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Abstract

Bertolini-Darmon and Mok proved a formula of the second derre of the two-
variable p-adic L-function of a modular elliptic curve over a totally real @iehlong
the Hida family in terms of the image of a global point by somadic logarithm
map. The theory ofp-adic indefinite integrals ang@-adic multiplicative integrals on
p-adic upper half planes plays an important role in their wohk this paper, we
generalize these integrals fg-adic measures which are not necessarihyvalued,
and prove a formula of the second derivative of the two-vdeig-adic L-function
of an abelian variety of GL(2)-type associated to a Hilbeodular form of weight 2.
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1. Introduction

Bertolini-Darmon and Mok proved a formula of the second dgie of the two-
variable p-adic L-function of a modular elliptic curve over a totally real fiehlong the
Hida family in terms of the image of a global point by sorpeadic logarithm map
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1090 I. ISHIKAWA

([3], [14]). In this paper, we generalize their results teeldn varieties of GL(2)-type
associated to Hilbert modular forms of weight 2.

Let F be a totally real field. We assume that an odd prime nungbés inert in
F and denote by the prime of F above p. Let f be a cuspidal Hilbert modular
eigenform of parallel weight 2 ovelf. We assume that is a newform of levello(n)
(here,n is a non-zero ideal 0©f) and the sigre; of the functional equation of the
complex L-function of f is equal to—1. Let Q(f) be the Hecke fields off, which
is a finite extension of) generated by the Fourier coefficients of

Let A be an abelian variety of GL(2)-type ovét associated tof. We assume
that A has split multiplicative reduction at (in addition, if [F : Q] is odd, suppose
that A is multiplicative at some prime other thar). We denote byl (s, k) the two
variable p-adic L-function along the Hida family of. f

Theorem 1.1(see Theorem 4.11)

2

k=

2

where le Q(f)* and Pe A(F) ®z Q is a global point. The map
logNorm;: A(Cp) ®z Q — Cp
is a p-adic logarithm mapseeDefinition 4.1)

Here, the Hecke charactegr in Theorem 4.11 is the trivial character.

Let us explain the outline of the proof. L& be an automorphic form on the
multiplicative group of a definite quaternion algebBa F corresponding tof by the
Jacquet—Langlands correspondence (we can find such a mjoatexigebraB by the
assumption of the reduction of the abelian variéy The key notion for proving the
formula (1) is the notion ofndefinite integralsand multiplicative integralsassociated
to ®. In fact, we prove the following equalities:

LHS of (1) = (indefinite integral}= (multiplicative integral)}= RHS of (1).

The first equality is proved by using an explicit formula bfvalues by Gross—
Hatcher and Xue. In the work of Bertolini-Darmon and Mok, nplitative integrals are
defined only whenA is an elliptic curve. We shall modify the definition of muliga-
tive integrals by following Dasgupta’s method, and prove skecond and third equalities.
For the third equality, we use the theory pfadic uniformization of Shimura curves
by Manin—-Drinfeld and Cerednik—Drinfeld (see Sections 2nd 4.1). For the second
equality, we shall prove the following generalized formafap-adic integrals ornp-adic
upper half plane${:
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Theorem 1.2 (see Theorem 3.35) Let 11,72 € H(Qp) be Qp-valued points on p-
adic upper half plane. We have

lo(t1) — lo(r2) = L{((IogNormp + 20y, .a;(O)-ordp) ®z idoQ(q,))(jf . a)ﬂq,)},

where b is the indefinite integralsee Section 3.5)and «;, (resp. an p-adic analytic
function «,(s)) is the Hecke eigenvalue of () of ® (resp. of the Hida family as-
sociated to®). The symbol ¥ is the multiplicative integral whose integrated values
are in Cp ®z O (seeSection 2.2) The map: is a natural multiplication map
Cp ®z Og) — C, (we denote byQ(®P) the Hecke field ofb).

When A is an elliptic curve, this formula is proved by Bertolini—Dzon and Mok
([3], [14]). For the proof of Theorem 1.2, see Section 3.5.

I would like to thank Tetsushi Ito for his encouragement aetp lthroughout the
preparation of this paper.

NOTATION 1.3. For a number field (resp. valuation field) we denote the ring
of integers ofL (resp. valuation ring oL) by O,_. We denote an algebraic closure of
L by L.

Throughout the paper, we fix an odd prinpeand a totally real field~. We as-
sumep is inert in F. Let p be a unique prime ideal aDr above p. Let Ag be the
adele ring ofF and letAr ¢ be the ring of finite adeles. Le€, be the p-adic com-
pletion of Q. We fix embeddings= < Q and Q < C,,. We denote by orgl log,
the valuation map and the Iwasawa logarithm map respegtitlety are normalized by
ordy(p) = 1 and log,(p) = O respectively). We have a canonical decomposition

Qp = p” xF} x (1+ pZy)
and we denote by -) the projectionQy — 1+ pZp,.

2. Multiplicative integrals on p-adic upper half planes

In the first half of this section, we summarize basics padic measures on pro-
jective lines over non-archimedean local fields. We intathe Bruhat-Tits tree for
PGL, and multiplicative integrals following [8]. They play a nmaiole in this paper. In
the second half, following [8], we review thg-adic uniformization theory for Mumford
curves and their Jacobian varieties and define an imponm&atiant, thelL -invariants.

In this section, letk be a finite extention ofQ,, Ok the valuation ring with a
uniformizer g, andkk the residue field. Recall that the-adic completion ofQ, is
denoted byC,,.
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2.1. Basic notions ofp-adic measures.

DEeFINITION 2.1. The Bruhat-Tits trefx of PGLy(K) is a graph whose vertex
is the homothety class ok -lattices in K @ K and two vertices are connected by
an edge if there exist representatives of them such that on&ios another and the
guotient is isomorphic tkyx. We often identify the7x with a geometrical realization
as a simplicial complex.

