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Abstract
Let G be a finite group. The Smith equivalence for realG-modules of finite

dimension gives a subset of real representation ring, called the primary Smith set.
Since the primary Smith set is not additively closed in general, it is an interesting
problem to find a subset which is additively closed in the realrepresentation ring
and occupies a large portion of the primary Smith set. In thispaper we introduce
an additively closed subset of the primary Smith set by meansof smooth one-fixed-
point G-actions on spheres, and we give evidences that the subset occupies a large
portion of the primary Smith set ifG is an Oliver group.

1. Introduction

Let G be a finite group. RealG-modules (of finite dimension)V and W are
said to beSmith equivalentif there exists a homotopy sphere6 with a smoothG-
action such that6G consists of exactly two points, saya and b, and the tangential
G-representations ata and b are isomorphic toV and W, respectively. The subset
Sm(G) of the real representation ring RO(G) consisting of all elementsx D [V ] � [W]
such thatV and W are Smith equivalent realG-modules is called theSmith setof G.
The subset is not additively closed in RO(G) if G has a quotientG=N, where N GG,
isomorphic to a cyclic group of order 8, see [2, Theorem II], [3, Theorem A], [22,
p. 194, Theorem 0.2], and [15, Theorem 1].

Let S(G) denote the set of all subgroups ofG. For a subsetF of S(G), a pair
(V, W) of real G-modules is calledF -matched if resGH V and resGH W are isomorphic
for any H 2 F . Let A be a subset of RO(G) and letF and G be subsets ofS(G).
Then we denote byAG

F the subset ofA consisting of all elementsx 2 A which can be
written in the formx D [V ] � [W] such thatV L

D 0D WL for all L 2 G and (V, W)
is F -matched. Thus the equality

(1.1) AG
F D RO(G)GF \ A

holds. We use the abbreviationsAF and AG for A;

F and AG
;

, respectively.
For a prime p, let Pp(G) denote the set of all subgroups withp-power order of

G and letG{p} denote the smallest normal subgroupN of G with p-power index. Let
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P(G) denote the union ofPp(G) over all primesp and letL(G) denote the set of all
subgroupsH of G such thatH � G{p} for some primep. The subset Sm(G)P(G) of
Sm(G) is called theprimary Smith setof G. The difference Sm(G) n Sm(G)P(G) is a
finite set [15, Theorem 1]. It immediately implies the next fact.

Proposition. Let A be a subset ofSm(G). If A is additively closed inRO(G)
then it is included inSm(G)P(G).

A finite group G is called anOliver group if it is not a mod-P hyperelementary
group, i.e. if G never admits a normal seriesP E H E G such that P and G=H
are of prime power order andH=P is cyclic, cf. [6, Section 0, p. 480]. IfG is an
Oliver group with a normal Sylow 2-subgroup and has a quotient isomorphic to a cyclic
group of orderpqr for some distinct odd primesp, q and r , then Sm(G)P(G) is not
an additively closed subset of RO(G) [13, Corollary 1.2.1]. We recall the definition of
gap group in Section 2. If G is a gap Oliver group then the realization theorem in
Pawałowski–Solomon [19, p.850] implies that

Sm(G)L(G)
P(G) D RO(G)L(G)

P(G),

and hence that Sm(G)L(G)
P(G) is additively closed. In general, the set Sm(G)P(G) is larger

than Sm(G)L(G)
P(G). It is an interesting problem to find another subset of Sm(G)P(G) which

is additively closed in RO(G) and occupies a large portion of Sm(G)P(G). In this paper,
we give such a subset.

Let S(1)
h,w(G) denote the family of all smoothG-actions on homotopy spheres hav-

ing exactly one fixed point and satisfying theP(G)-weak gap condition. The def-
inition of P(G)-weak gap conditionwill be given in Section 2. Let VO(G) denote
the family of all realG-modules obtainable as the tangential representationsTa(6) of
6 2 S

(1)
h,w(G), where{a} D 6G. Now we define

DO(G) D {[V ] � [W] 2 RO(G) j V, W 2 VO(G)} [ {0}.

If G is not an Oliver group then VO(G) D ; and DO(G) D {0}. Let G\2 denote the
intersection of all subgroups ofG with index 1 or 2. By [9, Lemma 2.1], we see

(1.2) VO(G) D VO(G){G
\2} and DO(G) D DO(G){G

\2}.

