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Abstract
We find some necessary conditions for a smooth irreducible curve C � P4 to be

isolated in a smooth quintic threefold. As an application, we prove that Knutsen’s
list of examples of smooth isolated curves in general quintic threefolds is complete
up to degree 9.

1. Introduction

We work over the complex number fieldC. We say a smooth projective curveC
is isolated in an ambient smooth projective varietyY if h0(NC=Y) D 0, whereNC=Y

is the normal bundle ofC in Y. A Calabi–Yau threefoldY has the nice property that
the expected dimension of the deformation space of any l.c.icurve lying in Y is zero.
So it is quite reasonable to expect that Calabi–Yau threefolds contain isolated curves.
More specifically, we can ask the following:

PROBLEM 1.1. Let d > 0 andg � 0 be integers. Does a general complete inter-
section Calabi–Yau (CICY) threefold (of a particular complete intersection type) contain
a smooth isolated curve of degreed and genusg?

Problem 1.1 is interesting. In fact, embeddings of complex projective curves into
CICY threefolds, and Calabi–Yau threefolds in general, have been extensively studied
by mathematicians and physicists in the past decades. Both the development of quan-
tum cohomology and the discovery of surprising relations between algebraic geometry
and the theory of mirror symmetry are closely related to counting curves (especially
rational) in Calabi–Yau threefolds.

Problem 1.1 is hard in general. It turns out that even for existence of smooth iso-
lated rational curves (i.e.,gD 0) a complete answer to Problem 1.1 requires hard work
([1], [6], [12], [3]). Building on results of Clemens and Kley ([2], [7]), Knutsen proved
existence of many examples of smooth isolated curves of low genera in general CICY
threefolds ([8]). By Knutsen’s technique, more such examples have also been estab-
lished ([16]). However, we are still very far from a full answer to Problem 1.1. In
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fact, the highest genusg known so far for which there exists a smooth isolated curve
of genusg in a general CICY threefold is 29 (see [16]). It is conjectured that genera
of smooth isolated curves ingeneric (i.e., complement to a countable union of proper
closed subvarieties in moduli spaces) CICY threefolds should be unbounded.

In this note we consider non-existence of smooth isolated curves in smooth quin-
tic threefolds. We find some necessary conditions (Lemma 2.1, Proposition 2.6, and
Proposition 2.8) for curves to be isolated in smooth quinticthreefolds and then com-
bine certain results (Theorem 3.1) in Castelnuovo theory toprove a non-existence re-
sult of smooth isolated curves in smooth quintic threefolds(Theorem 3.5, which can
be viewed as the main result of this note). As an application,we conclude that Knut-
sen’s list ([8, Theorem 1.2]) of examples of smooth isolatedcurves in general quintic
threefolds is complete up to degree 9 (Corollary 3.6). It is also hoped that the non-
existence result in this note may be helpful for people to search for more existence
results in the future.

2. Necessary conditions for curves to be isolated in quintics

Throughout this note, acurvemeans a smooth irreducible one dimensional project-
ive variety.

Lemma 2.1. Let C� P4 be a curve and Y� P4 be a smooth quintic threefold.
Suppose C� Y and C is isolated in Y . Then hi (NC=P4) D hi (OC(5)), i D 0, 1.

Proof. SinceC is isolated inY, it follows that h0(NC=Y) D h1(NC=Y) D 0. Let
us consider

0! NC=Y ! NC=P4
! OC(5)! 0.

Taking cohomology groups, it’s easy to seeH i (C,NC=P4)� H i (C,OC(5)), i D 0,1.

Lemma 2.2. Let C � Pn be a curve. Suppose C is degenerate, i.e., C is con-
tained in a hyperplane. Then(nC1)h1(OC(1))� h1(NC=Pn) � h1(OC(1)). In particular,
h1(NC=Pn) D 0 if and only if h1(OC(1))D 0.

Proof. Notice that we have the following two exact sequences:

0! OC ! OC(1)(nC1)
! T

P

n
jC ! 0,

0! TC ! T
P

n
jC ! NC=Pn

! 0.

Then clearly, (nC 1)h1(OC(1))� h1(NC=Pn).
On the other hand, we have the following exact sequence:

0! NC=Pn�1
! NC=Pn

! OC(1)! 0.