We denote by (7x) (resp.£(7k)) the set of the vertices (resp. the oriented edges)
of Tx. Let v*,w* € V(Tx) be the vertices which are the homothety clasf® Ok,
Ok & mx Ok respectively, and lee* € £(Tk) be the oriented edge from* to v*,
denoted bye* = (w*, v*). For any oriented edge € £(7x), we denote the vertex of
source (resp. target) bs (resp.ts), and we also denote by € £(7k) the oppositely
oriented edge oé.

For an oriented edge € £(7x), there existsy € PGLy(K) such thate = ye*.
Then we assign t@ an open compact subseOx C P1(K) (the action of PGh(K)
on P(K) is given by the Mobius transformation) and denote itlhy Note thatU, is
well-defined and independent of the choicejof The set{Ue}ecs() is an open basis
of PY(K).

DEFINITION 2.2. Anendof 7 is an equivalence class of sequen¢es},>o of
distinct vertices such thaw(, v,,1) is an oriented edge for ali. Here, two sequences
{vn}n=0 and {wn}n>0 equivalent if there exist®g, k € Z such thatv; = wj .« for all
i > no.

REMARK 2.3. There is a bijection between the set of end§pfand P1(K) by
the following correspondence:

{Un} g ﬂ U(Unyvn+1)'
n

DEFINITION 2.4. LetH be an abelian group and 1& be a non-empty subset
of P1(K). An H-valued measurg. on S is a map which assigns an elementkdfto
each open compact subset $fwith following two conditions:

1. w(U UV) =)+ n(V) for disjoint open compact subsets V C S,
2. u(9=0.
We denote by Mea§ H) the space of H-valued measures 8n

We put

= ::@Ze/@Z(eJré)
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be a quotient of a free abelian group generated by orientgdseth 7x and let

VTK = @ Zv

UEV(TK)

be a free abelian group generated by verticegxn We define a homomorphism Tr by

w w
vV —> Z e.
Se=v
Then we have
) MeasPl(K), H) = Ker(Tr*),

where T¥: Homgz(Ex,, H) = Homz (V7 , H) denotes a homomorphism induced by Tr.
DEFINITION 2.5. We define a metric spa¢e by

T:= lim 7T_
—_

L/K: finext

where, for any finite extensions’/L/K, 7. — 7 is induced by®o, O, . We define
setsV(T) and £(T) as follows:

3) V()= lim V(T)CT,
L/K: fin ext

@) en:= J em
L/K: fin ext

For any two pointsx, y € 7, we define a metria; as follows:

€L /K —~>00 e

dr(x,y) := lim i#{v € V(T.) | v lies in the path fromx to vy},
L/K

wheree k is the ramification index ot /K.

REMARK 2.6. If bothx, y € V(7.) for some finite extensioh. /K, the distance
dr(x, y) is a rational number.

REMARK 2.7. As in Definition 2.2, we can similarly define ends7n which is
a infinitely long path in the sense of the metdg. There is a similar bijection as in
Remark 2.3 betwee®!(Cp) and the set of ends of .
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From Definition 2.5, we define two abelian groups- and Vr:

Er = “LT'I) ETL,
L/K: fin ext

V= I|_m> VTL-
L/K: finext

Let # be the p-adic upper half plane, which is a rigid analytic space ofer
For any complete extensioR over K inside Cp, the set of F-valued points#(F)

coincides withP(F) \ P*(K). In particular, we have

H(Cp) = PHCp) \ P(K).
DEFINITION 2.8. We define the continuous map gebtly

rece : H(Cp) —> T« C T
W w
[z] ——— X,

where, x, is unique element iV(7) N Tk such that{v,},>0 IS a representative of the
end corresponding te satisfyingvy = x, and v, ¢ Tx for anyn > 0. We call reg

the reduction map ta.
There exists a boundary map
a: ET — VT

w w
eZ(Seate) — e — S,

and we have the following commutative diagram induced by red

0 —— DiVo(H(Cp)) —— DIV(H(Cp)) ——> Z —— 0

lredK lreck

0 Er g Vr z 0.

Let H be a finitely generated free abelian group. Then we define dedding
Homg (V7, H) = Homg (Div(#(Cp)), Q ®z H)

as follows: Let¢ € Homz(Vr,, H), T € H(Cp) and e be an edge irf/x containing
reds (t). Then we define

o([7]) := dr(red(), S)¢(te) + dr(red(r), te)p(se).
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Similarly we define an embedding
Homg (E7,, H) <> Homg(Divo(H(Cyp)), Q ®z H)

as follows: Letyr € Homz(E7,, H). Then for anyé e £(T), if @NTx =@ as sets, we
definey () = 0. If €N Tk # @ as sets, there exists an oriented edge&(7x) which
containé as sets and same direction @sThen we define

#(€) := dr(se, te)p(€).
Via the reduction map, we regangl as an element in Hop{Divo(H(Cp)), Q ®z H).

2.2. p-adic multiplicative integrals. In this section, we define multiplicative in-
tegrals forH-valued measures oR*(K) following [8]. Proposition 2.11 in this section
implies that the multiplicative integrals have more infation than usual integrals.

DEFINITION 2.9. LetF/K be a complete extension contained@p. Let H be
a finitely generated free abelian group,be a subset iP1(K), d € Divo(P(F)\ 9
a divisor of degree 0, and lgt € Meas(S, H) be aH-valued additive measure o

Then we define:
f w0, = f fa(t) du(t)
d d

= i [] faltw) ®z u(U) € F* @z H
Ueld

wherel{ is an open compact disjoint covering & |i{| is the supremum of the di-
ameter ofU for U e U, f4 is a rational function orP'(F) whose divisor isd, andty
is an element irJ.

REMARK 2.10. Because of the properties ofin Definition 2.4, the middle term
of the above formula is independent of the choicegf So the definition is well-defined.

