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Abstract
For every odd integec > 21, we raise an example of a prime component-
preservingly amphicheiral link with the minimal crossingmberc. The link has
two components, and consists of an unknot and a knot which-Jsafhphicheiral
with odd minimal crossing number. We call the latter knoS@imenow knotWe
also show that the Stoimenow knot is not invertible by thexAreer polynomials.
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1. Introduction

Let L = K;U---UK, be an oriented-component link inS*. A 1-component link
is called a knot. For an oriented knét, we denote the orientation-reversed knot by
—K. If ¢ is an orientation-reversing homeomorphism$f so thate(Ki) = &,()Ks()
foralli =1,...,r wheregg = + or —, ando is a permutation of1,2,...,r}, thenL
is called an £, . .., &;o0)-amphicheiral link A term “amphicheiral link” is used as a
general term for aneg, ..., & ;o)-amphicheiral link. Ifp can be taken as an involution
(i.e. 92 = id), thenL is called astrongly amphicheiral link. Ifo is the identity, then
an amphicheiral link is called aomponent-preservingly amphicheiral linknd o may
be omitted from the notation. If everw = ¢ is identical for alli =1,...,r (including
the case that is not the identity), then are{, ..., ;o)-amphicheiral link is called an
(e)-amphicheiral link. We use the notatiors= +1 =1 and— = —1. For the case of
invertibility, we only replacep with an orientation-preserving homeomorphism S5t
We refer the reader to [19, 4, 6, 7, 8, 9].

The minimal crossing number of an alternating amphichdird is known to be
even (cf. [8, Lemma 1.4]) from the positive answer for tihging conjecturedue to

2010 Mathematics Subject Classification. 57M25, 27M27.
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W. Menasco and M. Thistlethwaite [13]. The flyping conjectisene of famous Tait's
conjectures on alternating links, and it is also called'aibnjecture 1l in [17]. The
positive answer for the flyping conjecture implies those ait'§ conjecture | on the
minimal crossing number (cf. [14]), and Tait's conjectuteoh the writhe (cf. [15]).
A. Stoimenow [17, Conjecture 2.4] sets a conjecture:

“Amphicheiral (alternating?) knots have even crossing number.

as Tait's conjecture IV by guessing what Tait had in mind. (lait has not stated it
explicitly). We pose the following conjecture:

Conjecture 1.1 (a generalized version of Tait's conjecture IV)The minimal cross-
ing number of an amphicheiral link is even.

For the case of alternating amphicheiral links, Conjectlr® is affirmative as men-
tioned above from the answer for Tait's conjecture Il. Heiitcenotivates to find an
amphicheiral link with odd minimal crossing number. If thezxists a counter-example
for Conjecture 1.1, then it should be non-alternating.

A non-split link is prime if it is not a connected sum of non-trivial links. We as-
sume that a prime link is non-split. There exists a prime aofgiral knot with min-
imal crossing number 15 in the table of J. Hoste, M. Thistletitwvand J. Weeks [5],
which gives a negative answer for Conjecture 1.1 (the aeigifait'’s conjecture V).
The knot is named L4950 (Fig. 1). Stoimenow [18] showed that for every odd integer
¢ > 15, there exists an example of a prime amphicheiral knot withimal crossing
numberc. The casec = 15 corresponds to khggo We call the sequence of knots
Stoimenow knotgsee Section 3). He also pointed out that there are no suadhpes
for the casec < 13.

The first author and A. Kawauchi [9], and the first author [S8tedmined prime
amphicheiral links with minimal crossing number up to 11.ehthere are two prime
amphicheiral links with odd minimal crossing numbers narégdand 1%,,, (Fig. 2),
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where we use modified notations from Rolfsen’s table [16] dhdktlethwaite’s table

on the web site maintained by D. Bar-Natan and S. Morrison These examples show
that Conjecture 1.1 is negative for links. Since bofh &d 1%,,, are not component-
preservingly amphicheiral, we ask the following questiseq also Question 5.5):

QUESTION 1.2. Is there a prime component-preservingly amphichdinél with
odd minimal crossing number?

If we remove ‘prime’ from Question 1.2, then we can obtain atogy examples by
taking split sum of a Stoimenow knot and an unknot, or coretestum of Stoimenow
knot and the Hopf link. Our main theorem is an affirmative ams¥or Question 1.2
which is a negative answer for Conjecture 1.1:

Theorem 1.3. For every odd integer ¢ 21, there exists a prime component-
preservingly amphicheiral link with minimal crossing nuenlx (Fig. 10).

