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Abstract

We find presentations by generators and relations for thevaiant quantum co-
homology rings of the maximal isotropic Grassmannians pe$yB, C and D, and
we find polynomial representatives for the Schubert clagsethese rings. These
representatives are given in terms of the same Pfaffian fasmuhich appear in the
theory of factorial P- and Q-Schur functions. After specializing to equivariant co-
homology, we interpret the resulting presentations andfigfiaformulas in terms of
Chern classes of tautological bundles.

1. Introduction

In this paper, we study the torus equivariant quantum colmgyorings of the
maximal isotropic Grassmannians in classical types B, C Gndhe main purpose is
to find a presentation for the ring and prove a Giambelli fdarior the equivariant
qguantum Schubert classes.

For n fixed, we denote théagrangian Grassmanniaby LG(n) in type C, which
parametrizes subspaces in a symplectic vector spatevhich areLagrangian i.e. the
subspaces of dimensiam which are isotropic with respect to a symplectic form. By
OG(n), we denote the maximadrthogonal Grassmanniain type D, which paramet-
rize (n+ 1)-dimensional isotropic subspaces of an orthogonal vesgaceC2"+2. (We
only consider one of the two connected components in typeeB,Section 3.4 below.)
For type B, we consider the maximal isotropic Grassmann@arttfe odd dimensional
orthogonal spac&?"1, The Grassmannian of type B is known to be isomorphic to
OG(n) as algebraic varieties. Although the tori acting on theageties are different,
we can deduce results for type B from those of type D, see @e&i5 for details.

Let G, denote one of LG{) or OG() and letT be the maximal torus of the com-
plex symplectic group Sp, respectively the complex special orthogonal group.3&
Denote byS := H{(pt) the integral equivariant cohomology of a point, which ig th
polynomial ringZ[ty, ..., t,] (respectivelyZ[ty, ..., t,41]) in the characters o . The
equivariant quantum cohomology ril@ Hy (Gn), defined for more general varieties by
Kim [29], is a gradedj[q]-algebra, where the quantum paramegehas (complex) de-
green + 1 or 2n respectively. It has arg[q]-basis consisting of Schubert classes

2010 Mathematics Subject Classification. Primary 14M15; 8éary 53D45.
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wherer = (A1 > --- > A¢ > 0) varies in the seSP(n) of strict partitions included in

the staircasen,n—1,..., 1). The multiplication
o) k0, = Z C;:zqdau
d>0,veSP(n)

is determined by the (3-point, genus 0) equivariant Groréiten (GW) invariants,
defined by Givental [20]. The coefficient%i are homogeneous polynomials 8 and

thosecﬁ:,‘i of polynomial degree O are non-negative integers equal ¢ootidinary GW
invariants counting rational curves of degrdepassing through general translates of
Schubert varieties. 18l = 0, c;:ﬂ is a structure constant of the equivariant cohomology
ring H¥(Gn). There is aZ-algebra isomorphismQH{(G,)/(S;) ~ QH*(G,) to the
quantum cohomology of,, and anS-algebra isomorphisnQ H; (Gn)/(a) >~ H;(Gn)
to the equivariant cohomology ring; hef& consists of the elements i8 of positive
degrees.

The main goal of this paper is to solve t@ambelli problemfor QH;y(Gn):
(1) we find a presentation with generators and relationQ&f; (Gn);
(2) we identify a set of polynomials in the given generatorsiolr are sent to the
Schubert classes; (the Giambelli formulg.
It turns out that a natural combinatorial framework for thesatements is given by the
factorial P- and Q- Schur functions;B | t), Q,(x | t). These functions are slight
variations of those introduced by Ivanov [27]—see Sectich 2elow—and they are
deformations of the ordinar?- and Q-Schur functionsP; (x), Q,(x) (see Schur’s paper
[44]). It is a general feature of the theory & and Q- Schur functions that they can
be expressed as Pfaffians of skew-symmetric matrices, anettends to their factorial
deformation [27]. The relation between Ivanov’'s factorial and Q- Schur functions
and geometry ofG, was first established by the first and third authors of thisepap
in [23, 24], where they solve the Giambelli problem for theuiggriant ring Hy (Gn)
using these functions. Therefore, one expects that spieformations of these Pfaff-
ians represent Schubert classeJi; (Gn). The pleasant—and somewhat surprising—
fact proved in this paper is that the same, undeformed Pfaffiamulas answer the
Giambelli problem in the quantum ring. This is reminiscehttlee situation regarding
the (equivariant) quantum Giambelli problem for the type Aassmannian [4, 40], and
the quantum Giambelli problem fay, [33, 34].

1.1. Statement of results. To state our results precisely, we fix some notation.
Let X = (Xg, X2, ...) be an infinite sequence of variables. LBt(x), Q;(x) denote
Schur’s P- and Q-functions for partitions with one part (cf. [37] 1Il.8). B&’ =
Z[Pi(X), Po(X),...] and T = Z[Q1(x), Q2(x), ...] and recall that these rings have
a Z-basis given by theP- and Q-Schur functionsP; (x) and Q;(x), whereir = (A1 >
- > Ak > 0) varies in the set of strict partitionSP. In fact, I' is a subring ofl”,
becauseQ; (x) = 2™ P,(x), wherel (1) = k denotes the length of. Lett = (t1,t5,...)
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be a sequence of indeterminates andZi¢t := Z[t;,tz,...]. ThenZ[t]®z ' is natur-
ally a graded ring with de& (x) =i, degti = 1, andZ[t] ®z " is a graded subring of
it. For eachx € SP, the corresponding factorid-function P, (x | t) (resp. Q-function
Q,.(x | t)) is a homogeneous element &ft] ®z I'" (resp.Z[t] ®z I'). If we set all
the parameter$ to zero, thenP,(x | t) specializes to the ordinarf?-Schur function
P,.(x), and similarly forQ,(x | t). We use the convention that= 0 if i > n for LG(n),
respectively ifi > n+ 1 for OG(). The following is the main result of this paper.

Theorem 1.1. (a) There is an isomorphism of gradedg$-algebras
SAI[PLX [ 1), - .., Pan(x | D]/1 — QHF (OG(M)),

where [ is the ideal generated by,Pi(Xx | t), ..., Popn_1(X | 1), Por(x | 1) + (—1)"q.
Moreover the image of R(x | t) (A € SP(n)) is the Schubert class;.
(b) There is an isomorphism of gradedg$-algebras

Al Qu(x [ 1), -, Qn(X | 1), 2Qna(X | 1), Qui2(X | 1), ..., Qzn(x | 1)]/I@
— QH;{(LG(n)),

where % is the ideal generated b2Qni1(X | t) — dy Qnia(X | 1), ..., Qan(X | t).
Moreover the image of Q(x | t) (A € SP(n)) is the Schubert class; .

In Theorems 4.2 and 5.2 below we also give a presentation (imtlependent) gen-
erators and relations. In that case, the ideal of relati@mains the quadratic identities
which are satisfied by the (factoriaB- and Q-functions (cf. (2.5), (2.7)).

