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Abstract
In this paper, we study the deformation of the three-dimensional conformal struc-

tures by the Ricci flow. We drive the evolution equation of theCotton–York tensor
and theL1-norm of it under the Ricci flow. In particular, we investigate the behavior
of the L1-norm of the Cotton–York tensor under the Ricci flow on three-dimensional
simply-connected Riemannian homogeneous spaces which admit compact quotients.
For a non-homogeneous case, we also investigate the behavior of the L1-norm for
the product metric of the Rosenau solution for the Ricci flow on S2 and the standard
metric of S1.

1. Introduction

Let Mn be a C1 manifold. A one-parameter family of Riemannian metricsg(t)
is called theRicci flow if it satisfies

�

�t
g D �2 Ricg .

We are interested in the properties of the Ricci flow from the viewpoint of three-
dimensional conformal geometry. More precisely, we study the deformation of the three-
dimensional conformal structures by the Ricci flow.

It is well known that the conformal flatness in dimensionn � 4 is equivalent to
the vanishing of the Weyl tensor. In dimensionn D 3, the Weyl tensor vanishes iden-
tically, and hence the conformal flatness cannot be detectedby the Weyl tensor. How-
ever, there is a conformally invariant tensor which inn D 3 plays a role analogous to
that of the Weyl tensor inn� 4. This tensor is called theCotton tensorand defined by

C3 D Ci jk WD ri Rjk � r j Rik �
1

4
(ri Rgjk � r j Rgik),

whereRi j is the Ricci tensor,R is the scalar curvature andr is the Levi-Civita connection.
It can be shown thatC3 is conformally invariant and the conformal flatness is equivalent
to C3 D 0. By a direct computation, we can see that the following properties hold:
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516 Y. UMEHARA

1. Ci jk C C j ik D 0,
2. Ci jk C C jki C Cki j D 0,
3. gi j Ci jk D gikCi jk D g jkCi jk D 0.
We can write the Cotton tensor in an algebraically equivalent form which is called the
Cotton–York tensor[17]

C2 D Ci j WD gik"
klm

�

rl Rmj �
1

4
rl Rgmj

�

D

1

2
gik"

klmClm j ,

where"i jk is a tensor constructed by using the completely anti-symmetric tensor den-
sity �klm of weight C1 with �123

D 1 and the determinant of the metric tensorg for
the given coordinate system:

"

klm
WD

�

klm

p

detg
.

The tensor" satisfies the following:
1. "i jk"

i lm
D Æ

l
j Æ

m
k � Æ

m
j Æ

l
k,

2. "i jk"
i j l
D 2Æl

k,
3. "i jk"

i jk
D 6,

4. ri "
jkl
D ri " jkl D 0.

From the relationCi jk D "i j l glmCmk, we can see that the conformal flatness is equiva-
lent to C2 D 0. The (2, 0)-tensorC2 has the following properties:
1. Ci j D C j i (symmetric),
2. gi j Ci j D 0 (trace-free),
3. r i Ci j D 0 (divergence-free/transverse),

4. jC3jg D
p

2jC2jg,
where jC3j

2
g(x) D (gi pg jq gkr Ci jk Cpqr)(x) and jC2j

2
g(x) D (gi pg jqCi j Cpq)(x). We con-

sider theL1-norm of the Cotton–York tensor on a closed Riemannian manifold (M3, g)

C(g) WD
Z

M3
jC2jg d�g,

where d�g is the volume element ofg. Note that theL1-norm of the Cotton tensor

differs from that of the Cotton–York tensor by
p

2 multiple. By the property of the
Cotton–York tensor, it is easy to see the conformal invariance of theL1-norm and the
equivalence between the vanishing of theL1-norm and the conformal flatness. If the
manifold is non-compact, we consider theL1-norm on an arbitrary compact setK

CK (g) WD
Z

K
jC2jg d�g.

We are interested in the behavior of theL1-norm under the Ricci flow.
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As a fundamental result of the Ricci flow by R. Hamilton [6], itis known that
the Ricci flow starting at an initial metric with positive Ricci curvature on a three-
dimensional closed manifold converges to a constant curvature metric up to scaling.
Since a constant curvature metric is conformally flat, we canregard this result as a con-
vergence to a conformally flat metric and a vanishing of theL1-norm of the Cotton–
York tensor. In general, the Ricci flow develops singularities, but it is not clear whether
or not the conformal structure degenerates in the sense thatthe L1-norm of the Cotton–
York tensor blows up. This observations have motivated us tolook into the properties
of the Cotton–York tensor under the Ricci flow.

