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Abstract
Chow stability is one notion of Mumford’s geometric invariant theory for study-

ing the moduli space of polarized varieties. Kapranov, Sturmfels and Zelevinsky de-
tected that Chow stability of polarized toric varieties is determined by its inherent
secondary polytope, which is a polytope whose vertices correspond to regular tri-
angulations of the associated polytope [7]. In this paper, we give a purely convex-
geometrical proof that the Chow form of a projective toric variety is H -semistable if
and only if it is H -polystable with respect to the standard complex torus action H .
This essentiallymeans that Chow semistability is equivalent to Chow polystability
for any (not-necessaliry-smooth) projective toric varieties.

1. Introduction

Let Xn
! P

N be ann-dimensional complex projective variety with degX > 2 em-
bedded by very ample complete linear system. Chow stabilityis one notion of the geo-
metric invariant theory (GIT) investigated by many researchers. In the present paper,
we study Chow poly(semi)stability of a projective toric variety for the standard com-
plex torus action. To state our result more precisely, let usbriefly recall the fundamen-
tal knowledge on toric varieties. See [2, 6, 14] for more details. Let AD {a0, : : : ,aN} �

Z

n be a finite set of integer vectors. LetQ denote the convex hull ofA in Rn. A finite
set A is said tosatisfy (�) if the following conditions hold:
i) AD Q \ Zn

D {a0, : : : , aN}.
ii) A affinely generates the latticeZn over Z.
Now we regardA as a set of Laurent monomials inn variables, i.e., of monomials of
the form

xa
D xa1

1 � � � x
an
n ,

where a D (a1, : : : , an) 2 A is the exponent vectors andx1, : : : , xn are n-variables.
The closure of theA-monomial embedding of a complex torus (C

�)n to the projective
space defines then-dimensional projective toric varietyXA. It is well-known that toric
Fano varieties with the anticanonical polarization correspond to reflexive polytopes. Re-
call that a fully dimensional integral polytopeQ containing the origin in its interior is
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752 N. YOTSUTANI

called reflexiveif vertices are primitive lattice points and whose polar dual polytope is
again an integral polytope.

Next we quick review some related results on Chow stability of polarized varieties
which will be the source of our argument. One of the reasons why Chow stability is
important in Kähler geometry is that Chow stability is closely related to the existence
problem of canonical Riemannian metrics on a certain compact Kähler manifold. A
breakthrough result has been achieved by Donaldson in [4]. Let (X, L) be a smooth
polarized variety, that is,X is an n-dimensional smooth complex variety andL is a
very ample line bundle overX. Donaldson showed that the existence of a constant
scalar curvature Kähler (cscK) metric representing the first Chern classc1(L) implies
asymptotic Chow stability of a polarized variety (X,L) wheneverX has no holomorphic
vector fields. This result has been extended by Mabuchi in the case where the auto-
morphism group is not discrete. In [9], Mabuchi proved that if(X, L) admits a cscK
metric in c1(L) then (X, L) is asymptotically Chow polystable whenever (X, L) satisfies
the hypothesis of the obstruction for asymptotic Chow semistability. Eventually, Futaki
has detected that Mabuchi’s hypothesis is equivalent to the vanishing of a collection
of integral invariantsFTd1, : : : , FTdn defined in [5], where Tdi denotes thei -th Todd
polynomial. The reader should bear in mind thatFTd1 equals theclassical Futaki in-
variant up to a multiplicative constant, so thatFTd1 is an obstruction for the existence
of cscK metrics inc1(L). Since these integral invariantsFTdi are a generalization of the
classical Futaki invariant, we call themhigher Futaki invariants. Combining Mabuchi’s
result [9] and Futaki’s statement [5], we have the following.

Theorem 1.1 (Mabuchi–Futaki [9, 5]). Let (X, L) be an n-dimensional smooth
polarized variety. Assume that the higher Futaki invariants FTdi vanishes for each iD
1, : : : , n. Then if (X, L) admits a cscK metric in c1(L) then (X, L) is asymptotically
Chow polystable.

One of the best possible result on the canonical Riemannian metrics of smooth
toric Fano varieties, due to X.J. Wang and X. Zhu, is the following.

Theorem 1.2 (Wang–Zhu [17]). Let X be a smooth toric Fano variety. Then
(X,OX(K�1

X )) admits a Kähler–Einstein metric in c1(OX(K�1
X )) if and only if the clas-

sical Futaki invariant vanishes.