The specialization at| = 0 in the relations from (a) and (b) recover the equivari-
ant cohomology rings. The Pfaffian formulas and the (spieeid) quadratic identities
have a geometric interpretation in terms of equivariantr@r@asses of the tautolog-
ical bundles on OGy), explained in Appendix A below. This extends authors’ work
in [26], where it was done for the Lagrangian Grassmanniahe Pfaffian formula
was first proved by Kazarian [28] in the context of degeneracy formulas of vec-
tor bundles. Our proof is different, and it is based on outiearesults from [26],
in which we introduced the double Schubert polynomials, moo&al family of poly-
nomials identified with the Schubert classes in the equavarcohomology of full flag
manifolds of types B, C, D. Kazarian’s method was recentlypleyed by Anderson
and Fulton [2] to extend the single Pfaffian expression of dbeble Schubert poly-
nomials to a wider class of Weyl group elements caledillary signed permutations
It should be noted that Tamvakis [45, 46] proved a generalbdoatorial formula that
expresses the double Schubert polynomials as explicitip@dinear combinations of
products of Jacobi—Trudi determinants times (at most) glsiSchur Pfaffian.
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1.2. Related work and idea of proof. The connection between the (ordinary)
P- and Q-Schur functions and the Giambelli problem for the ordinaohomology of
OG() and LGf) was discovered by Pragacz [43]; this is analogous to thssidal
fact that the ordinary Schur functions solves the Giambmibblem for the type A
Grassmannian—see e.g. [17]. Kresch and Tamvakis [33, 3ddl ustersection the-
ory on the Quot schemes in classical types—an argument ifimdplater by Buch,
Kresch and Tamvakis [8]—to find a presentation for the quantwwhomology rings
of LG(n) and OGf). They proved that the Pfaffian formula for tHe and Q-Schur
functions gives representatives for the quantum Schultesses. The Quot scheme ap-
proach was pioneered by Bertram [4], who proved that therahi@ntal formula for
the Schur functions gives the quantum Giambelli formula iitt&d’s presentation [47]
of the quantum cohomology ring of the type A Grassmannianer&his large body
of literature dedicated to the (non-equivariant) quanturantelli problem for other
homogeneous spaces—see e.g. [3, 9, 12, 15, 30] and referérezein. The equivariant
quantum Giambelli formula for partial flag manifolds was eetly and independently
solved by Anderson and Chen [1] (by using Quot schemes), gndan and Shimo-
zono [36] (using the “Chevalley approach” explained in thlextnparagraph). The an-
swer was given in terms of specializations of Fulton’s urseé Schubert polynomials
[16]; for the full flag manifolds this specialization recesethe quantum double
Schubert polynomials which appeared in a paper by Kirillod &Maeno [31].

The proof of Theorem 1.1 is logically independent on eant&sults from [8, 33,
34] regarding quantum cohomology of Lg(and OGf), and in fact our methods give
an alternate proof of those results. We rely on the chaiiaaeteon of the equivariant
guantum cohomology ring of any homogeneous variety in teomthe Chevalley for-
mula—see Theorem 3.1 below. This was proved by the second auth@@9j (ini-
tially in [38] for Grassmannians) and it was successfullgdiso solve the Giambelli
problem for the equivariant quantum cohomology ring of thegsmannian [40] and
partial flag manifolds [36]. We show that the produef(x | t) - Pi(x | t) satisfies the
Chevalley formula in the equivariant quantum ring, moduie given ideal. The proof
uses a Grobner basis argument showing that the images ofigdP-functions form
an g[q]-basis for the given quotient ring. By the aforementionddhracterization the-
orem, this gives the result. A similar approach works for bf(@although there are
some technical differences.

1.3. Organization. In Section 2, we present preliminary results on the factoria
Q- and P-functions. In Section 3, we fix some notations for the maxiisatropic
Grassmannians and state the characterization resultshéoequivariant quantum co-
homology rings by the Chevalley rule. In Sections 4 and 5 waverthe main the-
orem respectively for O@) and LGf). In Appendix A, we discuss the (non-quantum)
equivariant cohomology of O@], and we give a geometric interpretation, in terms of
Chern classes, of the algebraic quantities from our maioréme.
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2. Factorial P-Schur and Q-Schur functions

The goal of this section is to recall the definition and the rmaiioperties of fac-
torial P-Schur andQ-Schur functions, following mainly Ivanov’s paper [27].

2.1. Definition of factorial P-functions. Let A = (A1 >--- > A¢x > 0) be a strict

partition with k < N; the quantityl (1) := k is the lengthof A. Lett = (t;,t5,...) be
a sequence of indeterminates. Theneralized factoriais defined by

X )¢ = (x—ta) -+ (x = t).

Following [27], define thefactorial P-Schur function Hxi, ..., XN | t) to be
() I(A) N
1 : Xi + Xj
Pl X 1) = e Y W<H(Xi 07 TT I1 —)
(N =10 weSy  \i=1 i1 joiqr 0T X

wherew € Sy permutes the variables,...,Xy. The polynomials?, (xy,...,Xn | t) are not
stable when the number of variables increases,PX1,...,Xn,0 | t) # Py(Xg,..., XN | 1)
in general. However, these polynomials satisfy the weatahilgty property

P)L(Xl, ..., XN, O, 0| t) = P)\(Xj_, ..oy XN | t).
Therefore it makes sense to define two projective limits
P)LJF(X | t) = Lm P;L(Xl, e, XoN | t); P)L_(X | t) = L@ P;L(Xl, ey XoN41 | t)
taken over even, respectively odd, number of variables.

REMARK 1. Itis known thatP,"(x | t) corresponds to Schubert classes equivari-
ant under a toru§ (see e.g. Appendix A below). The odd limR_(x | t) also has a
geometric relevance. We will study in more detail the fumectP,”(x | t) in an upcoming
paper.

In what follows we only consider the even limit, denote it By(x | t) := P,"(x | t),
and we refer to it aghe factorial P-Schur functianIf tf = 0 for i > 1 then one
recovers the definition of the ordinary-Schur function defined in [37, Chapter I,
Section 8]. Recall thai” denotes the rindZ[Pi(X), Px(x), ...]. Then P,(x | t) is an
element ofZ[t] ®z I'". The factorial Q-Schur functioris defined by

(2.1) Qu(x |t) = 2WP(x | 0,ty, ta, ... ).

Again, if all t’s equal to 0 then one recovers the ordin&@ySchur function, defined
by Schur [44] in relation to projective representationstad symmetric group; see [37,
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Chapter Ill, Section 8] for more o®@-Schur functions. Sel’ := Z[Q1(x), Q2(x),...].
Then the elemen®; (x | t) € Z[t] ®z [ is called the factorialQ-Schur function. By
[37, Chapter Ill, Section 8, (8.9)] the ordinal®-Schur, resp.Q-Schur functions form
a Z-basis of [/, resp.I". This implies that the function®, (x | t) and Q,(x | t), when
A varies over strict partitions, form bases o] for the ringsZ[t] ®z '’ respectively
Z[t] ®z T.

2.2. Quadratic identities, the Pfaffian formula, and recurrences. It is easy to
see from the definition thaP(x | t) = Pi(x) = Y72, X, and more generally

i—1
(2.2) PO =) (et ... 5P (),

j=0

wheree;(ty, ..., t) is the j-th elementary symmetric function. The functioRg, (x | t)
are determined byP (x | t) using certain quadratic identities, which will play a key
role in this paper. To define these relations,Xet (X1, ..., X)) andy = (Y1, - - -, Yb)

be two sets of indeterminates, and set

hk(x | y) = Z hi (le ceey Xa)ej(YL RN Yb)

i+j=k
wherehj(Xg, ..., Xa) denotes thé-th complete homogeneous symmetric functions.

