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Abstract
Based on the method of Boston and Leedham-Green et al. for computing the

Galois groups of tamely ramifiedp-extensions of number fields, this paper gives a
large family of triples of odd prime numbers such that the maximal totally real 2-
extension of the rationals unramified outside the three prime numbers has the Galois
group of order 512 and derived length 3. This family is characterized arithmetically,
and the explicit presentation of the Galois group by generators and relations is also
determined completely.

1. Introduction

Let p be a prime number. For a number fieldk and a finite setS of primes of
k none of which lies overp, we denote bykS the maximal pro-p-extension overk
unramified outsideS. Then the Galois group Gal(kS=k) is a fab pro-p group, i.e., the
maximal abelian quotient of any open subgroup is finite. In particular whenSD ;, the
derived series of Gal(k

;

=k) corresponds to thep-class field tower ofk, which is a clas-
sical object in algebraic number theory. By the theorems of Golod–Shafarevich type,
Gal(kS=k) can be infinite. While any finitep-groups appear as Gal(k

;

=k) for suitable
k (cf. [20]), it is still a considerable problem to determine the structure (finite or not,
the isomorphism class, etc.) of Gal(kS=k) for given k and S. Since the characterization
of metabelian Gal(kS=k) has been developed relatively well (cf. [1], [3], [6] etc.), we
focus on the cases where Gal(kS=k) has the derived length at least 3.

For this problem, Boston and Leedham-Green [4] introduced apowerful method to
compute Gal(kS=k) approximately with respect to the profinite topology, which is based
on the p-group generation algorithm [19]. In particular, they showed for p D 2 and
SD {1, 5, 19} that Gal(QS=Q) is isomorphic to one of certain two finite 2-groups of
order 219 and derived length 4 (cf. [4, Theorem 2]). Eick and Koch [9] have extended
this result to a large family ofS characterized by power residue symbols and class
numbers with the ingenious use of the complex conjugation inGal(QS=Q). On the
other hand, applying this method to the case wherepD 2 andSD ;, Bush [7] showed
for an imaginary quadratic fieldkD Q(

p

�445) that Gal(k
;

=k) is isomorphic to one of
certain two finite 2-groups of order 28 and derived length 3 (cf. [7, Proposition 2]).
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1064 Y. MIZUSAWA

As in these results (and [5], [8], [18], [22] etc.), this method often provides a
few finite p-groups similar to each other (more precisely, having the common large
quotients) as the candidates of the isomorphism class of Gal(kS=k). Then it is a nat-
ural question that which candidate is isomorphic to Gal(kS=k). In particular, we are
interested in how the arithmetical conditions determine the isomorphism class. Toward
this question, we need to find and compute a suitable subgroupof Gal(kS=k) such that
the Galois closure of the fixed field is large enough. Hence answering to this question
seems still difficult if the order of Gal(kS=k) is big or SD ; as in the cases above.
Mayer [16] determined the isomorphism classes of 3-groups Gal(k

;

=k) for some quad-
ratic fieldsk individually via computing the capitulation of ideals, while it is also dif-
ficult to extend such examples to a family characterized arithmetically.

In this paper, avoiding these difficulties, we obtain the following theorem which
gives a large family ofS characterized by arithmetical conditions, such that the Galois
2-group Gal(QS=Q) has the derived length 3 and the isomorphism class is completely
determined. We putp D 2 throughout the following, and denote by [2e1, 2e2, : : : , 2en ]
the abelian group

Ln
iD1 Z=2

ei
Z.

Theorem 1.1. Let l, q and r be distinct prime numbers such that l� 5 (mod 8),
q � r � 3 (mod 4), (qr )(l�1)=4

� 1 (mod l ) and the class number ofQ(
p

lqr ) is con-
gruent to4 modulo8. Let QS be the maximal(totally real) pro-2-extension ofQ un-
ramified outside SD {l ,q,r }. Then the Galois group GDGal(QS=Q) is a finite2-group
of order 29 which has a presentation as an abstract group with two generators a, b
and two relations

a�4[b2, a], b�2[[b, a], a]a4

where [x, y] D x�1y�1xy. In particular, G has the derived series G� G0

� G00

� {1}

of length3 such that G=G0

' [2, 4], G0

=G00

' [2, 2, 4] and G00

' [2, 2].

EXAMPLE 1.1. Using PARI/GP [24] etc., one can find 18 triples (l , q, r ) satisfy-
ing the assumptions of Theorem 1.1 in the range max{l , q, r } < 100, e.g., (5, 11, 71),
(5, 19, 79), (13, 23, 43), (29, 83, 7), (37, 47, 7), (53, 7, 59),(61, 19, 3).

The proof of Theorem 1.1 is based on the methods of Boston and Leedham-Green
[4] and Eick and Koch [9]. However, since1 � S in our case, we can not use the
complex conjugation, and we have to treat more units of algebraic integers. In the next
section, we calculate the abelianizations of some open subgroups of Gal(QS=Q) as the
2-parts of ray class groups of the fixed fields. Then we prove Theorem 1.1 in the third
section, using thep-group generation algorithm on GAP [23]. In the first half of the
proof of Theorem 1.1, we also reach two candidates of the isomorphism class. Since
29 is not so big andS¤ ; in our case, we can identify the fixed fields of suitable sub-
groups by the ramification condition. Hence we can determinethe isomorphism class
of Gal(QS=Q).
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REMARK 1.1. Under the assumptions of Theorem 1.1, the (narrow) ideal class
group ofQ(

p

lqr ) has the 4-rank 1. Hence the theorem of Rédei and Reichardt [21]
yields that

� q
l

�

D

�

r
l

�

D 1 (cf. also [2, Proposition 1]), where
� �

denotes the quadratic

residue symbol. Then, since the number of primes dividinglqr of Q(
p

d) is 5, where
d D �q or �r according to

�

r
q

�

D 1 or �1, Gal(QS[{1}=Q(
p

d)) is infinite (cf. [17,
(10.10.1) Theorem]). Hence Gal(QS[{1}=Q) is also infinite.

2. Ray class groups

2.1. Preliminaries. Let k be a number field, andS a set of ideals ofk which
are prime to 2. LetS(k) D {p1, p2, : : : , pn} be the ordered set of all prime ideals ofk
dividing

Q

a2Sa. ThenkS denotes the maximal pro-2-extension ofk unramified outside
S(k). We denote byAS(k) the Sylow 2-subgroup of the ray class group ofk modulo
Qn

iD1 pi . Then AS(k) ' Gal(kab
S =k), wherekab

S denotes the maximal abelian 2-extension
of k unramified outsideS(k). Burnside’s basis theorem yields that ifAS(k) is cyclic
then Gal(kS=k) is also cyclic, in particularkS D kab

S . The definition of the ray class
groups induces an exact sequence

E(k)
n
M

iD1

((Ok=pi )
�


 Z2) AS(k) A
;

(k) 0,

" ((" modpi )
 1)i

 

!

'

2

 

!

2

 

!

 

!

7!

!

whereOk is the ring of integers ink, E(k)D O�

k is the unit group ofk, andZ2 denotes
the ring of 2-adic integers. For each 1� i � n, we choose a primitive elementgi 2 Ok

of the finite field Ok=pi , i.e., (Ok=pi )
�

D hgi modpi i. Let 2ei be the order of cyclic
2-group (Ok=pi )

�


Z2. ThenZ=2ei
Z ' (Ok=pi )

�


Z2 W a mod 2ei
7! (ga

i modpi )
 1.
Depending on the order inS(k) and the choice ofgi (1 � i � n), the above sequence
induces the exact sequence

E(k) [2e1, 2e2, : : : , 2en ] AS(k) A
;

(k) 0,

" (a1, a2, : : : , an)

 

!

'k,S

2

 

!

2

 

!

 

!

7!

!

whereai is the abbreviation ofai mod 2ei satisfying " � gai
i modpi . Let {" j }1� j�d �

E(k) be a system (not necessarily minimum) such that{'k,S(" j )}1� j�d generates
'k,S(E(k)) as aZ2-module. Then we put a column vector

vk,SD

0

B

B

B

�

'k,S("1)
'k,S("2)

...
'k,S("d)

1

C

C

C

A

D

0

B

B

B

�

a11 a21 � � � an1

a12 a22 � � � an2
...

...
...

a1d a2d � � � and

1

C

C

C

A

D (ai j )1� j�d, 1�i�n.
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For any A 2 GLd(Z2), the components of a vectorAvk,S generate Im'k,S. By finding
suitable A such thatAvk,S has a simple form, one can calculate Coker'k,S.

