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Abstract

We find some necessary conditions for a smooth irreducibieedd C P* to be
isolated in a smooth quintic threefold. As an applicatiorg prove that Knutsen’s
list of examples of smooth isolated curves in general quititreefolds is complete
up to degree 9.

1. Introduction

We work over the complex number field. We say a smooth projective curé
is isolated in an ambient smooth projective varietyif h°(\Vc,v) = 0, where ¢y
is the normal bundle o€ in Y. A Calabi-Yau threefold¥ has the nice property that
the expected dimension of the deformation space of anydurve lying inY is zero.
So it is quite reasonable to expect that Calabi-Yau thrdefobntain isolated curves.
More specifically, we can ask the following:

PrRoOBLEM 1.1. Letd > 0 andg > 0 be integers. Does a general complete inter-
section Calabi-Yau (CICY) threefold (of a particular costplintersection type) contain
a smooth isolated curve of degrdeand genugy?

Problem 1.1 is interesting. In fact, embeddings of complejegetive curves into
CICY threefolds, and Calabi-Yau threefolds in general,ehbeen extensively studied
by mathematicians and physicists in the past decades. Bethl@¢velopment of quan-
tum cohomology and the discovery of surprising relationsvben algebraic geometry
and the theory of mirror symmetry are closely related to tiogncurves (especially
rational) in Calabi—Yau threefolds.

Problem 1.1 is hard in general. It turns out that even forterise of smooth iso-
lated rational curves (i.eg = 0) a complete answer to Problem 1.1 requires hard work
([1], 6], [22], [3]). Building on results of Clemens and Ki&[2], [7]), Knutsen proved
existence of many examples of smooth isolated curves of leme in general CICY
threefolds ([8]). By Knutsen's technique, more such exanphave also been estab-
lished ([16]). However, we are still very far from a full answto Problem 1.1. In
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fact, the highest genug known so far for which there exists a smooth isolated curve
of genusg in a general CICY threefold is 29 (see [16]). It is conjectutbat genera

of smooth isolated curves igeneric (i.e., complement to a countable union of proper
closed subvarieties in moduli spaces) CICY threefolds khbe unbounded.

In this note we consider non-existence of smooth isolategtesuin smooth quin-
tic threefolds. We find some necessary conditions (Lemma Rréposition 2.6, and
Proposition 2.8) for curves to be isolated in smooth quithieefolds and then com-
bine certain results (Theorem 3.1) in Castelnuovo theorprive a non-existence re-
sult of smooth isolated curves in smooth quintic threefdiiseorem 3.5, which can
be viewed as the main result of this note). As an applicatiom,conclude that Knut-
sen’s list ([8, Theorem 1.2]) of examples of smooth isolatedves in general quintic
threefolds is complete up to degree 9 (Corollary 3.6). Itlsoéoped that the non-
existence result in this note may be helpful for people tarcdedor more existence
results in the future.

2. Necessary conditions for curves to be isolated in quintic

Throughout this note, aurve means a smooth irreducible one dimensional project-
ive variety.

Lemma 2.1. Let CC P* be a curve and YC P* be a smooth quintic threefold.
Suppose GZ Y and C is isolated in Y. Then (N¢ps) = h'(Oc(5)),i =0, 1

Proof. SinceC is isolated inY, it follows that h°(Ac,y) = h*(Ac,y) = 0. Let
us consider

0— NC/Y — NC/]P"‘ — Oc(5) — 0.
Taking cohomology groups, it's easy to seé(C,N/p«) = H'(C,0¢(5)),i =0,1. O
Lemma 2.2. Let Cc P" be a curve. Suppose C is degenerate., C is con-
tained in a hyperplane. Thefm+ 1)h1(Oc(1)) = h*(Nc,pn) = h}(Oc(1)). In particular,
h'(Ne/en) = 0 if and only if ht(Oc(1)) = 0.

Proof. Notice that we have the following two exact sequences

0— Oc = Oc(1)™V = Tpn|c — 0,
0—)7?: —)77pn|c _)NC/]P" — 0.