Proposition 2.1. Let k, | be positive integers such thatXxI|. Then

P (X [1) = PX [OR(X | 1) + D gf®P (x| )Ps(x | 1),
r.s)

where the sum is over the s&t, consisting of pairdr, s) such that(r, s) # (k,|) and
(2.3) k<r=<k+Il, 0<s=<I, r+s<k+l,
and where

Cay g = {(—1)::2hk+._r_s(tk+1, otz t) i s 2,
(G A § PRI ( PR TR P B TP 1) if s=0.
Proof. For the factorialQ-functions (i.e. whert; = 0), this formula was proved
in [23], Proposition 7.1. The proof from [23] uses equatidB2) and (8.3) in [27],
which have a straightforward generalization to the casg ¢ 0. Then the proof from
[23] extends to this case. O
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Since P ;(x | t) = 0 by [27, Proposition 2.6 (c)] we obtain:
Corollary 2.2. The following identity holds for each* 1:

(2.9) P2+ Y gfOR X[ tPs(x|t) =0.

(r,s)eIi,i

The quadratic relations have a geometric interpretatiorrgin terms of identities
among the Chern classes of the tautological bundles onnD@{ fact they can be
deduced from this—see Appendix A below. Similar quadragicurrences and identities
hold for the factorialQ-Schur functions, and were proved by the first author in [23,
Proposition 7.1].

Proposition 2.3 ([23], Proposition 7.1)

(2.6) Qux 1) = X DX I+ D fP®Q (x| )Qs(x | 1)

(T,S)EIKJ
where {7(t) = (=1)52hyepr—s(t, . .., tr | tspas ..., ti_1). In particular we have the
identity
(2.7) Qx| 1)+ Z f5()Qr (x [ t)Qs(x | 1) = 0.

(r,9)€Zi;

The factorial P-Schur functionsP; (x | t) for an arbitrary strict partitiort. can be
calculated recursively starting from partitions havingnabst two parts. To state this
precisely, leth be a strict partition, and set

(2.8) r=2[(1(%)+1)/2]

and i, = 0 if I(1) is odd. In this case we mak@, o(x | t) = P, (x | t) by convention.
Also by conventionPy(x | t) = —B k(X | t). This is consistent with the fact that one
can define factorialP-Schur functions forany partition A (strict or not), but if two
parts of . are equal then the corresponding function vanishes [27d3iton 2.6].

Proposition 2.4 ([27]). We have
(2.9) Pu(x [ t) = Pf(Py 1, (X [ 1))1<i<j<r

where Pf(A) denotes the Pfaffian of th@gkew-symmetrjcmatrix A. In particular we
have the following recurrence relations

(2.10) P.X 1) =) (1) Py (X IDP, 5 (x| 1)
i=2
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Note that ifI (1) is odd then (2.10) is equivalent to the following identity:
1(1) _
(2.11) P [t) =Y (- Py (x [P, 5, (x| 1).
i=1

REMARK 2. It is obvious from (2.1), that the same formula holds €@x(x | t).

2.3. Next we define and study some functions which have a naturalpiretation
in terms of Chern classes of tautological bundles. Theipgries will be used in Ap-
pendix A below. DefinePi(k)(x | t) € Z[t] ®z I by the generating series

00 00 1+X‘U k
2.12 1 2POx 1tk =TT 22 T —tiw).
(2.12) +i§ Hx 1) i111_Xiuj1:[1( ju)

Equation (2.2) above shows that

(2.13) Pe(x 1) = PR 1) —

1
( 21) ety, ..., ).

Lemma 2.5. We have

Pk(?j(x |t) = Pegj(X | t) + haltega, - - ot ) Pegja(X [ ) + -+
+ hj_a(tera, ty2) Pera(X | 1)
+hjtr) Pdx [ ) (= 1),

Pk(g (x]t) =P j(x|t)—eltk—j+1, - - - k) Peja(x | 1)
+ & (t—j, - - ) Poja(X [ 1) + - -
+ (-1 e alts, - - -, t)PU(X | 1)
+(—Dfety, .-, /2 (2 0).

Proof. The equation is easily verified (cf. equations in [@6382]). O

Lemma 2.6. We have

Pei(x | 1)

= (PPX ) = (Dfedts, - - -, 8)/2PRVX | 1) + (-1 ety - ., 1)/2)
(2.14)

1-1
+23 (1P x 1PV (x | ) + (1) BE (x| 1),
j=1

Proof. The expression d#(x |t) in Proposition 2.2 can be written in the above
form by using Lemma 2.5. ]
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2.4. The Chevalley rule.

Proposition 2.7 ([27], Theorem 6.2) Let be a strict partition and r from equa-
tion (2.8) above. Then

(2.15) P(x | )P.(x [ 1) = ) Pu(x | t) + (Z twl) P.(x | 1),
i=1

n—>A

where © — A means thatu is a strict partition obtained froni by adding one more
box. In particular

1(2)
(216)  Qux|DQ(x[1) = Y 2001, (x )+ 2(2 tA)QA(x 1),
LA i=1

3. Equivariant quantum cohomology of maximal isotropic Grassmannians

The goal of this section is to fix notation for the maximal ispic Grassmann-
ians, and to recall the definition and some basic facts of #hgiivariant quantum co-
homology ring.

3.1. Schubert classes and equivariant cohomology.We recall next some basic
facts about the torus equivariant cohomology ring; see J[6oi7 details. Although the
definitions here make sense for any homogeneous siaeee will restrict to the case
when X = G/P is a homogeneous space whéeis a complex semisimple Lie group
and P is a maximal parabolic subgroup. (We will soon specialize further b@&hand
P.) Then X is a smooth, complex, projective variety with an action of aximal torus
T C G given by left multiplication. Consider the universal buadtT — BT. Then
T acts freely onET and one can define a (fre@)-action onET x X by t - (e, x) =
(et™1,tx). The (integral) equivariant cohomology f, denotedH; (X), is the ordinary
cohomology of the “Borel mixed spaceXt := (ET x X)/T. The structure morphism
X — pt gives H{(X) a structure of arS-algebra, whereS = Hy(pt). In fact, S can
be identified with the polynomial rin&[t,, ..., 4] where{ty, ..., t} is a basis of the
characters group (written additively) of the tortis Each irreducible, closed, subvariety
Y C X of (complex) codimensior which is also stable under thE-action determines
a class Y]t € HZ(X).

The set of T-fixed points onX = G/P is identified with the coset spad#//Wp,
whereW and Wp are the Weyl groups o6 and P respectively. Let us denote ByP
the set of minimal length representatives 0/Wp. We consider the case whéh is
of one of the classical types B, C, and D, aRdis maximal. Then the setvP will
be later identified with certain set of strict partitions.rFoe WP, we denotee, the
correspondingr -fixed point onX. Let B be a Borel subgroup such th@tC B C P,
and let B~ be the opposite Borel subgroup. Schubert variety2, := B-e, C X is
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the closure of aB~-orbit. The codimension of the variet®, is given by the length
of A € WP denoted by|A|. The Schubert varieties aré-stable, and theequivariant
Schubert classes, := [Q,]7 form an S-basis of Hy(X), when A varies inWP.