Our example is a 2-component link with linking number 3 whasgnponents are a
Stoimenow knot and an unknot. We prove it in Section 4. Theofpis divided into

three parts such as to show amphicheirality, to determiaartmimal crossing humber,
and to show primeness. We can immediately see its amphédityeiby construction.

Though to find the way of linking of the two components was reasy, to determine
the minimal crossing number is easy by the help of Stoimesoesult [18] (cf. The-
orem 3.1). In [18], to determine the minimal crossing numbad to show prime-
ness of his knot were very hard. Finally we show primeness digguthe Kauffman
bracket (cf. Subsection 2.1). This part is also eased bynf&todw’s result. In Sec-
tion 5, by R. Hartley [2], R. Hartley and A. Kawauchi [3], and Kawauchi [10]'s

necessary conditions on the Alexander polynomials of aofghial knots, we show
that a Stoimenow knot is not invertible (Theorem 5.4).
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2. Link invariants

2.1. Kauffman bracket. Let L be anr-component oriented link, and a dia-
gram of L. Firstly we regardD as an unoriented diagram. On a crossingf a
spliceis a replacement from the left-hand side (the crossing) ¢oripht-hand side as
in Fig. 3. Precisely, a@pliceis to the upper right-hand side, and ao-spliceis to
the down right-hand side, respectively. The resulting idiagis astate and it is a dia-
gram of an unlink without crossings. Letbe a state|s| the number of components of
s, to(s) the number of 0-splices to obtas) t,.(s) the number ofco-splices to obtain
S, t(s) = to(S) —to(S), and S the set of states fronD. Let A be an indeterminate, and
d=—-A?—- A2 Then

(D) =) AOdFTez[A AT
seS

is the Kauffman brackeof D, and
(2.1) fL(A) = (-A%™O)(D)

is the f-polynomialof L wherew(D) is the writhe of D as an oriented diagram. Then
fL(A) is an invariant ofL, and

(2.2) VL) = fL(tY?) e z[tY?, 1717

is the Jones polynomiabf L. We denote(D) as (D)(A) when we emphasis it as a
function of A. We have the following facts:

Lemma 2.1. Let L be an r-component oriented linknd D a diagram of L.
(1) The Kauffman bracketD) is an invariant of L up to multiplications of—A3). In
particular, if we substitute a root of unity for A and take its absoluteugathen it is
an invariant of L, which is a non-negative real number.
(2) We have the following skein relatig¢Rig. 4) which can be an axiom of the Kauffman
bracket
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Fig. 5. Skein relation II.

@) Let Lj (i =1,2)be alink D; a link diagram of L, and D, I D, (L; LI Lo,
respectively the split sum of B and D, (L, and Ly, respectively. Then we have

(D1 O D2) = d(D1){D2), fr,u,(A) =d- fL,(A)fL(A).

(4) Let L (i =1, 2)be alink D; a link diagram of L, and D; g D, (L1 Lo, re-
spectively the connected sum of,0and D, (L; and Ly, respectively. Then we have

(D18 D2) = (D1)(D2),  fLys,(A) = fi, (A) fL,(A).

(5) We have a skein relation as Iig. 5:
(6) Let D* (L*, respectivelybe the mirror image of OL, respectively. Then we have

(D)(A) = (D)(A™), fu-(A) = fL(AT).

(7) fL(A) e A2 . Z[ A%, A4,

(8) Let ¢ be a primitive8-th root of unity (i.e. ¢* = —1 and ¢® = 1). Suppose that
the number of the crossing number of D is even. THB¢) is an integer or of the
form +/—1 x (intege), which depends on r and the writhe. In particyldor r = 1,
(D)(¢) is an integer if and only if the writhe i® (mod 4)

(9) Let¢ be a primitive8-th root of unity. Then we havgD)(¢)| = |VL(-1)].

Lemma 2.1 (8) is obtained from (7) and (2.1), and it is a specése of (1).
Lemma 2.1 (9) is obtained from (2.2).

Let T, be anm-half twist tangle form € Z, and T, a tangle in Fig. 6.

By Lemma 2.1 (2), (3), (4) and (5), we have the following:

Lemma 2.2. (1) We have

(Tm) = Am(T0> + om(A)(Teo),
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Fig. 7. Skein triple.

where
m-2 1- (_A74)m

am(A) = A T-CAd)

(2) a-m(A) = am(A™).
(3) Let ¢ be a primitive8-th root of unity. Then we have

am(é‘) = m;m—z

and

am(¢) - am(g) = m%.