C. Mantegazza, S. Mongodi, and M. Rimoldi [10] described the evolution of the
Cotton tensorC3 under the Ricci flow. By using this evolution equation, we derive
the evolution equation of the Cotton–York tensorC2 and theL1-norm of C2 (Propos-
ition 2.3 and Theorem 2.1). In particular, we investigate the behavior of theL1-norm of
the Cotton–York tensor on two separate contexts. The first isevolution of theL1-norm
under the Ricci flow on simply-connected three-dimensionalRiemannian homogeneous
spacesM D G=H which admit compact quotients. HereG is a transitive group of
diffeomorphisms ofM and H is the compact isotropy subgroup. We assume thatG is
minimal, i.e. no proper subgroup ofG acts transitively onM. The second context is
for the product metric of the Rosenau solution [15] for the Ricci flow on S2 (which
is ancient and shrinks to a round point ast % 0) and the standard metric ofS1. Note
that the product metric onS2

� S1 is also a solution to the Ricci flow. Recall the com-

plete list of the Riemannian homogeneous spacesM ([11], [16]): R3, SU(2),CIsom(R2),
CSL(2,R), the Heisenberg group,CIsom(R1

1), H3, H2
�R, andS2

�R, where the tildes de-
note the universal covering spaces,R1

1 is the two-dimensional Minkowski space,H3 is
three-dimensional hyperbolic space, andH2 is two-dimensional hyperbolic space. Since
homogeneous geometries onH3, H2

�R, and S2
�R are conformally flat, theL1-norm

of Cotton–York tensor for these geometries trivial. In the first six homogeneous spaces,
for an arbitrary left invariant metricg0, J. Milnor [11] provided a left invariant frame
field {Fi }

3
i (called theMilnor frame for g0) such that

g0 D A0!
1

 !

1
C B0!

2

 !

2
C C0!

3

 !

3

where A0, B0, C0 are positive constants and

[F2, F3] D 2�F1, [F3, F1] D 2�F2, [F1, F2] D 2�F3,

where�,�,� 2 {�1,0,1} and� � � � � are satisfied. Recall that the value of the triplet
�, �, � completely determines the corresponding Lie group for the six homogeneous
spaces. With respect to the Milnor frame, not onlyg0 but also Ricg0 are diagonalized.
As g0 and Ricg0 remain diagonalized under the Ricci flow, it follows that themetric
g(t) evolves as

g(t) D A(t)!1

 !

1
C B(t)!2


 !

2
C C(t)!3


 !

3
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Lie group Behavior of theL1-norm C(g), CK (g)
SU(2) C(g)! 0 and it has a unique local extremum ifA0=B0 < 1=2.

C(g)& 0 if 1=2� A0=B0 < 1 or 1< A0=B0.
C(g) D 0 if A0 D B0.

CIsom(R2) CK (g)& 0 if A0 ¤ B0.
CK (g) D 0 if A0 D B0.

CSL(2,R) CK (g)& 0.
Heisenberg CK (g)& 0.
CIsom(R1

1) CK (g)& 0.
R

3 CK (g) D 0.

Table 1. The behavior of theL1-norm of the Cotton–York tensor.

and that the Ricci flow equation becomes a system of three ODE’s [7] for A(t), B(t),
and C(t). J. Isenberg and M. Jackson [7] studied the behavior of the normalized Ricci
flow on all the homogeneous spaces. The behavior of the (unnormalized) Ricci flow on
those spaces was studied by D. Knopf and K. McLeod [8] (see also[3]). The Ricci
flow on R3 is trivial. It becomes asymptotically round ast % T < 1 on SU(2). It

converges to the flat space ast %1 onCIsom(R2). For the other Lie groups, the each
solution to the Ricci flow approaches a flat degenerate geometry of either two or one
dimensions ast %1. We follow the calculations as done in these previous works.

We suppose that in the case of SU(2) andCSL(2,R), the initial metricg0 satisfies
B0 D C0. The results for the six homogeneous spaces are summarized in the Table 1
(Theorems 3.2, 3.4, 3.6, 3.8 and 3.10). The main conclusionsare the following:
1. In all cases, the eachL1-norm of the Cotton–York tensor converges to zero.
2. If the initial metric g0 on SU(2) satisfiesB0 D C0 and A0=B0 < 1=2, the L1-norm
has a unique local extremum att0 with A(t0)=B(t0) D 1=2.
3. In other cases, the eachL1-norm is strictly decreasing or identically zero.
The L1-norm of the Cotton–York tensor for the product metric of theRosenau solution
and the standard metric ofS1 is strictly decreasing and converges to zero ast % 0
(Theorem 3.11).

It is interesting that in these examples theL1-norm of the solution to the Ricci
flow starting at the initial metric with non-positive scalarcurvature is strictly decreas-
ing. The following are topics for further investigation:
• The monotonicity of theL1-norm of the Cotton–York tensor (or the lack of it).
• The characterization of the Riemannian manifold at the timewhich the L1-norm
takes a local extremum.

2. The evolution equation of theL1-norm of the Cotton–York tensor

For any tensorT , S such asTi j , Si j , we definehT, Sig WD gi pg jq Ti j Spq, T2
WD

Tikgkl Tl j , divg T WD r i Ti j , and1gT WD gi j
rir j Ti j . Our goal in this section is to derive
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the following evolution equation.

