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Abstract
Results on stability of tautological sheaves on Hilbertesobs of points are ex-
tended to higher dimensions and to the restriction of tagiokl sheaves to general-
ised Kummer varieties. This provides a big class of new exasnpf stable sheaves
on higher dimensional irreducible symplectic manifoldont® aspects of deforma-
tions of tautological sheaves are studied.

Contents
0. INrOUCTION ..o e 889
Summary of the resultS .......cooiiiiiii 890
Structure of the paper ... 891
Notations and CONVENLIONS  ......ouuiieiiti it e e 891
L. Preliminari©s ..oo.ooiiiii et e e e 891
1.1 Geometric CoNSIderationsS. ...........o.ve v e eneeieieeeananns 892
1.2. Tautological Sheaves. .........coviiiiiintim e e i eaeeas 893
1.3.  Polarisations and slopes. ........cociiiiiiiiiie 895
2. HIgher N 896
3. Restriction to generalised Kummer varieties .....oweeeveiiieeeen... 898
3.1 Restriction to the Kummer surface. ...........cccceciiiiiiiinan. 898
3.2. Generalised Kummer varieties of dimension four. .......... 902
4.  Deformations and moduli spaces of tautological sheaves............ 904
4.1.  Deformations of tautological sheaves. ...... 904
4.2.  The additional deformations and singular modul| space ........ 906
4.3. Deformations of the manifolX[™. .................cccooieiiiiinnnn. 908
ACKNOWIEAGEMENTS  ..uiti i e e 909
REIBIENCES oo 909

0. Introduction

In the theory of compact Ricci flat manifolds one kind of basidlding blocks for
these manifolds are irreducible holomorphic symplectiwoft irreducible symplectic)
manifolds. These are compact kahler manifolds that are Igimpnnected and admit
a—up to scalar—unique everywhere non-degenerate holdnmotpio-form. One of
the fundamental aspects in the theory of irreducible syatiglananifolds is the fact
that only few examples have been constructed. Up to now, weoaly aware of the
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890 M. WANDEL

existence of two infinite series of deformation classes duBeauville ([1]) and two
more sporadic examples found by O'Grady ([15, 16]). Modulacgs of sheaves on
symplectic surfaces play an important role in the consiwacof irreducible symplec-
tic manifolds. The fundamental result of Mukai ([14]) stateat the moduli space of
stable sheaves onta3 or abelian surface is a smooth symplectic variety. In fanter
mild technical conditions these spaces turn out to be icibdil symplectic manifolds.

A natural question that arises is the following: Can we iterthis process? That
is, can we construct new examples of irreducible symplectanifolds using moduli
spaces of sheaves on known higher dimensional irreducibtglectic manifolds such
as Hilbert schemes of points dk3 surfaces or generalised Kummer varieties? Cer-
tainly it is difficult to answer this question in this genetyal On the other hand almost
no examples of stable sheaves on higher dimensional intddusymplectic manifolds
had been encountered. In [18] the first example of a rank tablestvector bundle on
the Hilbert scheme of two points on &3 surface was found. In [19] this result was
drastically generalised continuing along the followinghcept: Start with a stable sheaf
on aK3 surface, transfer this sheaf to the Hilbert schemes oftpaising the universal
property of the latter and obtain what is called a tautolalggheaf and, finally, prove
its stability.

This article is to be understood as a sequel to [19]. We furtéx¢éend its results
and transfer them to the case of generalised Kummer vaielibe latter are closed
subvarieties of the Hilbert schemes of points on abeliafiasas. We study the re-
striction of tautological sheaves to Kummer varieties amtaim non-trivial examples
of stable sheaves on these manifolds.

Summary of the results. Let X be a regular (i.eh'(X, Ox) = 0) smooth pro-
jective surface. We study the stability of tautological ahes with respect to an ample
classHy on the Hilbert scheme which is naturally associated with aapla classH
on the underlying surface and depending on an intégep 0.

Proposition (Proposition 2.4) Let F be a torsion-freeu -stable sheaf on X. As-
sume that its reflexive hulF¥¥ % Ox. Then the tautological sheaf™ on X" does
not containu p, -destabilising subsheaves of rank one for all>NO.

From this we can deduce:
Theorem (Theorem 2.5) Let F be a torsion-free rank one sheaf on X satisfying
detF 2 Ox. Then for all sufficiently large N the associated rank thréea 7! on

XBlis 1y, -stable.

If X is abelian, then inside the Hilbert sche&! there is the generalised Kummer
variety K,(X). Let us denote the embedding lpy On X we have the natural involution
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¢ from the group structure. A shedf is called symmetricif *H =~ H. We have the
following results:

Theorem (Theorems 3.7, 3.9 and 3.12)Let F be auy-stable sheaf on X such
that detF 2 Ox. There is a polarisation on ¥{X) such that if 7 is of rank one
j*FBl is u-stable of rank three. Furthermorghere is a polarisation on K(X) (the
Kummer surface associated with) Xuch that ifdetF is not symmetric andF is of
rank one(rank two), the restriction fF12 is u-stable of rank two(rank four).