If Sis invariant under the action of a subgrolipc PGLy(K), we define the action of
y € T on u € Meas@, H) by

y - u(U) = uly*u)
for any open compact subset C S.

Proposition 2.11. Let H be a finitely generated free abelian groamd lety be an
H-valued measure o*(K). Letord: C, — Q be the valuation such thatrd(ry) = 1.
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Then for anyry, 7o € H(C)p)

(ord@; idH)( ﬁﬂ_m w) = u([m] — (22,

where u is regarded as an element iHomg(Divo(H(Cp)), H) as in Section 2.1 gee
the equality(2) and the end ofSection 2.1)

Proof. We may assume, 1, € H(L) for some finite extensioih. /K. We denote
e,k the ramified index ofL/K. By partition the section fronr, to r; and by re-
placing u with yu for suitabley € PGLy(K), we may also assume both yga;) and
redk (r2) lie in the edgee*.

The elementg; have the following expansion:

T :n["“ui + X

whereu € O} such that ifa; = 0, the image ink_ is not contained irkg, X € O
and 0< a < e /.
Then we have

ordx) (x € PY(K)\ Ok),
ordx —7) =4 & (X € O).

€L /K
Thus
X—11 0 (x € PX(K)\ Ok),
ord = & a
(X—‘L’g) — - (XEOK).
€/k eL/k
Therefore
. a a
(ord®, |dH)(f wu) = (—2 - —1)M(0K)
[r2]—[z2] ek ek
but the right hand side ig([t1] — [72]). ]

2.3. The Manin-Drinfeld theorem. Let I' C PGLy(K) be a discrete finitely
generated subgroup without torsion, and fgt be the set of theQ € PX(K) such that
there existsP € P1(K) and a sequencéy}new C T' consisting of distinct elements
such thaty,P — Q (n — o0).

DEFINITION 2.12. The Bruhat-Tits tree df is the subtree/r C 7 defined by

LrNUe#0
Lr\Ue#0
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Denote by Meag{r, H)" the I'-invariant part of Meas{r, H). Then we have:

Meas(Cr, H)" = Ker(Homz(E7;., H) LN Homg (Vr., H))F

= Ker(Homg ((E7.)r, H) LN Homy (V7 )r, H))
= Homg(Coker(Tr), H),

where ¥7.)r, (Ex)r are the maximal-invariant quotient ofVr., E7. and they are
equal to the corresponding abelian groups of the giapfr.

REMARK 2.13. If u is I-invariant, ¥ 4 w, = % w, foranyy eT.

It is known that the the quotient\7r is a finite graph, and Coker(Tt)is iso-
morphic to H(T", Z) (see [8], Section 2.3).
We haveu € Meas(Cr, H(T", Z)) corresponding to

idni(r,z) € Hom(HY(T, Z), HY(T, Z)).

This measureu can be described explicitly: We fix a vertexe 7. Letej, e, ..., €,
be a set of edges df\7r (we fix orients of them). For any € I', let e, be an
element inE. such thato(e,) = yv —v. Write e, = mie; 4 -+ + mye, and e =
mi€ + - - - + mye; Wheree}‘ is the dual ofe;. Thenpu is as follows:

1(Ue)(v) = €(8).

Roughly speaking, the value @f(Ue)(y) is the number including orient af lying
in the path fromv to yv moduloT.

Theorem 2.14(Mumford). Let X be a Mumford curve over Ki.e. stable re-
duction of X contains only rational curves that intersectnarmal crossing over K).
Then there exists a subgroudpC PGLy(K) and anAut(C,/K)-equivariant rigid ana-
lytic isomorphism

X(Cp) = I'\Hr(Cp).

MoreoverTI is discrete free of rank g(g is the genus of Xand unique up to conju-
gation in PGLy(K).

REMARK 2.15. For the Mumford curves appearing in tpeadic uniformization
of Shimura curves, we havér = PY(K).

LetI be asin Theorem 2.14. Theh := Coker(Tr} is finitely generated free abelian
group. Letu be the universal-invariant measure in Mea&f, H)", corresponding to
id € Endz(H).
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At first, we construct &-lattice A in C7 ®z H. By the following exact sequence:
0 — Divo(Hr(Cp)) = Div(Hr(Cp)) = Z — 0,
we have a homomorphism
§: Hy(I', Z) — Divo(Hr(Cp))r

by the long exact sequence of the group homology (we deHetE, -) by (-)r). Since
there is no stabilizers for an element #f(C,) (see [9], p. 7, Proposition (1.6.4)), we
see thatH,(I", Div(Hr(Cp))) = 0. Thus$ is injective.

On the other hand, the map

Divo(Hr(Cp))r 3 d > ][a)u €eCI®H
d

is a well-defined homomorphism (see Remark 2.13). Therefedefine the lattice
A by the image of ¥ w, o8. Now we state the following theorem of Manin—Drinfeld
describing thep-adic uniformization of the Jacobian variety of a Mumford \@ur

Theorem 2.16(Manin—Drinfeld) The morphism

JX)(Cp) — (Cy @ H)/A
w w

X—yr—— f oM
Xy

is an Aut(C,/K)-equivariant rigid analytic isomorphism.
Proof. See [8], Theorem 2.5. ]

2.4. L-invariants. In this section, we construtt-invariants associated to a homo-
morphism¢: C5 — C|, following [8]. Then for eachp, we define a map frond (X)(Cp)
to Hom(Meas(r, Cp)", C;) and determines the value @, for a I'-invariantC ,-valued
measure.

We rewrite the statement of Theorem 2.16 as the followingcegaquence:

0 — Hy(T, Z) —— € @ Coker(Tr}: —— J(X)(Cp) —— O
2 2
b b X
re Homg (T, C})
w w

y —> [V’H ][y wu(y’)]

V=V
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Fix a homomorphismp: C5 — Cy. Let ord Cj — Q C C,, be the valuation map
with ord(rx) = 1. From the explicit description g (see the end of Section 2.1) and
Proposition 2.11, the pairing:

rxr® ¢,
w

(V,wy’) — Ofd(fy wu()//))

v—v

is symmetric and non-degenerate. Therefore the compogfig in the above diagram
and ord®z id induces an isomorphism

Hy(T', Cp) = C, ®¢ Coker(Tr)..
The map ¢ ®z id) o j induces a similar homomorphism.