Note that all cscK metrics inc1(OX(K�1
X )) are Kähler–Einstein metrics on smooth

Fano varieties. Summing up these results, one can see that asymptotic Chow semista-
bility implies asymptotic Chow polystability forsmoothtoric Fano varieties. Consid-
ering a direct combinatorial proof of this result, we provide more general result. That
is, for an equivalently embedded projective toric varietyXA � P

N , Chow semistability
is essentiallyequivalent to Chow polystability. In the above, the reader should bear in
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mind that we fixed a polarization and donot need asymptotic (semi)stability in order
to show our result. More precisely, we have the following.

Theorem 1.3. Let AD {a0, : : : , aN} � Zn be a finite set of integer vectors which
satisfies(�). Let XA ! P

N be the associated complex projective toric variety with
degXA > 2. Considering the algebraic torus action of(C�)NC1 into P N , we define the
subtorus of(C�)NC1 by

H D

(

(t0, : : : , tN) 2 (C�)NC1
N
Y

jD0

t j D 1

)

.

Then the Chow point of XA is H-semistable if and only if it is H-polystable.

Remark that Theorem 1.3 doesnot require XA to be either smooth or Fano vari-
ety. Also we note thatH -polystability simpliesH -semistability by its definition (see
Definition 2.1). On the other hand, even ifX is Fano variety Theorem 1.3 does not
seem to be true in non-toric case. In fact, a cubic surfaceX � P3 with a singular point
of type A2 gives an example of Fano variety which is Chow semistable butnot Chow
polystable (see Remark 4.1 for more details).

The main idea of our proof is based on the following observation. Let G be a
reductive algebraic group. SupposeG acts linearly on a finite dimensional complex
vector spaceV . The well-known Hilbert–Mumford numerical criterion of GIT(Prop-
osition 2.3) gives a necessary and sufficient condition for anonzero vectorv� 2 V
being polystable (resp. semistable). In the special case when the reductive groupG
is isomorphic to the algebraic torus, this criterion can be restate in terms of the cor-
responding weight polytope (Proposition 2.5). See [3, 6, 16] for more details. Roughly
speaking, the condition forH -semistability in Theorem 1.3 is equivalent to the fact that
the corresponding weight polytopeNH (X) with respect toH -action containing the ori-
gin. On the other hand, the condition forH -polystability is equivalent to the fact that
NH (X) containing the origin in its interior. In particular, the weight polytope of the
Chow point (form) of X ,! P

N with respect to (C�)NC1-action is called theChow
polytope. In the toric case, we can describe Chow polytopes in purely combinatorial
way. Namely, the Chow polytope of a toric varietyXA coincides with thesecondary
polytope6sec(A), which is a polytope whose vertices are corresponding to regular tri-
angulations ofQ (see Theorem 3.4). We will use this combinatorial approach via sec-
ondary polytopes in order to show our main theorem.

This paper is organized as follows. Section 2 is a brief review on the geometric
invariant theory and Chow stability. In Section 3, we first define the secondary poly-
tope and discuss about its fundamental property due to the work of Gel’fand, Kapranov
and Zelevinsky. The structure of secondary polytopes is well-discussed in [6, 8]. Sec-
tion 3.2 collects a combinatorial description on secondarypolytopes. We give the proof
of the main theorem in Section 4.
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2. Preliminaries

2.1. Weight polytope. Let G be a reductive algebraic group andV be a finite
dimensional complex vector space. SupposeG acts linearly onV . Let us denote a
point v� in V which is a representative ofv 2 P (V).

DEFINITION 2.1. Let v� be as above and letOG(v�) be theG-orbit in V .
(a) v� is called G-semistableif the Zariski closure ofOG(v�) does not contain the
origin: 0� OG(v�).
(b) v� is calledG-polystableif OG(v�) is closed orbit.
Analogously,v 2 P (V) is said to beG-polystable (resp. semistable) if any representa-
tive of v is G-polystable (resp. semistable).

REMARK 2.2. The closure ofOG(v�) in the Euclidean topology coincides with
the Zariski closureOG(v�) (see, [11], Theorem 2.33).