REMARK 2.1. For a set6 of ideals ofk such that6(k)D {pi1,pi2,:::,pim} � S(k)
(1� i1 < i2 < � � � < im � n), we choose the samegi

�

(1� � � m). Then we have the
exact sequence

E(k)
'k,6
��! [2ei1 , 2ei2 , : : : , 2eim ] ! A

6

(k)! A
;

(k)! 0

with a vectorvk,6 D ('k,6(" j ))1� j�d D (ai
�

j )1� j�d, 1���m. If Avk,S D (bi j )1� j�d, 1�i�n

for A 2 GLd(Z2), then Avk,6 D (bi
�

j )1� j�d, 1���m. Hence one can also calculate
Coker'k,6 simultaneously.

We use the following formula (cf. [25]) which is also often called genus formula.
For a quadratic extensionK=k with the Galois group Gal(K=k) D h� i, we have

(2.1) j{[A] 2 A
;

(K ) j A� D A}j D
jA

;

(k)j2r

2jE(k)=E(K )1C�
j

,

where r denotes the number of primes ofk ramifying in K=k. Here we note that an
ideal A of K satisfiesA� D A if and only if A D B(aOK ) for some ideala of k and
a productB of primes of K ramified in K=k.

2.2. Settings. In the following, we suppose that the prime numbersl , q, r sat-
isfy the assumptions of Theorem 1.1. PutSD {l , q, r }, and putk D Q(

p

lqr ). Then
Gal(Qab

S =Q) ' [2, 4] and A
;

(k) ' Z=4Z. Since A
;

(k) has the positive 4-rank, we have
� q

l

�

D

�

r
l

�

D 1 (cf. [21] or [2, Proposition 1]). Henceq(l�1)=4
� r (l�1)=4

� �1 (mod l ).
By replacingq and r suitably, we may assume that

(2.2) q(l�1)=4
� r (l�1)=4

�

�

r

q

�

(mod l ).

Put k1 D Q(
p

l ), k2 D Q(
p

qr ), K D Q(
p

l ,
p

qr ), K1 D Q

ab
{l ,q}

, K2 D Q

ab
{l ,r }

. Then
Gal(K1=Q) ' Gal(K2=Q) ' Z=4Z, and henceK1 D Q{l ,q}, K2 D Q{l ,r }. Moreover,
since A

;

(k) is cyclic, we havek
;

D kab
;

D K
;

. Then k
;

=Q is a dihedral extension of
degree 8, andk

;

=k1 is a [2, 2]-extension. LetL1, L 0

1 be distinct quadratic extensions
of k1 contained ink

;

and different fromK . Then the quartic fieldL1 is not a Galois
extension ofQ, and the conjugate ofL1 is L 0

1. We denote by� (resp.� ) a generator
of Gal(Qab

S =k) ' Z=4Z (resp. Gal(Qab
S =K1) ' Z=2Z). A prime ideal of a subfield of

Q

ab
S dividing lqr will be denoted as in Fig. 1.

As a preparation for proof of Theorem 1.1, we obtain the following theorem.
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Fig. 1. Ramification inQab
S =Q and k

;

=Q.

Theorem 2.1. Under the assumptions and notations above, we have

AS(k) ' [2, 8], AS(k1) ' [2, 2, 2], AS(k2) ' [4, 4],

AS(K ) ' [2, 2, 4], AS(K1) ' [2, 2, 2, 2], AS(K2) ' [4, 4].

2.3. Proof of Theorem 2.1. Let zl (resp. zq, zr ) 2 Z be a primitive root of
l (resp. q, r ). We denote byl (resp. q, r) the prime ideal ofk D Q(

p

lqr ) lying
over l (resp. q, r ). Then zl (resp. zq, zr ) is also a primitive element ofOk=l ' Fl

(resp. Ok=q ' Fq, Ok=r ' Fr ). Since l � 5 (mod 8) andq � r � 3 (mod 4), we have
jF

�

l 
Z2j D 4 andjF�q 
Z2j D jF
�

r 
Z2j D 2. Let " > 1 be the fundamental unit ofk.
For the ordered setS(k) D {l, q, r} and these primitive elements, we have the sequence

E(k)
'k,S
��! [4, 2, 2]! AS(k)! Z=4Z! 0

and

(2.3) vk,SD

�

'k,S(�1)
'k,S(")

�

D

�

2 1 1
a a1 a2

�

,

where we recall that" � za
l (mod l), " � za1

q (mod q) and " � za2
r (mod r). The expo-

nent of AS(k) and (a, a1, a2) are determined via the calculations onAS(K ) (cf. (2.13),
Lemmas 2.3 and 2.4), where some results onA

6

(k1) and A
6

(k2) are needed. Hence we
will calculate AS(k) and AS(K ) simultaneously, after proving the statements forAS(k1)
and AS(k2).
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We denote byq1 (resp. r1) a prime ideal ofk1 D Q(
p

l ) lying over q (resp. r ).
By replacing L1 and L 0

1 suitably, we may assume thatL1 is the inertia field ofq�1
in the [2, 2]-extensionK

;

=k1 unramified outside{q1, q�1 , r1, r�1 }. Since L1 � K1 and
L1 � K2, L1=k1 is ramified atq1, and ramified atr1 or r�1 . In particular, L 0

1 is the
inertia field of q1 in K

;

=k1. Since L 0

1 � K1, L1=k1 is unramified atr1 or r�1 . There-
fore, by replacingr1 and r�1 suitably, we may assume thatL1=k1 is unramified outside
{q1, r1}, and ramified at bothq1 and r1. Then L 0

1=k1 is unramified outside{q�1 , r�1 }, and
ramified at bothq�1 and r�1 . We also choosezl (resp.zq, zr ) as a primitive element of

Ok1=(
p

l ) ' Fl (resp.Ok1=q1 ' Ok1=q
�

1 ' Fq, Ok1=r1 ' Ok1=r
�

1 ' Fr ). Sincek1 D Q{l },
we haveA{l }(k1) ' 0, in particular A

;

(k1) ' 0. Let "1 > 1 be the fundamental unit of

k1. For the ordered setS(k1) D {(
p

l ), q1, q�1 , r1, r�1 } and these primitive elements, we
have the sequence

E(k1)
'k1,S

��! [4, 2, 2, 2, 2]! AS(k1)! 0

and

(2.4) vk1,SD

�

'k1,S(�1)
'k1,S("1)

�

D

�

2 1 1 1 1
b b1 b01 b2 b02

�

.

Since 'k1,S("�1 ) D (b, b01, b1, b02, b2) and "1C�
1 D �1, we have 2b � 2 (mod 4) and

b1 C b01 � b2 C b02 � 1 (mod 2). If b1 C b2 � 1 (mod 2), then'k1,{q1,r1} is surjective,
i.e., A{q1,r1}(k1) ' 0 (cf. Remark 2.1). This contradicts to the existence of quadratic
extensionL1=k1 unramified outside{q1, r1}. Therefore

(2.5) b� 1 (mod 2), b1 � b2 ¥ b01 � b02 (mod 2).

Since

(2.6)

�

b1 (1C 2b1)b�1

1 2b�1

�

vk1,SD

�

1 0 1 0 1
0 1 1 1 1

�

,

we have

(2.7) AS(k1) ' [2, 2, 2].

Moreover, we haveA{l ,q1,r1}(k1) ' A{q1,r1}(k1) ' Z=2Z (cf. Remark 2.1) and hence

(2.8) L1 D (k1){q1,r1} D (k1){l ,q1,r1}.

Here, using this fieldL1, we prepare the following lemma on the decomposition
of primes ink

;

D K
;

.

Lemma 2.1. [l] D 1 and [q] D [r] ¤ 1 in A
;

(k), where[a] denotes the ideal class
of an ideala.
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Proof. Recall thatL1 is a quadratic extension ofk1 unramified outside{q1, r1}.
Then there is a totally positive� 2 Ok1 such thatL1D k1(

p

�) and�Ok1 D q1r1b
2 with

some idealb � Ok1. Note that the class numberhk1 of k1 is odd. Since"1C�
1 D �1,

bhk1
D �Ok1 with some totally positive� 2 Ok1. Then�hk1 Ok1 D (q1r1)hk1

�

2. Put 
 D
�

hk1
�

�2
2 k1. Since
Ok1 D (q1r1)hk1 , we have
 2 Ok1 and L1 D k1(

p


 ). There is

somex 2 Z such that
 � zx
l (mod

p

l ). Since
 is totally positive, (qr )hk1
D 


1C�
�

z2x
l (mod l ). By the assumption,z(l�1)x=2

l � (qr )(l�1)hk1=4
� 1 (mod l ), and hencex is

even. Hensel’s lemma yields that (
p

l ) splits in L1=k1. Then the prime ideals ofK
lying over l also split ink

;

=K and hence [l] D 1. Since [l][q][r] D [(
p

lqr )] D 1 and
[q]2
D [r]2

D 1, we have [q] D [r]. By the genus formula (2.1) fork=Q, we have

jh[l], [q], [r]ij D
23

2jE(Q)=E(k)1C�
j

D 2,

and hence [q] D [r] ¤ 1. Thus the proof of Lemma 2.1 is completed.