Theorem 2.1. Let (M3, g(t)), 0 � t < T be a solution of the Ricci flow on a
closed manifold. Suppose the norm of the Cotton–York tensorC2 does not vanish in
M � [0, T). Then the L1-norm of C2 satisfies the following evolution equation

d

dt

Z

M
jC2jgd�g

D

Z

M

1

2jC2jg
(1gjC2j

2
g � 2jrC2j

2
g � 16hRic, C2

2ig C 6RjC2j
2
g

� 4hRic, divg Dig C 4hRic2, divg C3ig � 2hrR, divg(divg C3)ig) d�g,

where DD Di jk WD Ci j p gpqRqk.

The evolution equation of the Cotton tensorC3 under the Ricci flow is obtained
by Mantegazza, Mongodi, and Rimoldi.

Proposition 2.2 ([10]). Let (M3, g(t)) be a solution of the Ricci flow. Then the
Cotton tensor C3 satisfies the following evolution equation

�

�t
Ci jk D 1gCi jk C gpqRpj (Ckqi C Ckiq)C 5gpqRkpC j iq C gpqRpi (Cqk j C C jkq)

C 2RCi jk C 2gpqgrs RprCs jqgki � 2gpqgrs RprCsiqgk j

C

1

2
(ri jRicj2g)gk j �

1

2
(r j jRicj2g)gki C

R

2
(r j R)gki �

R

2
(ri R)gk j

C 2gpqRpir j Rqk � 2gpqRpjri RqkC Rk jri R� Rkir j R.

By using Proposition 2.2, we obtain the evolution equation of the Cotton–York tensor
C2 under the Ricci flow.

Proposition 2.3. Let (M3, g(t)) be a solution of the Ricci flow. Then the Cotton–
York tensor C2 satisfies the following evolution equation

�

�t
Ci j D 1gCi j � 5gpqRi pCq j � 5gpqCiq Rpj C 2hC2, Riciggi j C 4RCi j

C

1

2
gikg jm"

klm
rl jRicj2g C

R

2
gikg j l "

klm
rmRC 2gikgpq

"

klmRplrmRq j

C gik"
klmRjmrl R.
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Corollary 2.4. Let (M3, g(t)) be a solution of the Ricci flow. Then the squared
norm of the Cotton–York tensor C2 satisfies the following evolution equation

�

�t
jC2j

2
g D 1gjC2j

2
g � 2jrC2j

2
g � 16hRic, C2

2ig C 8RjC2j
2
g

� 4hRic, divg Dig C 4hRic2, divg C3ig � 2hrR, divg(divg C3)ig.

Proof of Proposition 2.3. Note that

�

�t
"

klm
D R"klm.

Indeed,

�

�t
"

klm
D

�

�t

�

�

klm

p

det(gi j )

�

D �

�

klm

det(gi j )
� (�R

p

det(gi j )) D R"klm.

By this equation and Proposition 2.2,

�

�t
Ci j D

1

2

�

�

�t
gik

�

"

klmClm j C
1

2
gik

�

�

�t
"

klm

�

Clm j C
1

2
gik"

klm

�

�

�t
Clm j

�

D �Rik"
klmClm j C

1

2
gik R"klmClm j C

1

2
gik"

klm

�

�

1gClm j C gpqRpm(C jql C C j lq )C 5gpqRj pCmlqC gpqRpl(Cq jmC Cmjq)

C 2RClm j C 2gpqgrs RprCsmqg j l � 2gpqgrs RprCslqg jm

C

1

2
(rl jRicj2g)g jm �

1

2
(rmjRicj2g)g j l C

R

2
(rmR)g j l �

R

2
(rl R)g jm

C 2gpqRplrmRq j � 2gpqRpmrl Rq j C Rjmrl R� Rj lrmR

�

.

We compute each term by using the identitiesCi j D (1=2)gik"
klmClm j , Ci jk D "i j l glmCmk,

and the properties ofC3, C2, ".

(1st term of RHS)D �Rik"
klm
"lmpgpqCq j D �Rik � 2Æ

k
pgpqCq j D �2Ri pgpqCq j ,

(2nd)D RCi j ,

(3rd)D
1

2
gik"

klm
1gClm j D 1g

�

1

2
gik"

klmClm j

�

D 1gCi j ,

(4th)D
1

2
gik"

klmgpqRpmC jql D
1

2
gik"

klmgpqRpm(�Cql j � Cl jq )

D �

1

2
gik"

klmgpqRpm"qlr grsCs j �
1

2
gik"

klmgpqRpm"l jr grsCsq

D �

1

2
gikgpqgrs(Æk

qÆ
m
r � Æ

k
r Æ

m
q )RpmCs j C

1

2
gikgpqgrs(Æk

j Æ
m
r � Æ

k
r Æ

m
j )RpmCsq
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D �

1

2
grs Rir Cs j C

1

2
RCi j C

1

2
hC2, Riciggi j �

1

2
gpqCiq Rpj ,

(5th)D
1

2
gik"

klmgpqRpmC j lq D
1

2
gik"

klmgpqRpm" j lr grsCsq

D

1

2
gikgpqgrs(Æk

j Æ
m
r � Æ

k
r Æ

m
j )RpmCsq D

1

2
gi j g

pqgrs RprCsq�
1

2
gir gpqgrs RpjCsq

D

1

2
hC2, Riciggi j �

1

2
gpqCiq Rpj ,

(6th)D
5

2
gik"