Then clearly, § + 1)h*(Oc (1)) = h(N/pn).
On the other hand, we have the following exact sequence:

0— /\/C/]y:n—l — Nc/]pn —> Oc(l) — 0.
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Therefore,h(NVe/pn) = h1(Oc(1)). O

Lemma 2.3. Let X C P" be a reduced and irreducible variety. Let d be the
smallest integer such that®tZx(d)) # 0, where Iy is the ideal sheaf of X. Suppose
0# F € HO(P", Zx(d)). Then F is irreducible and X is not contained in the singular
locus of (F), where F) C P" is the hypersurface defined by F.

Proof. If F is not irreducible, thenX must be contained in a hypersurface of
degree less thad, but that is impossible by the definition of Similarly, the singu-
lar locus of V(F) is defined by polynomials of degree— 1 (more explicitly, partial
derivatives ofF), and X is not contained in the singular locus 9f(F). 0

The following lemma is critical to the rest of this note besaut gives a nice
lower bound forh(Nc en).

Lemma 2.4. Let C C P" be a curve. Let m be the smallest integer such that
h%(Zc(m)) # 0. Then R(Nc/pn) = h'(Oc(m)).

Proof. LetF e HO(P", Zc(m)) and Y := V(F). Considering the following exact
sequence of ideal sheaves:

O—)IY/]pm _)IC/]P’” _)IC/Y — 0.

Restricting the above exact sequenceCidi.e. tensoringZc,pn), we obtain

¢
0 — Zy/pn /(ZypnLcpn) — IC/]P’”/Ié/IP" —> IC/Y/Ié/\( — 0.

Notice that¢ is injective because of Lemma 2.3. Actualdy,is obviously injective
at the points where¢¥ is smooth, sop is injective generically by Lemma 2.3. Theh
is injective everywhere becaud& p»/(ZypZIc/pn) is locally free.

Applying Homp (-, Oc) to the above exact sequence, we get

0— Ncy = Negpn — Nyjpnlc — gXt%’)C(IC/Y/I(Z:/Yy Oc) — 0.

Notice thatéxty, (Zc,v/ZE,y, Oc) is a torsion sheaf anti*(C, Exte, (Zc/v/ZE v,
Oc)) = 0. Then it is easy to sel"(Nc/pn) = h'(NVy pn|c) = hH(Oc(m)). O

Corollary 2.5. Let CC P" be a curve. Suppose C is contained in a hypersurface
of degree dthen h(N¢,pn) = h}(Oc(d)).

The following theorem explains Whiy (AN p:) = h}(Oc(5)) is a strong constraint
for a curveC C P* and, essentially, it is one of the main ingredients of theopaf
the non-existence results, namely, Theorem 3.5.



914 X.Yu

Proposition 2.6. Let C C P* be a curve. Suppose C is contained in a hyper-
surface of degree & 4. Then H(Ng/p:) = h}(Oc(5)) if and only if h(Ngps) =
h*(Oc(5)) = hY(Oc(d)) = 0.

Proof. The “if” part is trivial, so we just need to show the fgnf” part. Sup-
pose we havér}(Ag ps) = h(Oc(5)). Our goal is to showh} (Vg ps) = hH(Oc(5)) =
h%(Oc(d)) = 0.

Notice that h'(Oc(d)) > h}(Oc(5)) by Serre duality and the fact that < 5.
By Corollary 2.5, hY(ANgps) = hY(Oc(d)). Therefore, h}(Oc(d)) = h}{(Oc(5)) =
h*(Ne/pe) = hH(Oc(d)). Thus, hY(Ne/pe) = h1(Oc(8)) = hY(Oc(d)).

To finish the proof, we only need to shaw(O¢(5)) = 0. If h}(Oc(5)) # 0, then,
by Serre duality,h®(Kc(=5)) # 0, where¢ is the canonical bundle of. Then the
complete linear systertiCc(—5)| # @. Since 5-d > 1, it follows that Oc(5—d) is a
very ample line bundle o€ and h®(O¢(5 — d)) > 2, in particular,|Oc(5 — d)| # 0.
Then by [5, Chapter IV, Lemma 5.5],

dim|Kc(=5)| + dim|Oc (5 — d)| < dim|Kc(—d)|.
Thus,
hO(Kc(=5)) + h%(Oc (5 — d)) < h°(Kc(—d)) + 1.