Furthermore, we have the following relation between modphces of sheaves on
K3 surfaces and moduli spaces of tautological sheaves:

Proposition (Proposition 4.4) Let 7 be a stable sheaf on a Xsurface X of
Mukai vectorv such thatF®! is stable(of Mukai vectorv?l). We have an embedding
of moduli spaces\s(v) — M3(v?).

Structure of the paper. The paper is organised as follows: We begin in Section 1.

by collecting known results on the geometry of Hilbert scksmf points on a surface
and prove a few technical lemmata which will be needed Iatiet, in Section 1.2 we
introduce the main objects of this article, the tautolobsteeaves. In Section 1.3 we intro-
duce polarisations on the Hilbert schemes and compute tipeslof tautological sheaves
with respect to these polarisations. In Section 2 we analgstabilising subsheaves of
tautological sheaves on Hilbert schemes of three or monggporhe case of generalised
Kummer varieties is treated in Section 3. We prove the stgloif the restriction of certain
tautological sheaves to the Kummer surface (Section 3d jtengeneralised Kummer va-
riety of dimension four (Section 3.2). We conclude the pdpestudying deformations of
tautological sheaves in Section 4. We show that the modaltiesp of tautological sheaves
can be singular in Section 4.2 and investigate in which waymag deform tautological
sheaves together with the underlying manifold in Sectiéh 4.

Notations and conventions.
e The base field of all varieties and schemes is the field of cexnplmbers.
e All functors such as pushforward, pullback, local and gldm@momorphisms and
tensor product are not derived unless mentioned otherwise.
e By M5(v) we denote the moduli space @i-stable sheaves with numerical in-
variantsv. (We assume a polarisation has been fixed.)

1. Preliminaries

Throughout this chapter we consider a smooth projectivéaserX together with
a polarisationH € NS(X).

1
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1.1. Geometric considerations. For n = 2 the geometry of the Hilbert scheme
points on a surface is very well accessible: In faxgl is the blowup of the symmetric
squareS?X along the diagonal. Ih > 2, the situation is a little bit more complicated
but by [8, Proposition 2.6] the Hilbert scheme is still thewlp along the big diag-
onal. This is important, especially if we want to determite tPicard group of the
Hilbert scheme. Let us summarise the most important results

Following [4, Section 1], we consider the following diagram

Xn-Lnl — En —5— X
la \ p
En1 C X x X1 X Xn
X1 X gX.

Here we denote by
En = {(x, §) | x € £} C X x X"

the universal subscheme and by
X = (g, £) | &' C £} < XI"H s X

the so-callednested Hilbert scheme

We have the flat degree covering p: E, — X" which is, in fact, the restric-
tion of the second projectioiX x XM — X[, Furthermore X"~ is isomorphic to
the blowup of X x X" along the universal subschen®, ;. Denote this blowup
morphism byo and the projections fronX x X1 to X[~ and X by p andq,
respectively. By [5, Proposition 2.1] the second projactip: X("-11 — X[ factors
through E, and from [9, Proposition 3.5.3] it follows that is an isomorphism outside
codimension four subschemes. Thus the morphysris flat outside codimension four.
Finally, we haveqoo = qow and w*wp = w,.

We have

Pic® XM ~ pPic® X
and embeddings

(_)X[ﬂ] : NSX — NS X[n]l I [ d |X[n] = p*(l EHn)Gn
and
(=)xm : Pic X — Pic X",

Furthermore, there is a clagse NS X", such that 2 is the class of the divisor con-
sisting of all non-reduced subschemegs X.



TAUTOLOGICAL SHEAVES: STABILITY AND MODULI SPACES 893

Now, using Section 2 of [4] and the proof of Theorem 4.2 of [M8¢ can deduce
the following formulas:

Lemma 1.1. Let D be the exceptional divisor of and let | be a class iIlNS X.
We have

Y*s =[D] +o*p*s
and

Iﬂtlx[n] = O'*(p*lx[n—l] —+ q*l)
If X is regular (i.e.h'(X, Ox) = 0), we have
NS XM =~ NSX @ Z§

by a result of Fogarty (cf. [6]).

Finally, let us briefly introduce the generalised Kummerietés. If one mimics
the construction of Hilbert schemes to the case of abeliafaces, one again obtains
Ricci flat manifolds. But they are not simply connected andtam an additional factor
in the Beauville—Bogomolov decomposition. To get rid ofstifiactor we consider (for
an abelian surfac@\) the fibre

Kn(A) := m1(0)

and call it generalised Kummer varietyit is a (2h — 2)-dimensional irreducible sym-
plectic manifold (cf. [1]). In the casa = 2 this just gives the Kummer surface Kin

Let us denote the inclusiok,(A) — A by j. It is a well known fact (again
cf. [6]) that we have:

NS(Kn(A)) 2 j* NS(A) @ Zj*3,
where we embedded, as before, MBf{nto NS(AM).