NON-EXISTENCE OF ISOLATED CURVES IN QUINTIC 913

Therefore,h1(NC=Pn) � h1(OC(1)).

Lemma 2.3. Let X � P

n be a reduced and irreducible variety. Let d be the
smallest integer such that h0(IX(d)) ¤ 0, whereIX is the ideal sheaf of X. Suppose
0¤ F 2 H0(Pn, IX(d)). Then F is irreducible and X is not contained in the singular
locus of V(F), where V(F) � Pn is the hypersurface defined by F.

Proof. If F is not irreducible, thenX must be contained in a hypersurface of
degree less thand, but that is impossible by the definition ofd. Similarly, the singu-
lar locus of V(F) is defined by polynomials of degreed � 1 (more explicitly, partial
derivatives ofF), and X is not contained in the singular locus ofV(F).

The following lemma is critical to the rest of this note because it gives a nice
lower bound forh1(NC=Pn).

Lemma 2.4. Let C � Pn be a curve. Let m be the smallest integer such that
h0(IC(m)) ¤ 0. Then h1(NC=Pn) � h1(OC(m)).

Proof. Let F 2 H0(Pn, IC(m)) and Y WD V(F). Considering the following exact
sequence of ideal sheaves:

0! IY=Pn
! IC=Pn

! IC=Y ! 0.

Restricting the above exact sequence toC (i.e. tensoringIC=Pn), we obtain

0! IY=Pn
=(IY=PnIC=Pn)

�

�! IC=Pn
=I2

C=Pn ! IC=Y=I
2
C=Y ! 0.

Notice that� is injective because of Lemma 2.3. Actually,� is obviously injective
at the points whereY is smooth, so� is injective generically by Lemma 2.3. Then�
is injective everywhere becauseIY=Pn

=(IY=PnIC=Pn) is locally free.
Applying HomOC (–, OC) to the above exact sequence, we get

0! NC=Y ! NC=Pn
! NY=Pn

jC ! Ext1OC
(IC=Y=I

2
C=Y, OC)! 0.

Notice thatExt1OC
(IC=Y=I

2
C=Y, OC) is a torsion sheaf andH1(C, Ext1OC

(IC=Y=I
2
C=Y,

OC)) D 0. Then it is easy to seeh1(NC=Pn) � h1(NY=Pn
jC) D h1(OC(m)).

Corollary 2.5. Let C� Pn be a curve. Suppose C is contained in a hypersurface
of degree d, then h1(NC=Pn) � h1(OC(d)).

The following theorem explains whyh1(NC=P4) D h1(OC(5)) is a strong constraint
for a curveC � P4 and, essentially, it is one of the main ingredients of the proof of
the non-existence results, namely, Theorem 3.5.
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Proposition 2.6. Let C � P4 be a curve. Suppose C is contained in a hyper-
surface of degree d� 4. Then h1(NC=P4) D h1(OC(5)) if and only if h1(NC=P4) D
h1(OC(5))D h1(OC(d)) D 0.

Proof. The “if ” part is trivial, so we just need to show the “only if ” part. Sup-
pose we haveh1(NC=P4) D h1(OC(5)). Our goal is to showh1(NC=P4) D h1(OC(5))D
h1(OC(d)) D 0.

Notice that h1(OC(d)) � h1(OC(5)) by Serre duality and the fact thatd � 5.
By Corollary 2.5, h1(NC=P4) � h1(OC(d)). Therefore, h1(OC(d)) � h1(OC(5)) D
h1(NC=P4) � h1(OC(d)). Thus, h1(NC=P4) D h1(OC(5))D h1(OC(d)).

To finish the proof, we only need to showh1(OC(5))D 0. If h1(OC(5))¤ 0, then,
by Serre duality,h0(KC(�5)) ¤ 0, whereKC is the canonical bundle ofC. Then the
complete linear systemjKC(�5)j ¤ ;. Since 5� d � 1, it follows thatOC(5� d) is a
very ample line bundle onC and h0(OC(5� d)) � 2, in particular,jOC(5� d)j ¤ ;.
Then by [5, Chapter IV, Lemma 5.5],

dimjKC(�5)j C dimjOC(5� d)j � dimjKC(�d)j.

Thus,

h0(KC(�5))C h0(OC(5� d)) � h0(KC(�d))C 1.