From Definition 2.1, one can see thatG-polystability impliesG-semistability asG-
orbit itself never contain the origin. The following Hilbert–Mumford criterion is well-
known in the geometric invariant theory.

Proposition 2.3 (The Hilbert–Mumford criterion [12]). v 2 P (V) is G-polystable
(resp. semistable) if and only if v is H-polystable(resp. semistable) for all maximal
algebraic torus H� G.

Now we assume that a reductive groupG is isomorphic to an algebraic torus.
Let �(G) denote the character group ofG. Then �(G) consists of algebraic homo-
morphisms� W G ! C

�. If we fix an isomorphismG � (C�)NC1, we may express
each� as a Laurent monomial

�(t0, : : : , tN) D ta0
0 � � � t

aN
N , ti 2 C

�, ai 2 Z.

Thus, there is the identification between�(G) andZNC1:

� D (a0, : : : , aN) 2 ZNC1.

Then it is well-known thatV decomposes under the action ofG into weight spaces

V D
M

�2�(G)

V
�

, V
�

WD {v� 2 V j t � v� D �(t) � v�, t 2 G}.

DEFINITION 2.4 (Weight polytope). Letv� 2 V n{0} be a nonzero vector inV with

v

�

D

X

�2�(G)

v

�

, v

�

2 V
�

.
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The weight polytopeof v� (with respect toG-action) is the integral convex polytope
in �(G)
 R � RNC1 defined by

NG(v�) WD Conv{� 2 �(G) j v
�

¤ 0} � RNC1,

where Conv{A} denotes the convex hull of a finite set of pointsA.

In the case whereG is an algebraic torus, the Hilbert–Mumford criterion (Propos-
ition 2.3) can be restated as the following proposition.

Proposition 2.5 (The numerical criterion: [3] Theorem 9.2, [16] Theorem 1.5.1).
Suppose G is isomorphic to an algebraic torus which acts a complex vector space V
linearly. Let v� be a nonzero vector in V . Then
(i) v

� is G-semistable if and only ifNG(v�) contains the origin.
(ii) v

� is G-polystable if and only ifNG(v�) contains the origin in its interior.

2.2. Chow form. Now we recall the definition of the Chow form of irreducible
complex projective varieties. See [6] for more details.

Let X ! P

N be an n-dimensional irreducible complex projective variety of de-
gree d > 2. Recall that the Grassmann varietyG(k, P N) parametrizesk-dimensional
projective linear subspaces ofP N .

DEFINITION 2.6 (Associated hypersurface). Theassociated hypersurfaceof X!
P

N is the subvariety inG(N � n� 1, P N) which is given by

ZX WD {L 2 G(N � n� 1, P N) j L \ X ¤ ;}.

The fundamental properties ofZX can be summarized as follows (see [6], p. 99):
(1) ZX is irreducible,
(2) CodimZX D 1 (that is, ZX is a divisor inG(N � n� 1, P N)),
(3) degZX D d in the Plücker coordinates, and
(4) ZX is given by the vanishing of a sectionR�

X 2 H0(G(N � n� 1, P N), O(d)).
We call R�

X the Chow form of X. Note that R�

X can be determined up to a multi-
plicative constant. SettingV WD H0(G(N � n � 1, P N), O(d)) and RX 2 P (V) which
is the projectivization ofR�

X , we call RX the Chow point of X. Since we have the
natural action ofG D SL(N C 1,C) into P (V), we can define SL(N C 1)-polystability
(resp. semistability) ofRX.

DEFINITION 2.7 (Chow stability). LetX! P

N be an irreducible,n-dimensional
complex projective variety. ThenX is said to beChow polystable(resp. semistable) if
the Chow pointRX of X is SL(N C 1,C)-polystable (resp. semistable).
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3. Secondary polytopes and Regular triangulations

3.1. A construction of secondary polytopes. In this section we recall the def-
inition of secondary polytope and its fundamental property. For more details, see [6, 8].

Let A D {a0, : : : , aN} be a finite subset inZn which satisfies (�). Let Q be the
convex hull of A in R

n as usual. To begin, we construct theregular triangulation of
(Q, A) as follows:

STEP 1. (Lifting): Pick a height function! W A! R which can be thought of as
a vector! D (!0, : : : , !N) 2 RNC1 with !(ai ) D !i . Using the coordinate of! as
‘heights’, we consider thelifted finite setin RnC1, defined by

A! WD {Oa0, : : : , OaN} � RnC1, Oai D

�

ai

!i

�

.