Moreover, by [12, Theorem 2.1] and [9, Proposition 2.2], we have the inclusions

(1.3) DO(G)P(G) � Sm(G)P(G) � RO(G){G
\2}

P(G) .

If G is a weak gap Oliver group in the sense of [11], then we have

(1.4) DO(G)L(G)
P(G) D RO(G)L(G)

P(G) D Sm(G)L(G)
P(G).
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As an answer to the problem raised above, we will prove the next result in this paper.

Theorem 1.1. The setDO(G) is an additive subgroup ofRO(G), and hence so
is DO(G)P(G).

The following two theorems indicate that DO(G)P(G) occupies a large portion of
Sm(G)P(G) if G is an Oliver group. LetGnil denote the intersection ofG{p}, where p
ranges over all primes dividingjGj, cf. [6, Section 2, p. 486].

Theorem 1.2. Let G be a gap Oliver group. If there exists a pair(V, W) of
real G-modules such that VG

nil
D 0 D WGnil

and (R � V, W) is P(G)-matched, then
the equalities

(1.5) DO(G)P(G) D RO(G){G
\2}

P(G) D Sm(G)P(G)

hold.

We remark that using [10, Lemma 4.6], T. Sumi independently proved the equality

RO{G\2}

P(G) D Sm(G)P(G) of this theorem.

Theorem 1.3. Let G be an Oliver group satisfying GD G{2}, hence GD G\2
D

G{2}. If there exists a pair(V, W) of real G-modules such that VG
nil
D 0D WGnil

and
(R� V, W) is P2(G)-matched, then the equalities

(1.6) DO(G)P(G) D RO(G){G}

P(G) D Sm(G)P(G)

hold.

2. Gap and weak gap conditions

Let M be a smoothG-manifold and letH and K be subgroups ofG such that
H < K . The H - and K -fixed point setsM H and M K are the disjoint unions of con-
nected componentsM H

i and M K
j , respectively. We say thatM satisfies thegap condi-

tion (resp. theweak gap condition) for (H, K ) if the inequality

dim M H
i > 2 dim M K

j(2.1)

(resp. dimM H
i � 2 dim M K

j )(2.2)

holds wheneverM H
i � M K

j . Let F be a set of subgroups ofG. If M satisfies the gap
condition (resp. the weak gap condition) for all (H, K ) with H 2 F and H < K � G
then we say thatM satisfies theF -gap condition(resp. theF -weak gap condition).
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For a realG-module V and a setG of subgroups ofG, if the triviality V H
D 0

holds for all H 2 G then we say thatV is G-free. If G has anL(G)-free realG-module
satisfying theP(G)-gap condition thenG is called agap group.

Proposition 2.1. Let G be a finite group such thatP(G)\L(G) D ;. Let V, W,
V1 and W1 be L(G)-free real G-modules such that[V ]� [W] D [V1]� [W1] in RO(G).
If V1 and W1 satisfy theP(G)-weak gap condition then there exists anL(G)-free real
G-module U such that V�U and W�U satisfy theP(G)-weak gap condition.

Proof. Let l be a natural number such thatl � max(dimV, dimW), and setV2 D

V1�R[G]L(G)
�l and W2 D W1�R[G]L(G)

�l . TheseV2 and W2 areL(G)-free realG-
modules satisfying theP(G)-weak gap condition. We can regardV � V2 and W �W2

up to isomorphisms. We can readily check the equality ([V2]� [V ])� ([W2]� [W]) D 0,
and hence the realG-modulesV2 � V and W2 �W are isomorphic. SetU D V2 � V .
Then U is an L(G)-free realG-module, andV � U D V2 and W � U � W2 satisfy
the P(G)-weak gap condition.

If for any P(G)-matched pair (V, W), i.e. resGP V � resGP W for all P 2 P(G),
of L(G)-free real G-modules, there exists anL(G)-free real G-module U such that
V�U and W�U both satisfy theP(G)-weak gap condition, thenG is called aweak
gap group. This definition of weak gap group agrees with that given in [11, p. 627]
by Proposition 2.1 under the conditionP(G) \ L(G) D ;. It is readily shown that
any gap groupG is a weak gap group. Further information of gap groups is found in
[16, 28, 29, 30].

Let G be a set of subgroups ofG and V a real G-module. Then we denote by
VG the smallestR-submodule ofV such thatVG

� V L for all L 2 G. With respect to
someG-invariant inner product onV , V is decomposed to the direct sum

V D VG
� VG .