1.2. Tautological sheaves. Let us give the definition of tautological sheaves, the
objects of main interest in this article. Fix a she&&afon X and recall that there is the
universal subschemg, c X x X", Furthermore we have the two projectiops X x
X XM andg: X x XM — X,

DEFINITION 1.2. Thetautological sheaf associated with is defined as
F:= p(*F ® Og,).

REMARK 1.3. Very important for the study of tautological sheavethes follow-
ing observation: The universal subschemg and the nested Hilbert schem¢n—1nl
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are isomorphic outside codimension four subschemes (cftiddel.1). LetU denote
the open subset where they are actually isomorphic. Thdaatésts of g*F ando*q* F
to U are naturally isomorphic. Thus the restriction B to the imagep(U) in X[ is
isomorphic toFI" := y,o*q*F (restricted toy(U) = p(U)). Hence we can usg"
instead of FI" as long as we want to study properties that are not sensitferaspect

to modifications in codimension four. In the case= 2 we, in fact, haveF ~ 72,

The restriction ofp to &, is a flat covering of degrea. Hence the tautological
sheaf 7"l is locally free wheneverF is. For the tautological sheaf associated with the
dual sheaf7" we have the following formulas which will be important later

Lemma 1.4.
(1) (F) = p, Hom(g" F, O=)
and
) (FI)Y = p, Hom(g" F, wp).

Again, from [13] we deduce:

Lemma 1.5. We have the following formula for the first Chern class7df!:
ci(FMy = ¢y (F)ximn — rk(F)s.

Next, we want to summarise the results of Scala and Krug aplmltal sections
and extensions of tautological sheaves. These formulasdut to be a powerful tool
to analyse stability and deformations of these sheaves.

Theorem 1.6. For every sheafF and every line bundle€ on X we have
H* (XN, AN @ Lym) = HY(X, F @ £) ® S7IH (X, £).
Proof. [17, Corollary 4.5], [12, Theorem 6.17]. O

We continue by stating Krug's formula for the extension grewf tautological
sheaves:

Theorem 1.7. Let F and £ be sheaves and. and M be line bundles on X.
We have

Extin (M ® Ly, FIN ® Mxm)
(3) ~ Exti (€ ® L, F @ M) ® S Ext} (L, M)
® Exty (€ ® £, M) ® Exty (L, F ® M) ® S 2 Ext} (L, M).
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Proof. [12, Theorem 6.17]. 0

Krug also gave a description how to compute Yoneda produttthese extension
groups (cf. [12, Section 7]). The general formulas are ex¢lg long. We will give a
more detailed account on them as needed.

Let us finish this section by deriving a special case of foem(d).

Corollary 1.8. Let X be a K3 surface and letF be a sheaf on X satisfying
h?(F) = 0. Then we have

Homye (F12, F12l) =~ Homy (F, F),
(4) Exthq (F, F@) = Ext} (F, F) @ HY(X, F) ® HY(X, F)".

REMARK 1.9. From these equations we can deduce that tautologieavebF?!
associated with stable sheav@&sz Ox are always simple: By Serre duality a stable
sheafF % Ox on aK 3 surface satisfies eithé?(F) = 0 or h°(F) = 0 and by twisting
with a suitable line bundle we may assume thatF) = 0. This is a first indication
that tautological sheaves might be stable.

1.3. Polarisations and slopes. In this section we shall talk about polarisations
on the Hilbert scheme of points on a surface. In general thgleaone of these vari-
eties is not completely known. Nevertheless, if we fix a petion H on our surface
X, we will define polarisationdHy on X[, depending orH and an integeN. Fur-
thermore, we shall derive and discuss the slopes of tautalbgheaves with respect
to these polarisations. This will be important when we wantstudy the stability of
these sheaves in Sections 2 and 3.

Fix a smooth projective surfac¥ and an ample classl € NS X. For any integer
N we consider the class

Hy := NHym — 8 € NS XM,

Using induction one easily shows thhly is ample for largeN. Thus we have a nat-
ural candidate for a polarisation of the Hilbert scheme amsl|t turns out, in many
cases tautological sheaves are stable with respect to fredadsations (cf. [19]) for
n=2.

Next, we want to compute slopes of tautological sheaves ialgbe casen > 2.
Hence we need to compute intersection numbers. We have ltheiftg general result:

Lemma 1.10. Let | be a class ilNS X. We have

(2n — 1)!

2n—1 __
(5) I)([n] . Hx[n] - (n — 1)| 2n71

(- H)(H)™
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and
(6) 5-H ' =0,
where on the right hand side db) we consider the intersection INS X.
We will abbreviate the factor (2— 1)!/((n — 1)! 2" 1) by c,.
Proof of Lemma 1.10. Note that (6) holds trivially sinekm is a pullback along

the Hilbert—Chow morphism. Let us prove (5). We pull bdgk and Hym along the
nl-fold covering X" — S"X and obtain the classé8" and H®", respectively. We have

B e L R~ PR L CE
2n—1)!
= ol =

Corollary 1.11. Let £ be a line bundle on X with first Chern class | atfd a
sheaf of rank r and first Chern class f. We have the followingaegions for the
slopes of FI"l and £ with respect to :

My (Lxm) = NznflCn(l . H)(Hz)n*1 + O(NZn—z)
and

1
s (FIM) = N#2eq —(f - H)(H)"™ + O(N*"72).

