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Abstract

Based on the method of Boston and Leedham-Green et al. fopwimg the
Galois groups of tamely ramifieg-extensions of number fields, this paper gives a
large family of triples of odd prime numbers such that the imak totally real 2-
extension of the rationals unramified outside the three @nmmbers has the Galois
group of order 512 and derived length 3. This family is chimdzed arithmetically,
and the explicit presentation of the Galois group by geoesaand relations is also
determined completely.

1. Introduction

Let p be a prime number. For a number fidtdand a finite setS of primes of
k none of which lies overp, we denote byks the maximal prop-extension overk
unramified outsideS. Then the Galois group G&K/Kk) is afab pro-p group, i.e., the
maximal abelian quotient of any open subgroup is finite. Irtipalar whenS = @, the
derived series of Gatf/k) corresponds to th@-class field tower ok, which is a clas-
sical object in algebraic number theory. By the theorems ofo@-Shafarevich type,
Gal(ks/k) can be infinite. While any finitegp-groups appear as GRj(k) for suitable
k (cf. [20]), it is still a considerable problem to determiree tstructure (finite or not,
the isomorphism class, etc.) of Galfk) for givenk and S. Since the characterization
of metabelian GakKs/k) has been developed relatively well (cf. [1], [3], [6] etcwe
focus on the cases where Ggj(k) has the derived length at least 3.

For this problem, Boston and Leedham-Green [4] introducedwerful method to
compute GaKs/k) approximately with respect to the profinite topology, whis based
on the p-group generation algorithm [19]. In particular, they sleowfor p = 2 and
S= {00, 5,19 that GalQs/Q) is isomorphic to one of certain two finite 2-groups of
order 2° and derived length 4 (cf. [4, Theorem 2]). Eick and Koch [9yé@xtended
this result to a large family ofS characterized by power residue symbols and class
numbers with the ingenious use of the complex conjugatiolGaiQs/Q). On the
other hand, applying this method to the case where 2 andS = @, Bush [7] showed
for an imaginary quadratic field = Q(+/—445) that Galf/k) is isomorphic to one of
certain two finite 2-groups of ordef 2and derived length 3 (cf. [7, Proposition 2]).
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1064 Y. MiZUSAWA

As in these results (and [5], [8], [18], [22] etc.), this medhoften provides a
few finite p-groups similar to each other (more precisely, having theroon large
quotients) as the candidates of the isomorphism class dk&i&). Then it is a nat-
ural question that which candidate is isomorphic to &gi). In particular, we are
interested in how the arithmetical conditions determine ifomorphism class. Toward
this question, we need to find and compute a suitable subgrb@rl(ks/k) such that
the Galois closure of the fixed field is large enough. Hencevariag to this question
seems still difficult if the order of Galg/k) is big or S= @ as in the cases above.
Mayer [16] determined the isomorphism classes of 3-groudékgzk) for some quad-
ratic fieldsk individually via computing the capitulation of ideals, Wdiit is also dif-
ficult to extend such examples to a family characterizedhiaugtically.

In this paper, avoiding these difficulties, we obtain thddieing theorem which
gives a large family ofS characterized by arithmetical conditions, such that thi&a
2-group GalQs/Q) has the derived length 3 and the isomorphism class is caetple
determined. We pup = 2 throughout the following, and denote by®[22%, ..., 2%]
the abelian grougd_, Z/2%Z.

Theorem 1.1. Letl, g and r be distinct prime numbers such thatl5 (mod 8),
q=r =3 (mod 4), gr)!-4 =1 (modl) and the class number @(./Iqr) is con-
gruent to4 modulo8. Let Qs be the maximaltotally real) pro-2-extension ofQ un-
ramified outside S= {l,q,r}. Then the Galois group G- Gal(@Qs/Q) is a finite 2-group
of order 2° which has a presentation as an abstract group with two getoesaa, b
and two relations

a“¥[b% a), b?[[b, a), aJa’

where[x, y] = x~ty~Ixy. In particular G has the derived series 6 G’ > G” D {1}
of length3 such that GG’ ~ [2, 4], G'/G" ~[2,2,4]and G’ ~ [2, 2].

ExAMPLE 1.1. Using PARI/GP [24] etc., one can find 18 triplésq(r) satisfy-
ing the assumptions of Theorem 1.1 in the range {lax r} < 100, e.g., (5, 11, 71),
(5, 19, 79), (13, 23, 43), (29, 83, 7), (37,47, 7), (53,7, g8}, 19, 3).

The proof of Theorem 1.1 is based on the methods of Boston aedham-Green
[4] and Eick and Koch [9]. However, sinceo ¢ S in our case, we can not use the
complex conjugation, and we have to treat more units of algebntegers. In the next
section, we calculate the abelianizations of some openrsupg of GalQs/Q) as the
2-parts of ray class groups of the fixed fields. Then we proveofdm 1.1 in the third
section, using thep-group generation algorithm on GAP [23]. In the first half bet
proof of Theorem 1.1, we also reach two candidates of the asphism class. Since
2% is not so big andS # @ in our case, we can identify the fixed fields of suitable sub-
groups by the ramification condition. Hence we can deterntir@eisomorphism class

of Gal@s/Q).
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REMARK 1.1. Under the assumptions of Theorem 1.1, the (narrow)l idleas
group of Q(4/Iqr) has the 4-rank 1. Hence the theorem of Rédei and Reichatiit [2
yields that({) = (}) = 1 (cf. also [2, Proposition 1]), wherg-) denotes the quadratic
residue symbol. Then, since the number of primes dividing of Q(+/d) is 5, where
d = —q or —r according to(%) =1 or —1, GalQsu(«}/Q(V)) is infinite (cf. [17,
(10.10.1) Theorem]). Hence G&l§;/Q) is also infinite.

2. Ray class groups

2.1. Preliminaries. Let k be a number field, an& a set of ideals ok which
are prime to 2. LetS(k) = {p1, po, ..., pn} be the ordered set of all prime ideals lof
dividing [],.sa. Thenks denotes the maximal pro-2-extensionkofinramified outside
S(k). We denote byAs(k) the Sylow 2-subgroup of the ray class groupkofmodulo
[T pi. Then Ag(k) =~ Gal(kgb/k), Wherekgb denotes the maximal abelian 2-extension
of k unramified outsideS(k). Burnside’s basis theorem vyields that As(k) is cyclic
then Galks/k) is also cyclic, in particulaks = k&. The definition of the ray class
groups induces an exact sequence

EK) = EDUO/p) ®22) — Ask) — Ag(k) — 0,

i=1
\

w
¢ —> ((¢ modp;) ® 1),

where Oy is the ring of integers ik, E(k) = O is the unit group ok, andZ, denotes
the ring of 2-adic integers. For each<li < n, we choose a primitive elemengt € Ok
of the finite field Ox/p;, i.e., O«/p;)* = (g modp;). Let 2% be the order of cyclic
2-group Ow/pi)* @ Zp. ThenZ/2%Z ~ (Ok/p;)* ® Z»: amod 2 +— (g modyp;) ® 1.
Depending on the order i8(k) and the choice ofj (1 <i < n), the above sequence
induces the exact sequence

E(k) &2 [22, 222, ..., 2] — Ag(k) — Ay(k) — O,
w
ke{:)r—>(al,ag,...,an)

whereg; is the abbreviation ofy mod 2 satisfyinge = g* modyp;. Let {gj}1<j<q C
E(k) be a system (not necessarily minimum) such thags(ej)}i<j<d generates
ok s(E(K)) as aZ,-module. Then we put a column vector

ok, s(e1) a1 a1 -+ am

ok, s(e2) iz a2 -t an2
Vs = . =1 . . .| = @&j)1<j<d, 1<i<n-

¢k, s(€d) g 84 - and
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For any A € GLy4(Z,), the components of a vectdkuy s generate Inpy s. By finding
suitable A such thatAuvy s has a simple form, one can calculate Cokges.