STEP 2. (Lower Face): LetQ! be the convex hull ofA! in R

nC1. A face F of
Q! is said to be alower face if it satisfies

x � cenC1 � Q! for each x 2 F and c > 0.

Here enC1 D (0, : : : , 0, 1)2 RnC1.
Step 3. (Projection): Letp denote the canonical projection

p W RnC1
! R

n, (x1, : : : , xnC1) 7! (x1, : : : , xn).

Then, if all lower faces ofQ! are simplices, their projections

{p(F) j F is a lower face ofQ!}

form a triangulation of (Q, A).

DEFINITION 3.1 (Regular triangulation). LetA and Q be as above. A triangula-
tion of (Q, A) is called regular if it can be obtained by projecting all the lower faces
of a lifted finite setA! in R

nC1 for some! 2 RNC1.

Let A and Q be as above and letT be a triangulation of (Q, A). Let J D {0,:::,N}

be the index set of labels. Fix a pointa j 2 A. Let Vol( � ) denote a translation in-
variant volume form onRn with the normalization Vol(1n) D 1=n! for the standard
n-dimensional simplex1n D Conv{ei j 1 6 i 6 n}. For any simplexC of T , we de-
note the set of vertices ofC by V(C). Then we consider the function�A,T W A! R

defined by

�A,T (a j ) D
X

C W a j2V(C)

n! Vol(C)
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where the summation is over all maximal simplices ofT for which a j is a vertex.
Especially,�A,T (a j ) D 0 for j 2 J if and only if a j 2 A is not a vertex of any simplex
of T . Then theGel’fand–Kapranov–Zelevinsky(GKZ) vector of T is given by

�A(T) D
X

j2J

�A,T (a j )ej 2 R
NC1

whereej for j 2 J is the standard basis ofRNC1.

DEFINITION 3.2 (Secondary polytope). Thesecondary polytope6sec(A) is the
polytope inRNC1 defined by

6sec(A) D Conv{�A(T) j T is a triangulation of (Q, A)}.

The following properties of secondary polytopes are well-known.

Theorem 3.3 ([6] p. 221, Theorem 1.7). For a finite subset AD {a0, : : : , aN} in
Z

n which satisfies(�), we have
(i) dim6sec(A) D N � n.
(ii) There is a one to one correspondence between the regular triangulations of(Q, A)
and vertices of6sec(A). In particular, the GKZ-vector�A(T) for a triangulation T of
(Q, A) will be a vertex of6sec(A) if and only if T is regular.

In order to see the relationship between secondary polytopes and Chow polytopes
of toric varieties, we first quick review on the constructionof toric varieties. See [6],
Chapter 5 for more details. Recall that a toric variety is a complex irreducible algebraic
variety with a complex torus action having an open dense orbit. As usual, letA D
{a0, : : : , aN} be a finite set of integer vectors inZn which satisfies (�). Setting

X0
A D {[xa0

W � � � W xaN ] 2 P N
j x D (x1, : : : , xn) 2 (C�)n},

we define the varietyXA � P

N to be the closure ofX0
A in P

N . Then XA is an
n-dimensional equivariantly embedded subvariety inP N . Then we require the follow-
ing result.

Theorem 3.4 (Kapranov–Sturmfels–Zelevinsky [7]). Let A� Zn be a finite set
which satisfies(�). Let XA � P

N be the associated toric variety. Let RXA be the
Chow point of XA. Then the weight polytopeN(C�)NC1(RXA) of RXA with respect to
the algebraic torus action(C�)NC1 (i.e., the Chow polytopeof XA) coincides with the
secondary polytope6sec(A).

Next we define a piecewise-linear functiong
!,T W Q ! R as follows. Let T be

a triangulation of (Q, A) and let! 2 RNC1 be a height function. Thecharacteristic
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sectionof T with respect to! is a piecewise-linear function which is defined by

g
!,T W Q! R ai 7! g

!,T (ai ) D !i

and extended affinely onC for each maximal simplexC of T . Remark that in the
definition of the characteristic section, we do not require! to be the height function
that induces the triangulationT .