2.2. Alexander and Conway polynomials. Let L be an oriented link, and a
diagram ofL. Pick a crossing of D. If ¢ is a positive crossing (a negative crossing,
respectively), then we denote by L, (L_, respectively). Ifc is smoothed with pre-
serving the orientation, then we dendieby Lo. We call a pair [, L_, Lg) a skein
triple (Fig. 7).

For an oriented link., the Conway polynomiabf L is denoted by (z) which is
an element ofZ[z]. For a skein triple L., L_, Lo), the Conway polynomial is defined
by the following skein relation:

Vi.(@—-VL (9 =2V(2, Vo(2 =1,
where O is the trivial knot.

Lemma 2.3. Let L be an r-component oriented linknd L* the mirror image
of L. Then we have

Vi« (Z) =VL (—Z).
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Fig. 8. Generatop; of braid group, ands; and §;.
More precisely Vi :(2) = V_(2) if r is odd, and V «(2) = =V (2) if r is even.

For anr-component oriented link., the (ormalized one variab)eAlexander poly-
nomial A (t) is defined by

AL(t) = V(Y2 —t7V?) e Z[tV?, 7Y,

For A, B € Z[tY?,t=%2], A = B implies A = t™2B for somem € Z. For f,g e
Z[Z] or Z[tY2,t71/?], if they are equal as elements i (dZ)[z] or (Z/dZ)[tY/?,t~1/?],
then we denote byf =4 g. For an oriented link_, if V| (z) and A (t) are regarded as
elements in Z/dZ)[Z] and Z/dZ)[tY/?, t~1/?] respectively, then we call them thaod
d Conway polynomiabf L and themod d Alexander polynomiadf L respectively.

3. Stoimenow knots

Leto; (i=1,...,m—1) be a generator of them-string braid group, and; and
8 (i=1,...,m—1) tangles in Fig. 8. For an odd number> 15, a Stoimenow knot
with crossing numben, denoted bys,, is the closure of the following composition of
oi,8 ands (i=1,...,m—1):

3 -1 2 3% 4 3 2 -1 (-2 (=3 4 -2 (n=4k+11),
85 —1 2 3% 4 -3 2 -1 (-2 (=32 4 &, (n=4k+13),

where in the sequence abova,= 5, o; is translated intd and oi‘l is translated into
—i, andi' implies thati is repeated times withl > 1. The former isof typel, and

the latter isof typell, respectively. Note thats = 15524950 in Fig. 1, and both two
tangles above haven ¢-1) crossings. We can see strong){amphicheirality ofS, from

its diagram with § + 1) crossings in the righthand side of Fig. 9.
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Fig. 9. Stoimenow knof,.

Theorem 3.1 (Stoimenow [17, 18]) A Stoimenow knot ,Sis a prime strongly
(—)-amphicheiral knot with minimal crossing number n.

4. Proof of Theorem 1.3

We take a 2-component link, = §, U U whose components are a Stoimenow
knot S, and an unknotJ as in Fig. 10. The link_, is of typel if S, is of type I, and
is of typell if S, is of type Il. We prove thal, is a prime component-preservingly
ampbhicheiral link with minimal crossing numbar+6, wheren+6 is odd withn+6 >
21 becausen is odd withn > 15.

Proof of Theorem 1.3. By the righthand side of Fig. 10, is a component-
preservingly strongly , +)-amphicheiral link.
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Fig. 10. Prime component-preservingly amphicheiral llok

The linking number ofL,, Ik(Ly), is 3 by a suitable orientation. Le{ -) denote
the minimal crossing number of a link. Since

¢(Ln) = ¢(&) +c(U) + 2[lk(Ln)| = n + 6,

and the lefthand side of Fig. 10 realizes the lower bound, axeb(L,) =n+ 6 and
it is odd.

Finally we show that_, is prime by using the Kauffman bracket. Suppose that
is not prime. ThenL, is a connected sum of two links such that one is a Stoimenow
knot S, and the other is a 2-component link with unknotted compaant with link-
ing number 3 by Theorem 3.1. Hen¢k,) should be divisible by S,) by Lemma 2.1
(4). We compute(L,)(¢) and ($3)(¢), where¢ is a primitive 8-th root of unity. By
Lemma 2.1 (4) and (8),(Ln)(¢)| should be divisible by($)(¢)].
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Fig. 11. Splices ofL,.

To compute(S,) and (L), we setKk = §, andL = L,, and we denote the results
of splicings by Koo, Koso, Kooos Koosor L0os Losos Loco @Nd Loeo, respectively as in
Fig. 11. Here we drew only the type | case. We can obtain the typcase in a
similar way.

