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Abstract
For a knot K with 1K (t)

.
D t2

� 3t C 1 in a homology 3-sphere, letM be
the result of 2=q-surgery onK . We show that an appropriate assumption on the
Reidemeister torsion of the universal abelian covering ofM implies q D �1, if M
is a Seifert fibered space.

1. Introduction

The first author [2] studied the Reidemeister torsion of Seifert fibered homology
lens spaces, and showed the following:

Theorem 1.1 ([2, Theorem 1.4]). Let K be a knot in a homology3-sphere6
such that the Alexander polynomial of K is t2

� 3t C 1. The only surgeries on K
that may produce a Seifert fibered space with base S2 and with H1 ¤ {0}, Z have co-
efficients2=q and 3=q, and produce Seifert fibered space with three singular fibers.
Moreover
(1) if the coefficient is2=q, then the set of multiplicities is{2�,2�,5} wheregcd(�,�)D 1,
and
(2) if the coefficient is3=q, then the set of multiplicities is{3�,3�,4} wheregcd(�,�)D 1.

It is conjectured that Seifert surgeries on non-trivial knots are integral (except some
cases). We [4] have studied the 2=q-Seifert surgery, one of the remaining cases of the
above theorem, by applying the Reidemeister torsion and theCasson–Walker–Lescop
invariant, and have given sufficient conditions to determine the integrality of 2=q ([4,
Theorems 2.1, 2.3]).

In this paper, we give another condition for the integralityof 2=q (Theorem 2.1).
Like as in [4], the condition is also suggested by computations for the figure eight knot
([4, Example 2.2]).
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We note two differences of this paper from [4]; one is that thesurgery coefficient
appears in the condition instead of the Casson–Walker–Lescop invariant, and another
is that we need more delicate estimation for the Dedekind sumto prove the result.
(1) Let6 be a homology 3-sphere, and letK be a knot in6. Then1K (t) denotes the
Alexander polynomial ofK , and6(K I p=r ) denotes the result ofp=r -surgery onK .
(2) The first author [3] introduced the norm of polynomials and homology lens spaces:
Let �d be a primitived-th root of unity. For an element� of Q(�d), Nd(�) denotes the
norm of � associated to the algebraic extensionQ(�d) over Q. Let f (t) be a Laurent
polynomial overZ. We definej f (t)jd by

j f (t)jd D jNd( f (�d))j D

�

�

�

�

�

Y

i2(Z=dZ)�

f (� i
d)

�

�

�

�

�

.

Let X be a homology lens space withH1(X)� Z=pZ. Then there exists a knotK in a
homology 3-sphere6 such thatX D 6(K I p=r ) ([1, Lemma 2.1]). We definejXjd by

jXjd D j1K (t)jd,

where d is a divisor of p. Then jXjd is a topological invariant ofX (Refer to [3]
for details).
(3) Let X be a closed oriented 3-manifold. Then�(X) denotes the Lescop invariant
of X ([5]). Note that�(S3) D 0.

2. Result

Let K be a knot in a homology 3-sphere6. Let M be the result of 2=q-surgery
on K : M D 6(K I2=q). Let �W X! M be the universal abelian covering ofM (i.e. the
covering associated to Ker(�1(M)! H1(M))). Since H1(M) � Z=2Z, � is the 2-fold
unbranched covering.

In [4], we have definedjK j(q,d) by the following formula, if jXjd is defined:

jK j(q,d) WD jXjd.

Assume that the Alexander polynomial ofK is t2
� 3t C 1. Then, as noted in [4],

H1(X) � Z=5Z and jK j(q,5) is defined.
We then have the following.

Theorem 2.1. Let K be a knot in a homology3-sphere6. We assume the
following.

�(6) D 0,(2.1)

1K (t)
.
D t2

� 3t C 1,(2.2)
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jqj � 3,(2.3)
q

jK j(q,5) > 4q2.(2.4)

Then MD 6(K I 2=q) is not a Seifert fibered space.

REMARK 2.2. Let K be the figure eight knot inS3. Note that1K (t)
.
D t2
�3tC

1. Then jK j(q,5) D (5q2
� 1)2 by [4, Example 2.2]. Hence (2.4) holds ifjqj � 3.

REMARK 2.3. Theorem 2.1 seems to suggest studying the asymptotic behavior
of jK j(q,d) as a function ofq.

3. An inequality for the Dedekind sum

To prove Theorem 2.1, we need the following inequality for the Dedekind sum
s( � , � ) ([7]):

Proposition 3.1 ([6, Lemma 3]). For an even integer p� 8 and for an odd in-
teger q such that3� q � p� 3 and gcd(p, q) D 1, we have

js(q, p)j < f (2, p)

where f(2, p) D (p� 1)(p� 5)=(24p).

By this proposition, we immediately have the following.

Lemma 3.2. For an even integer p� 8 and for an integer q
�

such that q
�

¥ �1
(mod p) and gcd(p, q

�

) D 1, we have

js(q
�

, p)j <
p

24
.