REMARK 2.1. For a se of ideals ofk such thatz(k) = {p; ,p;,,..-,pi, } C S(K)
(1<ii<iz<---<im=n), we choose the samg, (1< <m). Then we have the
exact sequence

Pk,

E(k) 25 [2%, 2%2, ..., 2%0] = Ag(K) — Ag(k) — O

for A € GLy(Z2), then Avks = (bi,j)1<j<d, 1=u<m. Hence one can also calculate
Cokergy » simultaneously.

We use the following formula (cf. [25]) which is also oftenlled genus formula.
For a quadratic extensiol /k with the Galois group GaK /k) = (o), we have

|Ag(K)| 2

@1 (020 € A(K) |27 = )| = sz,

wherer denotes the number of primes kframifying in K/k. Here we note that an
ideal 20 of K satisfies?1® = 21 if and only if 2 = B(aOk) for some ideala of k and
a productB of primes of K ramified in K /k.

2.2. Settings. In the following, we suppose that the prime numbkrs, r sat-
isfy the assumptions of Theorem 1.1. Pait= {l, g, r}, and putk = Q(./Iqr). Then
GalQ%/Q) ~ [2, 4] and Ag(k) ~ Z/4Z. Since Ag(k) has the positive 4-rank, we have
(%) = (f) = 1 (cf. [21] or [2, Proposition 1]). Hencg!~/4 = r(~1/4 = £1 (mod]).
By replacingq andr suitably, we may assume that

(2.2) ql-v/4 = (-D/4 = (%) (mod ).

Putky = Q(V1), k: = Q(/aN), K = Q(WI, yar), Ki = Q). K2 = Q,,. Then
Gal(K1/Q) ~ Gal(Ky/Q) ~ Z/4Z, and henceKi = Qq g, K2 = Qq ;. Moreover,
since A4(Kk) is cyclic, we havek, = kgb = Ky. Thenk,/Q is a dihedral extension of
degree 8, anks/k: is a [2, 2]-extension. Let s, L} be distinct quadratic extensions
of k; contained ink; and different fromK. Then the quartic field-; is not a Galois
extension ofQ, and the conjugate of1 is L;. We denote by (resp.t) a generator
of Gal@Q¥®/k) ~ Z/4Z (resp. GalQ¥® /K1) ~ Z/2Z). A prime ideal of a subfield of
ng dividing Igr will be denoted as in Fig. 1.
As a preparation for proof of Theorem 1.1, we obtain the foifg theorem.
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Fig. 1. Ramification inQ%®/Q andky/Q.

Theorem 2.1. Under the assumptions and notations ahowe have

Ask) = [2, 8], As(ki) =[2,2,2], As(k) =~ [4, 4],
As(K) ~1[2,2,4], As(Ky) ~1[2,2,2,2], As(Kz) ~[4,4].

2.3. Proof of Theorem 2.1. Let z (resp.zy, z) € Z be a primitive root of
| (resp.q, r). We denote byl (resp.q, t) the prime ideal ofk = Q(/Iqr) lying
over| (resp.q, r). Thenz (resp.zy, z) is also a primitive element 0D/l ~ F
(resp.Ok/q ~ Fy, O/t ~ F,). Sincel =5 (mod 8) andq =r = 3 (mod 4), we have
|F* ®Zo| =4 and|Fy @ Zo| = [F* ® Zp| = 2. Lete > 1 be the fundamental unit df.
For the ordered seB(k) = {I, q,t} and these primitive elements, we have the sequence

E(k) 25 [4, 2, 21— Ag(k) — Z/4Z — 0

and

‘Pks(—l)) (2 1 1)

2.3 Vks = ' = ,

23) ©S ( Pk,s(€) a a &

where we recall that = z* (mod (), ¢ = z3 (mod q) ande = z®# (modt). The expo-
nent of Ag(k) and @, a;, &) are determined via the calculations éw(K) (cf. (2.13),
Lemmas 2.3 and 2.4), where some resultsAgiik;) and Ag(kp) are needed. Hence we

will calculate As(k) and As(K) simultaneously, after proving the statements Agy(k;)
and As(kz).
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We denote byg; (resp.t;) a prime ideal ofk; = Q(+/1) lying over q (resp.r).
By replacing L1 and L suitably, we may assume that; is the inertia field ofq{
in the [2, 2]-extensionKg/k; unramified outside{qy, q7, t1, t{}. Sincel; ¢ K; and
L1 ¢ Ky, Li/ks is ramified atq;, and ramified atc; or . In particular, L] is the
inertia field of q; in Kg/ky. Sincel; ¢ K1, Li/ky is unramified ate; or ¢f. There-
fore, by replacinge; and ] suitably, we may assume that /k; is unramified outside
{g1,t1}, and ramified at botly; andv;. ThenL’/k; is unramified outsidgq], ]}, and
ramified at bothq] andt]. We also choose (resp.zy, z) as a primitive element of
Ok, /(V1) = F (resp.Ox,/q; = Ok, /qf =~ Fq, Ok, /t1 = O/t ~TF,). Sincek; = Qyj,
we haveAqy(ky) ~ 0O, in particular Ag(k;) >~ 0. Lete; > 1 be the fundamental unit of
ki. For the ordered seB(k;) = {(v1), q1. q7, v, vJ} and these primitive elements, we
have the sequence

E(k) 225 [4, 2, 2, 2, 2] As(ki) — 0
and

<ﬂk1,s(—1)) (2 1 1 1 1)

2.4 Vg, 8 = = .

24 wo= (590 )= (5 b b b o

Since ¢y, s(e7) = (b, by, by, b}, by) and s%*" = —1, we have B = 2 (mod 4) and
by +bj=by+b,=1(mod 2). Ifby + b, =1 (mod 2), thenpy, (q,,.,) IS SUrjective,

i.e., Agy(ki) ~ 0 (cf. Remark 2.1). This contradicts to the existence of caticl
extensionlL/k; unramified outsidgqq, v1}. Therefore

(2.5) b=1 (mod 2), by=b,#b; =b, (mod 2).
Since

by 1+ 2b1)b71 (1 0101
(2.6) ( 1 21 Ys={p 1 1 1 1)
we have
(2.7) As(ki) >~ [2, 2, 2].

Moreover, we haveA q, 1 (K1) = Aqq, (K1) = Z/2Z (cf. Remark 2.1) and hence

(2.8) L, = (kl){ql,tl} = (kl){LCILtl}'

Here, using this field.;, we prepare the following lemma on the decomposition
of primes ink; = Ky.