Then by Lemma 2.2 (1), we have:

K) = (Koo) + A ez (A)(Koso) + A% a_ak(A)(Koco)

—

4.1)
+ azk(A)a—Zk(AxKoooo)
and
4.2) (L) = (Loo) + A arz(A)(Los) + A%a_a(A)(Loco)

+ azk(A)a—Zk(A)“—oooo)-
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We can see thaKgp and K, are amphicheiral knot diagrams with writhe Rg,, =
(Kso0)*, the writhe of Koy is —10, the writhe of Ko is 10, Lo and Lo are 2-
component amphicheiral link diagrams with writhe 6y, = (Lo0)*, the writhe of
Low IS —4, and the writhe ofL, is 16. By Lemma 2.1 (6), we have
Koo(A) = Koo(A™),  Kaoso(A) = Kaoao(A™),  Kaco(A) = Koso(A™),
Loo(A) = Loo(A ™), Looso(A) = Laose(A™), and Loo(A) = Los(A D).
By Lemma 2.2 (2) A%*a_x(A) can be obtained by replacingwith A= in A=a (A).
By straight calculations using Lemma 2.1 and Lemma 2.2, we:ha
(type 1)
(Koo) = A0 —4AY2 L 6A8 —7TA* +9—7TA* + 6A 8 —4A12 4 A716
(Kose) = —A¥® + 3AM _5A10 1 6A° —7A% 1 A2 —5A° + 47710

(4.3) A A718’
(Koooo) = A —3A2 1 5A% _6A* + 7—6A* + 5A 8 —3A712 L A6,
(Log) = —A%° + 4A16 — A2 1 12/ — 16A* + 16— 16A™* + 12A°8
—8A 124 g4pa 16 Afzo’
” (Lose) = A?2 —3A8 1 A — 9A10 4 12A° — 12A% 4 11A2 —9A®
’ + 5A10 _3a-14 _ A—ze,
(Looso) = —A%0 4 3A16 _ 7A12 4 10A% — 13A% + 14— 13A % + 10A8
—7A 2 1 3716 A20,
(type 1)
(Koo) = —A% + 4A0 —9A12 1 14A8 — 17A% + 19— 17A* + 14A°8
—AP AN AT
@5) (Koso) = A?2 — 4A8 1 10AM — 15A19 4 19A° — 22A% + 20A 2 — 18A®

+ 12A710 _7A714 L A1 A2
(Koooo) = —2A%0 + 6A — 13A12 4 21A8 — 24A% + 28— 24A7* + 21A78
—13A 22 4 A 6 _2A° 20,
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(Loo) = A2 — 5A0 4 13A16 _ 24A12 | 35A8 — 44A% + 46— 44A74
+ 35A~8 —24A712 4 13A16 _5A-20 4 A4
(Loss) = —AZ + 4A%2 — 11A8 4 20A — 31A10 4 40A° — 42A2 + 42A2
—33A %4+ 24A 10 _13A 4 4 5AI8_ A6 4 A0
(Looso) = A% —5A20 1 14A16 _ 27A2 4 38A8 — 50A% 4+ 50 — 50A~*
+38A8 —27A12 4 14A°16 _5A20 4 A4

(4.6)

We substituteA = ¢ to (4.1) and (4.2). We set? = +/—1. By Lemma 2.2 (2)
and the arguments above, we have

4.7) (K) () = (Koo)(¢) — 4Kv/=1(Kooo) (¢) + 4kZ(K sosc) (£)
and
(4.8) (L)(@) = (Loo)(¢) — kv =L{Loso) (¢) + 4K? (L scoo) (2.
By (4.3), (4.4), (4.5) and (4.6), we have
(type 1)
(Koo)(¢) =
(4.9) (Koso)(¢) = —39J_
(Koo ) (¢) = 37.
{Loo)(¢) = 98,
(4.10) (Loso)(¢) = —70vV—1,
(Losoo)(¢) = 82.
(type 1)

Koo)(¢) = 109,

{
(4.11) (Koo ) (2) = —132¢/—1,
(Koo ) (¢) = 160.
{Loo)(¢) = 290,
(4.12) (Loso)(2) = —264v-1,
{

L oooe ) (§) = 320.
By (4.7), (4.8), (4.9), (4.10), (4.11) and (4.12), we have
(type 1)
(K)(¢) = 1482 — 156k + 45,
(L)(¢) = 32&32 — 280k + 98.
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(type 1)
(K)(¢) = 640k? — 528 + 109,

(L)(¢) = 128> — 1056k + 290.