klmgpqRj p"mlr g
rsCsq D �

5

2
gikgpqgrs

� 2Æk
r Rj pCsq D �5gpqCiq Rpj ,

(7th)D
1

2
gik"

klmgpqRplCq jm D �
1

2
gik"

klmgpqRplC jqm D (4th),

(8th)D
1

2
gik"

klmgpqRplCmjq D �
1

2
gik"

klmgpqRplC jmq D (5th),

(9th)D 2RCi j ,

(10th)D gik"
klmgpqgrs Rpr"smag

abCbqg j l D �gikgpqgrsgabg j l (Æ
k
sÆ

l
a � Æ

k
aÆ

l
s)RprCbq

D �gpqRpiC jq C gpqCiq Rpj ,

(11th)D
1

2
gik"

kml
� (�2)gpqgrs RprCsmqg j l D

1

2
gik"

klm
� 2gpqgrs RprCsmqg j l D (10th),

(12th)D
1

4
gikg jm"

klm
rl jRicj2g,

(13th)D
1

2
gik"

klm
�

�

�

1

2
rmjRicj2g

�

g j l D
1

2
gik"

kml
�

1

2

�

rmjRicj2g

�

g j l D (12th),

(14th)D
R

4
gikg j l "

klm
rmR,

(15th)D
1

2
gik"

klm
�

�

�

R

2
rl R

�

g jm D
1

2
gik"

kml
�

R

2
(rl R)g jm D (14th),

(16th)D gikgpq
"

klmRplrmRq j ,

(17th)D
1

2
gik"

klm
� (�2)gpqRpmrl Rq j D

1

2
gik"

kml
� 2gpqRpmrl Rq j D (16th),

(18th)D
1

2
gik"

klmRjmrl R,

(19th)D
1

2
gik"

klm
� (�1)Rj lrmRD

1

2
gik"

kmlRj lrmRD (18th).

Hence, we obtain the result.
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Proof of Corollary 2.4. By Proposition 2.3,

�

�t
jC2j

2
g

D 2

�

�

�t
gi1i2

�

g j1 j2Ci1 j1Ci2 j2 C 2gi1i2g j1 j2

�

�

�t
Ci1 j1

�

Ci2 j2

D 4Ri1i2C2
i1i2 C 2gi1i2g j1 j2

�

�

1gCi1 j1 � 5gpqRi1 pCq j1 � 5gpqCi1q Rpj1 C 2hC2, Riciggi1 j1 C 4RCi1 j1

C

1

2
gi1kg j1m"

klm
rl jRicj2g C

R

2
gi1kg j1l "

klm
rmRC 2gi1kgpq

"

klmRplrmRq j1

C gi1k"
klmRj1mrl R

�

� Ci2 j2.

We compute each term by using (1=2)gik"
klmClm j , Ci jk D "i j l glmCmk, and the properties

of C3, C2, ".

(1st term of RHS)D 4hRic, C2
2ig,

(2nd)D 2gi1i2g j1 j2(1gCi1 j1)Ci2 j2 D 2h1C2, C2ig D 1gjC2j
2
g � 2jrC2j

2
g,

(3rd)D �10gi1i2gpqRi1 pC2
i2q D �10hRic, C2

2ig,

(4th)D �10g j1 j2gpqC2
q j2 Rpj1 D �10hC2

2, Ricig,

(5th)D 4hC2, Riciggi2 j2Ci2 j2 D 4hC2, RicigtrgC2 D 0,

(6th)D 8RCi1 j1g
i1i2g j1 j2Ci2 j2 D 8RjC2j

2
g,

(7th)D Æi2
k Æ

j2
m"

klm
rl jRicj2gCi2 j2 D "

klm(rl jRicj2g)Ckm D 0,

(8th)D Æi2
k Æ

j2
l R"klm

rmRCi2 j2 D R"klm(rmR)Ckl D 0,

(9th)D 4gi1i2g j1 j2gi1kgpq
"

klmRpl(rmRq j1) �
1

2
gi2a"

arsCrs j2

D 2gpq
"

i2lm
"i2rs Rpl(rmRq j1)C

rs j1
D 2gpq(Æl

r Æ
m
s � Æ

l
sÆ

m
r )Rpl(rmRq j1)C

rs j1

D �4gpqRprC
sr j1
rsRj1q D �4gpqRprrs(C

sr j1 Rj1q)C 4gpqRpr (rsC
sr j1)Rj1q

D �4hRic, divg Dig C 4hRic2, divg C3ig,

(10th)D 2gi1i2g j1 j2gi1k"
klmRj1m(rl R) �

1

2
gi2a"

arsCrs j2

D "

i2lm
"i2rs Rj1m(rl R)Crs j1

D (Æl
r Æ

m
s � Æ

l
sÆ

m
r )Rj1m(rl R)Crs j1

D 2(rr R)Crs j1 Rs j1
D 2(rr R)(�rq

r

pCpqr)

D �2hrR, divg(divg C3)ig,

where we use the identityr j
r

i Ci jk D �CklmRlm (see for example [1, p. 9]). Hence,
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we obtain the result.