3.2. Equivariant quantum cohomology. The equivariant quantum cohomology
ring QH#(X) is a gradedS[g]-algebra, where deilg= 1 andq is a variable of degree
degq = ¢1(Tx) N [C]; herecy(Tx) is the first Chern class of the tangent bundleXaf
(In this paper we use notation deg(to indicate the complex degree of a homogeneous
elementae of QH;(X).) The algebraQH;(X) has an§q]-basis given by Schubert
classeso;. The multiplication is given by the 3-point, genus 0 equ&at Gromov—
Witten invariantsc;ji, whered > 0 is adegree(a non-negative integer):

v,d _.d
0, * 0, = E C,..9 oy
v,d

This ring was defined by Givental and Kim [21, 29], and we reéef38, 39] for more
details about definitions, in the context of Grassmanniansomogeneous spaces. The
coefficientscX;ﬂ are homogeneous polynomials B and it was proved in [41] that
they can be written as positive sums in monomials of negaiivple roots (precise de-
tails: loc. cit., Section 6). This positivity generalizégtone in equivariant cohomology
proved earlier by Graham [22]. The fact that equivariantruan cohomology ring is
a deformation of both the equivariant and quantum cohonyotaggs translates to the
fact that if d = O then c;:,‘i is the coefficient ofo, in the equivariant multiplication
o0, -0y, and if the degree of the polynomia,”[;ﬂ is zero (i.e.cX;ﬂ is an integer) then the
coefficient in question is the ordinary 3-point, genus 0 GoesWitten invariant which
counts rational curves of degrekintersecting general translates of variet@s, 2,
and ,,,,, wherewy is the longest element ilV.

We recall next a characterization theorem for the riQdi;(X), proved in [39].
Let oy) € HTZ(X) denote theunique Schubert class corresponding to the Schubert div-
isor (uniqueness follows becaugeis maximal parabolic).

Theorem 3.1([39]). Let(A,*) be a graded commutativd @-algebra. Assume that
(1) A has a $q]-basis{s,},cwr such that g is homogeneous of degrék];
(2) the equivariant quantum Chevalley rulelds i.e.

d
Sy * S = Z Clry5,0%S-

u,d>0

Then A is isomorphic to QHX) as a graded Bj]-algebra via the map defined by
S, B 0;.

An explicit formula for the equivariant quantum Chevalleyer was found in [39].
It states that there are no “mixed” coefficientsdp * o,, i.e. all the coefficients are
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already founds in the equivariant, respectively quantymeclizations of the Chevalley
rules. The equivariant coefficients appearing in this fdemibave been computed by
Kostant and Kumar [32]; see also [5]. The case whéris a maximal orthogonal
Grassmannian—which is of main interest in this paper—wadistl extensively in [24,
23]. For general homogeneous spaesP, the quantum Chevalley formula has been
conjectured by Peterson [42] and proved by Fulton and Woadly#9] in its highest
generality—see also [11] for a different proof. Earlieruks (including more general
formulas for Grassmannians) were obtained by Bertram fpe %% Grassmannians [4],
by Ciocan-Fontanine and Fomin, Gelfand and Postnikov fpe tg flag manifolds [12,
15] and by Kresch and Tamvakis for maximal isotropic Grassnans [33, 34]; more
recently a Pieri formula for submaximal isotropic Grassmans was found in [9].

We recall next the definitions and the equivariant quanturev@ley formulas for
the maximal isotropic Grassmannians of types C and D, and thewelevant results
in type B can be recovered from those of type D.

3.3. Type C: the Lagrangian Grassmannian. The Lagrangian Grassmannian
LG(n) is the manifold parametrizing dimensian linear subspaces of?" which are
isotropic with respect to a skew-symmetric, non-degeeerailinear form( -, - )}c on
C?. We fix an ordered basig, ..., €}, e, ..., e, of C*. The form is defined by

(ei,ej)c = (e, e])c =0, (e, e)c=34.
The symplectic group Sp := Sp,,(C) acts transitively on LG{). In fact, LG{) can

be reinterpreted as the homogeneous spacg/Bp where Py C Sp,, is a maximal
parabolic subgroup which corresponds to the node 0 of thekiDydiagram of type &:

0o 1 2 -+ n-1

The Weyl groupW = W, of type G, consists ofsigned permutationsv of the set
{A,...,1,1,...,n} which satisfy the property that(i) = w(i). Thusw is determined
by its valuesw(l), ..., w(n). The minimal length representativ&¥™ correspond to
(signed) Grassmannian permutationsvhich are defined by the property that(1) <
w(2) < --- < w(n) in the orderingh <--- <1<1<---<n. It follows that a signed
Grassmannian permutation is completely determined by thset of its barred values
w(l), w(2), ..., w(k), which in turn determines atrict partition A = (A1 > --- > Ay)
given by A; = w(i). Clearly ;1 < n and A > 0. We denote this set bgP(n), and
the set ofall strict partitions (i.e. with the requirement dn removed) bySP. The
identification W ~ SP(n) is the same as that from [26, Section 3] or [25, Section 4],
and we refer to any of these for more details, especially atimiconnection with the
root theoretic description ofv and W, .
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EXAMPLE 1. Letn = 6. Then362451 is not a Grassmannian permutation, but
631245 is. The latter determines the strict partitioe= (6, 3).

The action of the maximal toru¥ on C?" determines a weight space decompos-
ition C2" = (P, Ce;) & (P, Ce) where T acts by the character on Cef (and
—t; on Cg). Then S = H{(pt) equals the polynomial rin@[ty, ..., t,], and in fact
t = cI((Cei*) (the equivariant first Chern class of a trivial line bundlegt F be the
subspace spanned by the firsvectors of the ordered basis. We have a complete flag

Fe:FiC---CFCFpy1 C--- C Fpp =C,

Then F; is isotropic with respect tg-,-)c for 1 <i < n and coisotropic fon+1 <i <

2n. In fact, if we denoteV: := {u e V | (u,v)c =0 for all v € V}, thenF: = F, and
Fnii = F-; for 1<i <n. The flagF, is fixed by a Borel subgrou, which in turn
gives the opposite Borel subgrol . Let A be a strict partition inSP(n) and w; the

corresponding Grassmannian element. Defipe LG(n) by e, = (e - -+ Enm)

with the convention thae® = e. Then the Schubert variet, = B-e, can also be
defined as

(3.1) Q. ={VelGn)|dmVNE">i (1<i<I®X),

whereE' = (g,...,€,) (L <i <n). With these conventions, the complex codimension
of Q, is A=A+ + A.l()\').

We recall next the equivariant quantum Chevalley formutathis case the quan-
tum parametelqg has degreen + 1. For A € SP(n) such thati; = n define A =
(A2, ..., Mw). Then the following holds inQHy (LG(n)):

(3.2) o * 0y = Z 2 (’\)"(")HUH + C(Almax + qoy-,
u—>x, neSP(n)

wherecpy, = 22!@1 t,,, and the last term is omitted ¥~ does not exist. This can
be easily proved by using the equivariant quantum Chevaliéy of [39] or [35, The-
orem 2.1].

3.4. Type D: the maximal orthogonal Grassmannian. We fix an ordered ba-
sis{€},1,---1€1,€1,...,En41} Of C2"*2 and a symmetric, non-degenerate, bilinear form

(-, -)o which satisfies(e;, ej)p = (€', €])p = 0 and (e, ej)p = §;,j. Let T be the
maximal torus of the complex special orthogonal group;39:= SO, 2(C) diago-
nalizing the basis. The maximal isotropic subspace€#™? have dimensiom + 1.
Let F; denote the subspace spanned by the ffirstctors of the above basis; thig, 1
is maximal isotropic. The group SR, acts on the set of all maximal isotropic sub-

spaces with two orbits, which correspond to the two conmkectamponents of this set.
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We denote by OGY) the SQ,,.-orbit through F,,;. For a maximal isotropic sub-
spaceV, the condition thatV belongs to OQf{) is equivalent to the followingeven
parity condition

3.3) coding . (VN Fh)) =0 mod 2.

n+1

The other S@,,-orbit corresponds to the odd parity condition.