Proposition 3.5 ([6] p. 221, Lemma 1.8). Let ! 2 RNC1 be a height function and
let T be any triangulation of(Q, A). For the characteristic section g

!,T of T with
respect to! and the GKZ-vector�A(T), we have

h!, �A(T)i D (nC 1)!
Z

Q
g
!,T (x) dv.

We finish this subsection with the following lemma.

Lemma 3.6. Let !, T, g
!,T and �A(T) be as inProposition 3.5. For each max-

imal simplex C of T, we have

(3.1)
Z

C
g
!,T (x) dv D

Vol(C)

nC 1

X

j2C

! j .

Moreover,

(3.2) h!, �A(T)i D n!
X

C2T

Vol(C)
X

j2C

! j

where the first summation runs over all maximal simplices of T.

Proof. (3.2) follows from (3.1) and Proposition 3.5. Hence it suffices to show (3.1).
From the definition ofg

!,T , we haveg
!,T (a j ) D ! j . Note that the integral of a

linear function on a domain is equal to the multiplication ofthe volume of a domain
with the value of a linear function at the barycenter. In our case, this implies

(3.3)
Z

C
g
!,T (x) dv D Vol(C)g

!,T (bC),

where bC is the barycenter of a simplexC. Now we use the fact that the barycenter
of a simplex is given by the average of its vertices:

(3.4) bC WD

Z

C
x dv D

1

nC 1

X

a2V(C)

a.

Note that we have the linearity ofg
!,T with respect to the barycenter (see [8], p. 219).

Substituting (3.4) in (3.3), we have (3.1). The assertion isverified.
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3.2. Facets of the secondary polytope.We describe the faces of secondary poly-
topes. The facets (i.e., codimension 1 faces) of6sec(A) correspond to maximal regular
subdivisions of (Q, A). These are calledcoarse subdivisions(see [6], Chapter 7 Sec-
tion 2 B).

Let A D {a0, : : : , aN} be a finite subset inZn which satisfies (�) and let Q be
the convex hull ofA in R

n. Recall that a subdivision of (Q, A) is called regular if it
can be obtained by projecting all the lower faces of a lifted finite set A! for some!
(Definition 3.1). LetS (A,!) denote the regular subdivision of (Q, A) produced by!.
We will find the defining equation of the facet of6sec(A) corresponding to a certain
coarse subdivisionS (A, !). To begin, we shall define arefinementof a polyhedral
subdivision.

DEFINITION 3.7 (Refinement). LetS and S0 be two subdivisions of (Q, A). Then
S is said to be arefinementof S0 if for any C 2 S, there is aC0

2 S0 with C � C0.
We denote it byS� S0.

The following theorem due to Gel’fand, Kapranov and Zelevinsky gives a combi-
natorial description of the faces of secondary polytopes. (cf. Theorem 3.3).

Theorem 3.8 ([6] p. 228, Theorem 2.4). Let S be any regular subdivision of(Q,A).
Let F(S) denote the convex hull inRNC1 of the GKZ-vectors for all triangulations T which
is obtained by refining S:

F(S) D Conv{�A(T) j T is a triangulation refining S}.

Then two faces of6sec(A) satisfy F(S) � F(S0) if and only if S� S0.

From Theorem 3.8, the facets of the secondary polytope6sec(A) correspond to
regular subdivisions of (Q, A) which only refine the trivial subdivision and no other.
We call these subdivisions thecoarse subdivisions. Note that the trivial subdivision
always exists and is given by the zero height function! D (0, : : : , 0). The following
Lemma gives the explicit defining equation of the facet of6sec(A) corresponding to a
coarse subdivision.

Lemma 3.9 ([8] Excercise 5.11). Let (Q, A) be as above. Let! 2 RNC1 be a
height function which produces the coarse subdivisionS (A,!) of (Q, A). The defining
linear equation of the facet of6sec(A) corresponding toS (A, !) is

X

j2J

! j' j D n!
X

C2T

Vol(C)
X

j2C

! j for ' D ('0, : : : , 'N) 2 RNC1,

where T is a certain triangulation which is obtained by refining S (A, !) (i.e., T �
S (A, !)).
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4. Proof of the main theorem

Now we ready to prove Theorem 1.3.

