote the edge\; at the positionX;; = 0. Note that by the
first property (property (E1)) of the edge-bounding takle

(%) all edges ofw;j, except at most one edgg, belong toE’.
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We claim that for eact, there is a uniqueé # i such thate = &. This claim is shown
as follows.
Let

NL:=#(i, j) e 1: Xij =1, Aj =e}.

Then the two equalities imply thatl, = 2 for all ee E'.

Uniqueness. Assume that there are at least three wougds wi,, wi, such that
g, =8, =6, =(s,5). Since we consider words which do not contain self edgejrass
without loss of generality thad # 1. Then each wordy;, contains a walk on the tree
G’ from 1 to s (or from s to 1), which can be chosen to traverse only those edges
A j with X; ; = 1. Therefore, there exists some edgevith Ny > 3, which is a
contradiction.

Existence. Now fix some indexi. Then eithere ¢ E' or g € E'.

CAse 1: g ¢ E'. In this caseNy" =1 by (x). Thus,e € E,, for someis # i
becauseNg > 2 (see property (S1)). It also follows from)(thate, = 6. Assume that
e =(s,5) andw; is a walk 1- s — 5§ — 1. The wordwj, may be either 1» s —
S—1orl1—35—s— 1 We construct a new word/walle;, v w;, as follows. Walk
from 1 tos by wj, then go toS by w;,, and back to 1 byw;. A new word w; Vv wj,
of length £(w;) + €(w;,) — 3 is a closed walk on a tre€&’, and thusNa' "™ is even,
and hence is at least 2. It follows thag" "* = 2 because it is bounded Hy.

CASE 2: g € E'. In this casew is a closed walk on the tre@&’, which implies
that Ng" is even. Moreover, it is bounded by Ng = 3. Thus Ng" = 2. Therefore,
in the i-th row, there is only one pairi,(j) such thatX;; = 1 and A; = &. By
property (E2) of edge-bounding table, there is another fairj1) such thatX;, ;, =1
and A, ;, = &. Note thati, #1i.

Next, we show thag, = g. Indeed, assume to the contrary tleat# g. There
are two cases to consider.
e If g, € E/, then by the same argument as in the beginning of Case 2,ldw®l

that Ng * = 2, thereforeN, > 3, which is a contradiction;
e if g, ¢ E/, then by Case 1, there existswith e, = e, and Ng* "2 = 2. It also

follows that N; > 3, the same contradiction.
We also construct a new word/walk; v w;i, as in Case 1.

(i) It is clear thatn must be an even number becauswords wy, ..., w, can be
partition in pairs which have the samee We construct a permutation on {1, 2,...,n}
as follows. Let

{0(1) =1,

o(2)=j, if (wy, wj) is a pair.
Then by induction, we define far= 2, 3,...,n/2,

o2 +1)=min{{1,...,n}\ {o(1),...,o(2)}},
{U(Zi +2)=j, if (Woit1), wj) is a pair.
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It is clear thato is a perfect matching. Moreover words/walkis,oi—1) V we () are
distinct walks on the tre&’. The rest of the lemma follows. O

3. The Wigner semicircle law for spectral measures

In this section, we will show that spectral measures of Wignatrices also con-
verge weakly, in probability, to the semicircle distritarti Recall that{&;}1<i<; are
independent real random variables with the following prtps:

() {&i}1< is an i.i.d. sequence witlk[£11] = 0 andE[|£11]P] < o0, p=2,3,...;
(i) {&j}i<i<; is another i.i.d. sequence wili[£17] = 0,]E[§‘122] =1 andE[|£12|P] < oo,
p=3,4,....
Recall also that the Wigner matriXy is defined as
Xnfi, j) = Xn(j, i) = i 1<i<j=<N.
VN

We begin with the following expression fcxh(l, 1),

N
XKL D= Y Xy X, X
i1,i2,0nike1=1
1 N
= N2 Yo Eikivia i)

i1i2,mnike1=1

1
NKk/2 Z Tu,
weWﬁN)

N
whereT,, = ]‘[eeEw £ ®

Lemma 3.1. (i) For odd k

E[XK(1,1)]—-0 as N-— co.
(i) For even k
E[X{(1, 1)] = Ck2 as N— oo,

where G, denotes the n-th Catalan number

o @) __ e
"“h+1 (h+1n’

which is the numbers of equivalence classes of Wigner wdrdisngth 2n + 1.
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Proof. It is clear that

1
EDXN D= (e 2 ElTl

wew®

Recall thatT, = [Tecg, &* , which implies tha®[T,] = [Tece, E[£e* ] Thus E[T,] =
0 unlessw is a weak Wigner word.
Let Wi denotes a set of representatives for equivalence classe®akK Wigner

wordsw € WS) of weightt. Then forN > t, given a wordw € W, there are exactly
Cnt:=(N=1(N=2)---(N—-t +1)

words in WIEN) that are equivalent tav.