Each of these two components is a homogeneous space. In(d&gh) can be
identified with SQn»/P;, while the other component with $Q.,/P:, where P, and
P; are the maximal parabolic subgroups determined by the éfirtknodes 11 of the
Dynkin diagram of type Ryq':

1
2 3 e n
1

REMARK 3. Let: denotes the automorphism & corresponding to the auto-
morphism of the Dynkin diagram switching nodes 1 ahd The automorphism in-
duces an isomorphism of algebraic varietyesG/P; — G/P;, which is not equivariant
with respect to the natural -actions, but it satisfieg(t - X) = «(t) - ¢(X) (t € T).

The Weyl groupW’ of type D,.; is the subgroup of the type.¢:1 Weyl group
from the previous section which consists of signed perruortatof {n + 1,...,1,1,...,
n + 1} with even number of sign changeghis identifies the simple reflectiog :=
S,+t, With the permutatior213--- (n + 1) and the simple reflectios := s, 4 with
the elements := (i,i + 1)(i, i + 1). The set of minimal length representatives for
w’/w;,i coincides with the set of those Grassmannian permutatimm type G.;
which are included inW’'. For such a representative for W’/W,;i define the strict
partition A = (A, > --- > A, > 0) by settingx; = w(i) — 1 wherei varies over the set
1,...,r such thatw(i) < 1. Note thatr must be even and, can be zero this time.
This correspondence gives a bijection with the §&(n) and we denote by the
representative corresponding tos SP(n). As before,l(w;) = |A| wherel(w) denotes
the length ofw as an element of the Weyl group of tyfg, 1. We refer again to [26]
or [25] for more details.

EXAMPLE 2. Leti = (4, 2,1). Then the corresponding Grassmannian elements
are given byw; = 4213 = $59%%51% in type C andw) = 53214 = $;551%%S;
in type D.

lwe use following convention for the simple roots, which iakée with respect to the natural
embedding of a Dynkin diagram to ones of higher ranks:

Oli=t2+t1,0{1=t2—t1,0t2=t3—t2 ..... on = the1 — .
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As in type C, we can choose a maximal toftisc SOy,.» Which acts onC2"+2
with e, € as eigenvectors, and such that the weighfTobn Cej and Ce; is t;, re-
spectively—t;. ThenS = H{(pt) = Z[ty, ..., th+1] and geometrically; = cI((Cei*). If
A is a strict partition inSP(n) let e, = (ejj,g(l), . .,e;j)i,‘(nﬂ)), using again the convention
thatei* =g. Let B~ be the Borel subgroup opposite to the stabilizer=of Then the
Schubert variety is defined b, = B—e,, and it also equals

Q, ={VeOoGn) |dmVNEY>i (1<i<IQX),

whereE' = (€41,...,€n11) (1 <i <n). The Schubert variety determines an equivari-
ant Schubert class; € HTZ"\'(OG(n)). In this case, the quantum parameter has degree
degq = 2n. If A is a strict partition such that; = n and A, = n — 1 then define

A~ = (A3,..., ). Otherwise we will say that~ does not exist. With these notations,
the equivariant quantum Chevalley formula is given by

(3.4) o) * 0, = Z o, + C?l),)\al + qos-,
n—>A,ueSP(N)

wherecy,, = > _;ty+1, and the last term is omitted ¥~ does not exist. This can
be easily proved by using the equivariant quantum Chevaliéy of [39].

3.5. The relation between maximal orthogonal Grassmannias in types B
and D. Let(-,-)g be a non-degenerate, symmetric bilinear fornG3A*1. The maximal
dimension of a subspadé c €2+ which is isotropic with respect to-, -)g equalsn.
The variety OGf, C?"*1) parametrizing maximal isotropic subspace<Cifi*+? is called
again the maximal orthogonal Grassmannian. It is a homagenegariety S@,.1/P,
whereP is the maximal parabolic group determined by the end roatesponding to the
double edge of the Dynkin diagram of type B. Using that the Mgegups of type B and
C coincide, one shows that the Schubert varieties inrQGE"+1) are indexed again by
strict partitions inSP(n).

We turn to the relation between the equivariant quantum wcahogy rings of
OG(n,C?*) and OGH). Fix a basis{e}_,,...,€5,€0,€,,...,en11} for C*"*1 such that

(e, ej)s = (€, €f)s = (€0, €')s = (€0, €)s =0 (2<i =n),

(ef,ej)g =24, (2=<i,j=n) (eoeo)p =1

Consider the injective linear ma@?'*! — C2"*2 which identifies the vectors?, e

(2 <i < n) from C**! with those fromC?"*+2 from the previous section, and sends
eo € C"1 to (e} + e1)/+/2 € C"*2. Under this injection,C>"*! can be identified
with the space §(e} — e;))* € C2"*2 orthogonal toC(ej — e;) with respect to the
symmetric form(-, -)p on C>"*2 defined in Section 3.4 above. This identifies,SQ
with a subgroup of S@.,, and the symmetric forn{-, - )p from type D restricts
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to (-, -)g on C2"*1, Note thatCe; and Cej are exactly the two maximal isotropic
subspaces e}, e;) =~ C2. It follows that if V € OG(n, C*"*1), thenV + Ce; and
V + Ce;j are the only maximal isotropic subspacesdA'*2 containingV. Only one
of them satisfies the parity condition (3.3) and gives an el@nof OGf). This cor-
respondence gives an isomorphism OG(n, C?"*1) — OG(n). This isomorphism is
equivariant with respect to the inclusion of maximal tori ®®,,,1 and SQ,.» given
by diag€ i, ... &1 1,6, ..., &n1) P diagérly, .. 61 1, L6, L Enr). Let Q)
be the Schubert variety for OG(C?"*1) associated withh € SP(n). Then we have
n 1(Q,) = ;. Combining all of the above implies that there exist&[&,...,tn1][q]-
algebra isomorphism

)7* : Q H{f(OG(n))/(tl) ~ Q H{f/(OG(n, C2n+1))

so thatn* [, ]t = [Q}]7, whereT’ := T NSOy 41. Note thatH{ (pt) = Z[t, ..., th41].
This explicit isomorphism allows us to ignore the type B oghnal Grassmannian
from now on, and instead focus on the one of type D.

4. Presentations and Giambelli formulas for the equivariath quantum ring of
the orthogonal Grassmannian

The goal of this section is to prove the main results of thipgpan the case of
the orthogonal Grassmannian Qfk(Our strategy is to work with both the rings given
by the “abstract” variables and by the factori@gtSchur functions at the same time,
and show that each ring has a natuBiy]-basis for which the equivariant quantum
Chevalley formula (3.4) holds.

4.1. Equivariant quantum Chevalley rule in A,. In this section, we sef =0
for i > n+ 1. Define the ring

An = 9qI[Pu(X | 1), ..., Pan(x | 1)]/1(9,
1@ = (Paya(X [ 1), ..y Pan_a(X | 1), Pan(X | t) + (=1)"q).

We will show that the images oP-Schur functions satisfy the equivariant quantum
Chevalley rule for OGQY).

Theorem 4.1. Let A € SP(n) be a strict partition with at most n parts. Then

Pay(X | )Pu(x | 1)

= > PuX[) 4y, OPx]t)+gP-(x|t) mod @,
u—A, neSP(n)

where the last term omitted unleds = n and i, =n— 1.
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Proof. By the Chevalley rule (2.15), we have

Py IDP(x )= > Pu(x] 1)+ ), OP(x | 1)+ Py(x | 1),
u—>x, neSP(n)

where if 11 = n then is given by adding one box to the first row afotherwise the
last term is omitted. Lebt € SP(n—2) and denote byn(+ 1,k, v) the strict partition
with partsn + 1, k followed by the parts of» (thusk > v;). It is enough to show

gqP.(x | t) mod I if k=n-1,

P, nx|t) =
(n+1k) (X | 1) {o mod I if k<n-—1.