2. Higher n

In this chapter we try to generalise the results on dessatigjiline subbundles in
[19, Section 3] to highem. From this generalisation we will be able to prove the
stability of rank three tautological sheaves ¥f!. In this chapter we fix a polarised
regular surface X, H).

Let F be a torsion-freeuy-stable sheaf orK. Denote its rank by and its first
Chern class byf. We want to show that the associated tautological ste8fon XM
has no destabilising subsheaves of rank one. We will firstrassthatF is reflexive,
i.e. locally free. Thus we may assume that a destabilisimi @ne subsheaf ofI"
is also reflexive, that is, a line bundle.

Proposition 2.1. For sufficiently large N there are noup,-destabilising line sub-
bundles inFI" of the formLxm, (£ € PicX), except the case + 1 and £ =~ F = Ox.

Proof. Denote the first Chern class 6fby |. Using Scala’s calculations of co-
homology groups of tautological sheaves with twists asedtan Theorem 1.6 we can
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immediately deduce the following formula for homomorphsésifinom line bundles of
the form Ly to tautological sheaveg™:

Homyim (Lxir, FIM) 2 Homy (£, F) ® S Homy (£, Ox).

Let us first assume > 1. SinceF is uy-stable, we have necessary conditions for the
existence of a line subbundle @":

f.H
@) l'H<—— and I-H<0.

The first inequality is due to the stability of and the second comes from the fact that
if a line bundle has a section, its first Chern class has ngative intersection with
any ample clasH. If Lym C FI" is destabilising, by Corollary 1.11 we must have

foH
nr o’

|- H >

But this is certainly a contradiction to (7).

If r =1, we can proceed as above but additionally have to consigespecial
casel =~ F, ie.l - H = f . H. The destabilising condition together with H < 0
immediately yieldd -H = 0. But now Honx(£,Ox) can only be nontrivial iff = Ox.

O

We will need the analogue of Proposition 3.1 in [19] whichoat to reduce the
general case to Proposition 2.1 above. We therefore firdt &iothe following more
general set-up which will be useful later, too. The proof istightforward induction.

Lemma 2.2. Letr: Y — Z be a blow-up morphism of a smooth variety in a
smooth codimension two center. Then

R0, (%) € O

for all a € Z.
Applying this to our situation, we easily find:

Lemma 2.3. Let Lxm ® O(as) be a line bundle on X (a € Z arbitrary), then
for any locally free sheafF on X we have

Homym (Lxm @ O(a@s), FIN) € Homym (Lxm, FIM).

We can thus deduce the first main result of this section.
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Proposition 2.4. Let F be a torsion-freeuy-stable sheaf on X. Assume that its
reflexive hull 7 % Ox. ThenFI does not contain y,, -destabilising subsheaves of
rank one for all N> 0.

Proof. We can easily reduce to the case wheérés locally free and then apply
Proposition 2.1 and Lemma 2.3 above. ]

Since the tautological sheaf oX[¥! associated with a rank one sheaf has rank
three, the above proposition is enough to show that thesavebeare stable (except
O[S], of course).

Theorem 2.5. Let F be a torsion-free rank one sheaf on X satisfyuhet 7 2
Ox. Then for all sufficiently large N the associated rank thréeaf 713! on XB is
[y -Stable.

Proof. As usual we can reduce to the case tRais locally free. We have seen
that B cannot contain destabilising subsheaves of rank one. Bytdastabilising
subsheaf of rank two yields a rank one destabilising sulishiethe dual sheaf. It is
now enough to prove that for any line bundfeon XE! we have

Hom(Z, (F&1)¥) € Hom(c, (F¥)B)).

To show this formula we use equations (1) and (2), then atdpm@* - p, and finally
we use Lemma 2.2, keeping in mind thatis an automorphism outside codimension
four andw*wp = w,. O

3. Restriction to generalised Kummer varieties

In this section we study the stability the restrictions aittdogical sheaves to the
associated generalised Kummer varieties.

3.1. Restriction to the Kummer surface. In this section we shall prove the sta-
bility of the restriction of certain tautological sheavesrh the Hilbert scheme of two
points on an abelian surface to the associated Kummer surfd@oughout this section
we fix a polarised abelian surfacé\,(H).

Let b: A— A denote the simultaneous blowup of all fixed points of the lumion
¢ on A and denote byE,,...,E;s the exceptional divisors. OA we still have an involu-
tion which fixes theE, pointwise. We consider the quotient A — Km A which is a
degree two covering onto the associated Kummer surface 2BYI[l Proposition 5.1]
we have a monomorphism

o = ub*: H*(A, Z) - H3(Km A, Z)
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satisfying
a(X)a(y) = 2xy forall x,ye H*A, Z).