Since we have seen that 2� h0(OC(5� d)), it follows that

h0(KC(�5))C 2� h0(KC(�5))C h0(OC(5� d)) � h0(KC(�d))C 1.

Then h0(KC(�5))C 1 � h0(KC(�d)), equivalently, by Serre duality,h1(OC(5))C 1 �
h1(OC(d)), a contradiction to the facth1(OC(5)) D h1(OC(d)). Therefore, we must
haveh1(OC(5))D 0.

REMARK 2.7. Proposition 2.6 tells us that if a curveC � P

4 is isolated in a
smooth quintic threefold andC is contained in some hypersurface of degree� 4, then
C is even unobstructed as a curve inP4 (more precisely,h1(NC=P4) D 0) and [C] 2
Hilb(P4) is a smooth point (cf. [9, Chapter I, Section 1.2]).

Let C � Pn be a curve of degreed and of genusg. Let 5> k > 0 be an integer.
By Riemann–Roch,h1(OC(k))D h0(OC(k))�kd�1Cg, this means, roughly speaking,
if g is “very big” with respect tod (for example,g > kdC 1), thenh1(OC(k)) will be
positive. Furthermore, if we hopeC to satisfy h1(NC=P4) D h1(OC(5)), then by Prop-
osition 2.6C can not be contained in a hypersurface of degree� k. More precisely,
we have the following:

Proposition 2.8. Let C � P

4 be a curve such that C is not contained in any
plane (i.e. two dimensional linear subspace ofP4) and has degree d and genus g.
Suppose h1(NC=P4) D h1(OC(5)). Then:
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(i) If g > d � 3 and d� 3, then C is non-degenerate, i.e. H0(P4, IC(1))D 0;
(ii) If g > 2d � 11 and d� 8, then C is not contained in any quadric hypersurfaces;
(iii) If g > 3d � 18 and d� 8, then C is not contained in any cubic hypersurfaces.

Proof. (i): Assumeg > d � 3 and d � 3. SupposeC is degenerate, then
h0(IC(1)) D 1 becauseC is not in any plane. By Riemann–Roch,h1(OC(1)) D
h0(OC(1)) � d � 1C g � 4 � d � 1C g D g � d C 3 > 0. On the other hand, by
Proposition 2.6h1(OC(1))D 0, a contradiction. Therefore,C is non-degenerate.

(ii): Assumeg > 2d�11 andd � 8. SupposeC is contained in a quadric hyper-
surface. First of all,d � 8 implies 2d � 11� d � 3. Then by (i)C is non-degenerate.
Then by [13, Corollary 1.5],h0(IC(2)) � 3, it follows that h0(OC(2)) � 12. By
Riemann–Roch again,h1(OC(2)) D h0(OC(2)) � 2d � 1 C g � 12� 2d � 1 C g D
g� 2dC 11> 0, a contradiction to Proposition 2.6.

(iii): Assume g > 3d � 18 andd � 8. SupposeC is contained in a cubic hyper-
surface. By (ii) C can not be in a quadric hypersurface, it follows thath0(IC(1)) D
h0(IC(2))D 0. Thereforeh0(OC(1))� 5 andh0(OC(2))� 15. Then by [5, Chapter IV,
Lemma 5.5]h0(OC(3))� 19. Soh1(OC(3))D h0(OC(3))�3d�1Cg� 19�3d�1CgD
g� 3dC 18> 0, again a contradiction to Proposition 2.6.

3. Castelnuovo theory and non-existence of isolated curvesin quintics

Let C � P

n be a curve. Suppose thatC has degreed and genusg. Roughly
speaking, Castelnuovo theory tells us that if theg is “large” with respect tod, thenC
has to be contained in surfaces/hypersurfaces of “small” degree. More precisely, in the
case ofn D 4, we have the following:

Theorem 3.1 ([4, Theorem 3.7, Theorem 3.15, and Theorem 3.22]). Let C� P4

be a curve of degree d and genus g. Then:
(i) If g > (d2

� 5dC 6)=6 and d� 3, then C is degenerate.
(ii) If C is non-degenerate, g > (d2

� 4dC 8)=8 and d� 9, then C is contained in a
non-degenerate irreducible surface of degree3.
(iii) If C is non-degenerate, g > (d2

� 3dC 10)=10, and d� 144, then C is contained
in a non-degenerate irreducible surface of degree4 or less.