If k < n—1 then the equation (2.10) and inductionl@n) implies thatPn1k,.)(X | t) be-
longs tol ¥ because it can be expressed asSdimear combination ofP, (x | t)Ps(x | t)
with n+ 1 <r < 2n. Let nowv = @ andk = n—1. Then by Proposition 2.1

PostnnX [ 1) = Poaa(X [DPaX [ )+ Y ghsyna@PH(X [DPs(X | 1).

(r9)€Zns1n-1

From the definition ofZ, 1, 1 it follows that the right hand side is equivalent to
(=1)"1Psy(x | t) = q mod 19, For generalv andk = n — 1, invoking again (2.10),
we can expres®niin-1.)(X | t) as

Pr+1n—1,0(X | t) = Ppyrn—1)(X | t)P,(X | t) + other terms.

All the other terms have factdPn1 (X | t) with k < n—1, therefore are congruent to
zero by the same reason as in the first case. Since we Paven—_1(x | t) = q mod

I,ﬁq) we have completed the proof. ]

4.2. Presentation of A, as a quotient ring. Next we will obtain a presentation
for A, as a quotient ring of a polynomial ring. Le{y, ..., Xon be indeterminates.
Consider theS-algebras homomorphism

X1, ...y Xon] = FPu(X [ 1), ..., Pa(X | 1)]

sending X; to P(x | t), for 1 <i < 2n. The quadratic relation (2.5) implies that the
kernel of the map contains the quadratic polynomiglsin § Xy, ..., Xo,] defined by

R =X+ gft)X X,
r.9)

where the sum is over the pairs $) € Z;,;, defined in equation (2.3), and coefficients
g € S are defined in (2.4) above.
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Lemma 4.1. The morphism

S[X]_, ey in]/(Rl, ey Rn) — S[P]_(X | t), ey PZn(X | t)]

sending X to B(x |t) for 1 <i < 2n is an isomorphism of S-algebras.

Proof. It suffices to show injectivity. Using the quadratedation R, and induc-
tion oni, one can writeXy (1 <k < n) as a polynomial inXz, X3, ..., Xax_1 with
coefficients inS. Then §Xq, ..., Xon]l/{(Ry, ..., Ry) is generated as aB-module by
the set of the residue classes of the monomials
(4.1) X1™X3M - XoEE (Mg, Mg, ..., Mgp—g > 0).

Since Py(x), P3(X), . .., P,n_1(X) are algebraically independent ovE&r[37, p.252] we
deduce that deformed functioid (x | t), Ps(X | t),..., Pon_1(X | t) are algebraically in-

dependent oveS. Then the image of the monomials from (4.1) is linearly inelegient
over S. Hence the map is injective. O

Let us denote the quotient ring
(4.2) Bn:= 9aql[ X1, X2, ..., Xonl/{Xng1, -+ y Xon1, Xon + (—1)nq, Ri, ..., Ry).
Proposition 4.2. We have an isomorphism of gradefiqBalgebras
By — An
sending Xto R(x|t) 1 <i <2n).
Proof. Clear from the definitions ofl,, B, and Lemma 4.1. 0
4.3. Freeness ofB, over 9q]. Next we will prove that5, is a free module
over §q]. The techniques are very similar to those from [23, Sec8a&], where the
(non-quantum) equivariant cohomology is considered.
Let Ri(“) € §X4,...,Xn] be obtained fromR by substitutingX, 1 =---= Xon_1 =

0 and X, = (—1)"1q. For example, ifn = 2, then S = Z][ty, t,, t3] and

Ry = X2 — Xo + (ty + to) Xq;
Ry = X5 — 2X3X1 4+ Xg + 2t3Xo X1 — (tg + t 4 t3) X3 + (tatz + titz + totz + t3) Xo.

Thus we have

RO =Ry, R® = X2—q+ 2t:XX1 + (taty + tats + tots + t2) Xa.
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With this notation we have the following identification

(4.3) By = HallXa, .., Xal/(R?, ..., RD),
For A = (A1, ..., L) € SP(n), setX* = X;, -+« X;,,-

Lemma 4.3. The ring 3, is a free $q]-module with a basis
(4.4) {X* | » € SP(n)}.

Proof. LetXM = X"X52---X™ be an arbitrary monomial irXy, . .., Xp. Us-
ing the “quantized” quadratic relatiorﬁ(‘“), we will write this as ang[q]-linear com-
bination of the square-free monomials from (4.4). The armgoimis almost identical
to that from [23, Lemma 8.4]. Consider the graded revers&dgraphic order with
X1 < -+ < Xp. The key property of this ordering is that

R@ = X2 + lower order terms.

If X™ has an exponent; > 2 we replaceXi2 by an §q]-linear combination of mono-
mials which are all smaller thaX?. Repeating this yields the claimed square-free lin-
ear combination. Thus the set (4.4) spdhsover q].

We prove next that the set (4.4) is linearly independent d&fe] by using the
theory of Grobner bases. L&t be the field of fraction ofS. By Buchberger criter-
ion (see e.g. Exercise 15.20 and more generally [14, Chal;ﬁerg“), ..., R9 s
a Grobner basis for the ideaR, ..., R®) c K[qg, Xy, ..., X,] for any monomial
ordering such that the initial term d%i“‘) is Xiz. One such ordering is the graded re-
verse lexicographic order with < X; < --- < X, (where we temporarily declare that
degq = 1). Notice that{q?X* | d > 0, » € SP(n)} consists exactly of the monomials

in g, X1, ..., X, which are not divisible byX?, X3, ..., X2. It follows that this set
is linearly independent oveK in the quotient ringK[q, Xu, ..., Xn]/(R?, ..., R®),
From this fact we see that (4.4) is linearly independent &g as well. ]

4.4, The Pfaffian polynomials X,. We give another§[q]-basis of 5,, which
will be finally identified with the Schubert basis. In analogith the Pfaffian formula
(2.9) for P,(x | t), define X, € Jq][ X1, ..., Xn] by

(4.5) X = PI(Xy ajizi<j=rs Xt = XX + Z O ()X Xs
(r.s)eZy,

whereZ, s is defined in (2.3) above, and we make the substitutions

Xnt1 =...= Xon1=0; Xon = (=1)"1q.
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ExAaMPLE 3. If n =2, we haveP, (X | t) = Po(X | t)Pi(X | t) — Ps(x | t) —
(ta + t3) Pa(X | 1), thus Xz,1 = Xo X1 — (tn + t3) X2.

The definition of X; and the Pfaffian formula (2.9) imply that the isomorphism
B, — An from Proposition 4.2 sendX; to P,(x | t) mod 1D, for any A € SP(n).

Proposition 4.4. The polynomials X whena varies inSP(n) form a §q]-basis
for By = S[ql[ X, - - ., Xal/(R?, ..., RY).

Proof. Consider the expansiof), = ZMES”P(H) G X*, wherec,, is a homogeneous
polynomial in S of degree|A| — ||. A standard argument using the Pfaffian recurrence
from (2.10) and induction on the number of partsxo$hows that,, = 1 andc,, =0
unlessu < A; see [23, Lemma 8.5] for more details. Then the matejx ) is invertible,
and the result follows from Lemma 4.3.

