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Abstract
For the ring ofp-adic integers,p being a fixed prime, any sequence which plays

a similar role to Weyl’s irrational rotation has not been proposed yet. We will see
that a modifiedp-adic van der Corput sequence provides us with a reasonable coun-
terpart of Weyl’s irrational rotation in the ring. We will present a similar random
Weyl sampling on the ring to the one proposed by Sugita and Takanobu. In the pro-
cess of establishing the counterpart, a sampling method based on a function with
naturally extended domain to the field ofp-adic numbers in terms of the additive
characters will be mentioned.

1. Introduction

For the ringZp of p-adic integers,p being a fixed prime, any sequence which
plays a similar role to Weyl’s irrational rotation has not been proposed yet. In main-
frame of the article, we are going to investigate how a sequence of points in the ring
can be generated relying on algorithmic procedure, aiming at an approximation to the
integral of function with respect to the Haar measure on the ring Zp without losing ad-
vantages in use of the sequence given by purely random choiceof points. To achieve
this objective onZp in the present article, we will introduce a sequence onZp hinted
by the p-adic van der Corput sequence, similarly to the sequence with randomness pro-
posed by Sugita and Takanobu on the multidimensional torus.

Numerical approximation methods with an empirical averageof function at algo-
rithmically generated points could result unsatisfactoryrate of convergence to the inte-
gral, if the function takes exceptional values at those sampling points. To avoid such
a problem, we can shift our focus onto so called i.i.d.-sampling, which is a core idea
supporting the Monte Carlo method. Sugita and Takanobu mentioned in [8] two facts
on the i.i.d.-sampling, one of which says that sampling withlarge sample size provides
us with a secure approximation for square integrable functions and the other says that
the i.i.d.-sampling with large sample size responds the quality of the generated pseudo-
random numbers, i.e., the statistical bias of them may largely be amplified and diminish
the quality of the sampling method. We can find some advantagein a sequence of ran-
domly generated points on the state space. However, it may create a problem arising

2010 Mathematics Subject Classification. Primary 11K45; Secondary 11K85, 94A20.



776 H. KANEKO AND H. MATSUMOTO

from statistical bias.
For improving this dichotomous situation, Sugita and Takanobu focused on a se-

quence with a hybrid effect of random and algorithmic choiceof sampling points and
proposed a sampling method with the sequence{{x C n�}}1nD0 each term of which is
given as the fractional part{x C n�} of x C n� with a random initial valuex and a
random common difference� in the k-dimensional torusTk.

As for the algorithmically generated points onZp, it has been revealed in [3]
that such non-random sequence of numbers as the sequence of non-negative integers
in Zp plays a similar role to thep-adic van der Corput sequence in the unit interval
as traditionally studied in [5]. However, non-random sequence of sampling points could
again result unsatisfactory rate of convergence, if the integrand has exceptional values
at those sampling points.

One might imagine that the sequence{x C n�}1nD0 with randomly taken initial
value x and common difference� from Zp gives us some hints. However, one fails
to achieve this by simply using the sequence. In fact, whenx and � is taken from a
ball centered at zero with a small radius, the non-archimedean inequality shows that
kx C n�kp � max{kxkp, k�kp}. This fact results that the empirical average can not
cover the value of the function at any points outside the ballcentered at zero with
radius max{kxkp, k�kp}.

In this article, instead of non-negative integers, we will use thep-adic van der Corput
sequence for approximating the integral of functions onZp. Let

(1) Dp D {0, 1, : : : , p� 1}

and

(2) L D

�

a
�1

p
C � � � C

a
�M

pM
M 2 {1, 2, : : : }, a

�1, : : : , a
�M 2 Dp

�

.

We define the fractional part{x} p of x 2Qp as a unique elementy 2 L which satisfies
x�y 2 Zp. Accordingly, the integer part [x] p of x 2Qp is defined by [x] p WD x�{x} p.

In Section 2, we will see that, for any� 2 Zp, the subset{[n�=pm] p j n 2 {0,1,: : : ,
pm
� 1}, m 2 {1, 2, : : : }} in the ringZp of p-adic integers is dense in the ring if and

only if � � Q. This suggests that thep-adic van der Corput sequence provides us with
a counterpart of Weyl’s irrational rotation inZp.

In the one-dimensional case in [8], the method with the Fourier series is employed

based on the complete orthogonal system{e2�
p

�1kt}k2Z in L2([0, 1)), which is viewed
as a sequence of periodic functions on the real line with period 1. The fundamental
system of functions is used for extending domain of functions to the real line without
removing the integer part of the variable of functions in thedescription. In accordance
with the procedure, we will take a complete orthogonal system described by the addi-
tive characters onQp for extending the original domainZp of functions to the whole
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spaceQp without removing the fractional part of variable of functions in their descrip-
tion. For square integrable functionf with respect to the Haar measure onZp, we will

examine the behavior of the sequence
{

(1=N)
PN�1

kD0 f (xC xk�)�
R

Zp
f (y) dy

}

involv-

ing the k-th term xk of the p-adic van der Corput sequence andf with the extended
domain, under independently random choice ofx, � 2 Zp for achieving a similar re-
sult to random sampling method established by Sugita and Takanobu in [8]. We will
finally be in a position to regard this approximation for

R

Zp
f (y) dy as the one based

on a modified random Weyl sampling.
The authors express their gratitude to the reviewer for his or her valuable sugges-

tion. The authors were not able to describe this modified random sampling in a smart
fashion without the reviewer’s insightful suggestion.

2. Fundamental property of p-adic van der Corput sequence inZp

For the random Weyl sampling in the unit interval in the real line based on Weyl’s
irrational rotation, one takes the sequence each term of which is given as the frac-
tional part of the product of non-negative integer and a fixedirrational real number. As
pointed out in Introduction, it is required to find some sequence inZp other than the
one involving an irrational number as common difference forcreating a similar effect
to Weyl’s irrational rotation. We will make an attempt of taking the integer part of the
terms in the sequence inQp obtained as the product of a fixed number in� 2 Zp nQ

and thep-adic van der Corput sequence.

Proposition 2.1. Let � 2 Zp. The set

U (�) D

��

n�

pm

�

p

n 2 {0, 1, : : : , pm
� 1}, m 2 {1, 2, : : : }

�

is dense inZp, if and only if � � Q.