Lemma 2.1. [I] =1and[q] =[t] # 1in Ag(k), where[a] denotes the ideal class
of an ideala.
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Proof. Recall thatl; is a quadratic extension df unramified outsid€(qq, t1}.
Then there is a totally positive € Ok, such thatL; = k; (/&) anda Oy, = q1t1b2 with
some idealb C Oy,. Note that the class numbéx, of k; is odd. Sincesi*" = -1,
b = Oy, with some totally positives € O,. ThenaM Oy = (q;t1)™ p2. Puty =
a2 € k. Sincey Oy, = (qit1)™, we havey € O and L1 = ki(,/¥). There is
somex € Z such thaty = z* (mod J1). Sincey is totally positive, gr)™ = y1to =
72 (mod ). By the assumptionz! /2 = (qr)!~Dha/4 = 1 (mod1), and hencex is
even. Hensel's lemma yields that/{) splits in L1/k;. Then the prime ideals oK
lying over| also split inks/K and hencel] = 1. Since [J[q][t] = [(+~/Iqr)] = 1 and
[q]?> = [t]?> = 1, we have {] = [t]. By the genus formula (2.1) fok/Q, we have

23

K[, [a], [+ = 2E@Q)/EMT] 2,

and hence(] = [t] # 1. Thus the proof of Lemma 2.1 is completed. ]

Now we calculateAs(kz). Let [ (resp.q,, t2) a prime ideal ofk; = Q(,/qr)
lying overl (resp.q, r). Thenz (resp.zq, z) is also a primitive element 0D, /[, >~
O, /15 =T (resp.Ox,/q, = Fy, O, /vto = ;). Sinceky = Q(qr}, We haveA (k) ~
0, in particularAg(ky) >~ 0. Lete; > 1 be the fundamental unit d&. For the ordered
set S(ko) = {2, 15, g5, t2} and these primitive elements, we have the sequence

Eko) 225 [4, 4, 2, 2]— As(kz) — 0

and
<sz,s(—1)) ( 2 21 1)
2.9 D = = .
(29) S ( Pk,5(€2) c cC ¢ C
Since ¢y, s(¢3) = (¢, ¢, ¢y, ¢) and eé*" = 1, we havec + ¢ = 0 (mod 4). Since

the [2, 2]-extensionKg/ke is unramified outside{l}, Ayy(kp) >~ Cokergy, 1y =
[4,4]/((2, 2), €. ) is not cyclic, and hence andc’ are even. Since Cokek, (g} =~
Agri(k2) >~ 0, we havec; + ¢, =1 (mod 2). Therefore

(2.10) c=c =0 (mod2), c=c (mod4), c;#c, (mod 2).

Since
143 _1U (2210
¢ ;] \ooo1
2

or



1070 Y. MiZUSAWA

we have
As(kz) ~ [4, 4].

Moreover, forx = {l, q} or {I, r}, we have

e ) (2 2 1)
ko, X =
oo 000
2
Therefore
(211) A{|'q}(k2) ~ [4, 4] or A{|'r}(k2) ~ [4, 4]

Using the results abovéis(k) and As(K) are calculated simultaneously as follows.
Let £ (resp.Q, ) be a prime ideal oK = Q(+/1, »/ar) lying overl, (resp.qy, t1). Then
z (resp.zq, z) is also a primitive element 0Dk /£ ~ Ok /L7 ~ F (resp.Ox /Q ~
Ok /Q% ~Fq, Ok /R =~ Ok /R ~TF,). For the ordered s&(K) = {£,£°,Q,Q7,R,R7}
and these primitive elements, we have the exact sequence

¥K.,s

E(K) —[4,4,2,2,2,2]> As(K) - Z/2Z — Q.

Lemma 2.2. E(K) = (-1, /¢, €1, &2).

Proof. Kuroda’s class number formula (cf. [15])

|Ag(K)I = %IE(K)/(—l. &, &1, €2)| - [Ag(K)] - [ Ag(ka)] - | As(ka)]

for K/Q vyields that|E(K)/(—1, ¢, €1, £2)| = 2. Recall that GaK /k;) = (o k). Since
et =377 = 1 andel™ = —1, one of /s, /&3, /€€, is contained iNE(K). Sincel,
ramifies inK /kz, we have,/e; ¢ E(K). Since €s2)'t™ = £2, we have (/eg)tt™ =
+e,. By Lemma 2.1, bothg and £7 split in Kg/K. The genus formula (cf. (2.1))

| Ag(ka)|22

L= 18], 1271 N A = e

for K/k, yields that|E(k)/E(K)*™| = 2. Since—1 = &1t = 1" € E(K)**™,
we have,/se; ¢ E(K). Therefore /e € E(K) and henceE(K) = (—1,./¢,£1,€2). The
proof of Lemma 2.2 is completed. O

By Lemma 2.2 and (2.4), (2.9), we have

(pK,S(_l) 2 2 1 1 1 1
oK,s(+/¢) d o d d d d,
2.12 = ' =
(212) S = o oe) b b b b b b
ok, s(e2) c ¢ ¢ € & &
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Sincegk s(e) = (a,a,a1,a1,82,a) € ¢k s(E(K)?) C 2[4,4,2,2,2,2] (cf. (2.3)), we have
(2.13) a=ag=a=0 (mod 2).

Thengk s(v/¢) = (d,d’,dy,d;,dp,d)) satisfies 8 = 2d’ = a (mod 4). Sincepk s(—+/€) =
ok, s((v/€)7) = (d', d, di, di, dj, d2), we have

(2.14) d=2+d (mod4), d#d (mod?2), d;#£d, (mod 2).
The following lemma and (2.13) determing s(¢) = (a, a1, a).
Lemma 2.3. 2d =2d'=a=2 (mod 4)

Proof. PutX = {l,q} or {l,r} such thatAx(ky) >~ [4, 4] (cf. (2.11)). We consider
the exact sequence

E(k) 2% [4, 2] — As(K) — Z/4Z — 0.

Since there is a [2, 4]-extensidegb/k unramified outside{l} € X, Ag(K) is not
cyclic. Assume that =0 (mod 4), i.e.,d =d’ =0 (mod 2). Then, since

ey = (wk,z(—l)) _ (2 1)
RO 00
(cf. (2.3) and (2.13)), we have Cokegry ~ Z/4Z, and henceAg (k) =~ [2, 8] or [4, 4].
On the other hand, we have the sequence

E(K) 25 [4, 4, 2, 2]— As(K) — Z/2Z — 0

and
vk =(—1) 2 2 1 1
leksWe) | _|d d d d
VK, x = = )
ok, x(e1) b b h b
ok, xz(e2) c C G G

wherei =1 if T ={l,q}, andi =2 if £ ={l,r} (cf. (2.12)). Since

1 0 -2t o0 0011
—d 1 (@ —db! 0 0201
b 0 @ +1bt o™ T 11 0 1
—¢ 0 (¢ —cob?! 1 0 00O

(cf. (2.5), (2.10) and (2.14)), we have Cokgrs ~ Z/AZ. In particular, 2Ax(K)| =
|As(k)] = 16. By the same argument to the proof of [2, Proposition 7], vese
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k""zb = kyg. Since K/k, is unramified outside{l}, (ko)s = kg and henceAg(ky) ~
[4, 4] is a quotient of the group G&l{/k;) of order 16. Thereforekg)2®® = ks and
Galks/k2) ~ [4, 4]. Then both GaK/k) = (o|x) and GalK/ky) = (to|k) act on
Ax(K) ~ Galks/K) trivially, Gal(K/k;) = (r|k) also acts on Gakg/K) trivially,
i.e., ks/k; is an abelian extension of degree 16 unramified outSdeHowever, we
have seen thaftAg(ky)| = 8 (cf. (2.7)). This contradiction implies that= 2 (mod 4).
Thus the proof of Lemma 2.3 is completed. O

In order to determine the exponent Ag(k), we consider a quotierdq (k). The
exact sequence

Pfa.ry

E(k) —[2, 2] = Agn (k) = Z/4Z2 — 0

_(kagn=DYy _ (1 1
vk'{q'r}_( Pk.(q.r} (€) ~\o0 o

(cf. (2.3) and (2.13)) yields that\q (k) ~ [2, 4] or Z/8Z.

with

Lemma 2.4. Ay (K) ~ Z/8Z.