Now we calculateAS(k2). Let l2 (resp. q2, r2) a prime ideal ofk2 D Q(
p

qr )
lying over l (resp.q, r ). Then zl (resp.zq, zr ) is also a primitive element ofOk2=l2 '

Ok2=l
�

2 ' Fl (resp.Ok2=q2 ' Fq, Ok2=r2 ' Fr ). Sincek2 D Q{q,r }, we haveA{q,r }(k2) '
0, in particularA

;

(k2) ' 0. Let "2 > 1 be the fundamental unit ofk2. For the ordered
set S(k2) D {l2, l�2 , q2, r2} and these primitive elements, we have the sequence

E(k2)
'k2,S

��! [4, 4, 2, 2]! AS(k2)! 0

and

(2.9) vk2,SD

�

'k2,S(�1)
'k2,S("2)

�

D

�

2 2 1 1
c c0 c1 c2

�

.

Since 'k2,S("�2 ) D (c0, c, c1, c2) and "1C�
2 D 1, we havec C c0 � 0 (mod 4). Since

the [2, 2]-extensionK
;

=k2 is unramified outside{l }, A{l }(k2) ' Coker'k2,{l } D

[4, 4]=h(2, 2), (c, c0)i is not cyclic, and hencec and c0 are even. Since Coker'k2,{q,r } '

A{q,r }(k2) ' 0, we havec1C c2 � 1 (mod 2). Therefore

(2.10) c� c0 � 0 (mod 2), c� c0 (mod 4), c1 ¥ c2 (mod 2).

Since
0

B

�

1C
c

2
�1

�

c

2
1

1

C

A

vk2,SD

�

2 2 1 0
0 0 0 1

�

or
�

2 2 0 1
0 0 1 0

�

,
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we have

AS(k2) ' [4, 4].

Moreover, for6 D {l , q} or {l , r }, we have

0

B

�

1C
c

2
�1

�

c

2
1

1

C

A

vk2,6 D

�

2 2 1
0 0 0

�

.

Therefore

(2.11) A{l ,q}(k2) ' [4, 4] or A{l ,r }(k2) ' [4, 4].

Using the results above,AS(k) and AS(K ) are calculated simultaneously as follows.
Let L (resp.Q, R) be a prime ideal ofK D Q(

p

l ,
p

qr ) lying over l2 (resp.q1, r1). Then
zl (resp.zq, zr ) is also a primitive element ofOK =L ' OK =L

�

' Fl (resp. OK =Q '

OK =Q
�

' Fq, OK =R' OK =R
�

' Fr ). For the ordered setS(K )D {L,L� ,Q,Q� ,R,R� }

and these primitive elements, we have the exact sequence

E(K )
'K ,S
��! [4, 4, 2, 2, 2, 2]! AS(K )! Z=2Z! 0.

Lemma 2.2. E(K ) D h�1,
p

", "1, "2i.

Proof. Kuroda’s class number formula (cf. [15])

jA
;

(K )j D
1

4
jE(K )=h�1, ", "1, "2ij � jA;

(k)j � jA
;

(k1)j � jA
;

(k2)j

for K=Q yields thatjE(K )=h�1,", "1, "2ij D 2. Recall that Gal(K=k2) D h�� jK i. Since
"

1C�
D "

1C�
2 D 1 and"1C�

1 D �1, one of
p

",
p

"2,
p

""2 is contained inE(K ). Sincel2
ramifies in K=k2, we have

p

"2 � E(K ). Since (""2)1C��
D "

2
2, we have (

p

""2)1C��
D

�"2. By Lemma 2.1, bothL andL� split in K
;

=K . The genus formula (cf. (2.1))

1D jh[L], [L� ]i \ A
;

(K )j D
jA

;

(k2)j22

2jE(k2)=E(K )1C��
j

for K=k2 yields that jE(k2)=E(K )1C��
j D 2. Since�1 D "

1C�
1 D "

1C��
1 2 E(K )1C�� ,

we have
p

""2 � E(K ). Therefore
p

" 2 E(K ) and henceE(K )D h�1,
p

","1,"2i. The
proof of Lemma 2.2 is completed.

By Lemma 2.2 and (2.4), (2.9), we have

(2.12) vK ,SD

0

B

B

�

'K ,S(�1)
'K ,S(

p

")
'K ,S("1)
'K ,S("2)

1

C

C

A

D

0

B

B

�

2 2 1 1 1 1
d d0 d1 d01 d2 d02
b b b1 b01 b2 b02
c c0 c1 c1 c2 c2

1

C

C

A

.
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Since'K ,S(")D (a,a,a1,a1,a2,a2) 2 'K ,S(E(K )2) � 2[4, 4, 2, 2, 2, 2] (cf. (2.3)), we have

(2.13) a � a1 � a2 � 0 (mod 2).

Then'K ,S(
p

")D (d,d0,d1,d01,d2,d02) satisfies 2d� 2d0 � a (mod 4). Since'K ,S(�
p

")D
'K ,S((

p

")� ) D (d0, d, d01, d1, d02, d2), we have

(2.14) d0 � 2C d (mod 4), d01 ¥ d1 (mod 2), d02 ¥ d2 (mod 2).

The following lemma and (2.13) determine'k,S(") D (a, a1, a2).

Lemma 2.3. 2d � 2d0 � a � 2 (mod 4).

Proof. Put6 D {l ,q} or {l , r } such thatA
6

(k2) ' [4, 4] (cf. (2.11)). We consider
the exact sequence

E(k)
'k,6
��! [4, 2]! A

6

(k)! Z=4Z! 0.

Since there is a [2, 4]-extensionk
;

Q

ab
S =k unramified outside{l } � 6, A

6

(k) is not
cyclic. Assume thata � 0 (mod 4), i.e.,d � d0 � 0 (mod 2). Then, since

vk,6 D

�

'k,6(�1)
'k,6(")

�

D

�

2 1
0 0

�

(cf. (2.3) and (2.13)), we have Coker'k,6 ' Z=4Z, and henceA
6

(k) ' [2, 8] or [4, 4].
On the other hand, we have the sequence

E(K )
'K ,6
��! [4, 4, 2, 2]! A

6

(K )! Z=2Z! 0

and

vK ,6 D

0

B

B

�

'K ,6(�1)
'K ,6(

p

")
'K ,6("1)
'K ,6("2)

1

C

C

A

D

0

B

B

�

2 2 1 1
d d0 di d0i
b b bi b0i
c c0 ci ci

1

C

C

A

where i D 1 if 6 D {l , q}, and i D 2 if 6 D {l , r } (cf. (2.12)). Since

0

B

B

�

1 0 �2b�1 0
�di 1 (2di � d)b�1 0
�bi 0 (2bi C 1)b�1 0
�ci 0 (2ci � c)b�1 1

1

C

C

A

vK ,6 D

0

B

B

�

0 0 1 1
0 2 0 1
1 1 0 1
0 0 0 0

1

C

C

A

(cf. (2.5), (2.10) and (2.14)), we have Coker'K ,6 ' Z=4Z. In particular, 2jA
6

(K )j D
jA

6

(k)j D 16. By the same argument to the proof of [2, Proposition 7], wehave
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kab
6

D k
6

. Since K=k2 is unramified outside{l }, (k2)
6

D k
6

and henceA
6

(k2) '
[4, 4] is a quotient of the group Gal(k

6

=k2) of order 16. Therefore (k2)ab
6

D k
6

and
Gal(k

6

=k2) ' [4, 4]. Then both Gal(K=k) D h� jK i and Gal(K=k2) D h�� jK i act on
A
6

(K ) ' Gal(k
6

=K ) trivially, Gal(K=k1) D h� jK i also acts on Gal(k
6

=K ) trivially,
i.e., k

6

=k1 is an abelian extension of degree 16 unramified outsideS. However, we
have seen thatjAS(k1)j D 8 (cf. (2.7)). This contradiction implies thata � 2 (mod 4).
Thus the proof of Lemma 2.3 is completed.

In order to determine the exponent ofAS(k), we consider a quotientA{q,r }(k). The
exact sequence

E(k)
'k,{q,r }
���! [2, 2]! A{q,r }(k)! Z=4Z! 0

with

vk,{q,r } D

�

'k,{q,r }(�1)
'k,{q,r }(")

�

D

�

1 1
0 0

�

(cf. (2.3) and (2.13)) yields thatA{q,r }(k) ' [2, 4] or Z=8Z.

Lemma 2.4. A{q,r }(k) ' Z=8Z.