Since we have seen that<2h%(O¢(5 — d)), it follows that
h%(Kc(=5)) + 2 < h°(Kc(=5)) + h%(Oc(5 — d)) < h(Kc(—d)) + 1.

Then h°(Kc(=5)) + 1 < h%(Kc(—d)), equivalently, by Serre dualith*(Oc(5)) + 1 <
h1(Oc(d)), a contradiction to the fach}(Oc(5)) = h'(Oc(d)). Therefore, we must
have h'(Oc(5)) = 0. O

REMARK 2.7. Proposition 2.6 tells us that if a cun@ C P* is isolated in a
smooth quintic threefold an@ is contained in some hypersurface of degred, then
C is even unobstructed as a curve It (more precisely,hl(/\/c/]pa) =0) and ] €
Hilb(P*) is a smooth point (cf. [9, Chapter |, Section 1.2]).

Let C c P" be a curve of degred and of genug. Let 5> k > 0 be an integer.
By Riemann—Rochh*(O¢(k)) = h®(Oc¢(k)) —kd—1+ g, this means, roughly speaking,
if g is “very big” with respect tod (for example,g > kd + 1), thenh(O¢(K)) will be
positive. Furthermore, if we hop€ to satisfy hY(A¢ ps) = h(Oc(5)), then by Prop-
osition 2.6 C can not be contained in a hypersurface of degrek. More precisely,
we have the following:

Proposition 2.8. Let C C P* be a curve such that C is not contained in any
plane (i.e. two dimensional linear subspace Bf) and has degree d and genus g.
Suppose KN p+) = hY(Oc(5)). Then
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() Ifg>d—3andd> 3, then C is non-degeneratee. H(P*, Zc(1)) = O;
(i) If g>2d—11and d> 8, then C is not contained in any quadric hypersurfagces
(i) If g >3d—18 and d> 8, then C is not contained in any cubic hypersurfaces.

Proof. (i) Assumeg > d — 3 andd > 3. SupposeC is degenerate, then
h°(Zc(1)) = 1 becauseC is not in any plane. By Riemann—Roch}(O¢(1)) =
h%(Oc(1))-d-1+g>4—-d-1+g=g—d+ 3> 0. On the other hand, by
Proposition 2.6h'(O¢(1)) = 0, a contradiction. Therefore is non-degenerate.

(ii):  Assumeg > 2d — 11 andd > 8. SupposeC is contained in a quadric hyper-
surface. First of alld > 8 implies 21 — 11> d — 3. Then by (i)C is non-degenerate.
Then by [13, Corollary 1.5],h%(Z¢(2)) < 3, it follows that h°(Oc(2)) > 12. By
Riemann—Roch agairh}(Oc(2)) = h%(0c(2))—2d -1+ g>12—-2d -1+ g =
g—2d + 11 > 0, a contradiction to Proposition 2.6.

(ii):  Assumeg > 3d — 18 andd > 8. SupposeC is contained in a cubic hyper-
surface. By (ii))C can not be in a quadric hypersurface, it follows th&{Zc(1)) =
h%(Zc(2)) = 0. Thereforeh®(O¢(1)) > 5 andh®(O¢(2)) > 15. Then by [5, Chapter 1V,
Lemma 5.5]n%(Oc¢(3)) > 19. Soh'(Oc¢(3)) = h°(Oc(3))—3d—1+g > 19-3d—1+g=
g—3d + 18 > 0, again a contradiction to Proposition 2.6. ]

3. Castelnuovo theory and non-existence of isolated curves quintics

Let C C P" be a curve. Suppose th& has degreed and genusg. Roughly
speaking, Castelnuovo theory tells us that if thés “large” with respect tad, thenC
has to be contained in surfaces/hypersurfaces of “smalitede More precisely, in the
case ofn = 4, we have the following:

Theorem 3.1([4, Theorem 3.7, Theorem 3.15, and Theorem 3.22[et C C P*
be a curve of degree d and genus g. Then
() If g> (d>—5d +6)/6 and d> 3, then C is degenerate.
(i) If C is non-degeneratey > (d2 — 4d + 8)/8 and d> 9, then C is contained in a
non-degenerate irreducible surface of degfee
(iii) If C is non-degenerateg > (d?> — 3d + 10)/10, and d> 144, then C is contained
in a non-degenerate irreducible surface of degreer less.