Proof. Let� �Q. To prove of the denseness ofU (�), it suffices to show [n�=pm] p

can be an element of any given ball inZp with radius p�k for some positive integerm
and n 2 {0, 1, : : : , pm

� 1}. For that purpose, we employ the canonical representation
� D � � � anan�1 � � � a1a0 in [9]. If U (��) is dense inZp, so isU (�). Consequently, if
it is necessary, we may prove the assertion by replacing� with ��. This means that if
n> � logpj�jp, then-th digit an of � 2 ZpnQ in its canonical representation is replaced
with p� 1� an, if n D � logpj�jp, an is replaced withp� an, and if n < � logpj�jp,
an remains the same, i.e.,an D 0, wherej�jp is the p-adic norm of�.

First we consider the case the canonical representation admits kC1 consecutive dig-
its alCkC1 ¤ 0, alCk D � � � D alC1 D 0. Since the canonical representation for�=pkClC1

gives�=pkClC1
D � � � alCkC1. 0 � � � 0

����

k

al al�1 � � � with alCkC1 ¤ 0, the set{[n�=pkClC1] p j

n D 1, : : : , pk} has an element in each ofpk balls with radiusp�k in Zp.
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Second, in the case that a sequence of consecutivek digits blCk,: : : ,blC1 appears as
� D � � �alCkC1blCk � � �blC1al � � � and as� D � � �al 0CkC1blCk � � �blC1al 0 � � � with alCkC1 ¤

al 0CkC1, al > al 0 for some integersl 0 > l > 0, it turns out that

�

pkClC1
�

�

pkCl 0C1
D � � � c2c1c0. 0 � � � 0

����

k

c
�k�1c

�k�2 � � �

with some digits:::,c2,c1,c0 andc
�k�1,c

�k�2,c
�k�3,:::. Accordingly, the set{[n�=pm] p j

n 2 {0, 1,: : : , pm
�1}, m 2 {1, 2,: : : }} has at least one element in each ofpk balls with

radius p�k in Zp.
We can establish an algorithmic method for finding a sequenceof consecutivek0

digits blCk0 , : : : , blC1 which appears as� D � � � alCk0C1blCk0 � � � blC1al � � � , and as� D
� � �al 0Ck0C1blCk0 � � �blC1al 0 � � � in the canonical representation of� with alCk0C1¤ al 0Ck0C1

and al > al 0 for some positive integerk0 with k0 � k and some positive integersl 0, l
with l 0 > l . For that purpose, we define a set of integers

Ik(bkC1, : : : , b1) D {l 2 {1, 2, : : : } j (a(lC1)kC1, : : : , alkC1) D (bkC1, : : : , b1)}

which is determined by an integerbkC1 pkC1
C � � � C b1 p 2 Zp. We note thatIk(bkC1,

:::,b1) consists of infinitely many non-negative integers for somebkC1 pkC1
C� � �Cb1 p 2

Zp. Therefore, we can take the increasing sequence{l i }1iD0 consisting of all elements
in Ik(bkC1, : : : , b1).

By using the increasing sequence, we can find a sequence of consecutivek digits
bkC1, : : : , b1 which appears as� D � � � a(l iC1C1)kC2bkC1 � � � b1al iC1k � � � and as� D
� � �a(l iC1)kC2bkC1 � � �b1al i k � � � with some non-negative integerj satisfyingal i k� j ¤ al iC1k� j .
In fact, if al i k D al iC1k, al i k�1 D al iC1k�1, al i k�2 D al iC1k�2, : : : , a0 D al iC1k�l i k for eachi , it
turns out that the sequence{an} in the canonical representation� D � � � anan�1 � � � a1a0 is
eventually periodic. This contradicts the assumption� � Q (see [4]). Consequently, we
can find thatal i k� j ¤ al iC1k� j with al i kC1 D al iC1kC1, al i k D al iC1k, al i k�1 D al iC1k�1, : : : ,
al i k� jC1 D al iC1k� jC1 for some sufficiently largel i k � j . If it is necessary, by replacing�
with �� and applying the canonical representation for��, we see that� D
� � � a(l iC1)kC2bkC1 � � � b1al i k � � � al i k� jC1al i k� j and as� D � � � a(l iC1C1)kC2bkC1 � � � b1al i k � � �

al i k� jC1al iC1k� j with al i k� j > al iC1k� j in the canonical representation of�. Since� is not
a rational number, we see{0, 1,: : : } n Ik(bkC1, : : : , b1) contains infinity many positive in-
tegers. Therefore, we seea(l iC1)kC j 0C1 ¤ a(l iC1C1)kC j 0C1 for some positive integerj 0. This
shows that the set{[n�=pm] p j n 2 {0, 1, : : : , pm

� 1}, m 2 {1, 2, : : : }} has at least one
element in each ofpk balls with radiusp�k in Zp.

Conversely, we assume thatU (�) is dense inZp. Let � 2 Q n {0}. Then � is
uniquely represented by� D a=b with mutually prime non-zero rational integersa and
b, where we may assumeb > 0. Since� 2 Zp, b is not divisible by p and 1=b 2 Zp.
The assumption implies that there exist some integernk 2 {1, : : : , pmk

�1} and positive
integer mk such that [nk�=pmk ] p is some element in the ball centered atpk�1

=b with
radius pk for any positive integerk. Therefore, by taking some�k 2 {0,: : : , pmk

�1} and
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p-adic integerNk, we obtain (nk=pmk )� � �k=pmk
D pk�1

=bC Nk pk. This implies that
bNk is a rational integer anda=bD �k=nkC ((1C bNk p)=bnk)pk�1 pmk . If #{k j bNk �

0} D1, thena=b� (1=bnk)pk�1 pmk for infinitely manyk. Otherwise,a=b� pmk
=nk�

pk�1 pmk
=bnk for infinitely many k. In either case, we have a contradiction.

3. A modified random Weyl sampling onZp

In this section, we will present some results for establishing a reasonable modified
random Weyl sampling onZp by taking the results of the previous section into account.
In what follows, the Haar measure onZp will be denoted by� and assumed to be
normalized as�(Zp) D 1. The integral of complex valued integrable functionf on Zp

with respect to the Haar measure will be denoted by
R

Zp
f (y) dy.

DEFINITION 3.1. A random elementy in Zp is said to be uniformly distributed
if P(y 2 E)D �(E) for any topological Borel subsetE in Zp. For any complex-valued
square integrable functionf on Zp, the variance Var(f ) of the function is defined by

Var( f ) D
R

Zp

�

� f (x) �
R

Zp
f (y) dy

�

�

2
dx.