If all minimal elements ofG are normal inG then VG and VG are realG-modules. In
the case whereG D {H}, we use the abbreviationsV H andVH for VG andVG , respect-
ively. We can regardV H andVH as realNG(H )-modules. By [6, Theorem 2.3], we see
that R[G]L(G) satisfies theM(G)-weak gap condition, whereM(G) D S(G) n L(G).

3. Preliminaries

In this section we describe two lemmas which have not been stated so far but are
readily obtained from known results. These lemmas are useful in our study of Smith
equivalence.

Lemma 3.1. Let G be an Oliver group, let V be anL(G)-free real G-module sat-
isfying theP(G)-weak gap condition, and set WD V�R[G]L(G)

�3. Then W belongs to
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VO(G), i.e. there exists a smooth G-action on a homotopy sphere6 such that6G
D {a},

Ta(6) � W, and6 satisfies theP(G)-weak gap condition.

Proof. First recall thatR[G]L(G)
�3 is admissible in the sense of [11, Definition 6.1]

and facilitatesG-surgery. LetY be the unit disk ofW with respect to someG-invariant
inner product onW. Then Y satisfies theP(G)-weak gap condition. By [11, The-
orem 5.1], we obtain aG-framed map

f 0 D ( f 0 W D ! Y, b0 W T(D)� "D(Rl )! f 0�T(Y)� "D(Rl ))

such that� f 0 W �D ! �Y is the identity map on�Y, f 0 W D ! Y is a homotopy equiva-
lence, andDG

D ;. ThenD satisfies theP(G)-weak gap condition because dimTx(D)H
D

dimTf 0(x)(Y)H for all x 2 D andH 2 S(Gx), whereGx is the isotropy subgroup ofG at x
in D. Thus, the manifold6 D Y [

�

D obtained by gluingY andD along the boundaries
is a homotopy sphere,6G consists of one point,Ta(6), wherea 2 6G, is isomorphic to
W, and6 satisfies theP(G)-weak gap condition.

Theorem 3.2 (cf. [11, Theorem 1.8]). If G is a weak gap Oliver group then the
equalities

(3.1) DO(G)L(G)
P(G) D RO(G)L(G)

P(G) D Sm(G)L(G)
P(G)

hold.

Proof. By (1.3), it suffices to show RO(G)L(G)
P(G) � DO(G). Let x 2 RO(G)L(G)

P(G).
We can writex in the form x D [V ] � [W] with L(G)-free real G-modulesV and
W. Since G is a weak gap group, there exists anL(G)-free real G-module U such
that V � U and W � U satisfy theP(G)-weak gap condition. By Lemma 3.1,V1 D

V � U � R[G]L(G)
�3 and W1 D W � U � R[G]L(G)

�3 belong to VO(G). Clearly we
have x D [V1] � [W1]. Thus x belongs to DO(G).

We need the next for further study of DO(G).

Lemma 3.3. Let G be an Oliver group and M a compact smooth G-manifold
fulfilling the following conditions.
(1) For each L2 L(G), M L is a closed manifold.
(2) M satisfies theP(G)-weak gap condition.

(3) [resG
{e} T(M)] D 0 ineKO(M).

(4) For any prime p and P2 Pp(G), [resG
P T(M)] D 0 ineKOP(M)(p).

Then there exist a natural number N such that for an arbitraryinteger n� N, there
exist smooth G-actions on a disk D and a sphere S possessing the following properties.
(i) M � D � S.
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(ii) DG
D MG

D SG.
(iii) For any x2 MG, Tx(D) � Tx(M)� R[G]L(G)

�n
� Tx(S).

(iv) D and S satisfy theP(G)-weak gap condition.
If M satisfies theP(G)-gap condition then(iv) can be improved to
(iv)0 D and S satisfy theP(G)-gap condition.

This lemma follows from [12, Section 4, Proof of Theorem 2.1].