DEFINITION 2.17.  For any homomorphism: C5 — Cp, the L-invariant is a
unique endomorphism:

Zy € End(Cp ®z Coker(Tr))
such that:
(¢ ®zid — .%o (ord®z id)) o j = 0.

From the above exact sequence, we define a well-defined horpbism ¢*:

% I(X)(Cp) —— Cp ®z Coker(Try = Homg(Coker(Tr),Cp)*
w w
Pr——————— ¢ ®id(P) — % o (ord®7 id)(P),

where P is a lift in Cp ®z Coker(Try and « means theCp-linear dual.

The abelian group Hop{Coker-(Tr),Cp) is isomorphic to Measlr,Cp)" (see the
equality (5) in Section 2.3). Thus for ary € J(X), ¢*(P) gives values irC, for each
I'-invariant C,-valued measure.

3. Automorphic forms on definite quaternion algebras and Hich families

3.1. Basic definitions. For any algebraic grouf over F, we denote byG(Af)
and G(Af, ) the Ap and Ag ¢-valued points respectively. For anye G(Ag), we de-
note byx, € G(F,) the v-component ofx for any placev of F and for any subgroup
H =[] H, € G(Af) we denoteH" the subset inH which consists oth € H such
that h, = 1.



1100 I. ISHIKAWA

Let F be a totally real field ang the unique prime ideal above the odd prime
number p as in Notation 1.3 LetB be a definite quaternion algebra ovEr which
is ramified at all archimedean places. Let be the product of the finite prime ideal
where B ramified at. We assume thd& is split at p. We denote byI§X the group
B*(Af, ), which is the group of finite adélic points d&&*.

Let a be a non-zero ideal o which is relatively prime ton~. For any prime
[, let R(a); C B;:= B ®¢ F; be as follows:

R(a) the unique maximal order oB; if [|n~,
a) =
: an Eichler order of levebOg, if [4n".

Let R(a) := [],R(a) € B®Af ¢, and R(a) := BN R(a), which is called an Eichler
order of B of level a.
For each primd } n~, we fix an isomorphism of-algebras

0: B =B® F > Ma(F)

(for any ring A, M3(A) is the ring of 2< 2 matrices with entries irA). The map, in-
duces an isomorphism betwe&y* and GLy(F). By exchanging, for its conjugation,
we may assume that the image Bta), is

(2 oo

DerINITION 3.1. For any non-zero ideal of O which is relatively prime to
n~. Then we put:

c=0 modaOF,}.

Sola, n7) := R(a)”,

2i(a,n7):

{u € Xo(a, n7)

L) = (é :) mod aM(Or,) for [+n—},

Ag(a, n7) := IQ(a),

Aq(a,n7) = {X € Ao(a,n")

L) = (2‘) :) mod aM(Or,) for [+n}.

DEFINITION 3.2. Let T be an open compact subgroup Bf and letM be a
Z,-module witht,(Z,) action. An M-valued automorphic form o> of level ¥ is a
function

®: B > M
such that
d(ybu) = L,g(up)‘1 - d(b)
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for all y € BX, be B, ue £. We denote byS(Z, M) the space of M-valued auto-
morphic forms onB* of level .

REMARK 3.3. SinceBX\éX/E is a finite set,® is determined by its values on
a finite set of representatives of the double coset space.

DEFINITION 3.4. For each embedding: F, — Qp, and anyn > 0, let Syn?
be theCp-vector space of homogeneous polynomials of degrée the indeterminates
Xs, Yo with coefficients inCp. We put

B, = ® Sym™.

o: Fp—>Qp

We define a right action of G(Fp) on Bh:

@) P (Xe, Yo)ly := Q) P7(@" Xy +b7Y5, €7 X +d°Y,)

for y = (2 3) € GLy(F,) and P?(X?, Y?) € SynT". Then we put
Vi 1= Homc, (Bn, Cyp)

with the left action of GkL(F,) induced byB,. For anyk > 2, we call (X, Vi_») the
space of classical automorphic forms & of weight k and the levelx.

We consider the following action ofF * on (2, W) by
z- d(b) := o(zb).
This action factors through the infinite idele class group
Ze(2) = FX/FX(Of N )P,
We have a natural surjection fro&ir(X) to a finite idele class grougl(X)
Ze(2) - CI(T) := F*/FX(OF N X)

whose kernel is given by the image (ﬂép NX, in Zg(X).

Let xr.o be the restriction of the cyclotomic character to GalF). By Defin-
itions 3.2 and 3.4, the action @; N X, is given by multiplying x§ 5(2) for each
ze O NXp.
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DerINITION 3.5. For each character of CI(XZ), we define

(=, Vi, 1)
= {® € YT, Vi) | ©(zh) = x£ (@@ ®(b) for all ze F*, be B},

We have a decomposition:

S(Z, Vi) = P S(E, Vi ),
n

wheren: CI(X) — C runs over the characters @fi(%).
We recall the definition of Hecke operators.

DEFINITION 3.6. Letn C O be a nonzero prime ideal which is relatively prime
to n=. There exist two kinds of operatoi®(a), T (a, a) for certain non-zero ideals C
Of acting on the space of automorphic forms. Lat &) = (Ag, Zo) or (A1, Z1).
e (Definition of T(a)): For any @, n) = 1, given the right coset decomposition

(5) {x € A(n,n") | Nrdg/r (X)Of = a} = | |1 Z(n, n).