We introduce the Fourier transform

Of (� ) D
Z

Zp

f (x)e2
p

�1�{�x}p dx, � 2 Qp,

for any complex valued square integrable functionf . Then, the original functionf is
restored as

f (x) D
Z

Qp

Of (� )e�2
p

�1�{�x}p d� , x 2 Zp,

by performing the inverse Fourier transform (see Chapter 1,VIII in [9]). Since f can
be regarded as a function onQp whose support is contained inZp, i.e., the ballB(0,1)

centered at the origin and with radius 1,Of takes a constant on every ball with radius
1 as seen in Chapter 1, VII in [9]. Accordingly, another representation of the function
is given as

f (x) D
X

�2L

Of (� )
Z

B(0,1)
e�2

p

�1�{(�C�)x}p d�

D

X

�2L

Of (� )e�2
p

�1�{�x}p , x 2 Zp,

where L has been defined by (2).

As for the additive character�(� t) D e2
p

�1�{� t}p , we easily observe that
R

Zp
j�(� t)j2 dt D

R

Zp
�(� t)�(�� t) dt D

R

Zp
�((� � � )t) dt D 1 for any � 2 L and
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R

Zp
�(� t) N� (�t) dt D

R

Zp
�((� � �)t) dt D 0 for any pair of distinct� , � 2 L. From

these identities, we can derive
R

Zp
j f (t)j2 dt D

P

�2L j
Of (� )j2. Consequently, we see that

the additive characters provide us with the complete orthonormal system{�(� t)}
�2L in

L2(Zp, �).
A natural extension of the domain off to Qp is performed by

f (x) D
X

�2L

Of (� )e�2
p

�1�{�x}p
D

X

�2L

Of (� )�(��x), x 2 Qp.

For any positive integerM, we take function fM on Qp defined by

(3)

fM (x) D
X

�2L\B(0,pM )

Of (� )
Z

B(0,1)
e�2

p

�1�{(�C�)x}p d�

D

X

�2L\B(0,pM )

Of (� )�(��x), x 2 Qp,

where B(0, pM ) stands for the ball centered at the origin with radiuspM .
We recall that the sequence

xk D
d0

p
C � � � C

dl

plC1
(k D 0, 1, 2,: : :)

determined by thep-adic expansionk D d0C � � �Cdl pl of non-negative integerk con-
stitutes thep-adic van der Corput sequence in [6]. Hereafter, we will takethe p-adic
van der Corput sequence{xk}

1

kD0. We will focus only on f (xC xk�) and fM (xC xk�)
instead of f (x C [xk�] p) and fM (x C [xk�] p) respectively without removing fractional
part of variables, similarly to the method of extending domain of functions in [8] with-
out removing integer part of the variables.

In the first theorem in this section, we will consider the sequence
{

(1=N)
PN�1

kD0 f (xC

xk�)
}

1

ND1 with uniformly distributed independent random variables� andx on Zp. Our

main interest is under what condition the sequence
{

(1=
p

N)
PN�1

kD0

�

f (x C xk�) �
R

Zp
f (y) dy

�}

1

ND1 with a slower growth rate in the denominator can be expected to con-

verge to zero asN!1 for any square integrable functionf onZp. In the present article,
the method focusing on the sequence for fast approximation to the integral

R

Zp
f (y) dy by

the empirical average (1=N)
PN�1

kD0 f (xCxk�) is called modified random Weyl sampling
onZp.

We see that the modified random Weyl sampling onZp has the robustness in the
sense in [7] as the method proposed by Sugita and Takanobu.

Lemma 3.2. Let f be a complex valued function in L2(Zp, �) and � 2

L n {0}. Then,
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(i) f (x C �� ) 2 L2(Zp � Zp, � � �),
(ii) lim M!1

k f (x C �� ) � fM (x C �� )kL2(Zp�Zp,���) D 0,

(iii)
RR

Zp�Zp
f (xC�� )dx d� D

R

Zp
f (y)dy,

RR

Zp�Zp
j f (xC�� )�

R

Zp
f (y)dyj2 dx d� D

Var( f ),
(iv) � 0 2 L n {0} and � 0 ¤ � imply

Z Z

Zp�Zp

�

f (x C �� ) �
Z

Zp

f (y) dy

��

g(x C �� 0) �
Z

Zp

g(y) dy

�

dx d� D 0,

for any complex valued function g in L2(Zp, �).

Proof. For any f 2 L2(Zp,�), we can take a sequence{M j }
1

jD1 of positive inte-
gers such that

f (x) D lim
j!1

fM j (x) D lim
j!1

X

�2L\B(0,pM j )

Of (�)�(��x) �-a.e. x 2 Qp.

This implies that

f (x C �� ) D lim
j!1

X

�2L\B(0,pM j )

Of (�)�(��(x C �� ))

D lim
j!1

X

�2L\B(0,pM j )

Of (�)�(���� )�(��x) � � �-a.e. (x, �)

from which we can derive (i) and (ii). In fact, for any� 2 L n {0}, (ii) is obtained by
replacingj f (x C �� )j2 with j f (x C �� ) � fM (x C �� )j2 as follows:

Z Z

Zp�Zp

j f (x C �� ) � fM (x C �� )j2 dx d�

D

Z Z

Zp�Zp

lim
j!1

�

�

�

�

�

�

X

�2L\B(0,pM j )

Of (�)�(���� )�(��x)

�

X

�2L\B(0,pM )

Of (�)�(���� )�(��x)

�

�

�

�

�

�

2

dx d�

� lim inf
j!1

Z Z

Zp�Zp

�

�

�

�

�

�

X

�2L\(B(0,pM j )nB(0,pM ))

Of (�)�(���� )�(��x)

�

�

�

�

�

�

2

dx d�

D lim inf
j!1

Z

Zp

d�
Z

Zp

X

�2L\(B(0,pM j )nB(0,pM ))

j

Of (�)�(���� )�(��x)j2 dx
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D lim
j!1

X

�2L\(B(0,pM j )nB(0,pM ))

j

Of (�)j2

�

X

�2LnB(0,pM )

j

Of (�)j2! 0 as M !1.

The square integrability (i) is shown by the following finiteness which is given by re-
placing B(0, pM ) with the empty set in the preceding estimates:

Z Z

Zp�Zp

j f (x C �� )j2 dx d� �
X

�2L

j

Of (�)j2 <1.