Proof. If Ayr(K) ~ [2, 4], there is uniquely a [2, 2]-extensiofR/k unramified
outside{q, t}. Then F/Q is a 2-extension unramified outsid® and GalfF/Q) is a
2-group of order 8 with two generators (i.e., a dihedral groa quaternion group, or
[2, 4]). Hence Galf/Q) has a cyclic maximal subgroup. The maximal subgroups of
Gal(F/Q) are Galf/k) ~ [2, 2], Gal(F /ki) and GalfF /k;). Since As(ky) ~ [2, 2, 2]

(cf. (2.7)), we have GaK /k;) 2 Z/4Z. Sincel, ramifies inK /k, and £ does not ram-
ify in F/K, Gal(F/k2) can not be cyclic. This is a contradiction. Therefokg,(K)
is cyclic, i.e., Aiqr(K) >~ Z/8Z. The proof of Lemma 2.4 is completed. O

Lemma 2.3 and (2.13) yield thak s(¢) = (2,0,0), i.e., Cokepy s ~ [2,2] (cf. (2.3)).
Since Ag(k) has a quotientq (k) ~ Z/8Z (cf. Lemma 2.4), we have

As(K) ~ [2, 8].

On the other hand, by (2.5), (2.10), (2.12), (2.13), (2.14J aemma 2.3,

(2.15) Avg s =

O OO
oL NO
O O
= O O O
= = OO

O OO
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for
1 0O -1 1 0 0O 10 -2t 0
A= 0 1 0 di—d, bp—dy 1 0 O 0 1 —db?! O
1o 0 1 0 —-b; 0 1 O 00 bt o
0 0O 1 -¢gc 0 0 1 0 0 —cb?t 1

Hence Cokepk s >~ [2, 2, 2]. Since Ag(K) has a quotientAy(K) ~ Z/AZ
(cf. Lemma 2.4), we have

As(K) ~ [2, 2, 4].

Here we prepare the following lemma which we need for the utations of
As(Kl) and As(Kg)

Lemma 2.5. Ay q(K)~[2,2,2]

Proof. Since

0011
0200
Avciar =14 1 o 1
0000
and
0000
0200
Avcan =11 1 0 1)
0011

we have the exact sequences
0—1[2,2]—> Ag(K) > Z/2Z — 0

for ¥ ={l,q} and = = {I,r}. Then GalK&/Ky) ~ [2, 2], and Ax(K) ~ [2, 2, 2] or
[2, 4].

First, we show thatA;,;(K) ~ [2, 4]. Since Kz = Qqry = (Ki)y,ry, we have
Aun(ky) ~ Z/2Z. PutQl = Qhe/20-1/4(-1/2) gnq puta; = q(1h|</2)((|—1)/4)((r—1)/2)
where hx is the class number oK. Thena;Ox = 22, [2] € A n(K) and fnq] €
Ay (k). Sincegq is inert in Ky/k; by the assumption (2.2), we hawy (ki) =
([a1]). Now we suppose tha#\;(K) =~ [2, 2, 2]. Since §I]> = 1, the mapping
Aink) — Aun(K): [a] — [aOk] is zero mapping. ThenA;(K)*! =
Agn(K)HT ~ 0, where we note that Ga(/k;) = (t|«). This implies thatKﬁ‘f’r}/kl is
an abelian extension of degree 16. However, we have seenAb@t)| = 8 (cf. (2.7)).
This is a contradiction. Thereforgy r,(K) ~ [2, 4].
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ab ab
K@QS K{I,q}

F’ Kiarn F

K Kg F
Fig. 2. Proof of Lemma 2.5.

Suppose thaty q(K) >~ [2, 4]. Then Kgng is the unique [2, 2]-extension df
contained inK{" . Let F be the inertia field of¢” in K3° /K. Since the inertia
group Gal((ﬁf’q}/F) is cyclic andKy C F C K{ﬁ"f’q}, F/K is a quartic extension. Since
KgQ¥/K is not unramified at’, F # K,Q% and henceF /K is a cyclic extension
of degree 4 unramified outsidez, Q, Q°}. Since

Avg (e.0) = v Avk ey =

O Fr OO
O O O Bk
O Fr OO
O O

and

Avk iq) =

O OO
O Fr O

we haveKg qy = Kig a7y = Kiqp = Kg. This implies thatF /Ky is ramified at any
primes dividing £g. Recall that GaKqr,/K) =~ A (K) =~ Z/4Z by Lemma 2.4.
ThenKqr F/K is a [2,4]-extension such that GHl{, } F/Kg) >~ [2,2]. SinceKq} =

k{q'r} and
1 1
Uk,{q) = 0) Uk (r} = o)

Kiq.r}/Kg is ramified at any primes dividingr. Let F’ be the unique [2, 2]-extension of
K contained inKq;F. SinceF /Ky andKq;/Kg are ramified at any primes dividing
g, F’ is the inertia field of any primes dividing in the [2, 2]-extensiorK g F/Kg,
i.e., F'/Ky is unramified at any primes dividing. HenceF’'/K is a [2, 2]-extension
unramified outsidé £, r}. SinceQ2/K is ramified ate’, we haveQ¥ N F’ = K. Thus
we obtain a [2, 2, 2]-extensi0ﬁ/Q§b/K unramified outsidgl, r}. However, we have
seen thatA; r;(K) ~ [2, 4]. This contradiction yields that (K) ~ [2, 2, 2]. Thus the
proof of Lemma 2.5 is completed. ]
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We calculateAs(Kz) as follows. Letf, (resp.Q,, Ry) be a prime ideal oK,
lying over (1) (resp.qy, t1). By the assumption (2.2), the primg is inert in K,/ki,
i.e., QZ = qloKz.

Lemma 2.6. Aqn,(K2) ~ Z/2Z, the4-rank of Aq(K2) is 1, and|Aq,;(K1)| > 8.
Proof. SinceAy(K;) ~ 0, the exact sequence
E(K2) = (Ok,/Q2)* ® Zz — Aiq,(K2) = 0

and the cyclicity of QOk,/Q2)* imply that Ajq,,(K2) is cyclic. Recall that there is a
quadratic extensior;/k; unramified outsidegqq, v1} and ramified at bothy; and t;.
Then K,L1/K; is a quadratic extension unramified outsid®,} and ramified atQ,.
In particular, |Aiq,;(K2)| # 1.

Suppose thatAg,1(K2)| = 4. Then there exists uniquely a cyclic quartic exten-
sion F/K; unramified outside{Q;}, and K, C K,L; € F. Since Q, = ¢;,0k,, F
is a Galois extension ok;. Since K,L1/k; is a [2, 2]-extension unramified outside
{l, q4,r}, KzL1/Lq is unramified outsidgl, t}. Then F/L; is a [2, 2]-extension un-
ramified outside{l, q;, vJ}. Recall thatk; C L1 C Ky and GalKg/ki) >~ [2, 2]. Since
M7 is inert in Kg/K by Lemma 2.1 is also inert inLy/ky, i.e.,t] O, is a prime of
L1 which ramifies inK,Ly/L:. Hence the inertia field o] O_, in F/L is a quad-
ratic extension ofL; unramified outside{l, q;}. However, we have seen that =
(K1)q1,q,,c0 (cf. (2.8)), which implies tha#y; 4,;(L1) >~ 0. This is a contradiction. There-
fore Aiq,(K2) ~ Z/2Z.