Since the weight of a weak Wigner word of lendth-1 is bounded byk/2 + 1),
and two equivalent words have the same graphs, we can rethateexpression of
E[XK (1, 1)] as

E[XF (1, 1)]

1
NI Z Z Z E[T,]

t=<k/2+1 weWit 1reW™: wimw

ﬁ Z CN,'[ Z E[Tw]

t<k/2+1 weWiit

Cnit
> WKz E[T,].

t<k/2+1 WeWit

Note that for fixedt, as N — oo, Cnt/N"1 — 1. Note also that the cardinality of
Wk is finite and thatE[T,] < oo because all moments g&;;} are finite. Therefore,
as N — oo,

0, if k is odd,
E[XN(L, 1] - > E[T,), if kis even.

weWkik/2+1

Finally, w € Wi «/2+1 means thatw is a Wigner word, and hendg[T,] = 1 by prop-
erties of Wigner words. Thus for even numberthe limit of ]E[Xh(l, 1)] is equal to
the number of equivalence classes of Wigner words of lekgthl, which is nothing
but the k/2)-th Catalan number. The lemma is proved. O

Lemma 3.2. It holds that

E[(X(1, 1)—-E[XK(, 1)]] =0 as N- oco.



SPECTRAL MEASURES OFWIGNER MATRICES 151
Proof. We begin with the following expression

1 1 _
XN D-EXR D= 5 D Tu—EN) =5 > T
weW,EN) weWﬁN)

Here T, := T, — E[T,]. Then

1 - 1 -
N@D-EXK@DF =5 2 TuTw=5x 2= Twum:

wl,wZGW&N) wl,wZGWéN)

where To, wy) 1= Tw; Tw,-

It is clear that]E[T(wl,wZ)] = 0 unless 1,w;) is a weak CLT pair. Similar argument
as in the proof of Lemma 3.1 with noting thatt((w1, w,)) < k if (w1, wy) is a weak
CLT pair, we have

B (L D-BXE@ DT = 3% S BTl

t<k (w1, w2)€Wk kt

Here Wkt denotes a set of representatives for equivalence classeseak CLT
pair/sentencew;, w,) of weightt, wherew; and w, are botht-words of lengthk + 1.
Therefore

E[(X(1, 1)-E[XK(1, 1)])] -0 as N — oo,
which completes the proof. ]
As a direct consequence of Lemmas 3.1 and 3.2, we have ttwviod result.

Lemma 3.3. As N — oo, Xk,(l, 1) converges in B, and hence converges in
probability to (o, x¥).

We are now in a position to investigate the semicircle law $pectral measures
of Wigner matrices.

DEFINITION 3.4. LetA be a real symmetric matrix of degréé¢ andv be a unit
vector inRN. Then the spectral measure of (A, v) is the probability measure oR
satisfying

/ xKu(dx) = (A, v), k=0,1,2,...,
R

where (-, -) denotes the inner product iRN.
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Let A be a real symmetric matrix. Let; < Az, < --- < Ay be the eigenvalues

of A, and letvy, vy, ..., vy be corresponding eigenvectors which are chosen to be an
orthonormal system aRN. Then the spectral decomposition &fcan be written as

N
T
A= Z Ajvj v .
j=1
Consequently,
N
k k T
AC=D o],
j=1
and thus,

Ay, v) = Zkk(v v,)2

Therefore, the spectral measure &, @) is given by

N
w= Z(v, vj)zﬁ,\j.
j=1

Now let vy be the spectral measure oK, e), wheree; = (1, 0,..., 0)" e RN,
Then by definition,

(un, XK) = (XKe, &) = XK (1, 1).

Theorem 3.5. (i) The k-th moment ofy converges in probability to that of the
semicircle law namely

(vn, X¥) = (o, X} in probability as N— oo.