(iii) Thanks to (ii), we see that
Z Z

Zp�Zp

f (x C �� ) dx d�

D lim
M!1

Z Z

Zp�Zp

fM (x C �� ) dx d�

D lim
M!1

Z Z

Zp�Zp

X

�2L\B(0,pM )

Of (�)�(��(x C �� )) dx d�

D lim
M!1

X

�2L\B(0,pM )

Of (�)
Z

Zp

�(��x) dx
Z

Zp

�(���� ) d�

D lim
M!1

X

�2L\B(0,pM )

Of (�) Æ
�,0 Æ�� ,0

D

Of (0)

D

Z

Zp

f (y) dy.

The first identity of (iii) is proved. The second identity of (iii) and the one in (iv)
follow from this identity. In fact, we observe that

Z Z

Zp�Zp

�

f (x C �� ) �
Z

Zp

f (y) dy

��

g(x C �� 0) �
Z

Zp

g(y) dy

�

dx d�

D lim
M!1

Z Z

Zp�Zp

( fM (x C �� ) � Of (0))(gM (x C �� 0) � Og(0)) dx d�

D lim
M!1

Z Z

Zp�Zp

0

�

X

�2(Ln{0})\B(0,pM )

Of (�)�(��(x C �� ))

1

A

�

0

�

X

�

0

2(Ln{0})\B(0,pM )

Og(�0)�(��0(x C �� 0))

1

A dx d�
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D lim
M!1

X

�,�02(Ln{0})\B(0,pM )

Of (�) Og(�0)
Z Z

Zp�Zp

�(��x)�(���� )

� �(��0x)�(��0�� 0) dx d�

D lim
M!1

X

�,�02(Ln{0})\B(0,pM )

Of (�) Og(�0)
Z

Zp

�(��x)�(��0x) dx

�

Z

Zp

�(���� )�(��0�� 0) d�

D lim
M!1

X

�,�02(Ln{0})\B(0,pM )

Of (�) Og(�0) Æ
�,�0 Æ�� ,�0� 0

D lim
M!1

X

�2(Ln{0})\B(0,pM )

Of (�) Og(�) Æ
�� ,�� 0

D lim
M!1

0

�

X

�2(Ln{0})\B(0,pM )

Of (�) Og(�)

1

A

Æ

� ,� 0

D

8

<

:

Z

Zp

( f (y) � Of (0))(g(y) � Og(0)) dy if � D �

0,

0 if � ¤ 0� 0.

Theorem 3.3. For any complex valued function f2 L2(Zp, �),

�

f (x C �xn) �
Z

Zp

f (y) dy

�

1

nD0

constitute an orthonormal family in L2(Zp � Zp, � � �) satisfying

Z Z

Zp�Zp

�

�

�

�

f (x C �xn) �
Z

Zp

f (y) dy

�

�

�

�

2

dx d� D Var( f ).

In particular,

lim
N!1

1

N

N�1
X

nD0

f (x C �xn) D
Z

Zp

f (y) dy � � �-a.e. (x, �),

and for any positive integer N,

Z Z

Zp�Zp

�

�

�

�

�

1

N

N�1
X

nD0

f (x C �xn) �
Z

Zp

f (y) dy

�

�

�

�

�

2

dx d� D
1

N
Var( f ).

Proof. The assertions on the family
{

f (xC�xn)�
R

Zp
f (y) dy

}

of functions with

two variablesx and � follow from the previous lemma. As seen in [1] and [2], by
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applying general theory, we see the validity of limN!1

(1=N)
PN�1

nD0 f (x C �xn) D
R

Zp
f (y) dy at � � �-almost every (x, �). The final identity in the assertion is proved

by the following observation:

Z Z

Zp�Zp

�

�

�

�

�

1

N

N�1
X

nD0

f (x C �xn) �
Z

Zp

f (y) dy

�

�

�

�

�

2

dx d�

D

Z Z

Zp�Zp

�

�

�

�

�

1

N

N�1
X

nD0

�

f (x C �xn) �
Z

Zp

f (y) dy

�

�

�

�

�

�

2

dx d�

D

Z Z

Zp�Zp

1

N2

N�1
X

n,n0D0

�

f (x C �xn) �
Z

Zp

f (y) dy

�

�

�

f (x C �xn0) �
Z

Zp

f (y) dy

�

dx d�

D

1

N2

N�1
X

n,n0D0

Z Z

Zp�Zp

�

f (x C �xn) �
Z

Zp

f (y) dy

�

�

�

f (x C �xn0) �
Z

Zp

f (y) dy

�

dx d�

D

1

N2

N�1
X

n,n0D0

Æn,n0 Var( f )

D

1

N
Var( f ).

Let us recallDp D {0,1,2,: : : , p�1} (cf. (1)). To each integerN with N�1� p2,
there corresponds a unique pair of sequence of integersh1 > h2 > � � � > hs � 0 and
r1, r2, : : : , rs 2 Dp n {0} such that

(4) N � 1D r1 ph1
C r2 ph2

C � � � C rs phs,

wheresDmax{l 2 {1, 2,: : : } j N�1� pl }. We let (�1,�2) denote the greatest common
divisor of integers�1 and �2.

Lemma 3.4. For any q with1< q < 2, any � 2 L n {0}, and any N2 {1, 2,: : : }
with N � 1� p2,
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(i) under the correspondence(4)

Z

Zp

�

�

�

�

�

1
p

N

N�1
X

nD0

�(��xn)

�

�

�

�

�

q

d�

�

1
p

N
C

1
p

N

s
X

jD1

 

Z

Zp

�

�

�

�

�

r j�1
X

aD0

ph j �1
X

nD0

e2
p

�1�a{��=ph j C1
}pe2

p

�1�n{��=ph j }p

�

�

�

�

�

q

d�

!1=q

,

where sD max{l j l is positive integer satisfying N� 1� pl },
(ii) for any j 2 {1,:::,s} and� 2 Ln{0} represented as� D �=pM with � 2 {0,:::, pM