The kernel of the surjective restriction mapping

Gal((K2)% /K2) — Gal((K2)1R,,/K2) ~ A, (Ko) ~ Z/2Z

is the inertia group ofQ3, which is cyclic. Hence the 2-rank ofq(K2) is at most

2, and the 4-rank ofAg(K>) is at most 1. By Lemma 2.5I,<{ﬁ‘f’q}/K is a[2, 2, 2]-

extension, which is Galois ovég. Then Kﬁf’q}/ng is a [2, 2]-extension unramified out-
side {q}, and GalQ¥’/K) = (o?) acts on GaK{’, /Q¥) trivially. Since A (K1) ~
0, we haveAq(Q¥)+* ~ 0. Hence Aq(Q¥X)/2)" ! = (Aq(QE)/2)'** ~ 0. This
implies that GalQ¥’/K1) = (r) acts on Gal{%, /Q¥) trivially, i.e., Ki% /Ky is an
abelian extension of degree 8 unramified outdigie }. Therefore| A (K1) > 8. Since
Gal@¥/Kz) = (o7) also acts on GaK ", /Q¥) trivially, K{’, /K2 is an abelian ex-
tension of degree 8 unramified outsi¢ig}. Then|A;(K2)| > 8. Since the 2-rank of
Aq(K2) is at most 2, the 4-rank of\q(K2) is 1. Thus the proof of Lemma 2.6 is

completed. ]

Let gq € Ok, be a primitive element 0Dk, /Q2 >~ Fq2 such thagé+q = 74 (ModLy).
Thengg is a primitive element 0Dk, /Q3 ~ Fq. satisfying gg)1+q = 74 (Mod03), and
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z (resp.z) is also a primitive element Dk, /£, ~ T (resp.Ok, /M2 ~ F;). Recall that
e1 = 2% (modq;) andey = zg (mod q7) (cf. (2.4)). Thene; = g§™ ™ (mod 9,) and
g = (gg)‘“‘”bi (mod 3). Since the genus formula (cf. (2.1))

23
1= 5
2|E(ky)/E(K2) o7

for Ko/ky yields that+e; ¢ E(K2)'t" = E(ki)2, we haveE(Kyz) = (-1, &1, &, £9)
whereé&; is a relative fundamental unit df, satisfyinge,%z”"2 = +1 (cf. [12], [13] or
[26]). Since&lt”” e E(Ko)'" = E(ky)?, we have&l™” = 1. If & = g* (mod Qy)
and & = (g)" (mod 93), then &5 = (g5)" (mod Q) and & = (g% = gi"
(mod 93), where we note that? acts onOk,/Q, as the Frobenius automorphism in
GaI(Jqu/]Fq). Put

2N = |F% ® Za| = |Z2/(q° — 1)Zs)-

Thenm > 3. For the ordered se¥(K5) = {£;, Q2, 93, R2, R}, we have the sequence

E(Ky) 225 [4, 27, 2, 2, 2] > Ag(K2) — O

and
¥K,,s(—1) 2 2wt om1l 1 1
oo | Pasled) | _ [P 2™, 2™ p b, b,
K2S PK,,5(52) f f1 f] f, 1,
@K,,s(&5) f aqf] f f; o

(cf. (2.4)), where we note that& q = 2™ (mod 2"). Since

2m—1
2m_lb1
UKz, (92} = f,
qf]

and Aq,(K2) ~ Z/2Z by Lemma 2.6, we havef; = f; = 0 (mod 2), and either
fy =2 (mod 4) or f{ = 2 (mod 4) are satisfied. In particulayf; = —f; (mod 2").
Recalling (2.5), we have

1 21 0 1
1 o0 ot 0
0 20y 2h, f+ftf)
0 —2h, 2h 0 f+fot )

Aovg, s =

O O
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for
1 10 0,/1 0 00\/1 -2 0 0
p 0 1 00|l bp 1 0o0flO0 bt 00
7l —(f+1f) o1 of|l fby —f 2 0|0 0o 1 0f
—f, 00 1/\fpp —f 0 1/J\0o 0 o0 1

whereh; andh; are integers such thah2= f; —2™1(f + f;) and h, = f/+2™1f,.
Thenh; =1 (mod 2) orh, =1 (mod 2).

Lemma 2.7. h; =h, =1 (mod 2)

Proof. Suppose thdt; = h,+1=0 (mod 2) orh; +1= h, =0 (mod 2). Then
h? + h3 € Z5, and hence the equation

10 0 0
1 0 0 AL 0
hy —hy Aoy o o1
2 UK, =
hZ2+h2 h2 4 h2 @ 2 0
h; h; 0 2

h?+hZ h?+ h3

yields that Aiq(K2) >~ [2, 2]. However, the 4-rank ofAg(K2) is 1 by Lemma 2.6.
This is a contradiction. Thereforie; = h, = 1 (mod 2). The proof of Lemma 2.7 is

completed. ]
Since
1 1 0
1 0 1
Rovatn = [ o ¢ 4ty 4 1 0
0 0 f+ o+ 1

and A (Kz) ~ 0, we havef + f, + f, =1 (mod 2). By Lemma 2.7h? + h3 = 2
(mod 4). Then

000 1 1
1000 1
/ —
Pehves=1 4 5 5 1 ¢
00400
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for
100 0 1 0 —2™2 1-100
010 —2m3 0 1 0 0 0 1 f 0
P h,—h <
A, 0 o 1 M—h 0 0 1 0 0 > 0|,
2h, 10 » 2h,; A
000 1 2+nz/\o o h_i 1
and hence

As(Kg) ~ [4, 4]

Now we calculateAg(K;). Let £; (resp.Qi, 1) be a prime ideal ofK; ly-
ing over (/1) (resp.qy, t1). By the assumption (2.2), splits completely inK1/Q.
In particular t1Ok, = mi“’z. Then z (resp.zq, z) is also a primitive element of
Ok,/£1 ~ T (resp.Ox,/9Q ~ Ok,/Qf ~ Fy, Ok, /R ~F, for any j € Z). Since
the genus formula (cf. (2.1))

23
1=
2|E(k1)/E(K1)Y*o?|

for Ky/ky yields that E(K1)7" = E(ky)% we haveE(Ky) = (—1, &1, &, £7) with a
relative fundamental unig; of K; satisfyingfgl”"2 =1 (cf. [12], [13] or [26]). For the
ordered setS(K;) = {£1, Q1, QF, R4, 9%‘1’2, vl 9%‘1’3} and the primitive elements, z,

and z, we have the sequence

E(Ky) =23 [4, 2, 2,2, 2, 2, 2> As(Ky) — O.
If ok, s(61) = (S, 81,8, %, S5, S5, Sy), then

(0,0,0,0,0,0, 0= ¢k, s(E°°) =(25,0,0,%+5), %+, 5+, S, +5),

i.e.,s=0 (mod 2),s] = s (mod 2) ands)’ = s, (mod 2). Thus we obtain a vector

¥k,,s(—1) 2 1 1 1 1 1 1

_ | exuslen) b b b by by b, b
UK,,S = / ’ /
¥ky,s(61) S 5 8 % % S S
Pk,.s(&7) S ' § 818 S % %
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(cf. (2.4)). Then, recalling (2.5), we have

0 1 1 1 1 1 1
1 0 1 0 0 1 1
2.16 Av =
@10 Avas=10 g1y 0 s+ st S48 S48
0 si+s S1+S S+S L+ Lt 9+
for
1 00 0\/1 -2 0 0
by 1 0 0|0 bt 0 O
Al: / 1
s 01 0J]0 —sb- 1 O
0 01 1/\0 -sb! 0 1

Lemma 2.8. s;+s =5 +s,=1 (mod 2)

Proof. Since Cokepk, i.q = Ayq(Ky) =~ 0, we haves, +s; =1 (mod 2) by
(2.16). If s, + s, =0 (mod 2), we have

$+s 0 1 s+s5+1 010000
2+s 11 s+s+1|, (o000 11
$+s 0 1 s+5 thele =11 0 0 0 0 0
1 00 1 001111

and A (K1) = Cokergk, (qr = [2, 2]. However,|Ajqr (K1) = 8 by Lemma 2.6.
This contradiction yields thas, + s, = 1 (mod 2). Thus the proof of Lemma 2.8 is
completed. ]

By (2.16) and Lemma 2.8, we have
As(K1) ~[2, 2,2, 2].
Thus the proof of Theorem 2.1 is completed.