Let M be aZy-module as in Definition 3.2 with the action @f(n, n™) which is com-
patible with that of, (Z(n, n7)). For any® € S(Z(n, n7), M), we define

(T(a)®)(b) := Z 0 d(boy).

e (Definition of T(a, a)): For any ¢,nn") =1, leta € Ag ¢ be an element such that
aOF = a. Let M be aZ,-module as above. For any € S(X(n, n~), M), we define

(T(a, a)®)(b) := ®(ba).
REMARK 3.7. Whena = p andn is prime top, th Hecke operatoif (p) is de-

scribed explicitly. The right coset decomposition of (5)gisen as follows (see [17],
Proposition 3.36):

(6) if ©=%, || (’g’ tl’)zo(n,n)u(é no )Eo(n,n),

p

beOkr/p

. 1 0 _

(7 if © =X, |_| (npc np)El(pn,n )
ceOk/p

wherer, € O, is a uniformizer.
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3.2. Quaternionic automorphic forms and the Bruhat-Tits tree. Let X :=
¥o(a, n7) for a non-zero ideah relatively prime ton~. By the strong approximation
theorem, the reduced norm map Nyd gives a bijection:

Nrdg/r: BX\B*/BSS — FY\Af (/Of =: CIf,

whereCl}t is the narrow ideal class group. Note that since we have asbynis inert
in F, the image ofF in CIf is trivial. We have a decomposition

h
(8) B =| | B*xB;%,
i=1

whereh = #CI;r is the narrow class number & and the elements; € B* satisfies
(xi)p =1 and the images ofy,...,xn by Nrdg,r give a set of complete representatives
of the finite groupCI;.

Fori =1,...,h, we define
9) [y = [i(a,n7) == B*NxByZx 7,
(10) Ty =Ti(a,n7) ;= {y € [ | Nrdg/e(y) € Ug 4},

whereUg , is the set of totally positive units. Using (8), we have a diien
h ~

(11) | |Ti\B}/=p = B\B*/B)%,
i=1

which sendsg € T'}\B,/Z, to x;g.

By (11), anM-valued automorphic forn® € (=, M) (where = c B> is an open
compact subgroup anM is a Z,-module as in Definition 3.2) can be defined as an
h-tuple of functionsg?,...,¢" on GLy(F,) by the rule¢'(g) = ®(x g) fori = 1,...,h.
These functionsp' satisfy

12) ¢'(ygu) = u¢'(9)

for y € I, g € GLo(Fp), U € Zp.

Now we give another description of quaternionic automargbims onB* in terms
of latices and the Bruhat—Tits tree. Léte (X, M) be anM-valued automorphic form,
and let ¢, ..., ¢") be anh-tuple attached tab as above. There exists a bijection

£a: BY/T 13 Pla):={(L1 L2) | L1, Lo € F2are lattices s.tLy/Lo = Op /p° )
w w

9t (9(Ok, x OF,), 9(OF, x aOg,)).
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DerFINITION 3.8. Fori =1,...,h and for (L1, L) € P(a) we define
cs (L1, L2) := go'(9).
where g(Og, x Op,) = L1 and g(Of, x aOf,) = La.
REMARK 3.9. By the formula (12), the function, has the following property:

Cyi(vL1, vL2) = yCyi(La, L2)
for all y € T (a, n7).

3.3. Measure valued automorphic forms. Fix a valuation ringO C C,, finite
flat over Z, containing all conjugates oDg. Let n* be an ideal relatively prime to
pn~ and letT := $(n™,n") be an open compact subgroup Bf. We denote byZk o
the kernel of the homomorphism froig(X) to Cle(X). Explicitly, Zgo = (’),ép/c,
wherec is the closure of the set of totally positive units @f in O;ép.

We define several rings as follows:

Af = O[[ Z q]],
Aq := OlIZ}]],
A= O[[1 + Zp]),
AT = Cp(T —2)).

Here, Af, f\Q, A are the completed group algebras aad is the ring of conver-

gent power series with coefficients @,. We regardf\Q (resp.AT) as Ag (resp. A)-
algebras via the homomorphism 6¥f-algebras induced by the following group homo-
morphisms:

ZF,O S X > NFp/Qp(X) € Zp

(resp. 14+Zp 3 x> X" 2 € AT).

DEFINITION 3.10. For anOf, -lattice L C sz, the primitive partof L is L \ pL
and we denote it by’

We define several spaces:
- 2V
X 1= c\(02),
X':= e\(OF,) x PO,
W= c\(F2 - {(0, 0)}).
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We define the spaces of compactly supported measures on them

D, := {compactly supported measures ¥,
D., := {compactly supported measures X},

D := {compactly supported measures ow}.
Via the zero extension, we have natural inclusions:

D,.cD.CcD
For any functionf on W, we define an action of = (i‘ 3) € GLy(F;) by

fly(x,y) := f(ax+ by, cx + dy).

Then we define the action of G(F,) on D by

/fd(g-u):/ g du,
S g9

whereu € D, g € GL,(Fp) and S a compact subset ofy.
DEFINITION 3.11. Let pt D — D, (resp. pi: D — D,) be a natural projection

via restrictions. We define the action gfe Ag(n*,n™) (resp.Ag(pn*,n7)) on € D,
(resp.D.,) by

(9, ) = pr(g-w)
(resp. @, ) = pr(g- u)).

DerINITION 3.12. The set of weight charactei& is
AF 1= Homeond ZF,0, Cp).

DerINITION 3.13. A function f on X is said to be homogeneous with respect
to the weight charactep € X¢ if

e

for anyc e Of andc is an image inZg q.
Fp )

DEFINITION 3.14. For anyk > 2, We define a weight charact® by (xr,cyel)< 2.
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DEFINITION 3.15. We put
D¥:=D®j, Aqg,

Lt . | i
peyelt . — peye ®c,én At

where Cp, ® A := Cp[[1 + pZ,]]. Similarly we define DY, DY, (D )»e! and
(D, )veHt.