We setN, = z(E). It is well known thatE? = —1 and N? = —2. Furthermore, the
classy | N is 2-divisible and we have*((1/2) Y, N)) = >, E; and t*N, = 2E;.
Finally, we have

16
(8) NSA=b'NSA®PZE and PiéAxb PidA
=1

We define the class
1
Hy := Na(H) — 5 Z N;

on Km A, which is ample for sufficiently largé. (This is the restriction to Kn#\ of
the classHy defined onAP in Section 1.1.)

DEFINITION 3.1. LetF be a sheaf omA. We set
FKM = ¢ b* F.
One easily shows:

Lemma 3.2. The sheafF ™ is the restriction of the tautological she#f? along
the inclusion | Km A — AP:

jrorE ~ pKm

Now we want to prove the stability oF*™ in the case thafF is of rank one or
two. As in the previous cases we begin with the analysis af Babbundles in the
pullback b* F:

Proposition 3.3. Let 7 be a uy-stable sheaf on A of rank r and first Chern
class fe NSA. Then bF does not contain any line bundlf’ = b*G ® O(Z| a E|)
with G € Pic(A), ¢1(G) = g satisfying

H.g=> %H - f
but in the case =1, G >~ F.

Proof. As usual we may assume thatis locally free. We want to show that

Homj (b*g ® 0(2 a E|>, b*]-')
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vanishes. Using adjunctiorb( - b,) and a similar induction argument as in the proof
of [19, Proposition 3.1], we see that it is enough to prove tha

Homa(G, F) = 0.
This easily follows from the stability ofF if F % G. O

Next, we will show that Proposition 3.3 implies that there ao destabilising line
subbundles inFX™, We only need to calculate slopes.

Lemma 3.4. Let F be a sheaf on A of rank r and first Chern class f. We have

(@b F) = a(f) - % YN
|

Proof. We haveci(wz) = >, Ei. Thus the Grothendieck—Riemann—Roch the-
orem reads

chw.b*F) = 7,(chp* F) td,) = <, ((r, b f, ... )(1, —% le E,.. ))

r
=r*(r,b*f—§2|:E|,...). O

Let £ be a line bundle on K. By equation (8) there is a line bundig on A
and integersy such that

L~ b*g®O<ZaE|).
|

Set g := ¢1(G). Note that sinceL comes from KmA, the line bundleG has to be
symmetric, i.e.*G ~ G.
Corollary 3.5. Let £ be a line bundle orkKm A as above. We have
Km 1
Py (FM) = r_N H.f —4
and

1
MHN(E)=NH-9+§2|:a|.

Proof. We pullback all classes td: Note thatz*((1/2) Y, N/) = 3, E and
t*a(f) =2b*f for all f € NSA. Thus we havex(f)-«(H) = 2f-H. Furthermore, we
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have (3, E|)2 =16-(—1)=-16 and(}_, E)(>, aE) = — Y, a. Finally, we have
to divide everything by two because we pulled back along aefegwvo covering. [

Corollary 3.6. Let F be a non-symmetri¢i.e. *F % F) uu-stable sheaf on A.
Then 7X™ does not containuxn-destabilising line subbundles for all > 0.

Proof. Let £ be a destabilising line subbundle @M. Again, we can write
L ~ b G ® O(Y, aE) for a symmetric line bundlg € Pic A. The destabilising
condition yields

1
H-g>“H.f.

As usual we use adjunctiort - z, to obtain a homomorphism*£ — b*F. This gives
a contradiction to Proposition 3.3 but in the case- 1, G ~ F. But this cannot be
since F was chosen not to be symmetric. ]

We immediately deduce:

Theorem 3.7. Let F be a non-symmetric rank one torsion-free sheaf on A. Then
for all N sufficiently large FX™ = r,b*F is a rank two i pykm-stable sheaf.

ExAMPLE 3.8. We apply the theorem to the cas€F) = 0. Denote byA the
dual abelian variety and b@[2] its two-torsion points. The assignment Pi&> F -
FKM gives a map

A\ A[2] > M,

where M := M (v) is the moduli space oHXM-stable sheaves with

v = <2,—%ZI:N|,—2>.

Note thatv? = 0 and the first Chern class(1/2) Y, N, is primitive. HenceM is
smooth of dimension two. Sinc&X™ ~ (:*F)Km  this map is two-to-one. Further-
more, let us consider the case th&tis symmetric, i.e.F € A[Z]. We concentrate on
the caseF = Oa. We have extensions

0—>O(—%|ZN|>—>5—>(’)—>O.

The sheafO¥™ is isomorphic to the trivial extensio®(—(1/2)>, N)) & O (cf. [2,
Lemma 17.2]), which is not stable. On the other hand one caw ghat every non-
trivial extension isuy-stable. The vector space of extensi¢hss two-dimensional and
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thus we have &' c M parametrising the. Altogether we see tha#/ is isomorphic
to the Kummer surface Km of the dual abelian surfacé.