Theorem 2.1 follows from Corollary 2.4 and (d=dt) d�g D �R d�g.

3. Examples of behavior of theL1-norm

3.1. The Lie group SU(2). We consider the Ricci flowg(t) starting at a left
invariant metricg0 on SU(2), and fix a Milnor frame forg0 such that� D � D � D

�1. Note that SU(2) is identified topologically with standardthree-sphere of radius one
embedded inR4.

The Ricci tensor ofg is

R(F1, F1) D 4� 2
B2
C C2

� A2

BC
,

R(F2, F2) D 4� 2
C2
C A2

� B2

C A
,

R(F3, F3) D 4� 2
B2
C A2

� C2

B A
.

Then the Ricci flow equation is equivalent to the system of ODE’s

8

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

:

d

dt
AD �8C 4

B2
C C2

� A2

BC
,

d

dt
B D �8C 4

C2
C A2

� B2

C A
,

d

dt
C D �8C 4

B2
C A2

� C2

B A
.

Proposition 3.1 ([3, Proposition 1.17]). For any choice of initial data A0, B0,
C0 > 0, the unique solution g(t) exists for a maximal finite time interval0� t < T <

1. The metric g(t) becomes asymptotically round as t% T .

Now we are interested in the behavior of theL1-norm of the Cotton–York tensor
C2. Since theL1-norm is very complicated for general initial data, we assume that
B0 D C0. Then B(t) D C(t) holds from the symmetry in the Ricci flow equation.

Theorem 3.2. For any choice of initial data A0, B0 D C0 > 0, the behavior of
the L1-norm C(g) of the Cotton–York is the following:
1. If 0 < A0=B0 < 1=2, C(g) has a unique local extremum at t0 with A(t0)=B(t0) D
1=2 and converges to zero as t! T .
2. If 1=2 � A0=B0 < 1 or 1 < A0=B0, C(g) is strictly decreasing and converges to
zero as t! T .
3. If A0 D B0, C(g) is identically zero.



524 Y. UMEHARA

Proof. In this case, the Ricci flow equation is reduced to

d

dt
AD �4

�

A

B

�2

,
d

dt
B D �8C 4

A

B
,

and the scalar curvature is

RD
2(4B � A)

B2
.

Note that A0=B0 D 1, A0=B0 < 1, and A0=B0 > 1 are preserved under the Ricci flow,
and limt%T AD limt%T B D 0 in all cases.

The Cotton–York tensor is

C2(F1, F1) D 8
A3=2

B2

�

A

B
� 1

�

, C2(F2, F2) D C2(F3, F3) D 4
A1=2

B

�

1�
A

B

�

.

Then for an arbitrary compact setK ,

Z

K
jC2(t)jg(t) d�g(t) D 4

p

6
A

B

�

�

�

�

A

B
� 1

�

�

�

�

Vol(K , gS3),

where gS3 is the standard metric of radius one onS3. In particular,

Z

S3
jC2(t)jg(t) d�g(t) D

(

4
p

6A=B(1� A=B) Vol(S3, gS3), 0< A0=B0 � 1,

4
p

6A=B(A=B � 1) Vol(S3, gS3), 1� A0=B0.

If A0D B0, C(g) is identically zero. We assume thatA0¤ B0. We show that ast % T ,
A=B% 1 if A0=B0 < 1 and A=B& 1 if A0=B0 > 1. Indeed,

d

dt

A

B
D

�4(A=B)2B � A(�8C 4(A=B))

B2
D 8

A

B2

�

1�
A

B

�

,

hence A=B is strictly increasing ifA0=B0 < 1 and strictly decreasing ifA0=B0 > 1.
Since A=B is bounded and monotone, it converges to some constant� > 0. By
l’Hôspital’ rule,

� D lim
t%T

A

B
D lim

t%T

�4(A=B)2

�8C 4(A=B)
D

�4�2

�8C 4�
.

Hence we obtain� D 1.
We define the functionsf and h on R respectively as

f (x) WD x(1� x) and h(x) WD x(x � 1).
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Since A=B % 1 if A0=B0 < 1, the function f (A=B) has a maximal value att0 with
A(t0)=B(t0)D 1=2 and f (A=B)! 0 if A0=B0 < 1=2, and f (A=B)& 0 if 1=2� A0=B0 <

1. SinceA=B & 1 if 1 < A0=B0, the functionh(A=B) & 0 if 1 < A0=B0. Hence if
0< A0=B0 < 1=2, the L1-norm C(g) has a maximal value att0 with A(t0)=B(t0) D 1=2
and converges to zero ast ! T . If 1=2� A0=B0 < 1 or 1< A0=B0, it is strictly decreas-
ing and converges to zero ast ! T .

3.2. The Lie groupCIsom(R2). We consider the Ricci flowg(t) starting at a left

invariant metricg0 onCIsom(R2), and fix a Milnor frame forg0 such that� D � D �1
and � D 0.