Note that 1482 — 156k + 45 and 642 — 528 + 109 are odd and 3%8 — 280k + 98
and 128@2 — 1056 + 290 are of the form 2(odd), and they are positive fdt > 1.
Hence if 1482 — 156k + 45 divides 3282 — 280k + 98 (642 — 52& + 109 divides
1282 — 1056k + 290, respectively), then 148— 156k + 45 divides 164> — 14k + 49
(640k? — 528 + 109 divides 64R? —528& + 145, respectively), and the quantity is odd.
(type 1)

Suppose that 164 — 14k + 49 is divisible by 1482 — 156k + 45. Since

(164> — 140k + 49) — (148> — 156k + 45) = 16k + 16k + 4 > 0,
the quantity is not 1. Since
3(1482 — 156k + 45) — (164> — 140k + 49) = 28(k? — 328 + 86 > 0,

the quantity is not greater than 1. It is a contradiction.

(type 1)
Suppose that 648 — 528 + 145 is divisible by 64R? — 528 + 109. Since

(640k? — 528 + 145)— (640k? — 528 + 109) = 36 > 0,
the quantity is not 1. Since
3(64k? — 528 + 109)— (640k* — 528 + 145) = 128k? — 1056 + 182> 0,
the quantity is not greater than 1. It is a contradiction. 0

REMARK 4.1. In [12], the second author computes the J polynomialtschware
modified Jones polynomials, &, and L, explicitly. The J polynomial is an invariant
of unoriented links.

5. Non-invertibility of Stoimenow knots

In this section, we show that a Stoimenow kriftis not invertible by using the
Alexander polynomials. Sinc&, is (—)-amphicheiral, we show that it is not+{-
amphicheiral, which is equivalent to that it is not inveetbl

Let L be a link, andA, (t) € Z[t, t71] the Alexander polynomial olL. For two
elementsA and B in Z[t, t™Y ((Z/dZ)[t, t~Y], respectively), we denote by = B
(A =4 B, respectively) if they are equal up to multiplications oial units. A one
variable Laurent polynomial(t) € Z[t*1] is of type Xif there are integers > 0 and
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%> 3 such thaw is odd, andfi(t) € Z[t,t™"] (i =0,1,...,n) such thatfi(t) = fi(t™),
| fi(1) = 1, and fori > 0, fi(t) =2 fo(t)? p(t)* " where p;(t) = (t* — 1)/(t — 1), and

L [ fot? (n=0),
(5.1 rt) = {fo(t)z fi(t)--- fot) (n>1).

R. Hartley [2], R. Hartley and A. Kawauchi [3], and A. Kawau¢hO] gave necessary
conditions on the Alexander polynomials of amphicheirabtien

Lemma 5.1 (Hartley [2]; Hartley and Kawauchi [3]; Kawauchi [10]) (1) Let K
be a (—)-amphicheiral knot. Then there exists an elemefi) € Z[t, t~*] such that
[f(1) =1, f(t™) = f(-t), and

Ax(td) = @) FE Y.

(2) Let K be a(+)-amphicheiral knot. Then there exist(t) € Z[t,t~] of type X and
a positive odd numbew; (j = 1,..., m) such that

A (t) = [ ri).

j=1
In particular, if K is hyperboli¢ then we can take re= 1 and a; = 1.

We generalize Stoimenow knots as in Fig. 12. The lefthand Edcalled agener-
alized Stoimenow link of typle and is denoted b)Sll)vq. The righthand side is called a

generalized Stoimenow link of typle and is denoted b)&%s. The numbers in rectangles
are the numbers of half twists. We note t@‘;ﬂ( = Si411 and Sf'k = Sir13. We de-
note the Alexander polynomials (the Conway ponnomiaIs)SbE and S}Z’S by A%(t)
and A@(t) (V) (2) and VA(2)), respectively. We compute(zf()z,((t) and Aff?((t) as the
mod 2 Alexander polynomials.

Lemma 5.2. The Alexander and the madl Alexander polynomials of3S,, and
§, are as follows

=, (t2 4+t + P2 ¥ %l 3t 4 1),
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type I type II
— - / N og / N
0

L /gJ;\ |

\

1 2
P4 7,8

Fig. 12. Generalized Stoimenow Iinl@%yq and Sr%S.
AQ(t) = t3(—t5 + 9t5 — 26t* + 373 — 2612 + 9t — 1)

— 2kt?(t — 1)%(2t5 — 7t + 15t — 183 + 152 — 7t + 2)
+ K2t — 1210 — 3t° + 7t® — 177 + 3% — 40¢® + 324 — 173

+7t2 -3t +1)
e+ t5+t3+t+1 k is evep,
=2 .
2t 2 tT 8+ 5+ t3 4+t 4+ 1 (k is odd.

