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Abstract

Let G be a finite group. The Smith equivalence for ré&&amodules of finite
dimension gives a subset of real representation ring, ccdlie primary Smith set.
Since the primary Smith set is not additively closed in gehet is an interesting
problem to find a subset which is additively closed in the megresentation ring
and occupies a large portion of the primary Smith set. In gaper we introduce
an additively closed subset of the primary Smith set by medrsmooth one-fixed-
point G-actions on spheres, and we give evidences that the subsgpies a large
portion of the primary Smith set i is an Oliver group.

1. Introduction

Let G be a finite group. Realz-modules (of finite dimension) and W are
said to beSmith equivalentf there exists a homotopy sphe® with a smoothG-
action such thatz® consists of exactly two points, say and b, and the tangential
G-representations aa and b are isomorphic toV and W, respectively. The subset
Sm(G) of the real representation ring RGY consisting of all elementg = [V] —[W]
such thatV and W are Smith equivalent reab-modules is called th&mith setof G.
The subset is not additively closed in R&)(if G has a quotienG/N, whereN < G,
isomorphic to a cyclic group of order 8, see [2, Theorem I8, Theorem A], [22,
p. 194, Theorem 0.2], and [15, Theorem 1].

Let S(G) denote the set of all subgroups &. For a subsetfF of S(G), a pair
(V, W) of real G-modules is calledF-matched if re§ V and re§ W are isomorphic
for any H € F. Let A be a subset of R@) and letF and G be subsets of(G).
Then we denote byégr the subset ofA consisting of all elementg € A which can be
written in the formx = [V] —[W] such thatV- = 0= W' for all L € G and {, W)
is F-matched. Thus the equality

(1.1) A =RO@G)% N A

holds. We use the abbreviatiods- and A9 for A% and A7, respectively.
For a primep, let Pp(G) denote the set of all subgroups wititpower order of
G and letG!P! denote the smallest normal subgrodpof G with p-power index. Let
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1004 M. MORIMOTO

P(G) denote the union of,(G) over all primesp and let£(G) denote the set of all
subgroupsH of G such thatH D G'® for some primep. The subset Sn®)p(c) of
Sm(G) is called theprimary Smith sebf G. The difference SnG) \ Sm@G)p(c) is a
finite set [15, Theorem 1]. It immediately implies the nexttfa

Proposition. Let A be a subset oBm(G). If A is additively closed irRO(G)
then it is included inNSM@G)p(g).

A finite group G is called anOliver groupif it is not a mod# hyperelementary
group, i.e. if G never admits a normal seridg8 << H <1 G such thatP and G/H
are of prime power order an#i /P is cyclic, cf. [6, Section 0, p.480]. I is an
Oliver group with a normal Sylow 2-subgroup and has a qubigmorphic to a cyclic
group of orderpqr for some distinct odd primep, q andr, then SmG)p) is not
an additively closed subset of RG) [13, Corollary 1.2.1]. We recall the definition of
gap groupin Section 2. IfG is a gap Oliver group then the realization theorem in
Pawatowski—Solomon [19, p.850] implies that

SMG)7E) = ROG)HQ),

and hence that Sr@()g((g)) is additively closed. In general, the set S8 () is larger

than SmG)f,(((é)). It is an interesting problem to find another subset of Gjw{g) which
is additively closed in RG%) and occupies a large portion of SB¥p(g). In this paper,
we give such a subset.

Let GE&(G) denote the family of all smootks-actions on homotopy spheres hav-
ing exactly one fixed point and satisfying tlI¥&(G)-weak gap condition. The def-
inition of P(G)-weak gap conditiorwill be given in Section 2. Let VG&) denote
the family of all realG-modules obtainable as the tangential representafig(is) of
T € 6{1,(G), where{a} = £¢. Now we define

DO(G) = {[V] — [W] € RO@G) | V, W € VO(G)} U {0}.