REMARK 3.16. Foru € D%, we can consider the integratioh f du for only
homogeneous functions: Let = Y|_, ui ®4, Ai With u € D and A; € Ag. Then for
any homogeneous function with the weight charagjgs ) 2, we define

[ faui= gw(s»/ f dui,

wheres i (A(s)) is induced by the compositiod; — 1+ pZ, — AT. Note that the
definition is well-defined. Similarly, we can define an in@gof an element ofp®eh
when thes is sufficiently close to 2.

DerINITION 3.17. For anyk > 2 and for anyn € By, we define the functior
on W

(%, y) := wr () *n(x, y),
where wr (X) 1= xr,cycl(X)/ (XF,cycl(X)).
REMARK 3.18. This# is homogeneous with the weight characy,.

DErINITION 3.19. For anyk > 2, we define the specialization map to weight
k by

ok: Dy Vk

Y
w

o [ [ i duton) |

The mapok is A1(p,n~)-equivariant. By the same formula, we define the speci@dina

map px on DY and onDY if k is sufficiently close to 2p-adically.

REMARK 3.20. If k = 2modp — 1, the specialization mapy is Ag(p, n7)-
equivariant. More precisely, we have

pi(U- 1) = oFK(U)u - pr()

for any u € D, andu € Xg(p, n7).
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This specialization map induces
(,Ok)*: S(Eo(n+v n_)v D*) - S(El(pn+v n_)! Vk)

(as in Remark 3.20, we can replace the of right hand side withX if k = 2 mod
p—1).

Similarly we also define specialization maps, (). on the space§(X(n*,n"), D%
and onS(Z(n*, n), DY if k close to 2p-adically (note that since the set of double
cosetB*\B*/=(n*,n") is finite, the specialization map is defined for k- 2 such that
k is sufficiently close to 2).

By definition, the specialization map commutes with theactf Hecke operators
(in Definition 3.6)

pr o T(a) = T(a) o px,
pro T(b, b) = T(b, b) o px

for all nonzero ideals: prime topn~ and b prime topn*n~.
On the other hand, the action @f(p) on S(X(n*, n™), D,) is also transferred to
the action of T(p) on S(Z(nt, n™), W):

Proposition 3.21. For any k> 2, we have
peo T(p) = T(p) o p.

Proof. This follows from a simple computation by using thenialae (6) and (7)
of Definition 3.6. O

3.4. Hida deformation of measure valued forms. In the previous section, we
have defined the specialization maps These maps give @-adic family of quater-
nionic automorphic forms. By Hida’s theory, there existspadic family of Hecke
eigenforms.

Let T be the free polynomial algebra ovér in the symbols{T(a)} for idealsa
such that ¢,n~) = 1 and{T(b, b)} for idealsb such that §, pn*n~) = 1. ThenT acts
on the spaces(Zo(n*, n~), DY) and S(Z1(pn*, n~), Vi) as Hecke operators.

We call & € S(=1(pn™, n7), Vk) a Hecke eigenfornif it is an eigenvector for the
action of T. When®y is a Hecke eigenform, we denote hya, ®i) the eigenvalue for
T(a) for an ideala is prime ton*. We call @y is p-ordinary if a(p,®) is a p-adic unit.

Similarly, we call @, € (So(n*, n~), DY) a Hecke eigenfornif it is an eigen-
vector for the action off ®; Af, and we denote bw(a, ®,.)(T) € AT the eigenvalue
of T(a) of ®,,. We can show that there exists a positive radius suchatatd..)(T)
can be defined for alk.

Now we state Hida’s theory of lifting a Hecke eigenform topeadic family, in
the style of Greenberg—Stevens in [10].
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Theorem 3.22. Let ® = &, € §(Zp(pnt, n7), Vo) be ap-ordinary Hecke eigen-
form, and new at primes dividingn*. Then there exists a Hecke eigenform

Do € YTo(nt, n7), DY)
such thatp,(®y) = Po.

The following natural map:
(13) S(Zo(n*, n), D) > (Zo(pn™, n7), D)

is an isomorphism (see [14], Appendix Il). Moreover this isophism commutes with
the action of Hecke operatoiB(a) (a is a non-zero ideal relatively prime to) and
T(b, b) (b is a non-zero ideal relatively prime g™ n~). This isomorphism induces
an isomorphism

S(So(n*, n), D) > S(Zo(pn*, n), (D)),
We denote byd,, the image of®,, in Theorem 3.22 via the above isomorphism.
3.5. The indefinite integrals. As in Theorem 3.22, let
® € S(Zo(pn*, n7), Va)
be an automorphic form of weight 2, and let
Py, € S(To(nt, n7), DY)

be a measure valued form. The formbsand ®,, are Hecke eigenforms. Letft, ...,

#") and @1, ..., ") be h-tuples corresponding té and @, respectively. We de-
note by «, and a,(s) the eigenvalue ofT (p) on & and &, respectively (note that
ap(0) = o).

Let Q(®) be the Hecke field of the automorphic fordn which is a number field
generated oveQ by all of the Hecke eigenvalues @b. We can regardd as aCp-
valued function on a finite set. Recall that we have fixed anestdingQ — Cp,

Let @, € S(To(pn*, n7), (DL)¥) be the image ofp by the isomorphism as in
the end of Section 3.4 (which is also a Hecke eigenform) andgfe, ..., ¢") be the
h-tuple corresponding tab,,. We regard®,, and ®,, as DY f-valued functions by
the canonical injectioD®® < povelt and )t < P yia the zero extension.
Let U be a p-adic neighborhood of 2 such that fer> 2 with k € U the weightk
specialization®dy of &, is defined.