(i) The spectral measurey converges weaklyn probability, to the semicircle distri-
bution.

Proof. The statement (i) is just Lemma 3.3.
Sinceo has compact support, we will show that (ii) follows from (Ipdeed, let

f be a bounded continuous function & We need to prove that

(vn, f) = (o, f) in probability as N — occ.
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Recall thato is supported in 42, 2], which implies thato, x%*) < 2%, Let B > 2
be fixed. Then, fok =0, 1,...,

|<VN, Xkl{\x|>B])| = ‘/ Xk1{|x‘>5} va(X)
R

§/|X|k1{\x|>B} dvn(x)
R

1 (v, X2)
< gk /sz" dvn(x) = —gE for k< 2n.

By letting N — oo, we obtain

2ny i 2n 2n
VN, X in probability (o, X 2
|(vN,Xk1{|x\>B})| < (o ) { ) < .
B2n—k as N — oo B2n—k B2n—k

Note that 2"/B?"k — 0 asn — oco. Thus
(vn, X*-)) — O in probability as N — oo.
Consequently, for any polynomia,
3) (vn, Ql(x=B}) — O in probability as N — oo.
Given ¢ > 0, there is a polynomia) such that

sup| f(x) — Q(X)| = e.

[x|=B
Then consider the following decomposition

(ny 1) = (o, 1) = (N, FLixsg)) + (on, (F — Q)Lx=8y)
— (vN, QLx=gy) + ((vn, Q) — (0, Q)) + (0, Q — ).
The first term and the third term converges to 0 in probabligy(3). The fourth term
converges to 0 in probability by (i) of this theorem. Finaltiie second term and the

fifth term is bounded by. Sincee is arbitrary, it follows that(vy, f) converges to
(o, f) in probability. The proof is complete. O

4. Central limit theorem for moments of spectral measures

This section investigates weak limits of moments of spécan@asures, more
precisely, the weak limits of/N(X¥ (L, 1)— E[XK (1, 1)]) asN tends to infinity.
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4.1. Zero diagonal. Recall that

1
k _
XN D= s > Tu

weriN)

N
whereT, = ]'[eeEw Ee®.

Let
Yag = VN[ T, T,
Nk = N2 Z(w_]E[ wl)
weZ/tliN)
1 _
= N&-D2 Z To
mEL{éN)
(= VN(XK (L, D) - E[X{(L, 1)), if &1 =0).
For a sentenca = (wy, ..., wy), we denote

Next, we consideE[Yy k, YN k,] for fixed ki, ko > 2. It is clear that

1 _
E[YN YN ] = NekZ1 Z E[Tqw;,uwz)]-

wleué'l\‘),wgeué;”
Lemma 4.1. For kq, ko > 2,

I\Iiinoo E[YN,leN,kz] = Z ]E[-I_—(wlywz)]-

(w1, w2) €U ky

The limit is positiveif k, + ko is even and only depends on the second and the fourth
moments okq,. It is zerq if ky + kp is an odd number.

Proof. It is clear thaﬁE[T_(wm)] = 0 unless {3, wy) is a weak CLT pair. Let
Z/Iﬁ),kz denote a set of representatives for equivalence classesaK @LT pairs {1, w>)
of weight t, wherew; and w, are t-words of lengthsk; + 1 andk;, + 1, respectively.
By Lemma 2.2t < (ki + kp)/2 unlessi), = 0. Fort = (ki + kp)/2, the setf\, is
just a set of representatives for equivalence classes of [62ifls 4, k,. An argument
similar to Lemma 3.1, we obtain

0, if k1 + k> is odd,
d@wE[YN'leN'kz] = Z E[ Tyl if ki + ko is even.

(w1,w2) Uiy k,
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Next, let w1, wz) € Uy, k,- If wt(a) = 1+#E,, then by Lemma 2.3 ()E[T,,] = 1,
i =1,2. MoreoverE[T,, T,,] = E[[Tece, geNs] = E[¢2] = E[£,], whereg is the only
edge withNg = 4. Thus

E[-l_—(wl,wz)] = E[TwlTwz] - E[Twl]]E[Twz] = E[%-fZ] -1=0.

The last inequality holds becaus@é;] — 1 = E[(£2, — 1)2] > 0.