3. Computation of the Galois group

3.1. Preliminaries. For a pro-2 groupG and the closed subgroug, we de-
note by [G, H] (resp. H?) the closed subgroup db generated byd, h] = g~*h—‘gh
(resp.h?) (g € G, h € H). In particular, we putG’ =[G, G] and G® = G/G'. For a
pro-2 groupG, put Py(G) = G and putPy,1(G) = P,(G)?[G, P,(G)] for n > 0 recur-
sively. In particular,Py(G) = ®(G) = G?[G, G] is the Frattini subgroup of5. Then
we obtain the lower 2-central series

G=P(G)DPI(G)DP(G)D---DP(G)D---
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of G. The 2-class of a finite 2-groupl is the smallesn such thatP,(H) ~ 1. For a
finite 2-groupH of 2-classn, a finite 2-groupsG such thatG/P,(G) ~ H is called a
descendant oH. Then, if a descendan® has the 2-class + 1, G is called an im-
mediate descendant ¢i. The p-group generation algorithm [19] allows us to find all
immediate descendants of a given finite 2-grdtip For instance, the ANUPQ package
[11] of GAP [23] provides a function to use this algorithm.

Suppose thaG is a finite 2-group of 2-clasa > 2, and letF/R ~ G be a min-
imal presentation ofG as a pro-2 group, wher& is a free pro-2 group such that
F/Pi(F) ~ G/Py(G). Let u(G) be the 2-multiplicator rank of3, i.e., the 2-rank of
the 2-multiplicator Hx(G, Z/2Z) ~ R/[F, R]R?. Let v(G) be the nuclear rank o6,
i.e., the 2-rank of the nucleuB,(F)[F, R]JR?/[F, R]R?. Since P,(F) C R, we have
w(G) = v(G).

3.2. Proof of Theorem 1.1. PutG = GalQs/Q), and Ieth‘) be the maximal
2-extension ofQ unramified outsideS of which Galois group has 2-class at mast
Then G/P1(G) ~ [2, 2] and G/P,(G) ~ GaI(Q(S“)/Q). For a finite 2-groupH, we set
a conditionC(H) consisting of the following four statements:

1. H®~2,4].
2. For the six normal subgrougds; (1 <i < 6) of H such that

Ni/H" ~ Np/H ~ H/Ny ~ H/Ns ~ Z/4Z, N3z/H' ~ H/Ng ~ [2, 2],
there are surjective homomorphisms

[2,8] > N2, [4,4]— N2, [2,2,2]— N,
[2,2,2,2]— N, [4,4] > NP, [2,2,4]—> N,

where (1,1i2) = (1, 2) or (2, 1), andig, is) = (4, 5) or (5, 4).
3. There exists soma € H such thata® ¢ H’ and b~tab = a° for someb € H.
4. n(H/Pm(H)) —v(H/Pn(H)) = 2 for all m = 2.

We obtain the following proposition including a translatiof Theorem 2.1.

Proposition 3.1. If H ~ G/P,(G) for some n> 2, then H satisfies the condition
C(H).

Proof. Suppose that > 2, and putH = GaI(Qg‘)/Q) ~ G/P,(G). It suffices to
prove that thisH satisfies the conditio€(H). Since the quotient Gmgb/Q) ~ [2,4]
of G is a finite 2-group of 2-class 2, we ha@® C Q(SZ) - Qg'). Hence there is a
surjective homomorphisnH — [2, 4]. On the other hand, there is also a surjective
homomorphism [2, 4 G# — H2, ThereforeH2 ~ [2, 4]. By the settings of the
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subfields ongb in the previous section, we have

(Gal@Y /k), Gal@Y /kz)) = (N1, Nz) or (Nz, Np),  Gal@Y/ky) = N,
(Gal@Y /K1), Gal@QY/K2)) = (N4, Ns) or (Ns, Ng), Gal@T/K) = Ne.

The maximal abelian quotients of these Galois groups ardigquse of the correspond-
ing ray class 2-groups. Hence the second statemeft(bif) holds by Theorem 2.1.

Let 7y (resp.tq) be a generator of the inertia subgroup ®ffor a prime lying
over | (resp.q). Let o; (resp.oq) be the corresponding Frobenius element, i.e., the
decomposition group of the prime is generatedrpando; (resp.tq andog). Then the
pro-2 groupG has a minimal presentation with 2 generators corresporiding 74 and
2 relations represented byzo; ™ = 1/, oqrqo,* = 74 in G (cf. [14, Theorem 11.10
and Example 11.12]). In particular, we have (Zﬁ@'(/kz) = (tlqn) ~ Z/4Z, and G

has trivial Schur multiplicator. Put = a,‘“IQ(Sm € H, whereu = log, 5/log,| € Z, and
log, denotes the 2-adic logarithm. Then= 7|yn € H satisfiesb~tab = a°. Since

Q2 c QY, we havea? ¢ H'. On the other handH /Pn(H) ~ G/Pn(G) for all m<n,
and H/Pn(H) ~ H/P,(H) ~ H for all m> n. Therefore the last statement 6{H)
also holds by [4, Lemma]. Thus the proof of Proposition 3.Tasnpleted. O

Suppose that a finite 2-groud of 2-classn + 1 > 3 satisfies the conditio@(H)
with the six subgroupsN;. Since the 2-class oH?® ~ [2, 4] is 2, we haveP,(H) C
P,(H) c [H,H] c Ni. ThenH = H/P,(H) also satisfies the conditio@(H) with the
six subgroupsN; = N;/Py(H) for the second statement 6f(H). Thus we can define
a rooted treeT such that the root is the isomorphism class of [2, 2], the rotlegtices
are the isomorphism classes of finite 2-groupssatisfying the conditiorC(H), and
the edges have the extremitiés and H such thatH is an immediate descendant of
H. Proposition 3.1 yields thaG/P,(G) is isomorphic to one of the vertices of this
tree T. For eachn > 2, all vertices of T of 2-class at mosh are computable with
the repeated use of the-group generation algorithm. To compute them, we use GAP
[23] and ANUPQ package [11] here. A program as in Fig. 3 retuanresult which
indicates thafl has no vertex of 2-class greater than 6 and the diagram isf of the
form as in Fig. 4. In particularT is finite. ThereforeG is a finite 2-group of 2-class
at most 6, ands is isomorphic to one of the vertices af.