Proof of Theorem 1.3. LetAD {a0, : : : , aN} � Zn be a finite subset which sat-
isfies (�) and let J D {0, : : : , N} be the index set of labels. LetXA ! P

N be the
associated projective toric variety of degreed D degXA > 2. We denote the Chow
point of XA by RXA. Considering the complex torus (C�)NC1, we define the subtorus
of (C�)NC1 by

H D

(

(t0, : : : , tN) 2 (C�)NC1
N
Y

jD0

t j D 1

)

� (C�)N .

Suppose thatRXA is H -semistable but notH -polystable. SettingG D (C�)NC1, we
consider the projection

(4.1)
�H W �(G)
 R � RNC1

! �(H )
 R � RN ,

('0, : : : , 'N) 7! ('0 � 'N , : : : , 'N�1 � 'N).

Then by Theorem 3.4 we observe that

�H (6sec(A)) D NH (RXA) and �

�1
H (�NH (RXA)) � �6sec(A),

where�P denotes the boundary of an integral polytopeP. Thus, the numerical criter-
ion (Proposition 2.5) implies that there is an element' D ('0, : : : , 'N) in �6sec(A)
satisfying�H (') D 0 2 �NH (RXA). In particular, there existst 2 R such that

(4.2) (t, : : : , t
� �� �

NC1

) 2 �6sec(A)

from (4.1). Meanwhile, we have the equality

(4.3) (N C 1)t D (nC 1)! Vol(Q)

by (18) in [15]. This implies thatt ¤ 0 as Vol(Q) > 0 in (4.3). Hence we may assume
that there existst 2 R� satisfying (4.2).

Now we take the facetF of 6sec(A) which contains the point (t,:::,t) in (4.2). As
discussed in Section 3, there is a height function! 2 RNC1 which produces the coarse
subdivisionS (A, !) corresponding to this facetF . Fix ! 2 RNC1. Then Lemma 3.9
implies that

t
X

j2J

! j D n!
X

C2T

Vol(C)
X

j2C

! j
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for a certain triangulationT � S (A, !) which is given by a refinement ofS (A, !).
Also, Lemma 3.6 gives

h!, �A(T)i D n!
X

C2T

Vol(C)
X

j2C

! j

for any triangulationT of (Q, A). Taking T D T � S (A, !), we have

(4.4) t
X

j2J

! j D h!, �A(T)i.

On the other hand, we may assume that there is a subsetI � J such that

�

!i D 1 for i 2 I ,
! j D 0 for j 2 J n I ,

from the definition of the coarse subdivisions.
CASE I. The simplest case: Assume that there is only onei 2 I satisfying!i D 1

and there are no other (i.e.,I D {i }). Then we have the following two possibilities: (a)
ai � V(Q) and (b)ai 2 V(Q).

In the case of (a), we observe that

h!, �A(T)i D 0

for any T �S (A,!). Remark thatai is never a vertex of any simplices ofT because
ai is lifting by the height function!. Therefore (4.4) impliest D 0. This contradicts
t 2 R�.

In case (b),ai must be contained in a standard simplexC of T with ai 2 V(C),
where Vol(C) D 1=n!. Thus,

h!, �A(T)i D !i � �A,T (ai ) D 1.

Then (4.4) impliest D 1. Substituting this in (4.3), we have

(4.5) N C 1D (nC 1)! Vol(Q).

Therefore, Lemma 4.3 (see the Appendix) implies thatQ is a standardn-dimensional
simplex1n D Conv{ei j 1 6 i 6 n}. Then the associated toric variety is (P

n, O
P

n (1))
which has degree 1. This contradicts degXA > 2.

Hence the assertion is verified in the simplest case.
CASE II. The general case: Now let us consider the general case. For the simplic-

ity, we may assume that

! D (0, : : : , 0,!i , 0, : : : , 0,!i 0 , 0, : : : , 0)
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for !i D !i 0 D 1. Other cases are similar and our proof is readily generalized to such
cases with minor modifications. Then we have the following three possibilities:

(a) In the case where bothai and ai 0 are not a vertex ofQ, we conclude that

h!, �A(T)i D 0

by the computation in Case I-(a). Again, this yieldst D 0, a contradiction.
(b) In the case whereai 2 V(Q) but ai 0 � V(Q), we have

h!, �A(T)i D !i � �A,T (ai )C !i 0 � �A,T (ai 0)

D 1,

by the same argument in Case I-(a), (b). Thereforet D 1=2 by (4.4). Substituting this
in (4.3), we have

(N C 1)D 2(nC 1)! Vol(Q).