�1}

and (�, p) D 1,

Z

Zp

�

�

�

�

�

r j�1
X

aD0

ph j �1
X

nD0

e2
p

�1�a{��=ph j C1
}pe2

p

�1�n{��=ph j }p

�

�

�

�

�

q

d�

D

1

pM

1

ph jC1

0

B

�

(r j ph j )q
C

X

c02Dpn{0}

�

�

�

�

sin(�r j c0=p)

sin(�c0=p)
ph j

�

�

�

�

q

C

MCh j
X

lDh jC1

X

c02Dpn{0}

c1,:::,cl2Dp

�

�

�

�

sin�r j (c0C c1 pC � � � C cl pl )=plC1

sin�(c0C c1 pC � � � C cl pl )=plC1

�

sin� ph j (c0C c1 pC � � � C cl�1 pl�1)=pl

sin�(c0C c1 pC � � � C cl�1 pl�1)=pl

�

�

�

�

q

1

C

A

,

(iii) for any positive integer M, non-negative integer h and r2 Dp,

MCh
X

lDhC1

X

c02Dpn{0}

c1,:::,cl2Dp

�

�

�

�

�

sin�r (c0C c1 pC � � � C cl pl )=plC1

sin�(c0C c1 pC � � � C cl pl )=plC1

�

sin� ph(c0C c1 pC � � � C cl�1 pl�1)=pl

sin�(c0C c1 pC � � � C cl�1 pl�1)=pl

�

�

�

�

�

q

� pjr jq
MCh
X

lDhC1

pl
�1
X

aD1

1

jsin�a=pl
j

q

� (p� 1)q
MpMq

� (q)

2q�1
phqC1,

where� stands for the Riemann zeta function, i.e., � (z) D
P

1

nD1 1=nz.



786 H. KANEKO AND H. MATSUMOTO

Proof. We can divide the set{0, 1, : : : , N � 1} of consecutive integers into the
disjoint subsetsI1, : : : , IsC1 of consecutive integers defined by

I1 D {0, 1, : : : , r1 ph1
� 1},

I2 D {r1 ph1, : : : , r1 ph1
C r2 ph2

� 1},

� � �

I j D {r1 ph1
C � � � C r j�1 ph j�1, : : : , r1 ph1

C � � � C r j ph j
� 1},

� � �

Is D {r1 ph1
C � � � C rs�1 phs�1, : : : , r1 ph1

C � � � C rs phs
� 1}

and

IsC1 D {r1 ph1
C � � � C rs phs} D {N � 1}.

To each integerm j 2 {0, 1,: : : , ph j
� 1}, there corresponds a sequence of integers

a0, a1, : : : , ah j�1 2 Dp such that

(5) m j D a0 ph j�1
C a1 ph j�2

C � � � C ah j�1 p0.

(i) If n 2 I1, then n D a0 C a1 p1
C � � � C ah1�1 ph1�1

C ah1 ph1 for somea0, a1,
: : : , ah1�1 2 Dp and ah1 2 {0, : : : , r1 � 1}. Accordingly, the integern assigns a frac-
tional number

xn D
a0

p
C

a1

p2
C � � � C

ah1�1

ph1
C

ah1

ph1C1

D

m1

ph1
C

ah1

ph1C1
(0� m1 � ph1

� 1, 0� ah1 � r1 � 1).

If n 2 I j with some 2� j � s, we see

r1 ph1
C � � � C r j�1 ph j�1

� n < r1 ph1
C � � � C r j ph j ,

equivalently, 0� n � (r1 ph1
C � � � C r j�1 ph j�1) < r j ph j . Consequently, by takinga0,

a1, : : : , ah j�1 2 Dp and ah j 2 {0, : : : , r j � 1}, we see

n� (r1 ph1
C � � � C r j�1 ph j�1) D a0 p0

C a1 p1
C � � � C ah j�1 ph j�1

C ah j ph j .

Such expression ofn as

n D a0C a1 p1
C � � � C ah j�1 ph j�1

C ah j ph j
C (r j�1 ph j�1

C � � � C r1 ph1)
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provides us with a representation of the fractional numberxn written as

xn D
a0

p
C

a1

p2
C � � � C

ah j�1

ph j
C

ah j

ph jC1 C
r j�1

ph j�1C1 C � � � C
r1

ph1C1

D

m j

ph j
C

ah j

ph jC1 C Rj

under the correspondence (5), whereah j 2 {0, 1, : : : , r j � 1} and

Rj D
r j�1

ph j�1C1 C � � � C
r1

ph1C1
.

If n 2 IsC1, then

n D rs phs
C � � � C r1 ph1

D N � 1.

This implies that

xn D
rs

phsC1
C � � � C

r1

ph1C1
D RsC1.

From these observations, we can derive that, for any� 2 Zp,

N�1
X

nD0

�(��xn)

D

N�1
X

nD0

e2
p

�1�{��xn}p

D

X

n2I1

e2
p

�1�{��xn}p
C

s
X

jD2

X

n2I j

e2
p

�1�{��xn}p
C

X

n2IsC1

e2
p

�1�{��xn}p

D

ph1�1
X

m1D0

r1�1
X

ah1D0

e2
p

�1�{��(m1=ph1
Cah1=ph1C1)}p

C

s
X

jD2

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�{��(m j =ph j
Cah j =ph j C1

CRj )}p
C e2

p

�1�{��RsC1}p .
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Therefore, by applying Minkowski’s inequality, we can conclude that

 

Z

Zp

�

�

�

�

�

1
p

N

N�1
X

nD1

�(��xn)

�

�

�

�

�

q

d�

!1=q

D

 

Z

Zp

�

�

�

�

�

1
p

N

 

ph1�1
X

m1D0

r1�1
X

ah1D0

e2
p

�1�m1{��=ph1}pe2
p

�1�ah1{��=ph1C1}p

C

s
X

jD2

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {��=ph j }pe2
p

�1�ah j {��=ph j C1
}pe2

p

�1�{��Rj }p

C e2
p

�1�{��RsC1}p

!

�

�

�

�

�

q

d�

!1=q

�

�

Z

Zp

�

�

�

�

1
p

N
(e2

p

�1�{��RsC1}p)

�

�

�

�

q

d�

�1=q

C

 

Z

Zp

�

�

�

�

�

1
p

N

ph1�1
X

m1D0

r1�1
X

ah1D0

e2
p

�1�m1{��=ph1}pe2
p

�1�ah1{��=ph1C1}p

�

�

�

�

�

q

d�

!1=q

C

s
X

jD2

 

Z

Zp

�

�

�

�

�

1
p

N

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {��=ph j }p

� e2
p

�1�ah j {��=ph j C1
}pe2

p

�1�{��Rj }p

�

�

�

�

�

q

d�

!1=q

�

1
p

N
C

1
p

N

s
X

jD1

 

Z

Zp

�

�

�

�

�

ph j �1
X

nD0

r j�1
X

aD0

e2
p

�1�a{��=ph j C1
}pe2

p

�1�n{��=ph j }p

�

�

�

�

�

q

d�

�1=q

.