Proof. If A{q,r }(k) ' [2, 4], there is uniquely a [2, 2]-extensionF=k unramified
outside{q, r}. Then F=Q is a 2-extension unramified outsideS, and Gal(F=Q) is a
2-group of order 8 with two generators (i.e., a dihedral group, a quaternion group, or
[2, 4]). Hence Gal(F=Q) has a cyclic maximal subgroup. The maximal subgroups of
Gal(F=Q) are Gal(F=k) ' [2, 2], Gal(F=k1) and Gal(F=k2). Since AS(k1) ' [2, 2, 2]
(cf. (2.7)), we have Gal(F=k1)§ Z=4Z. Sincel2 ramifies inK=k2 andL does not ram-
ify in F=K , Gal(F=k2) can not be cyclic. This is a contradiction. ThereforeA{q,r }(k)
is cyclic, i.e., A{q,r }(k) ' Z=8Z. The proof of Lemma 2.4 is completed.

Lemma 2.3 and (2.13) yield that'k,S(")D (2,0,0), i.e., Coker'k,S' [2,2] (cf. (2.3)).
Since AS(k) has a quotientA{q,r }(k) ' Z=8Z (cf. Lemma 2.4), we have

AS(k) ' [2, 8].

On the other hand, by (2.5), (2.10), (2.12), (2.13), (2.14) and Lemma 2.3,

(2.15) AvK ,SD

0

B

B

�

0 0 1 1 0 0
0 2 0 0 0 0
1 1 0 1 0 1
0 0 0 0 1 1

1

C

C

A
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for

AD

0

B

B

�

1 0 0 �1
0 1 0 d1 � d2

0 0 1 0
0 0 0 1

1

C

C

A

0

B

B

�

1 0 0 0
b1 � d1 1 0 0
�b1 0 1 0
�c1 0 0 1

1

C

C

A

0

B

B

�

1 0 �2b�1 0
0 1 �db�1 0
0 0 b�1 0
0 0 �cb�1 1

1

C

C

A

.

Hence Coker'K ,S ' [2, 2, 2]. Since AS(K ) has a quotientA{q,r }(K ) ' Z=4Z
(cf. Lemma 2.4), we have

AS(K ) ' [2, 2, 4].

Here we prepare the following lemma which we need for the calculations of
AS(K1) and AS(K2).

Lemma 2.5. A{l ,q}(K ) ' [2, 2, 2].

Proof. Since

AvK ,{l ,q} D

0

B

B

�

0 0 1 1
0 2 0 0
1 1 0 1
0 0 0 0

1

C

C

A

and

AvK ,{l ,r } D

0

B

B

�

0 0 0 0
0 2 0 0
1 1 0 1
0 0 1 1

1

C

C

A

,

we have the exact sequences

0! [2, 2]! A
6

(K )! Z=2Z! 0

for 6 D {l , q} and6 D {l , r }. Then Gal(K ab
6

=K
;

) ' [2, 2], and A
6

(K ) ' [2, 2, 2] or
[2, 4].

First, we show thatA{l ,r }(K ) ' [2, 4]. Since K2 D Q{l ,r } D (k1){l ,r }, we have

A{l ,r }(k1) ' Z=2Z. Put A D Q(hK =2)((l�1)=4)((r�1)=2) and put a1 D q
(hK =2)((l�1)=4)((r�1)=2)
1

where hK is the class number ofK . Then a1OK D A2, [A] 2 A{l ,r }(K ) and [a1] 2
A{l ,r }(k1). Since q1 is inert in K2=k1 by the assumption (2.2), we haveA{l ,r }(k1) D
h[a1]i. Now we suppose thatA{l ,r }(K ) ' [2, 2, 2]. Since [A]2

D 1, the mapping
A{l ,r }(k1) ! A{l ,r }(K ) W [a] 7! [aOK ] is zero mapping. ThenA{l ,r }(K )��1

D

A{l ,r }(K )1C�
' 0, where we note that Gal(K=k1)D h� jK i. This implies thatK ab

{l ,r }
=k1 is

an abelian extension of degree 16. However, we have seen thatjAS(k1)j D 8 (cf. (2.7)).
This is a contradiction. ThereforeA{l ,r }(K ) ' [2, 4].
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✏✏✏

K K
;

F

K
;

Q

ab
S K ab

{l ,q}

F 0 K{q,r } F

Fig. 2. Proof of Lemma 2.5.

Suppose thatA{l ,q}(K ) ' [2, 4]. Then K
;

Q

ab
S is the unique [2, 2]-extension ofK

contained inK ab
{l ,q}

. Let F be the inertia field ofL� in K ab
{l ,q}

=K . Since the inertia

group Gal(K ab
{l ,q}

=F) is cyclic andK
;

� F � K ab
{l ,q}

, F=K is a quartic extension. Since

K
;

Q

ab
S =K is not unramified atL� , F ¤ K

;

Q

ab
S and henceF=K is a cyclic extension

of degree 4 unramified outside{L, Q, Q� }. Since

AvK ,{L,Q} D

0

B

B

�

0 1
0 0
1 0
0 0

1

C

C

A

, AvK ,{L,Q� } D

0

B

B

�

0 1
0 0
1 1
0 0

1

C

C

A

and

AvK ,{q} D

0

B

B

�

1 1
0 0
0 1
0 0

1

C

C

A

,

we haveK{L,Q} D K{L,Q� } D K{q} D K
;

. This implies thatF=K
;

is ramified at any
primes dividingLq. Recall that Gal(K{q,r }=K ) ' A{q,r }(K ) ' Z=4Z by Lemma 2.4.
ThenK{q,r } F=K is a [2,4]-extension such that Gal(K{q,r } F=K

;

)' [2,2]. SinceK{q,r } D

k{q,r } and

vk,{q} D

�

1
0

�

, vk,{r } D

�

1
0

�

,

K{q,r }=K
;

is ramified at any primes dividingqr . Let F 0 be the unique [2, 2]-extension of
K contained inK{q,r } F . SinceF=K

;

and K{q,r }=K
;

are ramified at any primes dividing
q, F 0 is the inertia field of any primes dividingq in the [2, 2]-extensionK{q,r } F=K

;

,
i.e., F 0

=K
;

is unramified at any primes dividingq. HenceF 0

=K is a [2, 2]-extension
unramified outside{L, r }. SinceQab

S =K is ramified atL� , we haveQab
S \ F 0

D K . Thus
we obtain a [2, 2, 2]-extensionF 0

Q

ab
S =K unramified outside{l , r }. However, we have

seen thatA{l ,r }(K ) ' [2, 4]. This contradiction yields thatA{l ,q}(K ) ' [2, 2, 2]. Thus the
proof of Lemma 2.5 is completed.
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We calculateAS(K2) as follows. LetL2 (resp.Q2, R2) be a prime ideal ofK2

lying over (
p

l ) (resp.q1, r1). By the assumption (2.2), the primeq1 is inert in K2=k1,
i.e., Q2 D q1OK2.

Lemma 2.6. A{Q2}(K2)' Z=2Z, the4-rank of A{q}(K2) is 1, and jA{q,r }(K1)j � 8.

Proof. SinceA
;

(K2) ' 0, the exact sequence

E(K2)! (OK2=Q2)� 
 Z2! A{Q2}(K2)! 0

and the cyclicity of (OK2=Q2)� imply that A{Q2}(K2) is cyclic. Recall that there is a
quadratic extensionL1=k1 unramified outside{q1, r1} and ramified at bothq1 and r1.
Then K2L1=K2 is a quadratic extension unramified outside{Q2} and ramified atQ2.
In particular, jA{Q2}(K2)j ¤ 1.

Suppose thatjA{Q2}(K2)j � 4. Then there exists uniquely a cyclic quartic exten-
sion F=K2 unramified outside{Q2}, and K2 � K2L1 � F . Since Q2 D q1OK2, F
is a Galois extension ofk1. Since K2L1=k1 is a [2, 2]-extension unramified outside
{l , q1, r }, K2L1=L1 is unramified outside{l , r�1 }. Then F=L1 is a [2, 2]-extension un-
ramified outside{l , q1, r�1 }. Recall thatk1 � L1 � K

;

and Gal(K
;

=k1) ' [2, 2]. Since
R� is inert in K

;

=K by Lemma 2.1,r�1 is also inert inL1=k1, i.e., r�1 OL1 is a prime of
L1 which ramifies inK2L1=L1. Hence the inertia field ofr�1 OL1 in F=L1 is a quad-
ratic extension ofL1 unramified outside{l , q1}. However, we have seen thatL1 D

(k1){l ,q1,r1} (cf. (2.8)), which implies thatA{l ,q1}
(L1)' 0. This is a contradiction. There-

fore A{Q2}(K2) ' Z=2Z.
The kernel of the surjective restriction mapping

Gal((K2)ab
{q}=K2)! Gal((K2)ab

{Q2}
=K2) ' A{Q2}(K2) ' Z=2Z

is the inertia group ofQ�

2 , which is cyclic. Hence the 2-rank ofA{q}(K2) is at most
2, and the 4-rank ofA{q}(K2) is at most 1. By Lemma 2.5,K ab