If 7 has nontrivial first Chern clas§ € NS A, we may choose a symmetric line
bundle £ satisfyingc;(£) = —f. Then F ® £ is in Pid(A) and

(F @ £)KM ~ FKM @ O(a(— T)).

Thus the moduli space containing<™ is isomorphic to KmA, too. Note that by [7,
Theorem 1.5] the Kummer surfaces Kimand M =~ Km A are isomorphic.

We finish the section by proving the analogue of Theorem 4.{19F.

Theorem 3.9. Let F be aupy-stable rank two sheaf on A such thdétF is not
symmetric. TherFK™ is a up,-stable rank four sheaf oKm A.

Proof. We exactly imitate the proof of [19, Theorem 4.4]. &s® thatF is lo-
cally free and letf := ci(F). Let £ be a reflexive semistable rank two subsheaf of
FKM and writecy(€) = a(€) + Y, aN;. The destabilising condition thus implies

2H.-e>H - f.

We have a homomorphismg: t*€ — b*F. Again, the only difficult case is when
kerg = 0: If the first Chern class of th@ := cokerg is trivial, we see that the homo-
logical dimension of@ is 2. Sinceb*F is locally free, this would contradict the fact
that 7*€ is reflexive. Thus@Q = 0 and 8 has to be an isomorphism. But sinc&f is
symmetric andF is not, we are done.

If there is an effective divisor with first Chern clasgQ), the line bundle

b* detF ® ¢* dete" (— > a N|>
I

must have a section. Hence eitlegr< 0 VI and detF ~ O (which we excluded) or
a <0Vl and

H-f>2H-e
which contradicts the stability condition. O

3.2. Generalised Kummer varieties of dimension four. Let (A, H) be a po-
larised abelian surface. In this section we prove some tesaincerning the stability
of the restriction of tautological sheaves from the Hilbgrtheme of three points oA
to the four dimensional generalised Kummer varigtyKs(A) < ABl,
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We have an isomorphism
NS(K3(A) = j*NS(A) D Zj*s
and we define a polarisation dfz(A)
Hn := j*Hn = Nj*Hpam — j*6.
Lemma 3.10. We have
(Hn)3- j*8 = 0+ O(N™).

Proof. By definition of Hy we have Hy)®- j*§ = j*((Hn)38). Now the lemma
follows from equation (6) in Lemma 1.10. 0

Proposition 3.11. Let 7 be a uy-stable sheaf on A of rank r and first Chern
class f. If FYY % Op, then for N sufficiently largeF*s := j*FB does not contain
any un, -destabilising subsheaves of rank one.

Proof. We may assume thaf is locally free. Since all line bundles ok3(A)
come from ABl, we may assume that a destabilising line bundle is of the fprmt’
with c;(M’) € NS(A) & Z§. By a similar reasoning as in [19, Proposition 3.1] we
can reduce to the case where we have no contribution of-twenmand neither. Thus
there is, in fact, a line bundl@1 on A such thatM’ =~ M ps. Let m:= ¢y (M).

We denote the projectiond® — A by x;. Furthermore let us denote the inclusion
of the zero fibres (0) c A2 of the group law byi. Using adjunctions, flatness and
faithfulness of the pullback along finite coverings, it isagghtforward to prove

Hom(j* M, j*F&l) € Hom@*M™3, i*m; F)
=~ HOi* (M2 @ 7} F)).

In order to proceed, we choose an isomorphism(0) = A? by sending X, vy, 2) to
(x, 2) and denote the projectiond? — A by 7;. In this picture we have the identifi-
cations:myoi = Ay, mpoi =tos andnzoi = 5. (Recall thatt denotes—1 on A.)
Thus pushing forward along; (72 in the second line), we have
9) HO(*(M"™ @ 71 F)) = HY(F @ MY ® 7w (i3 MY ® s MY))
(10) = HI(M" ® 72, (75 (F ® MY) @ s'* M"Y)).

By Lemma 3.10 the destabilising condition pfM in j*FBI implies

f-H
m-H > .
3r
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If m-H = 0, we see that the right hand side of (9) vanishes but in the tds>
OA ~ F.
If m-H <0, the destabilising condition implies

f-H
2m-H>T.

In this case the right hand side of (10) has to vanish. O

As usual, from Proposition 3.11 we can deduce the stabifityaok three restricted
tautological sheaves associated with rank one sheaves:

Theorem 3.12. Let F be a torsion-free rank one sheaf on A. AssutetF 2
Oa. Then for all sufficiently large N the sheafA® is K -stable.

4. Deformations and moduli spaces of tautological sheaves

This chapter collects a few results on different aspectsheftiehaviour of tauto-
logical sheaves under deformations.