Proof. We have the following relations on the Conway polyramfrom the skein
relation in Subsection 2.2:

5.2) {Vgl,a(z) — V42 =2V, (),
Vo 2(2) = V(2 = 25 1 (2),
and
(5.3) v, (@ - V2@ = 2vEy(2),
' v@(z) — v@ — 7y@
r,s (Z) r,sfl(z) z r,oo(z)-

For the meaning obo, see Fig. 6.

(type 1)
From (5.2), we have:

1 - — 1 1
5.4) { ARL(D) — 17240 (1) = (-t V2P HAf ) — V2 A5 (1),

AR ) + 7240, (1) = V2P HAT ) + 2A5)1)),
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and
55) {A%{](t) +11240)0 (1) = @ ¥A)9-Hab 1) + t12a0b)),
AD0) - 2404 (0) = (-t 12T K AR 1) -t V2AN ).
From (5.4) and (5.5), we have:

(T2 + Y220 1) = (t72 = (-1)Pt P2 af)(t)
+ (P2 4 (_1)pt_(j_1)/2)AE)l,21(t)v
—(tY? + 7Y A0 1) = (1% Y2 -t 92 AL (1)
_ ((_1)qt(q—1)/2 + t_(q_l)/Z)A(;)o(t).

(5.6)

From (5.6), if p = q = 2k, then we have a skein relation among the Alexander
polynomials of S} 5, S Sto §1and St (cf. Fig. 13):
(tl/Z + t_l/Z)ZA(ZJI-(),Zk(t) — (tk—1/2 + t—k+l/2)2Ag-z)(t)
(5.7) — (Y2 4 1R AN ) - A ()
— (t* + 2280,
Since S}, and §) ; are 2-component links witl) ; = —(S} o)*, and (5.7), we have
Vi(2) =~V (@) and A1) = —a{)(t) by Lemma 2.3, and
(tl/2 + tfl/Z)ZA(;I-()'Zk(t) — (tkfl/Z + t7k+l/2)2A(()]'-)O(t)
(5.8) = 2% + (M2 + 2 AR)
— (t* + 2P 0).
Since § , = 81s,
ASUL) = Agy(t) = —t3 + 52 — 10t + 13— 10072 4+ 5t72 — 2
=P+t 1+t 2t
AWM = 3 -1 =t} + 15,
and (5.8), we have
(t + 1)2A(2}()'2k(t) s, S | pAS L pAkhd g2 gkl T g4 2 gy
= (2t + DPEHF2 % % 23t 0.

(type 1)
From (5.3), we have:

(5.9) {Vr(zs) (2) = Vea @) —rzv8y(2),

VA(2) = VA(@) + sV (2).
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type I

b)) b

0 0
— Y /w Y
5 Sy

5

1 1
50,1 1,1
Fig. 13. §4 Sto S§1and St 5.

From (5.9), we have:

N

Vi(z) = V((f())(z) - rzvg)’o(z) + szV((fgo(z) —rsZ2V@_(2).

In particular, ifr = s = k, then we have a skein relation among the Conway poly-
nomials of &, S . S0 and &, (cf. Fig. 14):

(5.10) VD = VY 2) + kxVEL(2) — VO (2) — K¥2VP (2).
Since § , and &, are 2-component links witl§ | = —(S% )",

V(‘f())(z) =-2+37+22+1,
Vor(d) = —22 ~52° - 52° - 2z,
VO (2) = 70— 7 — 18 — 157 — 47,
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type 11

b

\@o

2
S 0,0

&/f\_@

C/S y

Fig. 14. £ o F .o

and (5.10), we hav&/{?).(2) =

A = 310 + at® -
— 2kt (t — 1)7(2° —
+ k%t — 1%t —

+ 77—

. {t6+t5+t3+t+1

26t + 373 —
7t° + 154 —
3%+ 78—
3t+1)

A
de

N

/

So.

hD

’—\

/>)/

S

%0 and S

—Vg?o(z) by Lemma 2.3, and

26t 4 9t — 1)

183 + 152 —
17t + 326 —

7t +2)
40t° + 3244 —

(k is even),

PRt O T O P+ 3t 1 (k is odd).

173
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Every elementf e (Z/2Z)[t, t™Y] is of the form:
f=thpthonpo gl
whereky, ..., Ky are integers such th&h < k; < --- < kq_1 < kg. Then we define the

mod 2 trace, denoted by #(f) € Z/2Z = {0, 1}, as:

trg(f):{l (a— ka1 =1),
0 (kg —kg—1>2).