Now, if wt(a) = #E,, thenE[T,,] = 0 because there exists an edge which is vis-
ited only one time byw;, i = 1,2. Further, since each edge is visited exactly two times
by (w1, wy), it follows thatE[T,, T,,] = 1. Combining those we have

BT, = b if wt(a) = # Ea,
(vl = \g[g4] —1>0, if #wt(@) = 1+ Ea.

Finally, the set of CLT paira = (w1, wz) for which wt(a) = # E, is not empty. Thus,
the rest of this lemma follows. ]

By an argument similar to the previous lemma, Lemma 2.4 iespthe following
statement.

Lemma 4.2. For kg, ko, ..., ks > 2,

n
Nlinoo E [1_[ YN’k'i| = ( Z ]E[T(wl ..... wn)]-
w1

i=1  Jd (wi.. wn)eUy,. kn

Here Uy, ., denotes a set of representatives for equivalence class€s bfsentences
a=(wy, ..., wy), wherew; € U, t = 1+ Y0, (k — 1)/2.

Let
Ak, ko) = D> BT

(w1, w2) €Uy ky

Then the matrix A(K, 1))ki=23,.. is symmetric. Each finite blockA(k, )¢ ,_, is posi-
tive semidefinite because it is the limit of the covariancdrixaf random variables
(Ynkk=2..n. Thus, there exists a sequence of mean zero jointly Gaussimtom vari-
ables{nk}k=23,. defined on the same probability space such that

E[nen] = Ak, 1).

Lemma 4.3. For even number n

n/2

(4) Z ]E[-I_-(wl ..... wn)] = Z 1_[ A(ka(Zi—l)y kcr(Zi))-
i=1

(w1,..., wn)euk]_,...,kn o€ )
o: perfect matching
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Proof. It is a direct consequence of Lemma 2.5. 0

Theorem 4.4. The joint distribution of{ Yy}, converges to that ofn}f_, as
N tends to infinity for any fixed kK 2.

Proof. The left hand side of (4) is exactly the Wick formula the expectation
n
E |:1_[ N, :|
i=1

Thus, for any even numbaer, and for anyky, ..., k, > 2,

This also holds ifn is odd, in which both sides are zero. Therefore, the joint dis
tribution of {Ynk}K_, converges to that ofng}X_, because Gaussian distributions are
characterized by their moments. ]

4.2. General case. Let

1 1 F
Zne = NEnm > (T, —E[T,) = NCEVE > T

wer™ wer™

It is clear thatE[Z\ k] = 0. We consider

1 _
1E[Zﬁ,k]=Nk,1 > E[Twul

wl,wZEV&N)

Recall that {1, wy) is a weak CLT pair if
(P1) N2 > 2, for all e € E,, wherea = (wy, wy);
(P2) E,, N Ey, # 9.
For a wordw € V, let w € U be the word constructed from by deleting every adja-
cent same letter. Then the graph #fis obtained from that ofv by removing all self
edges. The following lemma refines Lemma 2.2

Lemma 4.5. Let wy, wy € Vi be a weak CLT pair. Then
() wt((wy, wa)) <k, if k is odd
(i) wt((wy, wp)) <k-—1, if k is even.

Proof. The proof is similar to that of Lemma 2.2. L&, w, € U be the words
obtained fromw;, w, by deleting every adjacent same letter. ldet= (w1, w,). Then
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Ng‘ > 2 for all ee Ey. Let Gy = (Vs, E5) be the graph ofi. Note thatGy is connected
because bothi; andw, are words started from 1. Note also theti(a) = wt(a). Since
N& > 2 for all e € Ey, it follows that

#Es < —(€(w1) — 14 £(wy) — 1) < %(ﬁ(wl) —2+f(wx)—2)=k—-1

NI =

The last inequality holds becaugéi;) < ¢(wij)— 1=k, i =1, 2. Thus
wt(@) = wt(d) <1+ #Es <k

Next, we show thatwt(a) = k does not hold ifk is even. Indeed, assume that
wt(a) = k. It follows that wt(a) = wt(d) = 1 + # Es, and hence the grapB; is a

tree. In this case, it also implies thé€w;) = ¢(wi) — 1 =Kk, i = 1, 2. Thusw; is
a closed walk of lengttk, which is even, on the tre&s, which is impossible. The
lemma is proved. O

Let V.t denote a set of representatives for equivalence classegsak @LT pairs
(w1, wp), Wherews, w, € V aret-words of lengthk + 1. Then similarly to Lemma 2.2,
we can show that

() Iim E[Z3 = ) ElTw.wl

(w1,w2)€Vik k

which is zero ifk is even.