If G is not an Oliver group then V@) = ¢ and DOG) = {0}. Let G"? denote the
intersection of all subgroups @& with index 1 or 2. By [9, Lemma 2.1], we see

(1.2) VO@G) = VO(G)!®™ and DOE) = DO(G)¢™.

Moreover, by [12, Theorem 2.1] and [9, Proposition 2.2], wgehthe inclusions
n2

(1.3) DOG)p(e) C SMG)p(e) C ROG)ng -

If G is a weak gap Oliver group in the sense of [11], then we have

(1.4) DOG)ng) = ROG)pG) = SMG)A)-
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As an answer to the problem raised above, we will prove the result in this paper.

Theorem 1.1. The setDO(G) is an additive subgroup oRO(G), and hence so
is DO(G)p(c)-

The following two theorems indicate that DG)pc) occupies a large portion of
Sm@G)pg) if G is an Oliver group. LetG" denote the intersection a@B!P!, where p
ranges over all primes dividings|, cf. [6, Section 2, p.486].

Theorem 1.2. Let G be_ a gap OIiv_er group. If there exists a pdW, W) of
real G-modules such that ' = 0 = WS" and (R @ V, W) is P(G)-matched then
the equalities

n2
(1.5) DOG)p(e) = ROG)rc) = SMG)r(o)
hold.

We remark that using [10, Lemma 4.6], T. Sumi independentbywed the equality
RO%DG(:;)} = Sm@G)p(c) of this theorem.

Theorem 1.3. Let G be an Oliver group satisfying & G!?, hence G= G"? =
G2, If there exists a pai(V, W) of real G-modules such that®' = 0= WS" and
(R & V, W) is P,(G)-matched then the equalities

(1.6) DOG)r(e) = ROG)re) = SMG)r(e)
hold.

2. Gap and weak gap conditions

Let M be a smoothG-manifold and letH and K be subgroups of5 such that
H < K. The H- and K-fixed point setsM" and MK are the disjoint unions of con-
nected components!™ and M ]K respectively. We say thd¥l satisfies thegap condi-
tion (resp. theweak gap conditionfor (H, K) if the inequality

(2.2) dimM™ > 2dimMf
(2.2) (resp. dimM" > 2 dim M)
holds wheneveM,* > M]-K. Let F be a set of subgroups @. If M satisfies the gap

condition (resp. the weak gap condition) for all (K) with H € F andH < K <G
then we say thaM satisfies theF-gap condition(resp. theF-weak gap condition
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For a realG-moduleV and a setG of subgroups ofG, if the triviality VH =0
holds for allH € G then we say thaV is G-free If G has anl(G)-free realG-module
satisfying theP(G)-gap condition thers is called agap group

Proposition 2.1. Let G be a finite group such th&(G) N L(G) = 3. Let V, W,
V; and W be £(G)-free real G-modules such thf/] —[W] = [V1] —[W4] in RO(G).
If V, and W satisfy theP(G)-weak gap condition then there exists A(G)-free real
G-module U such that WU and W@ U satisfy theP(G)-weak gap condition.

Proof. Letl be a natural number such tHat max(dimV, dimW), and setV, =
Vi ®R[G],)® andW, = W; ® R[G] ) ®'. TheseV, and W, are £(G)-free real G-
modules satisfying thé(G)-weak gap condition. We can regaxtiC V, and W C W,
up to isomorphisms. We can readily check the equal¥g]d[V]) — (W] —[W]) =0,
and hence the redb-modulesV, — V and W, — W are isomorphic. Set) =V, — V.
ThenU is an £(G)-free realG-module, andV & U =V, and W & U =~ W, satisfy
the P(G)-weak gap condition. ]

If for any P(G)-matched pair \{, W), i.e. re§ V = ress W for all P € P(G),
of L(G)-free real G-modules, there exists afi(G)-free real G-module U such that
VU andW e U both satisfy theP(G)-weak gap condition, thef is called aweak
gap group This definition of weak gap group agrees with that given if, [pb. 627]
by Proposition 2.1 under the conditicA(G) N L(G) = @. It is readily shown that
any gap groupG is a weak gap group. Further information of gap groups is doim
[16, 28, 29, 30].