4. Proof of Theorem 1.1

We can assume thatG is an Oliver group without any loss of generality. Letx,
y 2 DO(G). We can writex and y in the form x D [V1] � [W1] and y D [V2] � [W2]
with V1, V2, W1, W2 2 VO(G). Next take homotopy spheres6i and4i with smooth
G-actions such that6G

i D {ai } and4G
i D {bi }, Tai (6i ) D Vi and Tbi (4i ) D Wi , and

6i and4i satisfy theP(G)-weak gap condition, fori D 1, 2. Let Mi and Ni be the
G-regular neighborhoods of

[

L2L(G)

6

L
i

and
[

L2L(G)

4

L
i

in 6i and 4i , respectively. ThenMi and Ni satisfy the conditions (1) and (2) in
Lemma 3.3, and hence so doM1 � M2 and N1 � N2. By [12, Lemma 3.1 (7)], we
can readily check thatMi and Ni , and furthermoreM1 � M2 and N1 � N2 also, sat-
isfy the conditions (3) and (4) in Lemma 3.3. By Lemma 3.3, there exist smoothG-
actions on spheresS1 and S2 such thatSG

1 D {a} and SG
2 D {b}, wherea D (a1, a2)

and b D (b1, b2), Ta(S1) � V1� V2 and Tb(S2) � W1�W2, and S1 and S2 satisfy the
P(G)-weak gap condition. ThusxC y D [V1� V2] � [W1�W2] belongs to DO(G).

5. Proof of Theorem 1.2

It suffices to show that RO(G){G
\2}

P(G) � DO(G). Let x 2 RO(G){G
\2}

P(G) . We can write

x in the from x D [M1] � [M3] with {G\2}-free realG-modulesM1 and M3. In this
proof, let K denoteGnil . For i D 1, 3, we set

Ni D V � ((R� V)
 M K
i ),

Ui D R� Ni ,

UiC1 D W� (W
 M K
i ).
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Then NK
1 � M K

1 , U K
2 D 0, NK

3 � M K
3 , U K

4 D 0, and (U1, U2) and (U3, U4) areP(G)-
matched. Then we can rewritex in the form

x D [N1�W1] � [N3�W3]

for some{K }-free realG-modulesW1 and W3. Set

V1 D N1�W1

and

V3 D N3�W3.

Then we haveV1 D (U1�R)�W1 and V3 D (U3�R)�W3. Thus we get the situation
required in [10, Proof of Lemma 4.6]. LetA be anL(G)-free realG-module satisfy-
ing the P(G)-gap condition. In [10, Proof of Lemma 4.6], for eachi D 1, 3, and for
sufficiently large (arbitrary) natural numbersa and b, we have obtained a diskDi and
a sphere6i with smoothG-actions such thatDi � 6i , DG

i D {xi } D 6
G
i , and

Txi (6i ) D Vi � A�a
� R[G]L(G)

�b.

The G-manifold 6i is obtained by means of [10, Proof of Lemma 4.5] and hence6i

satisfies theP(G)-gap condition. Thusx D [Tx1(61)]� [Tx3(63)] belongs to DO(G).

6. Proof of Theorem 1.3

We prove Theorem 1.3 in a slightly generalized form, that is,we prove the next
theorem.

Theorem 6.1. Let G be an Oliver group and set KD Gnil and N D G{2}. If
there exists a pair(V, W) of {K }-free real N-modules such that(R�V, W) is P2(N)-
matched, then the inclusions

(6.1) indG
N(RO(N){N}

P(N)) � DO(G){N}

P(G) � Sm(G){N}

P(G)

hold.

Proof. By the existence of the pair (V, W) stated in the theorem,K possesses a
subquotient isomorphic to a dihedral group of order 2p with odd prime p. Thus any
subgroupH containingK is not of prime power order.

It suffices to show that indGN(RO(N){N}

P(N)) � DO(G). Let x 2 RO(N){N}

P(N). We can
write x in the from x D [M1] � [M3] with {N}-free realN-modulesM1 and M3. Since
N=K is supersolvable, by [26, 8.5, Theorem 16] we can decomposeM K

i to the direct sum

M K
i D

M

j

indN
Hi , j

Mi , j



1010 M. MORIMOTO

for some subgroupsHi , j F K i , j � K of N and faithful realHi , j =K i , j -modulesMi , j of
dimension 2, whereHi , j =K i , j are cyclic groups of odd order. Fori D 1, 3, we set

Ni , j D resN
Hi , j

V � ((R� resN
Hi , j

V)
 Mi , j ),

Ui , j D R� Ni , j ,

UiC1, j D resN
Hi , j

W� (resN
Hi , j

W
 Mi , j ).

Then N
Hi , j

i , j D 0 and (Ui , j , UiC1, j ) is P2(Hi , j )-matched for eachi D 1, 3.