The Ricci tensor ofg

R(F1, F1) D �2
B2
� A2

BC
, R(F2, F2) D �2

A2
� B2

AC
, R(F3, F3) D �2

(A� B)2

AB
,

and the scalar curvature ofg is

RD �2
(A� B)2

ABC
.

Then the Ricci flow equation is equivalent to the system of ODE’s

8

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

:

d

dt
AD 4

B2
� A2

BC
,

d

dt
B D 4

A2
� B2

AC
,

d

dt
C D 4

(A� B)2

AB
.

By the direct computation, we can show (d=dt)(AB) D (d=dt)(C(AC B)) D 0.

Proposition 3.3 ([8]). For any choice of initial data A0, B0, C0 > 0, the unique
solution g(t) exists for all positive time. For any" > 0, there exists T

"

> 0 such that

jA�
p

A0B0j � ", jB �
p

A0B0j � ",

�

�

�

�

�

C �
C0

2

 

s

A0

B0
C

s

B0

A0

!

�

�

�

�

�

� "

for all t � T
"

. Moreover, as t%1, B=A% 1 if B0=A0 < 1, B=A& 1 if 1< B0=A0,
and B=AD 1 if B0=A0 D 1.

The behavior of theL1-norm of the Cotton–York tensorC2 is given by the
next result.
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Theorem 3.4. For any choice of initial data A0, B0, C0 > 0, the behavior of
the L1-norm CK (g) of the Cotton–York tensor on an arbitrary compact set K is the
following:
1. If A0 ¤ B0, CK (g) is strictly decreasing and converges to zero as t!1.
2. If A0 D B0, CK (g) is identically zero.

Proof. The Cotton–York tensor is

C2(F1, F1) D
4A

(ABC)3=2
(2A3

� B3
� A2B),

C2(F2, F2) D
4B

(ABC)3=2
(2B3

� A3
� AB2),

C2(F3, F3) D �
4C

(ABC)3=2
(AC B)(A� B)2.

Then for an arbitrary compact setK ,
Z

K
jC2jg d�g

D

�

6

�

A

B

�3

� 6

�

A

B

�2

C 2

�

A

B

�

C 6

�

B

A

�3

� 6

�

B

A

�2

C 2

�

B

A

�

� 4

�1=2

�

4(A0B0)1=2

C
Vol(K , h)

whereh D !1

 !

1
C !

2

 !

2
C !

3

 !

3.
If A0 D B0, CK (g) is identically zero. We assume thatA0 ¤ B0. We define the

function f on R as

f (x) WD

�

6

�

1

x

�3

� 6

�

1

x

�2

C 2

�

1

x

�

C 6x3
� 6x2

C 2x � 4

�1=2

.

The function f is strictly decreasing if 0< x � 1 and strictly increasing if 1< x. By
Proposition 3.3, ast %1, f (B=A)& 0 if B0=A0 < 1 and f (B=A)& 0 if 1 < B0=A0.
Clearly 1=C is strictly decreasing, henceCK (g) is strictly decreasing and converges to
zero ast !1.

3.3. The Lie groupCSL(2,R). We consider the Ricci flowg(t) starting at a left

invariant metricg0 onCSL(2,R), and fix a Milnor frame such that� D �1 and� D
� D 1.
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The Ricci tensor ofg is

R(F1, F1) D �2
(B � C)2

� A2

BC
,

R(F2, F2) D �2
(AC C)2

� B2

AC
,

R(F3, F3) D �2
(AC B)2

� C2

AB
.

Then the Ricci flow equation is equivalent to the system of ODE’s

8

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

:

d

dt
AD 4

(B � C)2
� A2

BC
,

d

dt
B D 4

(AC C)2
� B2

AC
,

d

dt
C D 4

(AC B)2
� C2

AB
.

Proposition 3.5 ([8]). For any choice of initial data A0, B0, C0 > 0, the unique
solution g(t) exists for all positive time. There exists A

1

D A
1

(A0, B0, C0) > 0 such
that for any" > 0, there exists T

"

> 0 such that

jA� A
1

j� ",

�

�

�

�

d

dt
B � 8

�

�

�

�

� ",

�

�

�

�

d

dt
C � 8

�

�

�

�

� "

for all t � T
"

.

Now we are interested in the behavior of theL1-norm of the Cotton–York tensor
C2. Since theL1-norm is very complicated for general initial data, we assume that
B0 D C0. Then B(t) D C(t) holds from the symmetry in the Ricci flow equation.

Theorem 3.6. For any choice of initial data A0, B0D C0 > 0, the L1-norm CK (g)
of the Cotton–York tensor on an arbitrary compact set K is strictly decreasing and con-
verges to zero as t!1.

Proof. In this case, the Ricci flow equation is reduced to

d

dt
AD �4

�

A

B

�2

,
d

dt
B D 4

A

B
C 8,

and the scalar curvature is

RD �
2(AC 4B)

B2
.
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The Cotton–York tensor is

C2(F1, F1) D
8A3(AC B)

(AB2)3=2
, C2(F2, F2) D C2(F3, F3) D �

4A2B(AC B)

(AB2)3=2
.