Let G be a set of subgroups @& and V a real G-module. Then we denote by
V9 the smallesR-submodule ofV such thatv9 > V' for all L € G. With respect to
some G-invariant inner product oV, V is decomposed to the direct sum

V=VigV;.

If all minimal elements ofG are normal inG thenV¥¢ and Vg are realG-modules. In
the case wherg = {H}, we use the abbreviationg" andVy for V9 and Vg, respect-
ively. We can regard/H andVy as realNg(H)-modules. By [6, Theorem 2.3], we see
that R[G] () satisfies theM (G)-weak gap condition, wherd1(G) = S(G) \ L(G).

3. Preliminaries

In this section we describe two lemmas which have not bedrdsto far but are
readily obtained from known results. These lemmas are ugefaur study of Smith
equivalence.

Lemma 3.1. Let G be an Oliver grouplet V be anL(G)-free real G-module sat-
isfying theP(G)-weak gap conditionand set W=V @R[G]g(e)%. Then W belongs to
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VO(G), i.e. there exists a smooth G-action on a homotopy sphResech thatx® = {a},
Ta(Z) = W, and X satisfies theP(G)-weak gap condition.

Proof. First recall thaR[G]L(G)893 is admissible in the sense of [11, Definition 6.1]
and facilitatesG-surgery. LetY be the unit disk ofW with respect to som&-invariant
inner product onW. ThenY satisfies theP(G)-weak gap condition. By [11, The-
orem 5.1], we obtain &-framed map

f'=(f:D—Y,b: T(D)®ep(R') = F*T(Y) D ep®")

such thato f': 9D — 9Y is the identity map odY, f’: D — Y is a homotopy equiva-
lence, andd® = @. ThenD satisfies thé?(G)-weak gap condition because dlig(D)" =
dimT¢o(Y)™ for all x € D andH € S(Gy), whereGy is the isotropy subgroup & atx
in D. Thus, the manifold&® = Y U, D obtained by gluingr and D along the boundaries
is a homotopy sphere;© consists of one poinfl,(X), wherea € %€, is isomorphic to
W, andX satisfies thé”?(G)-weak gap condition. ]

Theorem 3.2(cf. [11, Theorem 1.8]) If G is a weak gap Oliver group then the
equalities

(3.1) DOG)5g) = ROG)AE) = SMG)A)

hold.

Proof. By (1.3), it suffices to show RG()%((%)) C DO(G). Letx € RO(G)f,((g)).
We can writex in the form x = [V] — [W] with £(G)-free real G-modulesV and
W. Since G is a weak gap group, there exists &(G)-free realG-module U such
thatV @ U and W @ U satisfy theP(G)-weak gap condition. By Lemma 3.3; =
V @& U ®R[C]zc)* andW; = W @ U & R[G]c)®® belong to VOEG). Clearly we
have x = [V1] — [W1]. Thus x belongs to DOG). O

We need the next for further study of DGY.

Lemma 3.3. Let G be an Oliver group and M a compact smooth G-manifold
fulfilling the following conditions.
(1) For each Le £(G), M! is a closed manifold.
(2) M satisfies theP(G)-weak gap condition.
(3) [re, T(M)] = 0 in KO(M).
(4) For any prime p and Pe Py(G), [resg T(M)] =0in ’K\ép(M)(p).
Then there exist a natural number N such that for an arbitrarieger n> N, there
exist smooth G-actions on a disk D and a sphere S posses&rfglkbwing properties.
i) MmcbcsS.
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(i) DG = MC = s°,

(i) For any xe M€, Ty (D) =~ Tx(M) ® R[G] )" = Tx(9).

(iv) D and S satisfy thé®?(G)-weak gap condition.

If M satisfies theP(G)-gap condition ther(iv) can be improved to
(iv)’ D and S satisfy thé>(G)-gap condition.