{l ,q}
=K is a [2, 2, 2]-

extension, which is Galois overk1. ThenK ab
{l ,q}

=Q

ab
S is a [2, 2]-extension unramified out-

side {q}, and Gal(Qab
S =K ) D h� 2

i acts on Gal(K ab
{l ,q}

=Q

ab
S ) trivially. Since A{q}(K1) '

0, we haveA{q}(Qab
S )1C�

' 0. Hence (A{q}(Qab
S )=2)��1

D (A{q}(Qab
S )=2)1C� ' 0. This

implies that Gal(Qab
S =K1) D h� i acts on Gal(K ab

{l ,q}
=Q

ab
S ) trivially, i.e., K ab

{l ,q}
=K1 is an

abelian extension of degree 8 unramified outside{q,r }. ThereforejA{q,r }(K1)j � 8. Since
Gal(Qab

S =K2) D h� 2
� i also acts on Gal(K ab

{l ,q}
=Q

ab
S ) trivially, K ab

{l ,q}
=K2 is an abelian ex-

tension of degree 8 unramified outside{q}. Then jA{q}(K2)j � 8. Since the 2-rank of
A{q}(K2) is at most 2, the 4-rank ofA{q}(K2) is 1. Thus the proof of Lemma 2.6 is
completed.

Let gq 2 OK2 be a primitive element ofOK2=Q2' Fq2 such thatg1Cq
q � zq (modQ2).

Theng�q is a primitive element ofOK2=Q
�

2 ' Fq2 satisfying (g�q )1Cq
� zq (modQ�

2 ), and
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zl (resp.zr ) is also a primitive element ofOK2=L2 ' Fl (resp.OK2=R2 ' Fr ). Recall that

"1 � zb1
q (mod q1) and"1 � z

b01
q (mod q�1 ) (cf. (2.4)). Then"1 � g(1Cq)b1

q (modQ2) and

"1 � (g�q )(1Cq)b01 (modQ�

2 ). Since the genus formula (cf. (2.1))

1D
23

2jE(k1)=E(K2)1C� 2
j

for K2=k1 yields that�"1 � E(K2)1C� 2
D E(k1)2, we haveE(K2) D h�1, "1, �2, ��2 i

where�2 is a relative fundamental unit ofK2 satisfying�1C� 2

2 D �1 (cf. [12], [13] or

[26]). Since�1C� 2

2 2 E(K2)1C� 2
D E(k1)2, we have�1C� 2

2 D 1. If �2 � g f1
q (mod Q2)

and �2 � (g�q ) f 01 (mod Q�

2 ), then ��2 � (g�q ) f1 (mod Q�

2 ) and ��2 � (g�
2

q ) f 01
� g

q f 01
q

(mod Q2), where we note that� 2 acts onOK2=Q2 as the Frobenius automorphism in
Gal(Fq2

=Fq). Put

2m
D jF

�

q2 
 Z2j D jZ2=(q
2
� 1)Z2j.

Then m� 3. For the ordered setS(K2) D {L2,Q2,Q�

2 ,R2,R�

2 }, we have the sequence

E(K2)
'K2,S

���! [4, 2m, 2m, 2, 2]! AS(K2)! 0

and

vK2,SD

0

B

B

�

'K2,S(�1)
'K2,S("1)
'K2,S(�2)
'K2,S(��2 )

1

C

C

A

D

0

B

B

�

2 2m�1 2m�1 1 1
b 2m�1b1 2m�1b01 b2 b02
f f1 f 01 f2 f 02
f q f 01 f1 f 02 f2

1

C

C

A

(cf. (2.4)), where we note that 1C q � 2m�1 (mod 2m). Since

vK2,{Q2} D

0

B

B

�

2m�1

2m�1b1

f1

q f 01

1

C

C

A

and A{Q2}(K2) ' Z=2Z by Lemma 2.6, we havef1 � f 01 � 0 (mod 2), and either
f1 � 2 (mod 4) or f 01 � 2 (mod 4) are satisfied. In particular,q f 01 � � f 01 (mod 2m).
Recalling (2.5), we have

A2vK2,SD

0

B

B

�

1 2m�1 0 1 0
1 0 2m�1 0 1
0 2h1 2h2 f C f2C f 02 0
0 �2h2 2h1 0 f C f2C f 02

1

C

C

A



2-EXTENSIONS UNRAMIFIED AT 2 AND 1 1077

for

A2 D

0

B

B

�

1 1 0 0
0 1 0 0

�( f C f 02) 0 1 0
� f 02 0 0 1

1

C

C

A

0

B

B

�

1 0 0 0
�b1 1 0 0
f b1 � f 1 0
f b1 � f 0 1

1

C

C

A

0

B

B

�

1 �2b�1 0 0
0 b�1 0 0
0 0 1 0
0 0 0 1

1

C

C

A

,

whereh1 andh2 are integers such that 2h1D f1�2m�1( f C f 02) and 2h2D f 01C2m�1 f 02.
Then h1 � 1 (mod 2) orh2 � 1 (mod 2).

Lemma 2.7. h1 � h2 � 1 (mod 2).

Proof. Suppose thath1 � h2C1� 0 (mod 2) orh1C1� h2 � 0 (mod 2). Then
h2

1C h2
2 2 Z

�

2 , and hence the equation

0

B

B

B

B

B

B

�

1 0 0 0
0 1 0 0

0 0
h1

h2
1C h2

2

�h2

h2
1C h2

2

0 0
h2

h2
1C h2

2

h1

h2
1C h2

2

1

C

C

C

C

C

C

A

A2vK2,{q} D

0

B

B

�

2m�1 0
0 2m�1

2 0
0 2

1

C

C

A

yields that A{q}(K2) ' [2, 2]. However, the 4-rank ofA{q}(K2) is 1 by Lemma 2.6.
This is a contradiction. Thereforeh1 � h2 � 1 (mod 2). The proof of Lemma 2.7 is
completed.

Since

A2vK2,{l ,r } D

0

B

B

�

1 1 0
1 0 1
0 f C f2C f 02 0
0 0 f C f2C f 02

1

C

C

A

and A{l ,r }(K2) ' 0, we have f C f2 C f 02 � 1 (mod 2). By Lemma 2.7,h2
1 C h2

2 � 2
(mod 4). Then

A0

2A2vK2,SD

0

B

B

�

0 0 0 1 1
1 0 0 0 1
0 2 2 1 0
0 0 4 0 0

1

C

C

A
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for

A0

2 D

0

B

B

B

B

�

1 0 0 0
0 1 0 �2m�3

0 0 1
h1 � h2

2h1

0 0 0 1

1

C

C

C

C

A

0

B

B

B

B

�

1 0 �2m�2 0
0 1 0 0
0 0 1 0

�1 0 2m�2 2h1

h2
1C h2

2

1

C

C

C

C

A

0

B

B

B

B

B

B

�

1 �1 0 0
0 1 0 0

0 0
1

h1
0

0 0
h2

h1
1

1

C

C

C

C

C

C

A

,

and hence

AS(K2) ' [4, 4].

Now we calculateAS(K1). Let L1 (resp. Q1, R1) be a prime ideal ofK1 ly-
ing over (

p

l ) (resp. q1, r1). By the assumption (2.2),r splits completely inK1=Q.

In particular r1OK1 D R1C� 2

1 . Then zl (resp. zq, zr ) is also a primitive element of

OK1=L1 ' Fl (resp. OK1=Q1 ' OK1=Q
�

1 ' Fq, OK1=R
�

j

1 ' Fr for any j 2 Z). Since
the genus formula (cf. (2.1))

1D
23

2jE(k1)=E(K1)1C� 2
j

for K1=k1 yields that E(K1)1C� 2
D E(k1)2, we haveE(K1) D h�1, "1, �1, ��1 i with a

relative fundamental unit�1 of K1 satisfying�1C� 2

1 D 1 (cf. [12], [13] or [26]). For the

ordered setS(K1) D {L1, Q1, Q�

1 , R1, R�

2

1 , R�

1 , R�

3

1 } and the primitive elementszl , zq

and zr , we have the sequence

E(K1)
'K1,S

���! [4, 2, 2, 2, 2, 2, 2]! AS(K1)! 0.