Then for an arbitrary compact setK ,

Z

K
jC2jg d�g D 4

p

6
A

B

�

1C
A

B

�

Vol(K , h),

whereh D !1

 !

1
C !

2

 !

2
C !

3

 !

3.
The function A=B is strictly decreasing and converges to zero ast !1. Indeed,

d

dt

A

B
D

�4(A=B)2B � A{4(A=B)C 8}

B2
D �8

A

B2

�

A

B
C 1

�

< 0,

and limt!1

(A=B) D A
1

=1D 0. HenceCK (g) is strictly decreasing and converges to
zero ast !1.

3.4. The Heisenberg group. We consider the Ricci flowg(t) starting at a left
invariant metricg0 on the Heisenberg group, and fix a Milnor frame forg0 such that
� D �1 and� D � D 0.

The Ricci tensor ofg is

R(F1, F1) D 2
A2

BC
, R(F2, F2) D �2

A

C
, R(F3, F3) D �2

A

B
,

and the scalar curvature ofg is

RD �2
A

BC
.

Then the Ricci flow equation is equivalent to the system of ODE’s

8

�

�

�

�

�

�

<

�

�

�

�

�

�

:

d

dt
AD �4

A2

BC
,

d

dt
B D 4

A

C
,

d

dt
C D 4

A

B
.
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Proposition 3.7 ([8]). For any choice of initial data A0, B0, C0 > 0, the unique
solution g(t) exists for all positive time. Moreover, the above system of ODE’s is solved
explicitly:

AD A2=3
0 B1=3

0 C1=3
0

�

12t C
B0C0

A0

�

�1=3

,

B D A1=3
0 B2=3

0 C�1=3
0

�

12t C
B0C0

A0

�1=3

,

C D A1=3
0 B�1=3

0 C2=3
0

�

12t C
B0C0

A0

�1=3

for t 2 (�B0C0=A0,1).

The behavior of theL1-norm of the Cotton–York tensorC2 is given by the
following:

Theorem 3.8. For any choice of initial data A0, B0, C0 > 0, the L1-norm CK (g)
of the Cotton–York tensor on an arbitrary compact set K is strictly decreasing and
converges to zero as t!1.

Proof. The Cotton–York tensor is

C2(F1, F1) D
8A2

BC

r

A

BC
, C2(F2, F2) D �

4A2

C
p

ABC
, C2(F3, F3) D �

4A2

B
p

ABC
.

Then for an arbitrary compact setK ,

Z

K
jC2(t)jg(t) d�g(t) D 2

p

6
A2

BC
Vol(K , h)

D 2
p

6A2=3
0 B1=3

0 C1=3
0

�

12t C
B0C0

A0

�

�4=3

Vol(K , h),

whereh D !1

 !

1
C !

2

 !

2
C !

3

 !

3.
HenceCK (g) is strictly decreasing and converges to zero ast !1.

3.5. The Lie groupCIsom(R1
1). We consider the Ricci flowg(t) starting at a left

invariant metricg0 onCIsom(R1
1), and fix a Milnor frame forg0 such that� D �1,

� D 0, and� D 1.
The Ricci tensorg is

R(F1, F1) D �2
C2
� A2

BC
, R(F2, F2) D �2

(AC C)2

AC
, R(F3, F3) D �2

A2
� C2

AB



530 Y. UMEHARA

and the scalar curvature ofg is

RD �2
(AC C)2

ABC
.

Then the Ricci flow equation is equivalent to the system of ODE’s

8

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

:

d

dt
AD 4

C2
� A2

BC
,

d

dt
B D 4

(AC C)2

AC
,

d

dt
C D 4

A2
� C2

AB
.

By the direct computation, we can show (d=dt)(AC) D (d=dt)(B(C � A)) D 0.

Proposition 3.9 ([8]). For any choice of initial data A0, B0, C0 > 0, the unique
solution g(t) exists for all positive time. For any" > 0, there exists T

"

> 0 such that

jA�
p

A0C0j � ", jC �
p

A0C0j � ",

�

�

�

�

d

dt
B � 16

�

�

�

�

� "

for all t � T
"

. Moreover, as t%1, A=C% 1 if A0=C0 < 1, A=C& 1 if 1< A0=C0,
and A=C D 1 if A0=C0 D 1.

Now we are interested in the behavior of theL1-norm of the Cotton–York ten-
sor C2.

Theorem 3.10. For any choice of initial data A0, B0, C0 > 0, the behavior of the
L1-norm CK (g) of the Cotton–York tensor on an arbitrary compact set K is strictly
decreasing and converges to zero as t!1.

Proof. The Cotton–York tensor is

C2(F1, F1) D
4A(AC C)

B
p

ABC

�

2
A

C
C

C

A
� 1

�

,

C2(F2, F2) D
4(AC C)
p

ABC

�

C

A
�

A

C

�

,

C2(F3, F3) D �
4C(AC C)

B
p

ABC

�

2
C

A
C

A

C
� 1

�

.