Recall thatH?(G, Z/2Z) ~ [2, 2] (cf. [14, Theorem 11.10 and Example 11.12]
or [17, (10.7.15) Theorem]). A function on GAP which commutd?(H, Z/2Z) for
a given finite 2-groupH is provided by HAP package [10]. Applying this function
to all verticesH of T, which have been computed by a program as in Fig. 3, we
find only two verticesH such thatH?(H, Z/2Z) ~ [2, 2]. These two vertice$s; =
g 1][1] andG, =(d 2] [1] are identified by codes in GAP as in Fig. 5. Thén
is isomorphic toG; or G, which are finite 2-groups of order 512 and 2-class 6 such
that G1/Ps(G1) ~ G2/Ps(Gy).
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f :=function(G A) # checks the exi stence of a surjective hononorphismA-->G[G (.
return (Abelianlnvariants(G in Set(All Subgroups(AbelianG oup(A)), x->Abelianlnvariants(x)));
end; ;

h:=function(H) local D, N, r, a; # checks the condition C(H except for 4th statenent.
if Abelianlnvariants(H) =[2, 4] then
D: = DerivedSubgroup(H); N:=1Internmedi at eSubgroups(H, D).subgroups;
SortParal | el (List(N, x->[1ndex(H, x), RankPG oup(Factor G oup(x, D)), RankPG oup(FactorGoup(H x))]), N;
if ((F(N[1], [2, 8]) and f(N[2], [4, 4])) or (f(N 2], [2, 8]) and f(N 1], [4, 4]))) and f(N[3], [2, 2, 2])
and ((f(N[4], [2, 2, 2, 2]) and f(N[5], [4, 4])) or (f(N[5], [2, 2, 2, 2]) andf(N 4], [4, 4]))) andf(N 6], [2, 2, 4])
thenr :=0; for ainHdoif (not (a”2inD)) and (a*5in ConjugacyC ass(H a)) thenr :=1; break; fi; od;
returnr; elsereturno; fi;
elsereturno; fi;
end; ;

LoadPackage(" ANUPQ') ; ;

T:=[];: T(1] :=[[AbelianGoup([2, 2]), [11]:;

fornin[2..7] doT[n] := []; for kin[1..Size(T[n-1])] do
procid:=PqStart(T[n-1][k][1]); D:= PgDescendants(proci d: O assBound:=n); PqQuit(procid); t :=1;
foriin[1l..Size(D)] doif h(D[i]) =1and MiltiplicatorRank(D[i])-NuclearRank(D[i])<3then

Add(T[n], [D[i], Concatenation(T[n-1][k][2], [t])]); t :=t+1;

fi; od;

od; od;

Fig. 3. ComputingT.

2, 2]

G, G,

Fig. 4. T.
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LoadPackage("HAP") ; ;
G:=[];; fornin[1..6] dofor kin[1..Size( [ n])] d

if Size(G oupCohonol ogy(T[n][k][1], 2, 2)) =2 then Add(G TIn][k]); fi;

od; od;

g:=function(Q local N, M U; # conputes the abelianizationsof M3and Ui (i =1, 2, 3, 4).

N: = Li st ( Maxi mal Subgroups(GQ); SortParallel (List(N, x->-Exponent (Comrut at or Fact or G oup(x))), N);

M: = I nt er medi at eSubgr oups(N[ 3], Fratti ni Subgroup(N 1])).subgroups; SortParallel (List(M x->IsNornal (G x)), M;
U: = Li st (Maxi mal Subgroups(M 3])); SortParallel (List(U, x->lsSubgroup(x, Frattini Subgroup(N 3]))<>true), U);

ret urn[ Abelianlnvariants(M3]), List([U1], U2], U3], U4]], x->Abelianlnvariants(x)) ];

end;

gap> Li st (G x->x[1]);

[ <pc group of size 512 with 9 generators>, <pc group of size 512w th 9 generators>]
gap> CodePcG oup(d 1][1]); CodePcG oup(d2][1]);
13830505503288171864898804013533563491412215720741354747545296882850687
13830505503288171864898804013533563491412215720741354756552496137591679
gap>g(d1][1]); 9(F2][1]); #[ M3"ab, [ U 1*ab, U_2%ab, U 3"ab, U 4*ab] ]

[[2,2,4][[224][22,4],[224][2,2,4]]]
[[224][[44][44],[44][44
gap>F:=FreeGoup( "a", "b");; a:=F.1;; b:=F. 2

gap>Gl:=F/[ ar- 4*(_‘0rm(b"2 a), br- Z*Q)mr(Conn(b a) a)xat4];;
gap> (| sonor phi snGroups(d 1] [ 1], Gl)<>fail);

true

gap> Li st (DerivedSeries(d 1][1]), x->Abelianlnvariants(x));
[[2 4], 02 2 4], [22],[]]

Fig. 5. Two candidate$; and G,.

We also use the same notations as in the previous sectionN{ut Gal(@s/k1)
and N; = GaI(QS/k) By Theorem 2.1Nj3 (resp.N;) is the unique maximal subgroup
of G such thatN2® ~ [2, 2, 2] (resp.N2 ~ [2, 8]). Sinceky;Q2/k is a [2, 4]-extension
and As(k) ~ [2,8], we havekg®™c k@Qab, wherek&®M denotes the maximal elementary
abelian 2-extension df unramified outsideS. Then

N; = ®(Ns) = GalQs/ksQ%) C ®(Ny) = Gal@Qs/kE®™ C Na.

Moreover,G/®(N;) ~ Gal(ke'em/Q) is a dihedral group of order 8. Since there is a sur-
jective homomorphism [2,2,2} N3 — N3/®(N;), the maximal subgroupls/®(N;) of
G/®(Ny) is not isomorphic t&Z /4Z, i.e., N3/ ®(N;) ~ Galk®™/k;) ~ [2,2]. HenceNs
has two maximal subgroups containidgN;) and not normal inG. Note that these two
maximal subgroups are isomorphic. Ltz be one of them. TheMs/®(N3) ~ [2, 2].
SinceG >~ G; or G >~ G,, GAP tells us tha1|\/|ab [2, 2, 4] (cf. Fig. 5). ThenM3 has
four maximal subgroupd);i (1 <i < 4) not containing®(N3). GAP also tells us that

w . J[2,2,4] if G~Gy,
4,4 if G~G,

for all i (cf. Fig. 5).
Recall the assumption (2.2) and tHat/k; is unramified outsiddqq,t;}. Then we
can characterize the fixed field &3 as follows.

Lemma 3.1. M3z >~ Gal@s/(K1)q,q,.¢53), @nd (Ki)q,q,,¢5)/Ke is ramified at any
primes dividing k9.



1084 Y. MiZUSAWA

F1K
kglem

ke

Fig. 6. Some subfields dPs.