Let Pi , j D P(U K
i , j ) be the real projective space associated withU K

i , j , and 
i , j the
canonical line bundle ofPi , j , where i D 1, 3. Let "B(F) denote the product bundle
over B with fiber F . Set

�i , j D 
i , j 
U K
i , j ,

�i , j D (
i , j 
Ui , j K )� (
?i , j 
UiC1, j ),

�i , j D �i , j � �i , j (D (
i , j 
Ui , j )� (
?i , j 
UiC1, j )),

where 
i , j � 

?

i , j D "Pi , j (U
K
i , j ) and i D 1, 3. By [23, Theorem 2], or alternatively by

[24, Theorem 1], we have
i , j
�4
� "Pi , j (R

�4) as realHi , j -vector bundles. This implies

4[
i , j ] D 0, 4[
?i , j ] D 0 and 4[�i , j ] D 0 ineKOHi , j (Pi , j ). If P is a 2-subgroup ofHi , j then

res
Hi , j

P �i , j � res
Hi , j

P (
i , j � 

?

i , j )
 res
Hi , j

P Ui , j

� res
Hi , j

P "Pi , j (U
K
i , j 
Ui , j ),

and [�i , j ] D 0 ineKOP(res
Hi , j

P Pi , j ). Thus we get

[�i , j ] D 0 in eKO(res
Hi , j

{e} Pi , j )

and

[�i , j ] D 0 in eKOP(res
Hi , j

P Pi , j )(p) for all primes p and P 2 Pp(Hi , j ).

Let Ei , j be the total space of the disk bundleD(� 0i , j ) associated with the realHi , j -
vector bundle

�

0

i , j D �i , j � "Pi , j (R[Hi , j ]K
�ai , j ),

where ai , j is a natural number. For anyP 2 P(Hi , j ), since K 6� P, res
Hi , j

P R[Hi , j ]K

has a direct summand isomorphic toR[ P]. Thus for a sufficiently large natural number
ai , j , Ei , j satisfies the following conditions.
(1) EK

i , j D PK
i , j .
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(2) T(Ei , j )jPi , j � "Pi , j (R) � �i , j � "Pi , j (R[Hi , j ]K
�ai , j ).

(3) res
Hi , j

{e} T(Ei , j ) is isomorphic to a product bundle.

(4) res
Hi , j

P T(Ei , j )�qi , j (P) are (P-equivariantly) isomorphic to product bundles for all
primes p and P 2 Pp(Hi , j ), whereqi , j (P) is a natural number prime top.
We consider theN-manifold

Z(1)
i D

Y

j

indN
Hi , j

Ei , j ,

where indN
Hi , j

Ei , j D MapHi , j
(N, Ei , j ) is the multiplicative induction ofEi , j , i.e.

MapHi , j
(N, Ei , j ) D { f W N ! Ei , j j f (ga�1) D a f (g) for all g 2 N, a 2 Hi , j }

with the N-action

N �MapHi , j
(N, Ei , j )! MapHi , j

(N, Ei , j )

given by

(b, f ) 7! bf I (bf )(g) D f (b�1g)

for b 2 N, f 2 MapHi , j
(N, Ei , j ), and g 2 N. The N-fixed point set ofZ(1)

i consists of
one point,xi say. Then we can rewritex in the form

x D [Tx1(Z
(1)
1 )�W1] � [Tx3(Z

(1)
3 )�W3]

with {K }-free realN-modulesW1 and W3. Set Z(2)
i D Z(1)

i � D(Wi ). It is clear that

(i) resN
{e} T(Z(2)

i ) � resN
{e} "Z(2)

i
(Rn) for some integern,

(ii) [resN
P T(Z(2)

i )] D 0 ineKOP(Z(2)
i )(p) for all primes p and P 2 Pp(N).

For sufficiently large (arbitrary) integerl ,

Z(3)
i D Z(2)

i � D(R[N]L(N,G)
�l )

satisfies theP(N)-gap condition, where

L(N, G) D {H 2 S(N) j H � N \ G{q} for some primeq}.

Set

Zi D indG
N Z(3)

i .

Thus by Lemma 3.3, for each sufficiently large (arbitrary) integer n, there exists a
smoothG-action on a sphereSi such that
(a) SG

i D ZG
i (D {(xi , 0)}),

(b) T(xi ,0)(Si ) � Txi (Zi )� R[G]L(G)
�n,
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(c) Si satisfies theP(G)-weak gap condition.
Thus indGN x D [T(x1,0)(S1)] � [T(x3,0)(S3)] belongs to DO(G).
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