If 'K1,S(�1) D (s, s1, s01, s2, s002 , s02, s0002 ), then

(0, 0, 0, 0, 0, 0, 0)D 'K1,S(�1C� 2

1 ) D (2s, 0, 0,s2C s002 , s2C s002 , s02C s0002 , s02C s0002 ),

i.e., s� 0 (mod 2),s002 � s2 (mod 2) ands0002 � s02 (mod 2). Thus we obtain a vector

vK1,SD

0

B

B

�

'K1,S(�1)
'K1,S("1)
'K1,S(�1)
'K1,S(��1 )

1

C

C

A

D

0

B

B

�

2 1 1 1 1 1 1
b b1 b01 b2 b2 b02 b02
s s1 s01 s2 s2 s02 s02
s s01 s1 s02 s02 s2 s2

1

C

C

A
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(cf. (2.4)). Then, recalling (2.5), we have

(2.16) A1vK1,SD

0

B

B

�

0 1 1 1 1 1 1
1 0 1 0 0 1 1
0 s1C s01 0 s2C s01 s2C s01 s02C s01 s02C s01
0 s1C s01 s1C s01 s2C s02 s2C s02 s2C s02 s2C s02

1

C

C

A

for

A1 D

0

B

B

�

1 0 0 0
b1 1 0 0
s01 0 1 0
0 0 1 1

1

C

C

A

0

B

B

�

1 �2b�1 0 0
0 b�1 0 0
0 �sb�1 1 0
0 �sb�1 0 1

1

C

C

A

.

Lemma 2.8. s1C s01 � s2C s02 � 1 (mod 2).

Proof. Since Coker'K1,{l ,q} ' A{l ,q}(K1) ' 0, we haves1 C s01 � 1 (mod 2) by
(2.16). If s2C s02 � 0 (mod 2), we have

0

B

B

�

s2C s01 0 1 s2C s01C 1
s2C s01 1 1 s2C s01C 1
s2C s01 0 1 s2C s01

1 0 0 1

1

C

C

A

A1vK1,{q,r } D

0

B

B

�

0 1 0 0 0 0
0 0 0 0 1 1
1 0 0 0 0 0
0 0 1 1 1 1

1

C

C

A

and A{q,r }(K1) ' Coker'K1,{q,r } ' [2, 2]. However, jA{q,r }(K1)j � 8 by Lemma 2.6.
This contradiction yields thats2 C s02 � 1 (mod 2). Thus the proof of Lemma 2.8 is
completed.

By (2.16) and Lemma 2.8, we have

AS(K1) ' [2, 2, 2, 2].

Thus the proof of Theorem 2.1 is completed.

3. Computation of the Galois group

3.1. Preliminaries. For a pro-2 groupG and the closed subgroupH , we de-
note by [G, H ] (resp. H2) the closed subgroup ofG generated by [g, h] D g�1h�1gh
(resp.h2) (g 2 G, h 2 H ). In particular, we putG0

D [G, G] and Gab
D G=G0. For a

pro-2 groupG, put P0(G) D G and putPnC1(G) D Pn(G)2[G, Pn(G)] for n � 0 recur-
sively. In particular,P1(G) D 8(G) D G2[G, G] is the Frattini subgroup ofG. Then
we obtain the lower 2-central series

G D P0(G) � P1(G) � P2(G) � � � � � Pn(G) � � � �
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of G. The 2-class of a finite 2-groupH is the smallestn such thatPn(H ) ' 1. For a
finite 2-groupH of 2-classn, a finite 2-groupsG such thatG=Pn(G) ' H is called a
descendant ofH . Then, if a descendantG has the 2-classnC 1, G is called an im-
mediate descendant ofH . The p-group generation algorithm [19] allows us to find all
immediate descendants of a given finite 2-groupH . For instance, the ANUPQ package
[11] of GAP [23] provides a function to use this algorithm.

Suppose thatG is a finite 2-group of 2-classn � 2, and letF=R' G be a min-
imal presentation ofG as a pro-2 group, whereF is a free pro-2 group such that
F=P1(F) ' G=P1(G). Let �(G) be the 2-multiplicator rank ofG, i.e., the 2-rank of
the 2-multiplicatorH2(G, Z=2Z) ' R=[F, R]R2. Let �(G) be the nuclear rank ofG,
i.e., the 2-rank of the nucleusPn(F)[F, R]R2

=[F, R]R2. Since Pn(F) � R, we have
�(G) � �(G).

3.2. Proof of Theorem 1.1. Put G D Gal(QS=Q), and letQ(n)
S be the maximal

2-extension ofQ unramified outsideS of which Galois group has 2-class at mostn.
Then G=P1(G) ' [2, 2] and G=Pn(G) ' Gal(Q(n)

S =Q). For a finite 2-groupH , we set
a conditionC(H ) consisting of the following four statements:
1. Hab

' [2, 4].
2. For the six normal subgroupsNi (1� i � 6) of H such that

N1=H 0

' N2=H 0

' H=N4 ' H=N5 ' Z=4Z, N3=H 0

' H=N6 ' [2, 2],

there are surjective homomorphisms

[2, 8]! Nab
i1 , [4, 4]! Nab

i2 , [2, 2, 2]! Nab
3 ,

[2, 2, 2, 2]! Nab
i4 , [4, 4]! Nab

i5 , [2, 2, 4]! Nab
6 ,

where (i1, i2) D (1, 2) or (2, 1), and (i4, i5) D (4, 5) or (5, 4).
3. There exists somea 2 H such thata2

� H 0 and b�1abD a5 for someb 2 H .
4. �(H=Pm(H )) � �(H=Pm(H )) � 2 for all m� 2.

We obtain the following proposition including a translation of Theorem 2.1.

Proposition 3.1. If H ' G=Pn(G) for some n� 2, then H satisfies the condition
C(H ).

Proof. Suppose thatn � 2, and putH D Gal(Q(n)
S =Q) ' G=Pn(G). It suffices to

prove that thisH satisfies the conditionC(H ). Since the quotient Gal(Qab
S =Q) ' [2, 4]

of G is a finite 2-group of 2-class 2, we haveQab
S � Q

(2)
S � Q

(n)
S . Hence there is a

surjective homomorphismH ! [2, 4]. On the other hand, there is also a surjective
homomorphism [2, 4]' Gab

! Hab. ThereforeHab
' [2, 4]. By the settings of the
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subfields ofQab
S in the previous section, we have

(Gal(Q(n)
S =k), Gal(Q(n)

S =k2)) D (N1, N2) or (N2, N1), Gal(Q(n)
S =k1) D N3,

(Gal(Q(n)
S =K1), Gal(Q(n)

S =K2)) D (N4, N5) or (N5, N4), Gal(Q(n)
S =K ) D N6.

The maximal abelian quotients of these Galois groups are quotients of the correspond-
ing ray class 2-groups. Hence the second statement ofC(H ) holds by Theorem 2.1.

Let �l (resp. �q) be a generator of the inertia subgroup ofG for a prime lying
over l (resp. q). Let �l (resp. �q) be the corresponding Frobenius element, i.e., the
decomposition group of the prime is generated by�l and�l (resp.�q and�q). Then the
pro-2 groupG has a minimal presentation with 2 generators correspondingto �l , �q and
2 relations represented by�l �l�

�1
l D �

l
l , �q�q�

�1
q D �

q
q in G (cf. [14, Theorem 11.10

and Example 11.12]). In particular, we have Gal(Q

ab
S =k2) D h�l j

Q

ab
S
i ' Z=4Z, and G

has trivial Schur multiplicator. PutbD ��u
l j

Q

(n)
S
2 H , whereuD log2 5= log2 l 2 Z2 and

log2 denotes the 2-adic logarithm. Thena D �l j
Q

(n)
S
2 H satisfiesb�1abD a5. Since

Q

ab
S �Q

(n)
S , we havea2

� H 0. On the other hand,H=Pm(H )' G=Pm(G) for all m� n,
and H=Pm(H ) ' H=Pn(H ) ' H for all m � n. Therefore the last statement ofC(H )
also holds by [4, Lemma]. Thus the proof of Proposition 3.1 iscompleted.

Suppose that a finite 2-groupH of 2-classnC 1� 3 satisfies the conditionC(H )
with the six subgroupsNi . Since the 2-class ofHab

' [2, 4] is 2, we havePn(H ) �
P2(H ) � [H, H ] � Ni . Then H D H=Pn(H ) also satisfies the conditionC(H ) with the
six subgroupsN i D Ni =Pn(H ) for the second statement ofC(H ). Thus we can define
a rooted treeT such that the root is the isomorphism class of [2, 2], the other vertices
are the isomorphism classes of finite 2-groupsH satisfying the conditionC(H ), and
the edges have the extremitiesH and H such thatH is an immediate descendant of
H . Proposition 3.1 yields thatG=Pn(G) is isomorphic to one of the vertices of this
tree T . For eachn � 2, all vertices ofT of 2-class at mostn are computable with
the repeated use of thep-group generation algorithm. To compute them, we use GAP
[23] and ANUPQ package [11] here. A program as in Fig. 3 returns a result which
indicates thatT has no vertex of 2-class greater than 6 and the diagram ofT is of the
form as in Fig. 4. In particular,T is finite. ThereforeG is a finite 2-group of 2-class
at most 6, andG is isomorphic to one of the vertices ofT .