4.1. Deformations of tautological sheaves.In this section we will make the
following general assumption:

ASSUMPTION X is a K3 surface andF a stable sheaf ofX with invariantsv
such that for every(-stable sheaf; € M5(v) the associated tautological shegif! is
also stable.

Note that in the cases where the stability of tautologicalashs has been explicitly
proven the tautological sheaf associated with a sl¥€aé stable if and only if it is
true for every other g-stable)G in the same moduli space. (We are only considering
sheaves orK 3 surfaces.)

Denote byv[" e H*(X[", Q) the Mukai vector of FI"l. The assignment

F s Finl
yields a morphism
[ M3(v) - M)

We shall mainly discuss the case= 2. Let us prove the following lemma which
shows that £]@ is injective on closed points.

Lemma 4.1. For every sheafF on X we have

FxTory, (Oa, oy FA),
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Thus we can reconstruct the original sheffrom the tautological sheaF!?.
Proof. Recall that we have an exact sequencexon X:
(12) 0— o, y*FA  FB2 5 A, F - 0.

We tensor this sequence with the structure sheaf of the d#go C X x X. Of course
we have

TiF|s = A'IF = F
and the higher Tor§or), (Oa, ;) vanish. Therefore we have an isomorphism
Tor(l?XxX(OA’ U*w*‘F[Z]) = ToréxXx(OAl A*‘F)

By Proposition 11.8 in [11] we find

) F i=02 and
Tor, On, AVF) = ' O
(9><><><( A ) {f@gx =1

REMARK 4.2. If we tensor (11) withO, as above, the first terms of the resulting
long exact Tor-sequence yield a short exact sequence

0— F®Qx — o, " FA|, - F - 0.

It is not clear if this exact sequence is split or if it is equ@nt to the natural extension
corresponding to the Atiyah class &.

Let us consider a stable sheaf on a K3 surfaceX. The stability implies that
either h°(X, F) or h?(X, F) = h(X, F¥) vanishes. Let us assume the former is the
case. (The cask?(X, F) = 0 can be treated in exactly the same way.) Corollary 1.8
shows that we have a natural monomorphism

[-1¥: Ext{(F, F) — Ext}(F@, F3),
which maps an infinitesimal deformation @ to its induced deformation af!?.
DEFINITION 4.3. We call an infinitesimal deformation @@, the class of which
lies in the image of £]@ above, asurface deformationDeformations lying in the other

summand of equation (4) in Corollary 1.8 are referred t@dditional deformations

We conclude:
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Proposition 4.4. We have an embedding of moduli spaces
ME(v) — M3(v12).
The additional deformations are isomorphic t8(M¥, 7) ® HY(X, F).

Corollary 4.5. Let F be such that KX, F) = 0. Then we have a local iso-
morphism of the corresponding moduli spaces.

Corollary 4.6. Let F be such thatM3(v) is compact and X, G) = 0 for all
G € M3(v). Then we have an isomorphism 6°(v) with a connected component of
M),

4.2. The additional deformations and singular moduli spacs. In the last sec-
tion we have seen that the surface deformations of tauttdbgheaves are unobstructed.
This is not true for all deformations. Indeed, in this settive will give an explicit con-
struction of an example of a she&f on an elliptically fibredk 3 surface such thaf!?!
is stable and the corresponding point in the moduli spacengukar.

To prove this statement let us recall the most basic pragseri the Kuranishi
map: The general idea of the deformation theory of a stabdafsh is that infinitesi-
mal deformations are parametrised by ¥, F) and the obstructions lie in BXtF,F).
This is formalised by the so-called Kuranishi map. More el it can be shown that
there is a map: Ext'(F, F) — Ext?(F, F) such that the completion of the local ring
of the point of the moduli space correspondingfois isomorphic to the local ring
of «71(0) in 0. In general there is no direct geometric descriptidrthe Kuranishi
map but it is known that the constant and linear terms of theepcseries expansion
of « vanish and that its quadratic part is given by Ext}(F, F) — Ext®(F, F), e
(1/2)(ec e).

For a K3 surface this quadratic term always vanishes since it istgxthe Serre
duality pairing which is known to be alternating. But if wensider a tautological
sheaf 72 the quadratic part of the Kuranishi map may be non-trividlisTwould cor-
respond to the existence of a quadratic part in the equafidheotangent cone of the
point in the moduli space corresponding . Consequently, the tangent cone would
be strictly smaller than the tangent space and we would endithpa singularity.

ExAaMPLE 4.7. LetX be an elliptically fiboredK 3 surface with fibre clasg& and
sectionC. Consider the line bundlg := O(kF), k = 2. We haveh®(G) = k + 1 and
h'(G) = k — 1. CertainlyG is stable and the moduli space is a reduced point. The
rank two tautological sheafl? is also stable and the tangent space of its moduli space
at the point corresponding t6!? is isomorphic to H(X, G) ® HY(X, G)¥, which has
dimensionk? — 1. The quadratic term of the Kuranishi map vanishes idelhfidait it
is not clear if we can deforng?! along any of these infinitesimal directions.
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ExXAMPLE 4.8. We continue with the same ellipti€3 as above. From [3] we
learn that the linear system of the line bundlewith first Chern clas€C + kE has
C as a base component far> 2. We haveh®(G) = k + 1 andh'(G) = 0. Now let
p be a point on the curv€ and denote by, the corresponding ideal sheaf. We set
F = L ® Ip. Certainly F is a torsion-free rank one sheaf with nonvanishing first
Chern class. Hencg# is stable by Theorem [19, Theorem 4.2].