If we want to use Proposition 2.8 to prove some non-existenceresults, we need to
show that if the genusg is “large” with respect to degreed then the curveC � P4

has to be contained in a “low” degree hypersurface. But Theorem 3.1 (ii) and (iii)
only tell us that curves with “large” genera are contained in“low” degree surfaces.
Therefore, we need to show that “low” degree surfaces have tobe contained in “low”
degree hypersurfaces. Fortunately, we have the following:

Lemma 3.2 ([15, Lemma 3]). Let W� Pn be an irreducible non-degenerate va-
riety of dimension m and degree d. Let A2W be a point; and if W is a cone suppose
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that A is not a vertex of W. Let W1 be the cone obtained by joining A to every point
of W. Then W1 does not lie in any hyperplane ofPn, and it has dimension exactly
mC 1 and degree at most d� 1; moreover, if A is a singular point of W then W1 has
degree at most d� 2.

Now the following is just an easy consequence of Lemma 3.2.

Proposition 3.3. Let X � P4 be a non-degenerate irreducible surface of degree
d. Then X is contained in a hypersurface of degree d�1; moreover, if X has a singu-
lar point which is not a vertex of X, then X is contained in a hypersurface of degree
d � 2.

Proof. Let A 2 X be a point, and ifX is a cone supposeA is not a vertex ofX.
Let X1 be the cone obtained by joiningA to every point ofX. By Lemma 3.2,X1 is
a threefold of degree at mostd � 1 (d � 2 if A is a singular point ofX).

REMARK 3.4. Notice if that the surfaceX in Proposition 3.3 is smooth, thenX
is even (d � 1)-regular and hence the homogeneous ideal ofX is even generated by
polynomials of degreed � 1 or less (cf. [10]).

Finally, we are ready to prove the following non-existence result:

Theorem 3.5. Let d� 3 and g� 0 be integers. Let C� P4 be a curve of degree
d and genus g. Then C cannot be isolated in any smooth quintic threefold if the pair
(d, g) is in the following list:
(1) g > d � 3, (d, g) ¤ (3, 1) and 3� d � 8;
(2) g > 2d � 11 and 9� d � 12;
(3) g > (d2

� 4dC 8)=8 and 12< d < 144;
(4) g > (d2

� 3dC 10)=10 and d� 144.

Proof. (i) Assumeg > d � 3, (d, g) ¤ (3, 1) and 3� d � 8. Notice that when
3 � d � 8, thend � 3 � (d2

� 5d C 6)=6. It follows that g > (d2
� 5d C 6)=6. Then

by Theorem 3.1 (i)C is contained in a hyperplane. Therefore, by Proposition 2.8(i)
C has to be contained in a plane. But it is easy to check that ifC is contained in a
plane,h1(NC=P4)D h1(OC(5)) only if (d, g)D (3, 1). But by assumption (d, g)¤ (3, 1),
it follows that C cannot be isolated in any smooth quintic threefold by Lemma 2.1.

(ii) Assume g > 2d � 11 and 9� d � 12. Notice that in this case,g > (d2
�

4d C 8)=8, then by Theorem 3.1 (ii) and Proposition 3.3,h0(IC(2)) ¤ 0. Thus, by
Proposition 2.8 (ii)h1(NC=P4) ¤ h1(OC(5)), it follows thatC cannot be isolated in any
smooth quintic threefold by Lemma 2.1.

(iii) Assume g > (d2
� 4d C 8)=8 and 12< d < 144. Notice that in this case

(d2
� 4dC 8)=8 � 2d � 11, and the rest of the argument is similar to the case (ii).
(iv) Similar to cases (ii) and (iii).
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Fig. 1.

The non-existence/existence of smooth isolated curves in general quintic threefolds
is described in Fig. 1.

As an application of Theorem 3.5, we get the following:

Corollary 3.6. If there exists a smooth isolated curve of degree d� 9 and genus
g in a general quintic threefold, then the pair of integers(d, g) must be in Knutsen’s
list ([8, Theorem 1.2]). In other words, Knutsen’s list ([8, Theorem 1.2])is complete
for Y D (5)� P4 and d� 9.
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