For fy, f2 € (Z/2Z)[t, t71], tra(fy f2) = tra(f1) + tro(f,). There exists an elememte
(Z/22Z)[t, t~Y] such thatf = g? if and only if everyk; (i =0,...,d) is even. Then
we call f a square polynomialand we have

g=t|<d/2+..._|_tk1/2+tko/2
and tp(f) =0.

Lemma 5.3. Let r(t) be of type X as in5.1), and @ a positive odd integer.
(1) If n =0, then r(t*) is a square polynomial. If & 1, then r(t%) is of the form

r(t*) = g*p(t*)
where ge (Z/2z)[t, t7Y] and p.(t) = (t* — 1)/(t — 1).
2) tp(rt*)=1ifand only if n>1anda = 1

Let ¢y be a primitivem-th root of unity, and®(t) € Z[t] the m-th cyclotomic
polynomial defined by

ont)= [] -z
1<i=m-1
gcd(,m)=1

The cyclotomic polynomial is a monic symmetric irreducitgelynomial overZ. For
a primeq and a positive integerr,

r

tq _1 r—1 r—1 r-1
(1) = — 979D 9 @-2) ... g
D (t) e +t +o T+ L
Since
t"—1= ] @),
d>1,d/m

we have
(5.11) =" T e

. ) =1w—7~ a(l).

dlai,dta
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Theorem 5.4. A Stoimenow knot,Sis not invertible.

Proof. We show that bot$}, , and §, with k > 1 are not ¢)-amphicheiral.
(type 1)

Suppose tham(zi)’ZK(t) satisfies the condition in Lemma 5.1 (2).

We set

ho—p t%H2 pAktl el 43 g
andm = " with an odd primeq > 3 andr > 1. Then
(5.12) t + 1245 5 (1) =2 (2 + t + 1)*h.

Claim 1. ®p(t) is a mod2 divisor of h only if m= 3,5 or 9.

Proof. TakeQ(t), R(t) € (Z/2Z)[t,t™] such thath =, ®,(t)Q(t) + R(t). We can
take R(t) of the form:

R(t) = t4*3 4942 4 td 3 4t + 1

where—m/2 < d < m/2. The span ofR(t) is less tharm/2 4 3.

Case 1l r > 2 except the case(r) = (3, 2).

Since the degree ob(t) is g ~(q — 1) which is greater than'/2+ 3, R(t) =0
should be hold. However it does not occur.

Case2 (,r)=(3,2) (m=9).

R(t) is not mod 2 divisible by®g(t) = t® + t2 4 1 except the casd = 4.

CAase3 r =1.

We check only the casen = 3,5 and 7. The casm = 7 does not occur. Hence
we have the result. O

Claim 2. h is mod2 divisible by ®3(t) if and only if k= 0 (mod 3) h is mod
2 divisible by ®5(t) if and only if k=1 (mod 5) h is mod2 divisible by ®4(t) if and
only if k= —1 (mod 9)

Proof. h is mod 2 divisible by®s(t) if and only if 4k + 1 =1 (mod 3) which
is equivalent tok = 0 (mod 3).

h is mod 2 divisible by®s(t) if and only if &k +1=0 (mod 5) and k—1=3
(mod 5) which is equivalent t& = 1 (mod 5).

h is mod 2 divisible by®y(t) if and only if 441 =6 (mod 9) which is equivalent
to k = —1 (mod 9). O

Claim 3. ®5(t) is a mod2 divisor of h if and only if k= —5 (mod 15) ®45(t)
is not a mod2 divisor of h.
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Proof. For®q5(t) =t —t7 +t>—t* 4+t —t + 1, we only check the cases
d = +5,4+6 and+7. For the casesR(t) is mod 2 divisible by®5(t) if and only if
4k — 1= —6 (mod 15) which is equivalent tk = —5 (mod 15).

For @,5(t) = t24 —t2L + 15 —t12 1 t9 3 4 1, we only check the caseb= +21
and +£22. For the casedR(t) is not mod 2 divisible byd 45(t). ]

Claim 4. p,(t%) is a mod2 divisor of h only if p(t) = ®3(t) =t +t + 1,
ps(t) = ®@5(t) =t* +t3 +t2 +t + 1 or ps(t3) = Bg(t) =6 +t3 4+ 1.