Proof. By assumptions, there existsq such thatq
�

� q (mod p) and 3� q �
p� 3. Hence by Proposition 3.1, we have

js(q
�

, p)j D js(q, p)j <
(p� 1)(p� 5)

24p
<

p

24
.

REMARK 3.3. The estimation given in Proposition 3.1 has a natural applica-
tion ([6]).
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Fig. 1. A framed link presentation ofM D 6(K I 2=q).

4. Proof of Theorem 2.1

Suppose thatM D 6(K I 2=q) is a Seifert fibered space. Then, as shown in [4],
we may assume that

(�) M has a framed link presentation as in Fig. 1,

where 1� � < � and gcd(�, �) D 1.
Also as shown in [4],

p

jK j(q,5) D (��)2. Hence by (2.4),

(4.1) (��)2
> 4q2

By (2.1), (2.2) and [5, 1.5 T2], we have�(M) D �q. Hence (��)2
> 4{�(M)}2,

and hence

(4.2) j�(M)j <
��

2
.

We now considere defined as follows:

e WD
q1

2�
C

q2

2�
C

q3

5
.

According to the sign ofe, we treat two cases separately: We first consider the
casee> 0. Then the order ofH1(M) is 20��e. Since H1(M) � Z=2Z, 20��eD 2,
and eD 1=(10��). Hence by (�) and [5, Proposition 6.1.1], we have

(4.3) �(M) D

�

�

4

5

�

�� C

5�

24�
C

5�

24�
C

1

120��
�

1

4
� T

where T D s(q1, 2�)C s(q2, 2�)C s(q3, 5).
By (4.2), we have

�

��

2
< �(M).

Hence by (4.3),

�

��

2
<

�

�

4

5

�

�� C

5�

24�
C

5�

24�
C

1

120��
�

1

4
C jT j.
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Consequently

(4.4)
3

10
�� < �

1

4
C

5

24�
� C

5

24

�

�

�

�

C

1

120��
C jT j.

As in [4], we show that� � 2 implies a contradiction: Suppose that� � 2. Since
� < �, we have� � 3 and�=� < 1. Hence

3

5
� < �

1

4
C

5

24 � 2
� C

5

24
C

1

120� 2 � 3
C jT j.

Since js(q1, 2�)j � 2�=12< 2�=12, js(q2, 2�)j � 2�=12, andjs(q3, 5)j � 1=5 as in [4],
we have

jT j � js(q1, 2�)j C js(q2, 2�)j C js(q3, 5)j �
�

3
C

1

5
.

Hence

3

5
� < �

1

4
C

5

48
� C

5

24
C

1

120� 6
C

�

�

3
C

1

5

�

.

Thus
�

3

5
�

5

48
�

1

3

�

� < �

1

4
C

5

24
C

1

120� 6
C

1

5
.

Therefore

39

240
� <

1

240

�

38C
1

3

�

<

39

240
.

This contradicts� � 3.
We next show that� D 1 implies a contradiction: Suppose that� D 1. By (4.1),

�

2
> 4q2. Sincejqj � 3, �2

> 4 � 32
D 36. Hence� > 6. Since� D 1, eD 1=(10�).

Hence
q1

2
C

q2

2�
C

q3

5
D

1

10�

and hence we have the following equation.

(4.5) (5�)q1C 5q2C (2�)q3 D 1.

Since q1 and q2 are odd (see Fig. 1),� must be even. Since� > 6, we have� � 8.
We then have

q2 6� �1 (mod 2�).(℄)

In fact, sinceq1 is odd, (5�)q1 � � (mod 2�). Hence by (4.5),

� C 5q2 � 1 (mod 2�).
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Now suppose thatq2 � 1 (mod 2�). Then � C 5 � 1 (mod 2�). This is impossible
since� � 8. Next suppose thatq2 � �1 (mod 2�). Then � � 5� 1 (mod 2�). This
is also impossible since� � 8. Thus (℄) holds.

Substituting� D 1 in (4.4),

3

10
� < �

1

4
C

5

24
� C

5

24�
C

1

120�
C jT j

where T D s(q2, 2�)C s(q3, 5) (sinces(q1, 2)D 0). By (℄) and Lemma 3.2,

js(q2, 2�)j <
2�

24
D

�

12
.

Hence

jT j � js(q2, 2�)j C js(q3, 5)j <
�

12
C

1

5
.

Since� � 8,

3

10
� < �

1

4
C

5

24
� C

5

24 � 8
C

1

120� 8
C

�

�

12
C

1

5

�

.

Thus
�

3

10
�

5

24
�

1

12

�

� < �

1

4
C

5

24 � 8
C

1

120� 8
C

1

5

and hence�=120< 0. This is a contradiction, and ends the proof in the casee> 0.
We finally consider the casee< 0. TheneD �1=(10��). By (�) and [5, Propos-

ition 6.1.1], we have

�(M) D �

��

�

4

5

�

�� C

5�

24�
C

5�

24�
C

1

120��
�

1

4
C T

�

.

The remaining part of the proof is similar to that in the casee> 0.
This completes the proof of Theorem 2.1.
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