This lemma follows from [12, Section 4, Proof of Theorem 2.1]

4. Proof of Theorem 1.1

We can assume thd is an Oliver group without any loss of generality. Let
y € DO(G). We can writex andy in the formx = [V;] — [W1] and y = [V5] — [W5]
with Vi, Vo, Wi, W, € VO(G). Next take homotopy spheres; and E; with smooth
G-actions such thaB® = {a} and E® = {bj}, T4 (%) = Vi and T, (Ei) = W, and
% and g; satisfy theP(G)-weak gap condition, fof = 1, 2. Let M; and N; be the
G-regular neighborhoods of
U =

LeL(G)

U

LeL(G)

and

L
i

1]

in ¥; and E;, respectively. ThenM; and N; satisfy the conditions (1) and (2) in
Lemma 3.3, and hence so dd; x M, and N; x N,. By [12, Lemma 3.1 (7)], we
can readily check thaM; and N;, and furthermoreM; x M, and N; x N, also, sat-
isfy the conditions (3) and (4) in Lemma 3.3. By Lemma 3.3 r¢hexist smoothG-
actions on sphere§; and S, such that$ = {a} and SZG = {b}, wherea = (a;, a)
andb = (by, by), Ta(S) = Vi d Vo and Tp(S) = W1 & W,, and S and S satisfy the
P(G)-weak gap condition. Thug +y = [V;1 ® Vo] — [W1 @ W5] belongs to DOG). [

5. Proof of Theorem 1.2

It suffices to show that RGK)%G(HGZ)} C DO(G). Letx € RO(G)%S(HGZ)}. We can write

x in the from x = [M4] — [M3] with {G"?}-free realG-modulesM; and Ms. In this
proof, let K denoteG™. Fori =1, 3, we set

Ni =V & (RaV)® M),
U =R N,
Uiy = W (W® MF).
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Then Nf =~ MK, UK =0, N¥ =~ MX, UK =0, and Uy, U;) and Us, Us) are P(G)-
matched. Then we can rewritein the form

X =[Ny & Wi] — [Nz & W;]
for some{K}-free realG-modulesW; and W;. Set

Vi=N1 & W,
and
V3 = N3 @ Ws.

Then we havev; = (U —R)d W; and V3 = (U3 —R) @& W3. Thus we get the situation
required in [10, Proof of Lemma 4.6]. LeA be an£(G)-free realG-module satisfy-
ing the P(G)-gap condition. In [10, Proof of Lemma 4.6], for eath= 1, 3, and for
sufficiently large (arbitrary) natural numbeasand b, we have obtained a disk; and
a spherex; with smoothG-actions such thab; C %, Df = {x} = £°, and

Txi(zi) =V, ® A% ©® R[G]L(G)$b.

The G-manifold X; is obtained by means of [10, Proof of Lemma 4.5] and heBce
satisfies theP(G)-gap condition. Thux = [Ty, (£1)] — [Tx,(Z3)] belongs to DOG). [

6. Proof of Theorem 1.3

We prove Theorem 1.3 in a slightly generalized form, thatws, prove the next
theorem.

Theorem 6.1. Let G be an Oliver group and set Kk G" and N = G!Z, If
there exists a paifV, W) of {K}-free real N-modules such thé&R & V, W) is Po(N)-
matched then the inclusions

(6.1) inc§ (RO(N) ) € DOG)Rs) € SMG) (s,
hold.

Proof. By the existence of the pai¥ (W) stated in the theorenK possesses a
subquotient isomorphic to a dihedral group of ordgr ®ith odd prime p. Thus any
subgroupH containingK is not of prime power order.