Proof. By Claim 1, Claim 2, Claim 3 and (5.11), we have the ltesu ]

By Lemma 5.2, we have ztfﬂ(z}(),Zk(t)) = 1. By Lemma 5.3, Claim 1, Claim 2,
Claim 3, Claim 4 and (5.12) is of the form:

h =, g?ps(t), g°ps(t) or g?ps(t)ps(t?)

for someg € (Z/2Z)[t, t%]. However we have

h
m=2t4k+---+t5+t4+t2+l
for k =0 (mod 3),k > 3,
h

e R L

for k=1 (mod 5),k > 6, and

h
%8 .o t541241
Grorertrnerern 20 T TEEES
for k = 26 (mod 45),k > 26 are not square polynomials. It is a contradiction.

(type 1)
Suppose tham(k?ll(t) satisfies the condition in Lemma 5.1 (2).

By Lemma 5.2, we havezt('A(k?,)((t)) = 1. By Lemma 5.3, there exists an odld> 3
such thatp; (t) is a mod 2 divisor ofA(kﬁ)((t). If k is odd, then there is no such(check

only the cases. = 3, 5, 7, 9, 11). Hence we suppose tlkais even. Since
AR =2 (P +t+ 1),

we havelr = 3. By the forms (5.1) and Lemma 5.1 (24)&%10) is of the form:

(5.13) AZ(1) = ra)rat)rat)
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wherer;(t) = ri(t ™), |ri(1)] = 1 andri(t) =, t2+t+1 (i = 1,2,3). That is,aZ)(t) is
decomposed into at least three non-trivial factor<Zim, t=1]. We setd; as the degree
(span) ofri(t) (i =1, 2, 3), and assuméy, < d, < d3;. There are two cases:

Casel k=0 (mod 4).

By Lemma 5.2, we have the mod 8 Alexander polynomial:

AQ() =g to—t° + 24 + 35 + 22—t + 1.

Sincet? £t +1 andt? £ 3t + 1 are not mod 8 divisors ofA{)(t), the case does
not occur.

CAse 2 k=2 (mod 4).

By Lemma 5.2, we have the mod 8 Alexander polynomial:

AQUt) =g 412+ 41 4 30 18— 267 — 30— 25 +t4 4 3% + 4t + 4
=g (12—t + 1)(4t10 + 4% —t7 + 4t° 4 3t° + 4t* — 3 + 4% + 4).

We sets = 4t10 4 4t8 —t7 4 4t6 + 3t5 4 4t* —t3 + 4t 4+ 4. In this case, thé&-degree

of A(k?li(t) is 12 which is equal to the mod 8 degree of it. By the assumptibere
are three cases for the tripley(dy, d3): (di, da, d3) = (2, 2, 8), (2, 4, 6) or (4, 4, 4).
The possibilities of the degree 2 mod 8 factors &re-t + 1 andt? & 3t + 1. Since
t2+t+1 andt?+ 3t + 1 are not mod 8 divisors of, s is decomposed ints = s;5,
such that the degrees sf ands, are 4 and 6 respectively, they are both irreducible,
ands; =, s, =, t?+t + 1. By (5.13),s; ands, are of the form:

st =g 2+t @t Fagt +2 =2+t + 1,
S =g 2t + byt + bot* + bat® + bt + bt + 2 =5t2+t 4+ 1

where a;, ay, b, and bs are odd, andd; is even. Then the 9-th coefficient ofs, is
odd (non-zero). However it contradicts the form of ]

At the end of the paper, we raise refined questions realteld @itestion 1.2:

QUESTION 5.5. (1) Is there a prime component-preservingly amphiahdink
with odd minimal crossing number less than 217
(2) Is there a prime component-preservingb)-&mphicheiral link with odd minimal
crossing number?

About (1), we have already known that there are no such exasript the case that the
minimal crossing number 11 (cf. [8]). If we need to use an amphicheiral knot with
odd minimal crossing number, then the minimal crossing remsiould be greater than
or equal to 19 from primeness. Under the restriction, if ¢hexists an examplé
for Question 5.5 (1) with minimal crossing number 19, theris a 2-component link
such that
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(i) its components are a knot with minimal crossing numberab8l the unknot,

(i) k(L) =0, and

(iii) on its diagram realizing the minimal crossing numbés components are also
realizing the minimal crossing numbers (i.e. 15 and 0).

About (2), our examplé., was a prime component-preservingly, ¢)-amphicheiral
link with odd minimal crossing number. In general, the limkinumber of a 2-component
(¢)-amphicheiral link is 0. 1%,,, in Fig. 2 is a prime £)-amphicheiral link with odd
minimal crossing number. However it is not component-prgagly (¢)-amphicheiral.
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