Fix a pointt € H(Q)) in the p-adic upper half plane. LeK/F, be a finite ex-
tension overF, containing the element. Then we define a functiofirg (x, y) on W:

FST(X, y) = <NK/Qp(XIJ — prp)>(s_2)/[K:Fp].



p-ADIC INTEGRALS AND HIDA FAMILIES 1109

Note that this function is defined on an open compact subs@Vdf s is sufficiently
close to 2. The functior; does not depend on the choices Kf

DEFINITION 3.23. Letr e ’H(Qp). We define the functiong?, andé(; as follows:
HCINES oy (s)~ O Me (L, L)(FZ) for L such that [, L) € P(n*),
05 (s: L1, L2) o= ap(8) @@ (s (Lo, Ly)(FD) for (Lu, La) € P(pn),

where ¢, Cz, & and P are as in Section 3.2. These functions are defined i$
sufficiently close to 2p-adically.

The functions@(; (s: ) and@% (s; -) are analytic in the variabls. So we can consider
the derivative with respect te and define new functions gR(n*), P(pn™) as follows:

DEFINITION 3.24. Lett € H(Qp). We define functiond * and I * as follows:

doy (s: L)
g (L) := — 45 for L such that [, L) € P(n™),
S s=2
_ do? (L1, L)
7 (L, Lo) = "’T for (L1, Ly) € P(pn™).
s=2

Lemma 3.25. For 67, (5;,, I and I_;,, we have the following formulae

14 L= > GusL L)

{L'I(L,L)eP(pnt)}
(15) = §;i (s:L, L) +67 (s; —iL/, L) for (L, L") € P(pnt),
(16) 05 (s: PL) = ap(8) 26, (s; L),
17 05 (s: pLa, PL2) = ay(8) 7205 (s: L1, Lo),
.8  Ipw= Y L)

{L'[(L,L)eP(pnt)}
- - (1
19) =15(L, L)+ 1; (I—DL/, L) for (L, L") € P(pnt),

(200 15(pL) =, 2I7(L),
(21) E;i(pl—l- pLZ) = _20‘;;(0)0[1:39_(; (0; L1, L2) + agzl_(;i(l-la LZ)-
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Proof. The equalities (16), (17) are easily proved by simgenputations. For

the equalities (14) and (15), takg € GL,(F,) satisfying g(Of, x Of,) = L. Then
we have

Co (L. LY(FD) = /X FXlg do'_(9)

x
Fp Xon

=[  Egwl@+ [ Flgd.
pOR, xOF,
For the first term, lel’ := g(pOr, x Of,). Then by definition
22) / F19 dél.(@) = cp (L, L)(FD).
pOR, xOF,

For the second term, let,, := ((1) ﬂi) and for anyc € O,, letoc = ( 1 0 ) (7p

7TpC JTp
is a uniformizer inOg,). Then we have
[ Flew@= F g0 (0w - 41 )(@)
Oép XOFp Oép XpOFp

- >/ F 1901 (0m - dgL)(0)
0u(OF, XPOr,)

ccOr /o

(23) - CEOZFP/‘D [ o, Pl dd(arod
= (T(M)PL)(Go)(FS)

(24) = ap(S)Cy (—; L, L)(Fg).

The equalities (22), (23) imply (14), and the equalities){424) imply (15).

The equalities (18), (19) and (21) easily follows by difietiating (14), (15) and
(17) respectively. For (20), sinc@ is a newform,0|s—> = 0 by the formula (14), it
also follows by differentiating the equality (16). ]

From now on, we assume the following condition:
ASSUMPTION 3.26. o = 1.

REMARK 3.27. The above assumption holdstif comes from a modular elliptic
curve overF with multiplicative reduction ap.

As in the proof of Lemma 3.25, we ha\% |s=2 = 0. Thus by the assumption (3.26)
and the equality (14), we rega@mszz as an element in MeaB{(F,), Og)). BY
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definition, é;i |s—2 does not depend on the choice xf So we denote it by, . Then
the measureu, is the same as one defined in [3] Section 2.9, namely

(25) Hy = proj, (e (OF,, 02)),

where proj is the following map:

proj: W ——— P(Fp)
w LU
X, y) ——— —.
y
The function I;i is a function on the set of vertices in the Bruhat-Tits tge
since we havd /(L) = I/ (pL) by Assumption 3.26 (see the formula (20)). We regard
I as an element in HopfDiv(#(Cy)), Cp) as in the end of Section 2.1.

DEFINITION 3.28. For anyx € Qp, we define

logNorm,(x) := log, Ni/q,(X),

1
[L . Qp]

wherelL is a finite extension ove®, containingx. Recall that Iog: Qp —~> Qp is the
Iwasawa logarithm map satisfying Ip@) = 0.

Since @ is a function on a finite set, the image pf is a finitely generated abelian
subgroup ofCp,. Thus as in Section 2.2, we consider the multiplicative graé at-
tached tousi. Then we have the following two lemmas:

Lemma 3.29. For X,y € H(C,) and t € H(Q,), we have

(26) 1 (%) = 15 (y) = 2ap0r, (Q)uai ([X] — [Y])

27) = 20(,305;3(0) . L{Ordp ®z 1doyq (][ a)%i)},
[x]-[yl

where:: C, ®z Cp, — C; is a natural multiplication map.

Proof. The equality (27) follows from Proposition 2.11. Rbe equality (26),
we may assume regd(x) and reg¢, (y) are vertices of/g,. Then it follows from the
formulae (19) and (21). O
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Lemma 3.30. For x € H(Cp) and 11, 72 € H(Qp), we have

(28) Iq;l(x) — |Tz(x) /MF ) logNorm,, (I ) degi (t)

(29) =L{IogNormp Rz idoQ(q,)(]{] [ ]a)%i)}
71 —| T2

where:: C, ®z Cp, — C, is a natural multiplication map.
Proof. The equality (29) follows by definition. For (28), byeloma 3.29, the

differencel™ — 1™ is a constant function. Thus we may assumer[eq is the class
of lattice OZ . Then by definition,

500~ 1200 = S pu ()(FS — )

X—1nYy
= logNorm dooo(1
fx 9 p(X— 2y) #o(1)

T

f logNorm (—t — Tl) dugi(t)

= M .
]P’l(F'_,) P t— T2 ¢

The last equality follows from (25). O

s=2

DEFINITION 3.31. We define théndefinite integral }i attached tap' as follows:

ly: H(Qp) ———— Cp
w w
T (7)== 15(2).