Theorem 4.9. The point in the moduli space corresponding & is singular.

By the above considerations we have to prove the followimgnba:

Lemma 4.10. For the exampleF? = (£L®Z,) the quadratic part of the Kura-
nishi map does not vanish.

Proof. We have to analyse the Yoneda square
Ext{(F2, Fily » Ex®(F12, Fiy,
X = XoX.
Therefore let us use Krug's formula (4) in Corollary 1.8 toiterdown the extension
groups explicitly. Note thah?(F) = 0.

Ext/(F4, 7)) ~ Ext'(F, F) @ HY(F)" ® H(F),

Ext?}(F, Fi2l) ~ Ex?}(F, F) & HY(F)” ® HAF) @ HY(F)" ® HY(F).
According to this decomposition we can decompose the Yosedare as well follow-
ing the detailed formulas in [12, Section 7]:

Ext/(F, F)®HY(F)¥ @ HY(F) — ExB(F, F)@H(F)' @ HU(F) @ HY(F)" @ HY(F),

e + a®b > eoe + (aoe)®b + a®(eobh).
N —
=0

Hence we need to show that the map
Ext'(F, F) x HY(F) — HY(F)

is not the zero map. The geometric interpretation of this risathe following: Let
e € Ext'(F,F) be an infinitesimal deformation of and¢ € H°(F) be a global section.
Theng o e is zero if and only if we can deform the sectignalonge.

It is time to return to the geometry of our example. Sinzés on the base curve
C, we have H(F) = H°(£). The deformations ofF are those ofZ,,, which correspond
to deforming the pointp in X. Now if we deformp into a direction normal taC, the
space of global sections will shrink since the point willlfed be a base point of
and thus we can find a sectigne H(F) that does not deform witke. O
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The Zariski tangent space i& ¢ 3)-dimensional and we can explicitly derive the
guadratic equation of the tangent cone. It is equivalentht intersection of a plane
(corresponding to the surface deformations) and a hypsep{the additional deforma-
tions and the curve€) in a line (the curveC).

4.3. Deformations of the manifoldX[". A question which has not been touched
so far, is the following: The manifol&[" has an unobstructed deformation theory. Does
the tautological sheaFt™ deform with X["?

The technique to answer this question is presented in [10¢§ cAh summarise
as follows:

Theorem 4.11(Huybrechts—Thomas) Let Y be a projective manifold anél a
sheaf on Y. Lek e HY(Y, Tv) = Ext}(Qy, Oy) be the Kodaira—Spencer class of an
infinitesimal deformation of Y and denote AY(E) € Ext}(&, £ ® Qy) the Atiyah class
of £. The sheaf can be deformed along if and only if

0 = obk, &) := (k ® idg) o At(E) € Ex(E, E).
For every sheaf on Y there are natural trace maps

tr: ExtY(€, £ ® Qv) — HY(Y, Q)

and

tr: Ex€(&, £) — HA(Y, Oy),
which—up to a sigh—commute with the Yoneda product. Furtieee, it is well
known that

tr(At(€)) = c1(€)

and

tr(ob(k, £)) = ob(k, detf).

Applying this theorem to our situation, we get the followipgture: The tangent
space of the Kuranishi space at the point corresponding!tbis isomorphic to

HY(XM, Tm) 2= HY(XM, Qyim) = HY(X, ©2x) & Cép.
We write a class in XM, Qym) as , a) with « € HY(X, Qx) the class of an
infinitesimal deformation of the surfac¥ and a € C. Unfortunately there is no de-
composition of the Atiyah class AH™) at hand. But we can at least study its trace

tr(At(FI)) = cy(FIM) = ¢y (F)xm — rén, where we set :=rk F. We have:

tr(ob((x, @), FI")) = ob(c, detF) —ras? € HZ(XM™, Oxw).
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But we have ob¢,detF) = «-ci(F) ands2 = 2(1—n), where we consider the Beauville—

Bogomolov pairing. Thus we see:

e If F deforms alonge, then surely the tautological she&i" deforms along«, 0).

e If the determinant line bundle dgt does not deform along, then 7!l does not

deform along £, 0).

o If k-cy(F) # 2(1—n)ra, the tautological sheafFI" does not deform alonge(a).
Thus there is an interesting hyperplane inside the spacefioitésimal deforma-

tions of X" consisting of all pairs«, a) such thatk - c1(F) = 2(1— n)ra: It is an

open question if the tautological sheaf deforms along tlusetions.
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