Proof. Recall that Gak€®™/Q) is a dihedral group of which cyclic maximal sub-
group is GalkZ®M/k,) ~ Z/4Z. Thenk&M/k, is totally ramified at any primes lying
over |. In particular, k¥*M/K is ramified at any primes lying over Then the in-
ertia field of (/1) in the [2, 2]-extensiork€®™/k; is K, and K /k; is ramified at all
primes dividingqr. Let F be the inertia field ofq] in kg'em/kl. Then F /k; is un-
ramified outside{l, q;,r}. SinceF # K, F/Q is not a Galois extension, and hence
M; ~ GalQs/F). Moreover, F /k; is ramified at ¢/I). Since k)ar = Qury = Ky,
F/kq is ramified atq;. If F/k, is ramified at both; and ], the conjugateF’ of F is
the inertia field ofc; and«] in kg'em/kl, and F’/k; is unramified outsiddl, q7}. Since
(k1)g,qp = Qqu,qp = K1 contains neitheri= nor F’, F/k; is ramified at one oft; and
tf and unramified at another one. SinBe# (Ki)(q,c;y = L1 = (K1)q1,q,,cy (cf. (2.8))
and Ay g, «7)(K1) >~ Z/2Z by (2.6), we haveF = (ki)q,q,7) @nd F/k; is ramified at
t. Thus the proof of Lemma 3.1 is completed. O

Put F = (K1)q,q,.¢7), @nd IetFe'em be the maximal elementary abelian extension

{l.g,v7
of F unramified outsidgl, q, vJ} (cf. F|g. 6). ThenAy q.¢)(F)/2 = Gal(F?'Z”; /F)
and F‘f'g”; /K1 is a Galois extension. Recall thif /k; is a quadratic extension unram-

ified outside{q], t]}. ThenKL}/k: is a [2, 2]-extension unramified outsidk g, t{}.
By (2.6), we haVE‘Al axgy(ka) ~ [2,2], and henceF C (ki) ¢ = Kili C Fﬁ'gng In

particular, Gal(:""em 1 /K1)® = Ay g (ke) > [2,2]. Since GalE?"a"g /k1) has an elem-

entary abelian maX|maI subgroup Glaf(gm /F), F?"a”g /Ky is a [2, 2]-extension or a
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dihedral extension of degree 8. Recall thatis a [2, 2]-extension ok; which contains
K, L; and L. Sincer; ramifies inK /k; and R is inert in kg/K by Lemma 2.1,t;
is also inert inL’/k;. Sincer; splits in K1/ky, i.e., the decomposition field af; in
the [2, 2]-extensiorKiL’ /k; is K1, we know thatr is inert in F/ky. Then the kernel
of the surjective homomorphism

Gal(F&*/F) ~ As(F) — Ay q.)(F)

is isomorphic to the inertia group of the unique prime Bflying over v; which is
cyclic. Since Galfg®/F) ~ MZ° ~ [2, 2, 4], Ay q.2)(F) has the 2-rank at least 2, i.e.,
GaI(F‘?";”; /F) ~[2, 2]. ThereforeF?'Z": /ki1 is a dihedral extension of degree 8.
We shall see the ramification of primes ?[gf‘gi}/kl. Since Gal(K1)%/K) is
elementary abelian by Theorem 2.1, CFqﬁ'Gm;}/Kl) is also elementary abelian. Hence

F'f'g”g /K1 is a [2, 2]-extension ancF?'g”: /L} is a cyclic quartic extension. Since

both :i{ and 9%" ramify in KiL}/K; and the [2, 2]- extensmﬂF‘f'g”: }/Kq is not to-
tally ramified at any tamely ramified prlmeE?'g”g /KL is unramified at any primes
lying over t. Since any primes dividingq,v] ramify in F/k; by Lemma 3.1 and
do not totally ramify in the [2, 2]-extensiolK;L]/ki, KiL7/F is unramified outside
{q7} and ramified at any primes dividing§. Hence Fﬁ!gfﬁ,g]/F is unramified outside
{l,q}. On the other hand, since any primes dividing ramify in K;L}/L}, the cyclic

quartic extensmrFe'g”; }/L’l is totally ramified at any primes dividinly;;. Therefore

F?'f;"; /F is ramified at any primes dividingg.

Recall thatMz D ®(Ny), i.e., F C k&*™ ThenF is the inertia field ofq] in the
[2, 2]-extensionk&®™/k;. By Lemma 2.1,Q7 is inert inky. Since’ is also inert in
Q%, the decomposition field o in the [2, 2]-extensiork,Q%/K is k&M i.e., Q°
splits in kg'em/K. Thereforeqq splits in F/k;. Let g7 and ﬁ/ be the distinct primes
of F lying over qJ. Let F; be the inertia field of] in the [2,2]—extenS|orF°]'3"; /F.
Then F; is the unique quadratic extension Bf unramified outsidg{l, q;, q}. Since
Fi1 # KiL] and K.Lj is the inertia field of the unique prime df lying over | in
F?'g"; /F, F1/F is ramified at the prime lying over. Recall thatkyQZ = (k))& is a
[2, 2, 2]-extension ok;. Then the ramification indices of any primes k@Q"gb/kl are
at most 2. By Lemma 3.1k;Q%/F is a [2, 2]-extension unramified outsidg{, t1}.
ThereforeF; N k@Q‘gb = F. By Lemma 3.1,FK,/F is a quadratic extension unrami-
fied outside{r1}. Sinceq{ is inert in Ky/ky, @/ is also inert inFKy/F. The [2, 2]-
extensionF;K, of F contains a quadratic extensidfp, of F different from F; and
FK,. ThenF, also satisfies, N k;Q%¥ = F. Put

- F, if q7 splits in Fy/F,
3.1) gt Tai splitsinFy
Fo if qf is inertin Fy/F.
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Theng? splits in F/F and F Nk,Q¥ = F, i.e., GalQs/F) ~ U; for somei. More-
over, sinceK;L;/F is ramified atq], FK;L}/F is a quadratic extension ramified at
any primes lying over? . Let Q be a prime ofF lying over g3 .

Now we assume thaG ~ G,. Then U2 ~ [4, 4], and hence there is a cyclic
quartic extension of unramified outsideS which containsFK;L}. Since the cyclic
quartic extension is totally ramified a?, the ramification index of in ﬁgb/ﬁ is 4,
i.e., the inertia grouplg = Ker(GalF&/F&) — Gal(F/F2%) has order 4, where
> = S(F)\ {Q}. On the other hand, applying the snake lemma for the comivetat
diagram

E(F) —— €P (Og/p)* ® Z2) — Gal(F&/Fe" — 0

L J

0 — E(F)/Kergg s — ED((0g/p)* ® Z,) — GalFP/Fe®) — 0
peXx

with exact rows, we obtain a surjective homomorphisﬂﬂy;;(!ﬁ)X ®Z; — lg. SinceQ
is a prime of degree 1, i.e.%/ﬁ)X®Z2 ~Fy ®Zr >~ Z/2Z, we have|l 5| = 2. This
is a contradiction. Therefor& ~ G;. Using GAP again (cf. Fig. 5), one can see that

G~ Gy~ (ab|a?b? a], b?[[b,a], a]a?)

as an abstract group and thayG’ ~ [2, 4], G'/G" ~ [2, 2, 4] andG” ~ [2, 2]. Thus
the proof of Theorem 1.1 is completed.

REMARK 3.1. GAP tells us that a finite 2-grou® satisfiesG/G’ ~ [2, 4],
G'/G" ~[2,2,4],G" ~[2,2] and H?(G, Z/2Z) ~ [2, 2] if and only if G ~ G; or G,.

REMARK 3.2. Both of two cases of (3.1) can occur. Putq, r) = (5, 11, 71).
Choosingq, andt; suitably, we can see by PARI/GP [24] thit = ky(/a) for a =

(%5)(4+ \/5)(%) e V1q.tg satisfyinga® — 130y +3905= 0. Choosing a prime as
ﬁ, some functionst{nr i ni t, r nf kumrer etc.) on PARI/GP tell us tha%{,'qu@(F) ~

Z)2Z,F1 = F{qu - = Q[X]/(x8—50x® 4 7154 — 31902 4 605) and that? is inert in

F1/F. On the other hand, if we puk,@, r) = (5, 19, 79) and choose primes suitably, we

haveF = ki (/&) with &2 — 175 + 7505= 0 andF; = F{qu - = QX /(x8 —590x® +
ICERLEY

882554 — 3615702 + 1805). Thery]  splits in F;/F. It seems still difficult to writer,
oq explicitly as the (pro-2) words of lettens, 4.
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