(ii) For any j 2 {1, : : : , s}, we first note that

Z

Zp

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {��=ph j }pe2
p

�1�ah j {��=ph j C1
}p

�

�

�

�

�

q

d�

D

Z

Qp

1
Zp(�)

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {��=ph j }pe2
p

�1�ah j {��=ph j C1
}p

�

�

�

�

�

q

d�.

Since� is represented by� D �=pM with some� 2 {1,: : : , pM
�1} satisfying (�, p)D 1,

by taking variable� given by� D ��, we can perform the integral with respect to the
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variable� on B(0, pM ). Accordingly, it turns out that

Z

Zp

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {��=ph j }pe2
p

�1�ah j {��=ph j C1
}p

�

�

�

�

�

q

d�

D

Z

Qp

1
Zp

�

�

�

�

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {�=ph j }pe2
p

�1�ah j {�=ph j C1
}p

�

�

�

�

�

q
d�

j� jp

D

1

pM

Z

B(0,pM )

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {�=ph j }pe2
p

�1�ah j {�=ph j C1
}p

�

�

�

�

�

q

d�

D

1

pM

 

Z

B(0,p�h j �1)

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {�=ph j }pe2
p

�1�ah j {�=ph j C1
}p

�

�

�

�

�

q

d�

C

M�1
X

kD�h j�1

Z

S(0,pkC1)

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {�=ph j }pe2
p

�1�ah j {�=ph j C1
}p

�

�

�

�

�

q

d�

!

.

Here and in the sequel,S(0, pkC1) D B(0, pkC1) n B(0, pk). We can perform change of
variables given by
 D p�h j�1

� in the first integral and change of variables given by

 D pkC1

� in the second integral to obtain

Z

Zp

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {��=ph j }pe2
p

�1�ah j {��=ph j C1
}p

�

�

�

�

�

q

d�

D

1

pM

 

Z

Zp

(r j ph j )q d


ph jC1

C

M�1
X

kD�h j�1

Z

S(0,1)

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {
 =pkC1Ch j }p

� e2
p

�1�ah j {
 =pkC1Ch j C1
}p

�

�

�

�

�

q

pkC1 d


!
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D

1

pM

 

(r j ph j )q

ph jC1

C

M�1
X

kD�h j�1

pkC1
Z

S(0,1)

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {
 =pkC1Ch j }p

� e2
p

�1�ah j {
 =pkC1Ch j C1
}p

�

�

�

�

�

q

d


!

D

1

pM

 

(r j ph j )q

ph jC1

C

MCh j
X

lD0

pl�h j

Z

S(0,1)

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {
 =pl }pe2
p

�1�ah j {
 =plC1}p

�

�

�

�

�

q

d


!

D

1

pM

0

B

�

(r j ph j )q

ph jC1

C

MCh j
X

lD0

pl�h j
X

c02Dpn{0}

c1,:::,cl2Dp

Z

B(c0Cc1 pC���Ccl pl , plC1)

ph j �1
X

m jD0

r j�1
X

ah j D0

je2
p

�1�m j (c0=pl
Cc1=pl�1

C���Ccl�1=p)

� e2
p

�1�ah j (c0=plC1
Cc1=pl

C���Ccl =p)
j

q d


1

C

A

D

1

pM

0

B

�

(r j ph j )q

ph jC1

C

MCh j
X

lD0

1

ph jC1

X

c02Dpn{0}

c1,:::,cl2Dp

�

�

�

�

�

ph j �1
X

m jD0

e2
p

�1�m j ((c0Cc1 pC���Ccl�1 pl�1)=pl )

�

r j�1
X

ah j D0

e2
p

�1�ah j ((c0Cc1 pC���Ccl pl )=plC1)

�

�

�

�

�

q
1

C

A
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D

1

pM

1

ph jC1

0

B

�

(r j ph j )q
C

X

c02Dpn{0}

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j c0e2
p

�1�ah j c0=p

�

�

�

�

�

q

C

MCh j
X

lD1

X

c02Dpn{0}

c1,:::,cl2Dp

�

�

�

�

�

ph j �1
X

m jD0

e2
p

�1�m j ((c0Cc1 pC���Ccl�1 pl�1)=pl )

�

r j�1
X

ah j D0

e2
p

�1�ah j ((c0Cc1 pC���Ccl pl )=plC1)

�

�

�

�

�

q
1

C

A

D

1

pM

1

ph jC1

0

B

�

(r j ph j )q
C

X

c02Dpn{0}

�

�

�

�

�

r j�1
X

ah j D0

e2
p

�1�ah j c0=p ph j

�

�

�

�

�

q

C

MCh j
X

lD1

X

c02Dpn{0}

c1,:::,cl2Dp

�

�

�

�

�

ph j �1
X

m jD0

e2
p

�1�m j ((c0Cc1 pC���Ccl�1 pl�1)=pl )

�

r j�1
X

ah j D0

e2
p

�1�ah j ((c0Cc1 pC���Ccl pl )=plC1)

�

�

�

�

�

q
1

C

A

D

1

pM

1

ph jC1

0

B

�

(r j ph j )q
C

X

c02Dpn{0}

�

�

�

�

�

sin(�r j c0=p)

sin(�c0=p)
ph j

�

�

�

�

�

q

C

MCh j
X

lD1

X

c02Dpn{0}

c1,:::,cl2Dp

�

�

�

�

�

sin(� ph j (c0C c1 pC � � � C cl�1 pl�1)=pl )

sin(�(c0C c1 pC � � � C cl�1 pl�1)=pl )

�

sin(�r j (c0C c1 pC � � � C cl pl )=plC1)

sin(�(c0C c1 pC � � � C cl pl )=plC1)

�

�

�

�

�

q
1

C

A

.

Thanks to the fact thatl 2 {1,:::,h j } implies sin(� ph j (c0Cc1 pC� � �Ccl�1 pl�1)=pl )D 0,
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we can conclude that

Z

Zp

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {��=ph j }pe2
p

�1�ah j {��=ph j C1
}p

�

�

�

�

�

q

d�

D

1

pM

1

ph jC1

0

B

�

(r j ph j )q
C

X

c02Dpn{0}

�

�

�

�

�

sin(�r j c0=p)

sin(�c0=p)
ph j

�

�

�

�

�

q

C

MCh j
X

lDh jC1

X

c02Dpn{0}

c1,:::,cl2Dp

�

�

�

�

�

sin(�r j (c0C c1 pC � � � C cl pl )=plC1)

sin(�(c0C c1 pC � � � C cl pl )=plC1)

�

sin(� ph j (c0C c1 pC � � � C cl�1 pl�1)=pl )

sin(�(c0C c1 pC � � � C cl�1 pl�1)=pl )

�

�

�

�

�

q
1

C

A

.