If we want to use Proposition 2.8 to prove some non-existeasalts, we need to
show that if the genug is “large” with respect to degred then the curveC c P*
has to be contained in a “low” degree hypersurface. But TéraoB.1 (ii) and (iii)
only tell us that curves with “large” genera are contained‘low” degree surfaces.
Therefore, we need to show that “low” degree surfaces haugetgontained in “low”
degree hypersurfaces. Fortunately, we have the following:

Lemma 3.2 ([15, Lemma 3]) Let W C P" be an irreducible non-degenerate va-
riety of dimension m and degree d. LeteAV be a pointand if W is a cone suppose
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that A is not a vertex of W. Let M\be the cone obtained by joining A to every point
of W. Then W does not lie in any hyperplane @", and it has dimension exactly
m+ 1 and degree at most € 1; moreoverif A is a singular point of W then Whas
degree at most d- 2.

Now the following is just an easy consequence of Lemma 3.2.

Proposition 3.3. Let X Cc P* be a non-degenerate irreducible surface of degree
d. Then X is contained in a hypersurface of degreeld moreoverif X has a singu-
lar point which is not a vertex of Xthen X is contained in a hypersurface of degree
d-2

Proof. LetA e X be a point, and ifX is a cone suppos4 is not a vertex ofX.
Let X; be the cone obtained by joining to every point ofX. By Lemma 3.2,X; is
a threefold of degree at modt— 1 (d — 2 if A is a singular point ofX). ]

REMARK 3.4. Notice if that the surfacX in Proposition 3.3 is smooth, theX
is even (@ — 1)-regular and hence the homogeneous ideaKois even generated by
polynomials of degree — 1 or less (cf. [10]).

Finally, we are ready to prove the following non-existenesuit:

Theorem 3.5. Let d> 3 and g> 0 be integers. Let G P* be a curve of degree
d and genus g. Then C cannot be isolated in any smooth quimgefold if the pair
(d, g) is in the following list
1) g>d—-3,(d,g) #(3,1)and3 <d < 8;
(2 g>2d—11and9<d <12;
(3) g> (d>2—4d +8)/8 and 12 < d < 144;
(4) g > (d>—3d + 10)/10 and d> 144

Proof. (i) Assumeg >d—3, (d, g) # (3, 1) and 3< d < 8. Notice that when
3<d <8, thend —3 > (d®>—5d + 6)/6. It follows thatg > (d?> — 5d + 6)/6. Then
by Theorem 3.1 (i)C is contained in a hyperplane. Therefore, by Proposition(B.8
C has to be contained in a plane. But it is easy to check tha& i§ contained in a
plane,h}(N¢ p+) = h}(Oc(5)) only if (d,g) = (3,1). But by assumptiond(g) # (3, 1),
it follows that C cannot be isolated in any smooth quintic threefold by Lemnia 2

(i) Assumeg > 2d — 11 and 9< d < 12. Notice that in this casey > (d? —
4d + 8)/8, then by Theorem 3.1 (ii) and Proposition 31#(Zc(2)) # 0. Thus, by
Proposition 2.8 (i)h* (N ps) # h}(Oc(5)), it follows thatC cannot be isolated in any
smooth quintic threefold by Lemma 2.1.

(i) Assume g > (d? — 4d + 8)/8 and 12< d < 144. Notice that in this case
(d?> —4d + 8)/8 > 2d — 11, and the rest of the argument is similar to the case (ii).

(iv) Similar to cases (ii) and (iii). ]
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Fig. 1.

The non-existence/existence of smooth isolated curveemergl quintic threefolds
is described in Fig. 1.
As an application of Theorem 3.5, we get the following:

Corollary 3.6. If there exists a smooth isolated curve of degreg @l and genus
g in a general quintic threefoldthen the pair of integerg¢d, g) must be in Knutsés
list ([8, Theorem 1.2]) In other words Knutsers list ([8, Theorem 1.2])is complete
for Y =(5)c P* and d< 9.
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