This contradicts Lemma 4.3.
(c) In the case where bothai and ai 0 are vertices ofQ, we have

h!, �A(T)i D 2.

Thus (4.4) impliest D 1. Now we repeat the argument in the last part of Case I-(b).
The proof is complete.

REMARK 4.1. It is an interesting problem to generalize Theorem 1.3 to the case
of non-toric. However, the following example indicates that there seemsto be no such
a generalization even to the case ofFano varieties (see [10], 7.2 (b) for more details).

Let X be a cubic surface inP3 and let RX denote the Chow point ofX. Re-
mark that RX is given by the defining equation ofX since X is a hypersurface. We
recall the following results on Mumford’s geometric invariant theory:
• X is Chow stable if and only if it has finitely many singular points of type A1 and
no worse singularities;
• X is Chow semistable if and only if it has at most finitely many singular points
of type A1 or type A2.
Let X0 � P

3 be a special one which is given by

X0 WD {[x W y W z W w] 2 P3
j y3
� xzw D 0} � P3.

Then X0 has exactly three singular points

p1 D [1 W 0 W 0 W 0], p2 D [0 W 0 W 1 W 0], p3 D [0 W 0 W 0 W 1]

which are all of typeA2. Thus, X0 is Chow semistable and not Chow stable. More-
over, it is well-known that SL(4,C) � RX0 is a closed orbit ([10], Proposition 7.23).
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Hence we conclude thatX0 is Chow polystable. Let us consider any other cubic sur-
face X with a singular point of typeA2 such that

SL(4,C) � RX \ SL(4,C) � RX0 D ;.

Obviously, X is Chow semistable. Then it follows that the closure of SL(4,C) � RX

containsRX0. This implies that SL(4,C) �RX is not closed orbit. Therefore,X is Chow
semistable but not Chow polystable.

Appendix

In this appendix we shall show Lemma 4.3 which is used in the proof of our the-
orem. To begin, we recall some properties of theEhrhart h-vector of an integral poly-
tope. See [13], [1], Chapter 6, for more details.

Let Q � Rn be ann-dimensional integral polytope. LetEQ(t) denote theEhrhart
polynomialof Q, which is a polynomial of degreen satisfying

EQ(l ) D Card(l Q \ Zn)

for each positive integerl . Then we define itsEhrhart seriesby

EhrQ(t) WD 1C
X

l>1

EQ(l )t l .

It is well-known that EhrQ(t) can be written as the power series expansion att D 0 of
a rational function

hntn
C hn�1tn�1

C � � � C h0

(1� t)nC1

with some integersh0, : : : , hn. We call (h0, : : : , hn) the Ehrhart h-vector of Q. Then
the Ehrharth-vector satisfies the following properties.

Proposition 4.2 (Ehrhart–Stanley). Let Q be an n-dimensional integral polytope
in Rn.
(1) h0 D 1, h1 D Card(Q \ Zn) � n� 1.
(2) n! Vol( Q) D

Pn
lD0 hl .

(3) hl 2 Z>0 for 06 l 6 n.

Lemma 4.3. Let Q be an n-dimensional integral polytope inRn. Then we have

Card(Q \ Zn) 6 (nC 1)! Vol(Q)

and equality holds if and only if Q is the standard n-simplex1n.
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Proof. Let (h0, : : : , hn) be the Ehrharth-vector of Q. Combining (1) and (2) in
Proposition 4.2, we have

(nC 1)! Vol(Q) D (nC 1) � n! Vol( Q)

D (nC 1)

 

n
X

lD0

hl

!

D (nC 1)(1C h1C h2C � � � C hn).

On the other hand, Card(Q \ Zn) D h1 C n C 1 by (1) in Proposition 4.2. Since all
integershl (l D 1, : : : , n) are nonnegative by Proposition 4.2, (3), we conclude that

Card(Q \ Zn) D h1C nC 1

6 (nC 1)(1C h1C h2C � � � C hn) D (nC 1)! Vol(Q).

In particular, we see that Card(Q \ Zn) D (nC 1)! Vol(Q) if and only if

(h0, : : : , hn) D (1, 0, : : : , 0),

and in this case we have that (h0, : : : , hn) equals (1, 0,: : : , 0) if and only if Q D 1n.
The lemma is proved.
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