Then for an arbitrary compact setK ,

Z

K
jC2jg d�g D

4(AC C)

B

�

6
A

C

�

A

C
� 1

�

C 6
C

A

�

C

A
� 1

�

C 8

�1=2

Vol(K , h),
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whereh D !1

 !

1
C !

2

 !

2
C !

3

 !

3.
We show that (AC C)=B is strictly decreasing and converges to zero ast !1.

Indeed,

d

dt

AC C

B

D

{4(C2
� A2)=(BC) � 4(A2

� C2)=(AB)}B � (AC C){(AC C)2
=(AC)}

B2

D �

8(A3
C A2C C AC2

C C3)

AB2C
< 0,

and limt!1

(AC C)=B D 2
p

A0C0=1D 0.
If A0 D C0, the L1-norm CK (g) is reduced to

Z

K
jC2jg d�g D

8
p

2(AC C)

B
Vol(K , h).

HenceCK (g) is strictly decreasing and converges to zero ast !1. We assume that
A0 ¤ C0. We define the functionf on R as

f (x) WD

�

6x(x � 1)C 6
1

x

�

1

x
� 1

�

C 8

�1=2

.

The function f is strictly decreasing if 0< x � 1 and strictly increasing if 1< x. By
Proposition 3.9, ast % 1, f (A=C) & 2

p

2 if A0=C0 < 1 and f (A=C) & 2
p

2 if
1< A0=C0. HenceCK (g) is strictly decreasing and converges to zero ast !1.

3.6. The product metric of the Rosenau solution and the standard metric
of S1. Let (R� S1(2),dx2

Cd�2) denote the flat cylinder, where� 2 S1(2)D R=4�Z.
We define a solutiong(x, � , t) for t < 0 to the Ricci flow onR � S1(2) by

g(x, � , t) D u(x, � , t)(dx2
C d�2) D

sinh(�t)

coshx C cosht
(dx2

C d�2).

It is known that the solutiong(x, � , t) extends to the complete ancient solution to the
Ricci flow on S2 (see [4, pp. 162–164], [3, pp. 31–34]). This solution onS2 is called
the Rosenau solution. We denote this extended solution byg as well. The scalar curva-
ture of g on R � S1(2) is

R(x, � , t) D
cosht � coshx C 1

sinh(�t)(coshx C cosht)
> 0

and the scalar curvatureR(�1, t) at the polesx D �1 is

R(�1, t) D lim
jxj!1

cosht � coshx C 1

sinh(�t)(coshx C cosht)
D coth(�t) > 0.
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Moreover, the curvatureR(�1, t) at the poles is the maximum curvature of (S2, g(t))
for all t < 0, since we have

�

�x
RD

sinhx � sinh(�t)

(coshx C cosht)2
> 0

for all x > 0. Since limt%0 R(�1, t) D 1, the Rosenau solution is ancient but not
eternal. Due to the fact that for all (x, �) 2 R � S1(2)

lim
t%0

R(x, � , t)

R(�1, t)
D lim

t%0

cosht � coshx C 1

cosht(coshx C cosht)
D 1,

the solution shrinks to a round point.
Using the Rousenau solution, we define the Ricci flow onS2

�S1 by h(t)D g(t)C
d'2 for t < 0, whered'2 is the standard metric of radius one onS1.

Theorem 3.11. The L1-norm C(h) of the Cotton–York tensor C2 for the product
metric h of the Rosenau solution for the Ricci flow on S2 and the standard metric of
S1 is strictly decreasing and converges to zero as t! 0.

Proof. On the local coordinate (x1, x2, x3) WD (x, � , '), the Ricci tensor is

R11D
cosht � coshx C 1

2(coshx C cosht)2
, R22D

cosht � coshx C 1

2(coshx C cosht)2
, R33D 0,

and the scalar curvature is

RD
cosht � coshx C 1

sinh(�t)(coshx C cosht)
.

The Cotton–York tensorC2 is

C23D C32D
sinhx � sinh(�t)

4(coshx C cosht)2
.

Then L1-norm is given by the following:
Z

S2
�S1
jC2(t)jh(t) d�h(t) D

Z

S1

�

Z

S2
jC2(t)jh(t) d�g(t)

�

d�d'2

D 2�
Z

R�S1(2)
jC2(t)jh(t)d�u(x,t)(dx2

Cd�2)

D 2�
Z

S1(2)

�

Z

R

jC2(t)jh(t)u(x, t) d�dx2

�

d�d�2

D 8�2
Z

R

1

2
p

2

s

sinh2 x � sinh(�t)

(coshx C cosht)3
�

sinh(�t)

coshx C cosht
dx
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D 4
p

2�2
Z

1

0

s

sinh2 x � sinh(�t)

(coshx C cosht)3
�

sinh(�t)

coshx C cosht
dx

D 4
p

2�2
Z

1

0

s

sinh3(�t)

(coshx C cosht)5
� sinhx dx

D 4
p

2�2
Z

1

1

s

sinh3(�t)

(yC cosht)5
dy

D

8
p

2�2

3

�

sinh(�t)

1C cosh(�t)

�3=2

.

HenceC(h) is strictly decreasing and converges to zero ast ! 0.
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