4.5. Proof of the main theorem in type D.

Theorem 4.2. (i) (the factorial P-Schur versignThere is an isomorphism of
graded $q]-algebras

Al Pu(x [ 1), - .., Pan(x | D]/1® — QHF(OG()),

where [? is the ideal generated by Ri(X | t), ..., Pan_1(X | 1), Pon(X | t) + (=1)'q.
Moreovey the image of Rx | t) (A € SP(n)) is the Schubert class;.
(ii) (the indeterminate versigriThere is an isomorphism of gradedg$-algebras

Sl X1, X2, ..., Xal/(RD, R® . R®) - QH#(0G(N))
which sends X (A € SP(n)) to the Schubert class;.

Proof. By Proposition 4.2 there is an isomorphism of gra@ggl-algebrass, ~
An, which sendsX;, A € SP(n) to P,(x | t) mod I,ﬁq). The theorem follows by com-
bining the facts that the equivariant quantum Chevalleynfda holds in A, by The-
orem 4.1,B, is free over§q] with the “correct” Schubert basis (Proposition 4.4), and
by applying the characterization Theorem 3.1. ]

5. Equivariant quantum cohomology of the Lagrangian Grassnannian

In this section we study the presentation and the Giamhwlinélas for the equivari-
ant quantum ring of LG{). The arguments are similar to those from type D, although
some technical difficulties arise.
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5.1. The Chevalley rule. In this section, we put; = 0 for i > n. Recall that
S=17Z[ty,..., t,]. Let A, be the ring defined by the left hand side of Theorem 1.1 (b).

Theorem 5.1 (Equivariant quantum Pieri—Chevalley rule)Let A be a strict par-
tition in SP(n). Then

Qu(x [)Qu(x [ 1)
= ) 207WNQux |t + 2(2 tMH) Qux ) +9Qu-(x|t) mod J{¥,

u—x, neSP(n) i=1

where the last term is omitted unless = n.

Proof. The idea of the proof is similar to that of Theorem 4biif the actual
details are slightly different. First, given the Chevalleye (2.16) for factorialQ-Schur
functions, it suffices to show that for any partitione SP(n — 1)

(5.1) 2Qn41,(x [ 1) =qQ,(x [t) mod J@.

Using the equation (2.6) and the fact that in this cagg = 0 we obtain that

Qni1 (X [ 1) = Qnaa(x | )Q, (x | t) mod 37,
Assume firstl :=1(v) is odd. Then by (2.10)

|
Qniro(X [1) =Y (1) ™ Qnian (X | )Quy iy (X | 1)
i=1
(5.2) ! .
= Quia(X [ ) D (-1 Qu(X | )Quy i (X | 1)

i=1

= Qnua(X [)Qu(x [ 1)

where the last equality follows from (2.11). This implies1(b
Let nowl :=1(v) be even. Then the length ofi{1,v) is odd and we apply (2.11):

Qn+1,v(X | t)

|
= Quea(X [DQuX [ 1) + ) (=1) Qu(X | ) Qnauy,itn (X [ 1)
i=1

|
= Q2 [ )Qu(X | ) + Quya(x | 1) Y (=1) Qu(X | )Quy iy (X | 1)

i=1

Now note thatZ!zl(—l)i QX | t)Qu.5..q(x|t) =0. Indeed, by applying (2.11)
t0 Qu,,..5...u (X | 1) we see that the coefficient @, 5,5, (X [ ) in this sum
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appears twice with opposite signs. This gives (5.1) in tleisecand finishes the proof.
0

5.2. Freeness and the Pfaffian formula. In this section we denote bR €
X1, ..., Xzn] the quadratic relations obtained from the analogous icelat(2.7) for

the functionsQ;(x | t):

R=X+ Y f*XXs 1<i<n
(I',S)EIH

The “quantized” quadratic reIatior’Ei(Q) are obtained fromR, using the substitutions
(53) 2Xn+1 =q, Xn+2 =---= Xoy = 0.

Note that each monomial iRy containing X1 has coefficient 2, thereforéii(q) €
Sal[ X1, ..., Xal.

EXAMPLE 4. Whenn = 2, we have

Ry = R = x2—2X, — 2t; X4,
Ry = X5 — 2X3X1 + 2X4 — 26X Xq + 2(ty + to) X3 + 2(tats + t3) Xo;
and thus

RI=R;, RY=X2—qX—26:XoX1 + (1 + t2)q + 2(ttz + t3) Xz
We define a grade®q]-algebra by:
B = Al X1, . .., Xa]/(RD, ..., R®).
Proposition 5.1. We have an isomorphism of gradefigBalgebras
Bn — An
sending Xto Q(x|t) (1 <i <n).
Proof. It suffices to show the analogue of Lemma 4.1. Let
An = S[Qu(X [ 1), -+, Qu(X [ 1), 2Qnsa(X | 1), Qni2(X [ 1), .- ., Qan(x | 1)]:

Consider the homomorphism &algebras

¢: Bni= X1, ..., Xy 2%ns1, Xnszs - -+, Xon]/(Ra, ..., Ra) = A,
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sendingX; to Q;j(x | t). We claim it is an isomorphism. Surjectivity is obvious. tLe
us prove that is injective. For arbitrary elemerft in B,, there is a sufficiently large
integerN such that 2 F can be represented by an eleménin [ X1, Xz, ..., Xon_1]

(cf. Proof of Lemma 4.1). SuppoggF) = 0. TakeN andG as above. Thep(2VF) =
¢(G) = 0. BecauseQq _1(x | t) (1 <i < n) are algebraically independent ov8r we
haveG = 2VF = 0 in BB,. A Grobner basis argument similar to Lemma 4.3 implies that
B, is free overSwith an SrbasisX’\-(ZXnH)m"H-XrTfZZ- S Xo, whereX* = X, - - Xy,

for » = (As,...,Ax) € SP(n) andm; > 0. In particular,3, has no torsion element. Hence
we haveF = 0. O

By the same argument of Lemma 4.3, we see thafs free overgq] with basis
{X* | » € SP(n)}. We define the Pfaffian formula foX, € §q][X4,..., Xn] analogous
to (2.9):

(5.4) X5 = PI(Xy ajizi<jzrs Xt = XeXi + Z f ()X Xs
(T,S)EIH

with the substitutions (5.3) enforced. (We use again thatténms containing<,; are
divisible by 2.) By the Pfaffian formula for the factori®-Schur functions it follows
that X, is sent to the image o, (x | t) in A, by the isomorphism of Proposition 5.1.
The analogue of Proposition 4.4 holds in this context as wél the same proof:

Proposition 5.2. The polynomials X whena varies inSP(n), form a §q]-basis
for By.

We obtain the main result for the Lagrangian Grassmannian:

Theorem 5.2. (i) (the factorial Q-Schur versignThere is an isomorphism of
graded $q]-algebras

A Qu(x [ 1), -+, Qu(X | 1), 2Qn1a(X | 1), Qnia(X | 1), - - ., Qan(x | 1)]/ I
— QH;(LG(n)),

where J? is the ideal generated b2Qn 1(X | t) — d, Qni2(X | 1), ..., Qan(X | t).