Recall that H2(G, Z=2Z) ' [2, 2] (cf. [14, Theorem 11.10 and Example 11.12]
or [17, (10.7.15) Theorem]). A function on GAP which computes H2(H, Z=2Z) for
a given finite 2-groupH is provided by HAP package [10]. Applying this function
to all vertices H of T , which have been computed by a program as in Fig. 3, we
find only two verticesH such thatH2(H, Z=2Z) ' [2, 2]. These two verticesG1 D

G[1][1] and G2 D G[2][1] are identified by codes in GAP as in Fig. 5. ThenG
is isomorphic toG1 or G2, which are finite 2-groups of order 512 and 2-class 6 such
that G1=P5(G1) ' G2=P5(G2).
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f := function(G, A) # checks the existence of a surjective homomorphism A --> G/[G, G].
return (AbelianInvariants(G) in Set(AllSubgroups(AbelianGroup(A)), x->AbelianInvariants(x)));
end;;

h := function(H) local D, N, r, a; # checks the condition C(H) except for 4th statement.
if AbelianInvariants(H) = [2, 4] then
D := DerivedSubgroup(H); N := IntermediateSubgroups(H, D).subgroups;
SortParallel(List(N, x->[Index(H, x), RankPGroup(FactorGroup(x, D)), RankPGroup(FactorGroup(H, x))]), N);
if ((f(N[1], [2, 8]) and f(N[2], [4, 4])) or (f(N[2], [2, 8]) and f(N[1], [4, 4]))) and f(N[3], [2, 2, 2])
and ((f(N[4], [2, 2, 2, 2]) and f(N[5], [4, 4])) or (f(N[5], [2, 2, 2, 2]) and f(N[4], [4, 4]))) and f(N[6], [2, 2, 4])
then r := 0; for a in H do if (not (a^2 in D)) and (a^5 in ConjugacyClass(H, a)) then r := 1; break; fi; od;
return r; else return 0; fi;

else return 0; fi;
end;;

LoadPackage("ANUPQ");;
T := [];; T[1] := [[AbelianGroup([2, 2]), []]];;
for n in [2..7] do T[n] := []; for k in [1..Size(T[n-1])] do
procid := PqStart(T[n-1][k][1]); D := PqDescendants(procid:ClassBound := n); PqQuit(procid); t := 1;
for i in [1..Size(D)] do if h(D[i]) = 1 and MultiplicatorRank(D[i])-NuclearRank(D[i])<3 then

Add(T[n], [D[i], Concatenation(T[n-1][k][2], [t])]); t := t+1;
fi; od;

od; od;

Fig. 3. ComputingT .
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G1 G2

Fig. 4. T .
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LoadPackage("HAP");;
G := [];; for n in [1..6] do for k in [1..Size(T[n])] do
if Size(GroupCohomology(T[n][k][1], 2, 2)) = 2 then Add(G, T[n][k]); fi;
od; od;

g := function(G) local N, M, U; # computes the abelianizations of M_3 and U_i (i = 1, 2, 3, 4).
N := List(MaximalSubgroups(G)); SortParallel(List(N, x->-Exponent(CommutatorFactorGroup(x))), N);
M := IntermediateSubgroups(N[3], FrattiniSubgroup(N[1])).subgroups; SortParallel(List(M, x->IsNormal(G, x)), M);
U := List(MaximalSubgroups(M[3])); SortParallel(List(U, x->IsSubgroup(x, FrattiniSubgroup(N[3]))<>true), U);
return [ AbelianInvariants(M[3]), List([U[1], U[2], U[3], U[4]], x->AbelianInvariants(x)) ];
end;;

gap> List(G, x->x[1]);
[ <pc group of size 512 with 9 generators>, <pc group of size 512 with 9 generators> ]
gap> CodePcGroup(G[1][1]); CodePcGroup(G[2][1]);
13830505503288171864898804013533563491412215720741354747545296882850687
13830505503288171864898804013533563491412215720741354756552496137591679
gap> g(G[1][1]); g(G[2][1]); # [ M_3^ab, [ U_1^ab, U_2^ab, U_3^ab, U_4^ab ] ]
[ [ 2, 2, 4 ], [ [ 2, 2, 4 ], [ 2, 2, 4 ], [ 2, 2, 4 ], [ 2, 2, 4 ] ] ]
[ [ 2, 2, 4 ], [ [ 4, 4 ], [ 4, 4 ], [ 4, 4 ], [ 4, 4 ] ] ]
gap> F := FreeGroup( "a", "b" );; a := F.1;; b := F.2;;
gap> G1 := F/[ a^-4*Comm(b^2, a), b^-2*Comm(Comm(b, a), a)*a^4 ];;
gap> (IsomorphismGroups(G[1][1], G1)<>fail);
true
gap> List(DerivedSeries(G[1][1]), x->AbelianInvariants(x));
[ [ 2, 4 ], [ 2, 2, 4 ], [ 2, 2 ], [ ] ]

Fig. 5. Two candidatesG1 and G2.

We also use the same notations as in the previous section. PutN3 D Gal(QS=k1)
and N1 D Gal(QS=k). By Theorem 2.1,N3 (resp.N1) is the unique maximal subgroup
of G such thatNab

3 ' [2, 2, 2] (resp.Nab
1 ' [2, 8]). Sincek

;

Q

ab
S =k is a [2, 4]-extension

and AS(k)' [2,8], we havekelem
S � k

;

Q

ab
S , wherekelem

S denotes the maximal elementary
abelian 2-extension ofk unramified outsideS. Then

N 0

3 D 8(N3) D Gal(QS=k;Q
ab
S ) � 8(N1) D Gal(QS=k

elem
S ) � N3.

Moreover,G=8(N1) ' Gal(kelem
S =Q) is a dihedral group of order 8. Since there is a sur-

jective homomorphism [2,2,2]' Nab
3 ! N3=8(N1), the maximal subgroupN3=8(N1) of

G=8(N1) is not isomorphic toZ=4Z, i.e., N3=8(N1)' Gal(kelem
S =k1)' [2,2]. HenceN3

has two maximal subgroups containing8(N1) and not normal inG. Note that these two
maximal subgroups are isomorphic. LetM3 be one of them. ThenM3=8(N3) ' [2, 2].
SinceG ' G1 or G ' G2, GAP tells us thatMab

3 ' [2, 2, 4] (cf. Fig. 5). ThenM3 has
four maximal subgroupsUi (1� i � 4) not containing8(N3). GAP also tells us that

Uab
i '

(

[2, 2, 4] if G ' G1,

[4, 4] if G ' G2

for all i (cf. Fig. 5).
Recall the assumption (2.2) and thatL1=k1 is unramified outside{q1, r1}. Then we

can characterize the fixed field ofM3 as follows.

Lemma 3.1. M3 ' Gal(QS=(k1){l ,q1,r�1 }), and (k1){l ,q1,r�1 }=k1 is ramified at any
primes dividing lq1r

�

1 .
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Q

k

k1
K1

K2

K
Q

ab
S

k2

QF1

L 0

1

F K2

kelem
S

F K1L 0

1

Felem
{l ,q,r�1 }

k
;

Q

ab
S

QF1K2

Fig. 6. Some subfields ofQS.

Proof. Recall that Gal(kelem
S =Q) is a dihedral group of which cyclic maximal sub-

group is Gal(kelem
S =k2) ' Z=4Z. Then kelem

S =k2 is totally ramified at any primes lying
over l . In particular, kelem

S =K is ramified at any primes lying overl . Then the in-

ertia field of (
p

l ) in the [2, 2]-extensionkelem
S =k1 is K , and K=k1 is ramified at all

primes dividingqr . Let F be the inertia field ofq�1 in kelem
S =k1. Then F=k1 is un-

ramified outside{l , q1, r }. Since F ¤ K , F=Q is not a Galois extension, and hence
M3 ' Gal(QS=F). Moreover, F=k1 is ramified at (

p

l ). Since (k1){l ,r } D Q{l ,r } D K2,
F=k1 is ramified atq1. If F=k1 is ramified at bothr1 and r�1 , the conjugateF 0 of F is
the inertia field ofr1 and r�1 in kelem

S =k1, and F 0

=k1 is unramified outside{l , q�1 }. Since
(k1){l ,q} D Q{l ,q} D K1 contains neitherF nor F 0, F=k1 is ramified at one ofr1 and
r�1 and unramified at another one. SinceF ¤ (k1){q1,r1} D L1 D (k1){l ,q1,r1} (cf. (2.8))
and A{l ,q1,r�1 }(k1) ' Z=2Z by (2.6), we haveF D (k1){l ,q1,r�1 } and F=k1 is ramified at
r�1 . Thus the proof of Lemma 3.1 is completed.