(iii) From the estimate

�

�

�

�

sin(nC 1)�x

sin�x

�

�

�

�

D

�

�

�

�

sinn�x cos�x C cosn�x sin�x

sin�x

�

�

�

�

�

�

�

�

�

sinn�x

sin�x

�

�

�

�

C 1,

we can inductively derivejsin(n�x)=sin(�x)j � n, and so we havejsin(�r (c0C c1 pC
� � � C cl pl

=plC1))=sin(�(c0C c1 pC � � � C cl pl )=plC1)j � r � p � 1. Accordingly, we
easily see that

MCh
X

lDhC1

X

c02Dpn{0}

c1,:::,cl2Dp

�

�

�

�

sin(� ph(c0C c1 pC � � � C cl�1 pl�1)=pl )

sin(�(c0C c1 pC � � � C cl�1 pl�1)=pl )

�

sin(�r (c0C c1 pC � � � C cl pl )=plC1)

sin(�(c0C c1 pC � � � C cl pl )=plC1)

�

�

�

�

q

�

MCh
X

lDhC1

X

c02Dpn{0}

c1,:::,cl2Dp

1

jsin(�(c0C c1 pC � � � C cl�1 pl�1)=pl )jq
� jr jq

D

MCh
X

lDhC1

pl
�1
X

aD1

p

jsin(�a=pl )jq
� jr jq

D pjr jq
MCh
X

lDhC1

pl
�1
X

aD1

1

jsin(�a=pl )jq
.
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On the other hand, If (c0 C c1 pC � � � C cl�1 pl�1)=pl
� 1=2, we seec0 C c1 pC

� � � C cl�1 pl�1
2 {1, 2, : : : , bpl

=2
}. Since 0� x � 1=2 implies sin�x � 2x,

1

jsin(�(c0C c1 pC � � � C cl�1 pl�1)=pl )j
�

pl

2(c0C c1 pC � � � C cl�1 pl�1)
.

Otherwise, namely in the case that 1=2 < (c0 C c1 pC � � � C cl�1 pl�1)=pl
< 1, we see

c0C c1 pC � � � C cl�1 pl�1
2 {bpl

=2
 C 1, : : : , pl
� 1}, which implies pl

� (c0C c1 pC
� � � C cl�1 pl�1) 2 {1, 2, : : : , bpl

=2
 � 1}. Consequently, we have

1

jsin(�(c0C c1 pC � � � C cl�1 pl�1)=pl )j

D

1

jsin((� � �(c0C c1 pC � � � C cl�1 pl�1)=pl
�

)j

�

1

j2 � (pl
� (c0C c1 pC � � � C cl�1 pl�1))=pl

j

�

pl

2(pl
� (c0C c1 pC � � � C cl�1 pl�1))

.

By combining these observations, we conclude

MCh
X

lDhC1

X

c02Dpn{0}

c1,:::,cl2Dp

�

�

�

�

sin(� ph(c0C c1 pC � � � C cl�1 pl�1)=pl )

sin(�(c0C c1 pC � � � C cl�1 pl�1)=pl )

�

sin(�r (c0C c1 pC � � � C cl pl )=plC1)

sin(�(c0C c1 pC � � � C cl pl )=plC1)

�

�

�

�

q

� pjr jq
MCh
X

lDhC1

0

�

bpl
=2


X

aD1

1

jsin(�a=pl )jq
C

pl
�1
X

aDbpl
=2
C1

1

jsin(�a=pl )jq

1

A

� pjr jq
MCh
X

lDhC1

0

�

bpl
=2


X

aD1

�

�

�

�

pl

2a

�

�

�

�

q

C

pl
�1
X

aDbpl
=2
C1

�

�

�

�

pl

2(pl
� a)

�

�

�

�

q
1

A

D pjr jq
MCh
X

lDhC1

 

bpl
=2


X

aD1

�

�

�

�

pl

2a

�

�

�

�

q

C

bpl
=2
�1
X

bD1

�

�

�

�

pl

2b

�

�

�

�

q
!

D jr jq
MCh
X

lDhC1

plqC1

2q

 

bpl
=2


X

aD1

1

aq
C

bpl
=2
�1
X

bD1

1

bq

!

D jr jq
phqC1

2q

MCh
X

lDhC1

p(l�h)q

 

bpl
=2


X

aD1

1

aq
C

bpl
=2
�1
X

bD1

1

bq

!
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� jr jq
phqC1

2q

MCh
X

lDhC1

p(l�h)q

 

1

X

aD1

1

aq
C

1

X

bD1

1

bq

!

� (p� 1)q
phqC1

2q

MCh
X

lDhC1

pMq
� 2� (q)

� (p� 1)q
phqC1

2q
MpMq

� 2� (q)

D (p� 1)q
MpMq

� (q)

2q�1
phqC1.

Proposition 3.5. For any � 2 L n {0},

lim
N!1

 

Z

Zp

�

�

�

�

�

1
p

N

N�1
X

nD0

�(��xn)

�

�

�

�

�

q

d�

!1=q

D 0.

Proof. We can deduce from (ii) and (iii) in Lemma 3.4 that

Z

Zp

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {��=ph j }pe2
p

�1�ah j {��=ph j C1
}p

�

�

�

�

�

q

d�

�

1

pM

1

ph jC1

0

B

�

(r j ph j )q
C

X

c02Dpn{0}

�

�

�

�

sin(�r j c0=p)

sin(�c0=p)
ph j

�

�

�

�

q

C

MCh j
X

lDh jC1

X

c02Dpn{0}

c1,:::,cl2Dp

�

�

�

�

sin(� ph j (c0C c1 pC � � � C cl�1 pl�1)=pl )

sin(�(c0C c1 pC � � � C cl�1 pl�1)=pl )

�

sin(�r j (c0C c1 pC � � � C cl pl )=plC1)

sin(�(c0C c1 pC � � � C cl pl )=plC1)

�

�

�

�

q

1

C

A

�

1

pM

1

ph jC1

�

(p� 1)q ph j q
C (p� 1)qC1 ph j q

C (p� 1)q
MpMq

� (q)

2q�1
ph j qC1

�

D

(p� 1)q

pMC1

�

pC
MpMqC1

� (q)

2q�1

�

ph j (q�1)

D Cph j (q�1) (1� j � s),

whereC D ((p� 1)q=pMC1)(pC MpMqC1
� (q)=2q�1).
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On the other hand, we will show that

1
p

N

s
X

jD1

(ph j )(q�1)=q
�

�

1

N � 1

�(2�q)=(2q)� log((p� 1)(N � 1)C 1)

log p

�1=q

.