Moreover the image of Q(x | t) (A € SP(n)) is the Schubert class;.
(ii) (the indeterminate versigrirhere is an isomorphism of gradedg$-algebras

Sl X1, X2, - - Xal /(RY, R, .., RD) — QH:(LG(n))

which sends X (» € SP(n)) to the Schubert class;.
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Proof. The proof is the same as that of Theorem 4.2, using hewsbmorphism
Bn ~ A, (Proposition 5.1), Proposition 5.2, and the Chevalley fdemproved in
Theorem 5.1. 0

Appendix A. Equivariant cohomology of OG(n) via Chern classes

By specializing Theorem 4.2 & = 0, we have a presentation for the equivariant
cohomology ring of O@{). The goal of this section is to give a “dictionary” between
the various algebraic quantities in the presentation aedggometric quantities given
in terms of equivariant Chern classes. In particular, we stibw how the quadratic re-
lations arise naturally from a Chern class calculation. Asmneted in the introduction,
the formulas we obtain can be deduced from those for ortrelgdegeneracy loci ob-
tained of Kazarian [28], although here we provide directuargnt, similar to the one
obtained by the authors in [26, Section 11] for I (In fact, this section can be seen
as completing the aforementioned discussion from [26].

A.l. Presentation for Hf(OG(n)). We start by recalling the following presen-
tation for H{(OG(n)) obtained from the main theorem after specializatipe: O.

Corollary A.1. There is an isomorphism of graded S-algebras
SIPu(X | 1), Pa(x [ ), ..., Pan(X | 1)]/17 — H7(OG[M)),

where [ denote the ideal generated by, \R(X | t), ..., Px(x | t). The map sends
P.(x | t) (A € SP(n)) to the equivariant Schubert class.

We leave the reader to write down the indeterminate versiothis presentation.
In that case, the ideal of relations is generated by the elem@btained from the poly-
nomials R, defined in (4.2) after substituting; = 0 for n+1 <i <2n. We will show
in Section A.3 below why the quadratic relatioRs = 0 are geometrically natural.

REMARK 4. Corollary A.1 can also be proved by using localizatiorhteques.
In fact, we know that the factoridP-functions fora € SP(n) are sent to the equivariant
Schubert classes il (OG(n)) by the mapm, below (see (A.3) and Proposition A.4).
Then an argument similar to the one in [23, Section 8] can h@iexh

The Pfaffian formula (2.9) foilP,(x | t) implies the following Giambelli formula
(Al) o), = Pf(UAi,Aj)1§i<j§r-

This formula was proved in [24] and also by Kazarian [28] ie #tontext of degener-
acy loci of vector bundles.
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A.2. Equivariant Chern classes, the mapr,. We recall the setup from [26,
Section 10]. There is gautological exact sequenad bundles over OGY)

(A.2) 0-V—->E&E->V" >0

where £ is the trivial (but not equivariantly trivial) vector burediC?"+2? and V), the
tautological subbundle, has ramk+ 1. We identify £/V with V* by using the form

(-, -)p. The action of T on C>"*? determines a decomposition into weight spaces,
which in turn determines a spliting = (@1 £i) ® (P71 £f). Here £ = Ce;,
respectivelyL; = Ce denote the trivial line bundle witfl-weight —t;, respectively

t. SetL =@l Li, Zc =P, Li fork<n+1, andZ = Z,44 for k > n + 1.

If E, F are vector bundles we denote loy(E) the equivariant total Chern class of

E and byc(E — F) the term of degree in the formal expansion o€ (E)/cT(F).
Define

1

o = S (v £+ 29— (20).

We have proved in [26, Proposition 10.5] that the class
1
no= ECiT V-1
is an integral class iH{(OG(n)). The fact implies thati(k) is also integral.
The sequence (A.2) leads to quadratic relations amegisg
W2 +2) (“Dysno + (D) ya =0 (=1).
j=1

One sees that the same relations are satisfie® by)’'s (cf. Corollary 2.2). From this
fact we can define @&[t]-algebra homomorphism ([26, Proposition 10.6])

ot Z[t] ®z T — HE(OG(M))

such thatr,(tj)) =0 if i > n+1 andn, (P, (X)) =y fori > 1. The fundamental property
satisfied byn, is that

o, A€ S’P(n),

(A.3) mn(Pu(x | 1)) = {O % & SP().

Consider the functiorPi(k)(x | t) defined by (2.12) above.
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Proposition A.2. We have
1 .
(A4) m(RO 1) = 5eT (V" — £+ 29 (= 1),
(A5) R ) =c" (i =1)

Proof. Straightforward by using the definitions and idéssgitfrom Section 2.2.
O

The identities (A.3) and (A.5) imply:

Corollary A.3. The class ,@ is equal too; for 1 <i < n and is equal ta0 for
i >n.

REMARK 5. Corollary A.3 can also be proved by direct geometric argis The
equality ") = o; follows from the formulas for some special degeneracy Iditaimed
by Fulton and Pragacz—see e.g. [18, p.90]. To prove the Iv'mgjsi(i) =0 (i > n) first
notice that ifi > n+ 1 thenc! = (T (V*) — ¢T(Zn41))/2. The vanishing fof > n+ 1
is a consequence that the bundles involved have ra#ikl. Let us consider = n+ 1
case. By definition of), the fibers ofV and Z; , are in the same family, i.e. both
fibers are on the same $Q,-orbit, and therefore alsv* and Z,,, are. Then a result
by Edidin—Graham [13] implies thafl, ,(V*) = ¢!, ,(Zn+1), and the vanishing follows.

Proposition A.4. The canonical projectionr, factors as follows
Z[] ® T — SPyx | 1), ..., Pa(x | D]/1¢ = HF(OG()),
where the second map is the isomorphismGafrollary A.1

Proof. This is clear from (A.3), or alternatively from (A.2nd Corollary A.3.
O

By applyingm, to the equation from Lemma 2.6, and using (A.3), (A.4), ancbfA
one obtains:

Proposition A.5. For 1 <| <k <n, we have
| .
(A.6) ol =60 + 6T (2 + D (1)iel (v - L+ Z)el,.
j=1

This finishes the interpretation in terms of the Chern classfeall the quantities
involved in the presentation from Cororally A.1.
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A.3. Quadratic relations. We close this section by showing how the quadratic
relations for the factoriaP-functions are naturally derived from geometric arguments

Proposition A.6. For eachl <k < n we have the following relation in HOG(n))

k
(A7) @ + 6 (B + D (-1 G (V= £ + 2 =0,
i=1

Proof. Let us denote the right hand side By. Using thatc™ (V+V*) =c"(€) =
c" (£ + £*) we obtain an equality

(A.8) TV =L+ Z)c"(V— L+ 2} =c (2 + 2)).

Notice thatc! (V — £* + Z) = (=1 6T (V* — L+ Z) and ¢l,;(V* — L + Z) = 2.
Taking terms of degreek2in both sides of (A.8), we obtain that”k = 0. Since the
equivariant cohomology ring is torsion-free (being a freeduie overS), and Ry is
an integral class, we havgy = 0. O

Proposition A.7 (Geometric derivation oR¢ = 0). For 1 <k <n, we have

Pe(X | )% + (=1)fex(ty, . . ., t) P(X | t)

(A.9) = _vp® ® _kp® _
+ ZZ( 1) RS (X [P (x [ 1) + (=1)"Py’(x | t) = 0.
i—1

Proof. Let us denote the left hand side By. By Proposition A.2, it follows that
mn(R) = Rk. We know from [26] that there is an injectiv&t]-algebra homomorphism

Z[t] ®2 I’ — lim H;(0G()).

Note that the relationgkx = 0 also hold inm H{(OG(n)) because they are com-

patible with the inverse system and they stabilize for langdt follows that R, = 0.
Then it is straightforward to show, = R¢ by using Lemma 2.5. O

REMARK 6. The reader should have no trouble extending the argunsdrise
for LG(n). Most of them are already present in [26, Section 11.2]. Wy aote that
the analogue of the clascék) in this case i’ (V* — £ + Zk_1).
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