For oddk, let Ay denote a set of representatives for equivalent classes afswo
of lengthk+1, for which N7 ;, =1 andw is a Wigner word. Lety be the cardinality
of .Ak.

Lemma 4.6. Let k> 3 be an odd number. Ldw;,w2) € Vkk.k. Then the follow-
ing hold.
(i) w is equivalent to some element df, i =1, 2
(i) supp@i) N suppfwz) = {1}.
(iii) E[Tuy,u,] = E[E7].
(iv)

(6) > ElTw,uy] = aZE[EZ)].

(w1, w2)€Vik:k

Proof. Leta be as in the proof of Lemma 4.5. Recall that, in this case, both
wy andw, are walks of lengthk on the treeGy and w; visit each of it edges exactly
twice, i = 1, 2. Thusw; and w, are Wigner words. Moreovelr,\lgf1 =2 for all e € 3,
which implies that supp{;) N suppfi.) = {1}. Now, it follows from the condition
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(P2), E,, N Ey, # @, that (1, 1) must be a common edgewf and w,. Therefore, we
obtain (i) and also (ii).
(iii) and (iv) are direct consequences of (i) and (ii). L]

Lemma 4.7. Let k be an odd number. Then the following hold.
0]
N"Lnoo E[£11Zn k] = aE[£Z].

(if)
N”Lnoo E[(Znx — &é&11)?] = 0.

Proof. (i) It follows from the definition ofZy y that

1 _
ElénZnid = Yooz Y E[EnT,]

weVIEN)

It is clear thatE[£1,T,,] = O unless a wordw satisfies the following conditions
° N(’il) > 1,
e NY>2foralleecE,\{(1, 1).

Assume that a woray satisfies the above conditions. Létbe the simplified word
of w. Thenw is a word of length at mosk, which visits each edge at least twice.
Thus,

k-1 k+1

+1=—-:

t =wt(w) <#Es;+1<
wt(w) = wt(w) <#E5+ 1< > >

The equalitywt(w) = (k + 1)/2 holds if w is a Wigner word of lengttk, or equiva-
lently, if w is equivalent to some word inly.
Now by a standard argument as in the proof of Lemma 3.1

d@wE[sllzN,k] = Z ]E[$11-|_-w] = ak]E[é:lzl]

weAg

(ii) follows from (i), the limit (5) and the expression (6).h& lemma is proved. ]

The following results are direct consequences of the lirbjt With evenk and
Lemma 4.7 (iii).

Lemma 4.8. (i) For even k Zy x converges in probability to zero.
(i) For odd k Zy k converges in probability to &11.

Theorem 4.9. Let ¢ be a random variable which has the same distribution as
£11 and is independent of}k=2. Let Suk = v/N(XK (L, 1)— E[XK (1, 1)]). Then the
following holds.



SPECTRAL MEASURES OFWIGNER MATRICES 159
(i) For even k
éNykg nk as N— oo.
(i) For odd k> 3,
é,\,,kiak;“ +n as N-— oo.

(i) For fixed K, the joint distribution of(Sy.1, Sv.2. - .., Suk) converges to that of
(&, n2, @3¢ +n3, .. ).

Proof. We only need to prove (iii). Ledy = 1,Yn1 =0 and Zy1 = &11. For
evenk, let ax = 0. Note that

Suk = Yk + Znk = Yk + aéin + (Znk — aér).

For any real numbergay}_;, we consider

K K K
o Suk = Z akYnk + <Z akf’i‘k)&l + Z o(Znk — ackia)

k=2 k=1 k=2

=
||M><
A

S+S+ S

As N — oo, § converges in distribution tczl'fzz aknk by Theorem 4.4, Sinc&
is independent o€y, it follows that S, + & converges in distribution tQkK:Z aknk +

(ZKK:l akak)§ as N tends to infinity. Finally,S converges in probability to zero by
Lemma 4.8. Therefore,

K K
- d
E Sk — E ak(@as +n7x) as N — oco.
k=1 k=1

The theorem is proved. ]
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