The inequalitiesh1 > h2 > � � � > hs � 0 provide us with the estimate onh j given by

h j D (h j � h jC1)C (h jC1 � h jC2)C � � � C (hs�1 � hs)C hs

� (s� 1)� j C 1C 0

D s� j (1� j � s),

which implies

N � 1D
s
X

jD1

r j ph j
�

s
X

jD1

ph j
�

s
X

jD1

ps� j
D

s�1
X

kD0

pk
D

ps
� 1

p� 1
.

Since this showss � log((p � 1)(N � 1)C 1)=log p, by applying Hölder’s inequality
we have

1
p

N

s
X

jD1

(ph j )(q�1)=q
�

1
p

N

 

s
X

jD1

(ph j )(q�1)=q�q=(q�1)

!(q�1)=q s
X

jD1

1q

!1=q

D

1
p

N

 

s
X

jD1

ph j

!(q�1)=q

s1=q

�

1
p

N
(N � 1)(q�1)=q

�

log((p� 1)(N � 1)C 1)

log p

�1=q

<

�

1

N � 1

�(2�q)=(2q)� log((p� 1)(N � 1)C 1)

log p

�1=q

,

which yields

1
p

N

s
X

jD1

 

Z

Zp

�

�

�

�

�

ph j �1
X

m jD0

r j�1
X

ah j D0

e2
p

�1�m j {��=ph j }pe2
p

�1�ah j a{��=ph j C1
}p

�

�

�

�

�

q

d�

!1=q

� C1=q 1
p

N

s
X

jD1

(ph j )(q�1)=q

< C1=q

�

1

N � 1

�(2�q)=(2q)� log((p� 1)(N � 1)C 1)

log p

�1=q

! 0 as N !1.
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Finally, by combining this with (i) in the Lemma 3.4, it turnsout that

lim
N!1

 

Z

Zp

�

�

�

�

�

1
p

N

N�1
X

nD0

�(��xn)

�

�

�

�

�

q

d�

!1=q

D 0.

Theorem 3.6. For any q satisfying1 < q < 2 and any complex-valued function
f 2 L2(Zp, �),

lim
N!1

Z Z

Zp�Zp

�

�

�

�

�

p

N

 

1

N

N�1
X

nD0

f (x C �xn) �
Z

Zp

f (y) dy

!

�

�

�

�

�

q

dx d� D 0.

Proof. We usefM defined by (3) to approximatef ;

1

N

N�1
X

nD0

f (x C �xn) �
Z

Zp

f (y) dy

D

1

N

N�1
X

nD0

( fM (x C �xn) � Of (0))C
1

N

N�1
X

nD0

( f � fM )(x C �xn)

D

1

N

N�1
X

nD0

X

�2(Ln{0})\B(0,pM )

Of (� )�(�� (x C �xn))C
1

N

N�1
X

nD0

( f � fM )(x C �xn)

D

X

�2(Ln{0})\B(0,pM )

Of (� )�(��x)
1

N

N�1
X

nD0

�(���xn)C
1

N

N�1
X

nD0

( f � fM )(x C �xn).

By applying Minkowski’s inequality and Hölder’s inequality, we obtain

 

Z Z

Zp�Zp

�

�

�

�

�

p

N

 

1

N

N�1
X

nD0

f (x C �xn) �
Z

Zp

f (y) dy

!

�

�

�

�

�

q

dx d�

!1=q

D

 

Z Z

Zp�Zp

�

�

�

�

�

X

�2(Ln{0})\B(0,pM )

Of (� )�(��x)
1
p

N

N�1
X

nD0

�(���xn)

C

1
p

N

N�1
X

nD0

( f � fM )(x C �xn)

�

�

�

�

�

q

dx d�

!1=q

�

X

�2(Ln{0})\B(0,pM )

j

Of (� )j

 

Z Z

Zp�Zp

j�(�x)jq
�

�

�

�

�

1
p

N

N�1
X

nD0

�(��xn)

�

�

�

�

�

q

dx d�

!1=q

C

 

Z Z

Zp�Zp

�

�

�

�

�

1
p

N

N�1
X

nD0

( f � fM )(x C �xn)

�

�

�

�

�

q

dx d�

!1=q
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D

X

�2(Ln{0})\B(0,pM )

j

Of (� )j

 

Z

Zp

�

�

�

�

�

1
p

N

N�1
X

nD0

�(��xn)

�

�

�

�

q

d�

!1=q

C

 

Z Z

Zp�Zp

�

�

�

�

�

1
p

N

N�1
X

nD0

( f � fM )(x C �xn)

�

�

�

�

�

q

dx d�

!1=q

�

X

�2(Ln{0})\B(0,pM )

j

Of (� )j

 

Z

Zp

�

�

�

�

�

1
p

N

N�1
X

nD0

�(��xn)

�

�

�

�

�

q

d�

!1=q

C

  

Z Z

Zp�Zp

�

�

�

�

�

1
p

N

N�1
X

nD0

( f � fM )(x C �xn)

�

�

�

�

�

q�2=q

dx d�

!q=2

�

�

Z Z

Zp�Zp

1q=(2�q) dx d�

�(2�q)=2
!1=q

D

X

�2(Ln{0})\B(0,pM )

j

Of (� )j

 

Z

Zp

�

�

�

�

�

1
p

N

N�1
X

nD0

�(��xn)

�

�

�

�

�

q

d�

!1=q

C

 

Z Z

Zp�Zp

�

�

�

�

�

1
p

N

N�1
X

nD0

( f � fM )(x C �xn)

�

�

�

�

�

2

dx d�

!1=2

D

X

�2(Ln{0})\B(0,pM )

j

Of (� )j

 

Z

Zp

�

�

�

�

�

1
p

N

N�1
X

nD0

�(��xn)

�

�

�

�

�

q

d�

!1=q

C k f � fMk2.

In the final identity, Theorem 3.3 is applied. By passing the limit as N !1, we can
derive that the first term tends to zero from Proposition 3.5.Subsequently by passing
the limit as M !1, we can conclude that

lim
N!1

Z Z

Zp�Zp

�

�

�

�

�

p

N

 

1

N

N�1
X

nD0

f (x C �xn) �
Z

Zp

f (y) dy

!

�

�

�

�

�

q
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