It suffices to show that ifR(RO(N)3 L)) C DO(G). Let x € RO(N)R k. We can
write X in the fromx = [M;] — [M3] with {N}-free realN-modulesM; and M3. Since
N/K is supersolvable, by [26, 8.5, Theorem 16] we can decomptSeo the direct sum

MiK = @ il’]dHLJ Mi,j
j
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for some subgroups$i; ; > K; ; D K of N and faithful realH; j /K; j-modulesM; ; of
dimension 2, whereH; j/K; ; are cyclic groups of odd order. For= 1, 3, we set

Ni,j = re:ﬁm V(R reé}‘i‘i V) ® M),
U, =R®N;,
Ui+l,j = re#}"w W D (reﬂi’i W® MI,J)

Then Ni’Hji'j =0 and U j, Ui;1,j) is P2(H; j)-matched for each = 1, 3.

Let Bj = P(Ui*fj) be the real projective space associated \M’;ﬁ and y;; the
canonical line bundle of?, j, wherei = 1, 3. Leteg(F) denote the product bundle
over B with fiber F. Set

Tji=%,® Uilﬁ-a
vij =) ®Uij) @ (5 ® Uig),
Ei=t;0u; (=0®Ui)e W) ®Ui))),
where i} @ y5 = ep (U) andi = 1, 3. By [23, Theorem 2], or alternatively by

[24, Theorem 1], we have; ;%4 =~ 8p|‘i(R®4) as realH; j-vector bundles. This implies
4[y,;1 =0, 4[yi%j] =0and 4f ;] =0in II‘-(\O,HM(PLJ'). If P is a 2-subgroup oH; ; then

res” &, = reg () @ 1) @ res” Uy |
~ reg ep, (U ® Ui ),

and i ;] = 0 in KOp(ress” B, ;). Thus we get

[6]=0 in KO(resy' R ;)
and
[£;1=0 in KOp(req' P ;) for all primes p and P e Py(H ).
Let E;,; be the total space of the disk bund(y ;) associated with the reat; ;-

vector bundle
v =i ®ep, (R[H; ] ),

wherea j is a natural number. For an € P(H; ), sinceK ¢ P, res,.'j"‘ R[Hi Ik
has a direct summand isomorphicR§P]. Thus for a sufficiently large natural number
& j, Ei,; satisfies the following conditions.

1) Eil,<j = PIKJ
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(2 T(Elp, ®er,(R) =& ®ep, (R[H;, ]k ®*).
3) re i T(E;,j) is isomorphic to a product bundle.
%e} J

(4) res'.j"" T(E;,;)®%(P) are (P-equivariantly) isomorphic to product bundles for all

primes p and P € Pp(H; ), whereq; ;(P) is a natural number prime tp.
We consider theN-manifold

Zi(l) = l_[ inDHi‘j Eij,
j

Whereinoﬂm E,= MapHM(N, Ei ;) is the multiplicative induction off; ;, i.e.
Mapy, (N, Eij)={f: N—E ;| f(ga™')=af(g) for all ge N, a € Hi;}

with the N-action
N x Mapy, (N, Ei j) > Mapy, (N, Ei j)
given by
(b, f) > bf; (bf)(g) = f(b'g)

forbeN, f e MapH‘j(N, Eij), andg € N. The N-fixed point set oni(l) consists of
one point,x; say. Then we can rewritg in the form

X = [T (ZM) @ Wil — [T,(Z) @ Wi

with {K}-free realN-modulesW; and Ws. SetZ® = z® x D(W). It is clear that
(i) resy T(Z?) = reg), s,@(R") for some integen,
(i) [resN T(Z@)] = 0 in KOp(Z?)p for all primes p and P € Py(N).

For sufficiently large (arbitrary) integer
2 = 2 x DR[N]0 ™)

satisfies theP(N)-gap condition, where

L(N,G) ={H e S(N) | H > NNG'% for some primeq}.
Set
z =in§z®.

Thus by Lemma 3.3, for each sufficiently large (arbitrarydeger n, there exists a
smoothG-action on a spher& such that

@ ¢ =2Z¢ (= {6, 0)),
(b) Tx.0(S) = T (Z) ® R[C] )",
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(c) S satisfies theP(G)-weak gap condition.
Thus in(ﬁ X = [Tpq,00(S1)] — [Tixs,00(S3)] belongs to DOG). ]
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