Put F D (k1){l ,q1,r�1 }, and let Felem
{l ,q,r�1 }

be the maximal elementary abelian extension

of F unramified outside{l , q, r�1 } (cf. Fig. 6). ThenA{l ,q,r�1 }(F)=2 ' Gal(Felem
{l ,q,r�1 }

=F)

and Felem
{l ,q,r�1 }

=k1 is a Galois extension. Recall thatL 0

1=k1 is a quadratic extension unram-

ified outside{q�1 , r�1 }. Then K1L 0

1=k1 is a [2, 2]-extension unramified outside{l , q, r�1 }.
By (2.6), we haveA{l ,q,r�1 }(k1)' [2,2], and henceF � (k1)ab

{l ,q,r�1 }
D K1L 0

1 � Felem
{l ,q,r�1 }

. In

particular, Gal(Felem
{l ,q,r�1 }

=k1)ab
' A{l ,q,r�1 }(k1)' [2,2]. Since Gal(Felem

{l ,q,r�1 }
=k1) has an elem-

entary abelian maximal subgroup Gal(Felem
{l ,q,r�1 }

=F), Felem
{l ,q,r�1 }

=k1 is a [2, 2]-extension or a
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dihedral extension of degree 8. Recall thatk
;

is a [2, 2]-extension ofk1 which contains
K , L1 and L 0

1. Sincer1 ramifies in K=k1 andR1 is inert in k
;

=K by Lemma 2.1,r1

is also inert inL 0

1=k1. Since r1 splits in K1=k1, i.e., the decomposition field ofr1 in
the [2, 2]-extensionK1L 0

1=k1 is K1, we know thatr1 is inert in F=k1. Then the kernel
of the surjective homomorphism

Gal(Fab
S =F) ' AS(F)! A{l ,q,r�1 }(F)

is isomorphic to the inertia group of the unique prime ofF lying over r1 which is
cyclic. Since Gal(Fab

S =F) ' Mab
3 ' [2, 2, 4], A{l ,q,r�1 }(F) has the 2-rank at least 2, i.e.,

Gal(Felem
{l ,q,r�1 }

=F) ' [2, 2]. ThereforeFelem
{l ,q,r�1 }

=k1 is a dihedral extension of degree 8.

We shall see the ramification of primes inFelem
{l ,q,r�1 }

=k1. Since Gal((K1)ab
S =K1) is

elementary abelian by Theorem 2.1, Gal(Felem
{l ,q,r�1 }

=K1) is also elementary abelian. Hence

Felem
{l ,q,r�1 }

=K1 is a [2, 2]-extension andFelem
{l ,q,r�1 }

=L 0

1 is a cyclic quartic extension. Since

both R�

1 and R�

3

1 ramify in K1L 0

1=K1 and the [2, 2]-extensionFelem
{l ,q,r�1 }

=K1 is not to-

tally ramified at any tamely ramified primes,Felem
{l ,q,r�1 }

=K1L 0

1 is unramified at any primes

lying over r�1 . Since any primes dividinglq1r
�

1 ramify in F=k1 by Lemma 3.1 and
do not totally ramify in the [2, 2]-extensionK1L 0

1=k1, K1L 0

1=F is unramified outside
{q�1 } and ramified at any primes dividingq�1 . Hence Felem

{l ,q,r�1 }
=F is unramified outside

{l , q}. On the other hand, since any primes dividinglq1 ramify in K1L 0

1=L 0

1, the cyclic
quartic extensionFelem

{l ,q,r�1 }
=L 0

1 is totally ramified at any primes dividinglq1. Therefore

Felem
{l ,q,r�1 }

=F is ramified at any primes dividinglq.

Recall thatM3 � 8(N1), i.e., F � kelem
S . Then F is the inertia field ofq�1 in the

[2, 2]-extensionkelem
S =k1. By Lemma 2.1,Q� is inert in k

;

. SinceQ� is also inert in
Q

ab
S , the decomposition field ofQ� in the [2, 2]-extensionk

;

Q

ab
S =K is kelem

S , i.e., Q�

splits in kelem
S =K . Thereforeq�1 splits in F=k1. Let q�1 and q�1

0

be the distinct primes

of F lying over q�1 . Let QF1 be the inertia field ofq�1
0

in the [2, 2]-extensionFelem
{l ,q,r�1 }

=F .

Then QF1 is the unique quadratic extension ofF unramified outside{l , q1, q�1 }. Since
QF1 ¤ K1L 0

1 and K1L 0

1 is the inertia field of the unique prime ofF lying over l in

Felem
{l ,q,r�1 }

=F , QF1=F is ramified at the prime lying overl . Recall thatk
;

Q

ab
S D (k1)ab

S is a

[2, 2, 2]-extension ofk1. Then the ramification indices of any primes ink
;

Q

ab
S =k1 are

at most 2. By Lemma 3.1,k
;

Q

ab
S =F is a [2, 2]-extension unramified outside{q�1 , r1}.

Therefore QF1 \ k
;

Q

ab
S D F . By Lemma 3.1,F K2=F is a quadratic extension unrami-

fied outside{r1}. Sinceq�1 is inert in K2=k1, q�1
0

is also inert inF K2=F . The [2, 2]-

extension QF1K2 of F contains a quadratic extensionQF2 of F different from QF1 and
F K2. Then QF2 also satisfiesQF2 \ k

;

Q

ab
S D F . Put

(3.1) QF D

(

QF1 if q�1
0

splits in QF1=F ,
QF2 if q�1

0

is inert in QF1=F .
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Then q�1
0

splits in QF=F and QF \ k
;

Q

ab
S D F , i.e., Gal(QS= QF) ' Ui for somei . More-

over, sinceK1L 0

1=F is ramified atq�1
0

, QF K1L 0

1=
QF is a quadratic extension ramified at

any primes lying overq�1
0

. Let QQ be a prime of QF lying over q�1
0

.
Now we assume thatG ' G2. Then Uab

i ' [4, 4], and hence there is a cyclic

quartic extension ofQF unramified outsideS which contains QF K1L 0

1. Since the cyclic

quartic extension is totally ramified atQQ, the ramification index ofQQ in QFab
S =
QF is 4,

i.e., the inertia groupI
QQ D Ker(Gal( QFab

S =
QFab
;

) ! Gal( QFab
�

=

QFab
;

)) has order 4, where

� D S( QF) n { QQ}. On the other hand, applying the snake lemma for the commutative
diagram

E( QF)
M

p2S( QF)

(O
QF=p)� 
 Z2) Gal( QFab

S =
QFab
;

) 0

0 E( QF)=Ker'
QF ,�

M

p2�

((O
QF=p)� 
 Z2) Gal( QFab

�

=

QFab
;

) 0

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

with exact rows, we obtain a surjective homomorphism (O
QF=
QQ)�
Z2! I

QQ. Since QQ

is a prime of degree 1, i.e., (O
QF=
QQ)�
Z2 ' F

�

q 
Z2 ' Z=2Z, we havejI
QQj � 2. This

is a contradiction. ThereforeG ' G1. Using GAP again (cf. Fig. 5), one can see that

G ' G1 ' ha, b j a�4[b2, a], b�2[[b, a], a]a4
i

as an abstract group and thatG=G0

' [2, 4], G0

=G00

' [2, 2, 4] andG00

' [2, 2]. Thus
the proof of Theorem 1.1 is completed.

REMARK 3.1. GAP tells us that a finite 2-groupG satisfiesG=G0

' [2, 4],
G0

=G00

' [2, 2, 4], G00

' [2, 2] and H2(G,Z=2Z) ' [2, 2] if and only if G ' G1 or G2.

REMARK 3.2. Both of two cases of (3.1) can occur. Put (l , q, r ) D (5, 11, 71).
Choosingq1 and r1 suitably, we can see by PARI/GP [24] thatF D k1(

p

�) for � D
�

5�
p

5
2

�

(4C
p

5)
�

17C
p

5
2

�

2

p

lq1r
�

1 satisfying�2
�130�C3905D 0. Choosing a prime as

q�1 , some functions (bnrinit, rnfkummer etc.) on PARI/GP tell us thatA{l ,q1,q�1 }(F)'

Z=2Z, QF1 D Fab
{l ,q1,q�1 }

' Q[x]=(x8
�50x6

C715x4
�3190x2

C605) and thatq�1
0

is inert in

QF1=F . On the other hand, if we put (l , q, r ) D (5, 19, 79) and choose primes suitably, we
haveF D k1(

p

�) with �2
�175�C7505D 0 and QF1 D Fab

{l ,q1,q�1 }
' Q[x]=(x8

�590x6
C

88255x4
� 361570x2

C 1805). Thenq�1
0

splits in QF1=F . It seems still difficult to write�l ,
�q explicitly as the (pro-2) words of letters�l , �q.
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