Proposition 3.32. The discrete subgroup; C B* acts on the indefinite integral
ls as follows

|¢| (J/‘L') ord,a(det(y))I (‘L’)
for any y € T. In particular;, the indefinite integrals ard”;-equivariant.

Proof. We have the following formula

()/ X) ordp (det()) y_ 1z (X)

by a simple computation. The assertion of Proposition 3d®@ws from this by putting
X =y it O
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DEFINITION 3.33. Let® be a quaternionic automorphic form satisfying the con-
ditions as in the beginning of this section. We defihe indefinite integral 4 attached
to ® by

h
lo: @ DivV(I \H(Qp)) —————— Cp
i=1 w
v h

X = (X)) > 1o(X) 1= Y 15 (%).
i=1

Proposition 3.34. Let ® be a quaternionic automorphic form satisfying the con-
ditions as in the beginning of this section. The indefinitegral attached tod respects
the action of Hecke operators. Namelgr all non-zero ideala, we have

lo(T(a)2) = a(a, D)lo(2).

Proof. Leta be an ideal inOr prime ton~. At first, we explicitly describe the
action of T(a). As in Definition 3.6, we set

{X € Ag(n™, n7) | Nrdg/e (X)Of = a} = | | omZo(n™, n"),
m
and as in Section 3.2, we set
h
B = |_| B*X B} Zo(n™, n").
i=1

For anyx; andom, there exist elements m € B, gim € GL2(Fy), 9, € So(nt, n7)P
and a number X |j n < h such that

Xiom = by, mX;, , G mGi -
We note that there existg € I'; such that orgl(det(4)) = 1 (see [18], Corollary 5.9).
Then the actions ofT(a) on an automorphic form¢' and an elementz() e
P, DiV(T;\H(Qp)) are given as follows:
(30) (T@¢)@) = Y ¢" (gm0,
m
T@z =Y (0 "Gmz )i
m

where vj m := ord,(det@im)).
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Now we get back to the proof of Proposition 3.34. We put

h
z=(z)_; € @ DM\ H(Qp)).

Then we may assumg is a class ofr; € H(Q p) and reg¢, (zi) is a class of a lattice
Li € P(n™). Take an elemeng € GL,(F,) satisfying g(OEp) = L;. Then the assertion
follows from the following calculation.

lo(T(a)z)
= Z |¢'i.m (Viivi'mgi,mzi)

Ui, m_ —Vi,m ord, (det(@)) Gimd7 [, lim gy
Pr0p05|t|on3 32Z ¢ Olp (S) Ol(S) ’ /X FS |gl,mg d¢oo (gl,mg)
d — ordy, (det@)) / !
= Flgd :

_ d — ord, (det(@)) T i
5 (0 D) gean(®) 40 [ Frig ai(g)

= ap(a, D)lo(z). ]

s=2

s=2

s=2

Theorem 3.35. As in the beginning ofSection 3.5)et ® be a quaternionic auto-
morphic form satisfyingAssumption 3.26 Let (¢1,.. .., ¢") be an h-tuple correspond-
ing to ®. Let uy be the measure attached @ (see the equatiorf25)). For any

= (r;)_, and & = (), € [T, H(Qp), we have

lo (1) — lo(T2)
_L{((IogNorm + 20,0, (0) - Ordp) ® mow)(]"[ ]{ L wﬂ¢i>},

where:: C, ®z Cp, — C;, is a natural multiplication map.
Proof. The assertion follows from Lemmata 3.29 and 3.30. O

4. Main results

4.1. p-adic uniformization of Shimura curves. We use the same notation as
in Section 3. LetF be a totally real field and a definite quaternion algebra over
as in Section 3.1. Fix an archimedean plaeg of F. We denote by the definite
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quaternion algebra ovef obtained fromB/F by switching the invariants atog and
p, hamely

Voo, B =inv, B =0,
inv, B =inve, B =1/2,
inv, B=inv, B for any v # oo, p.
We fix an isomorphismB ®¢ (Fx,) 5 Mz(R). Let R be an Eichler order of level™.

By Shimura’s theory, there exists a Shimura cuXg(n™), which is a proper smooth
curve defined ovelr, whoseC-valued points are given by the double coset:

Xp(n")(C) = B\B*(Ag)/R* - SO:(R),

whereR := R ®o: OF. Let B’ be the subgroup oB* consisting of elements whose
images by the reduced norm are totally positive elements. hfe a double coset
decomposition of the following form:

h
B*(Ar) = |_| BiwiR”,
i=1
whereh = #CI{ is the narrow class number 6f. We define a subgroup; C B by
Ai = BNy Ry

The set ofC-valued points of the Shimura curdéz(n*) can be written as

h
Xs(n*)(C€) = || A\,
i=1

whereH := {z € C | Im(z) > 0} is the Poincaré upper half plane.
We recall thep-adic uniformization of the Shimura cunz(n™). By the theorem
of Cerednik—Drinfeld (see [2] and [6]), we have a rigid aniglysomorphism

h
(31) Xp(m)(Cp) = | | Ti\H(C)),
i=1
where [y = Ti(n*, n7) C By = GL(F,) as in (10) of Section 3.2. Let
Xi = T\H(Cp) (i=1,...,h)

be the connected components Xg(n*)(C).
Let ® and h-tuple @%, ..., ¢") be automqrphic forms as in the beginning of
Section 3.5. Lefu, be the measure attached ¢6 on P(F,) constructed as in (25).
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DEFINITION 4.1. LetA be the abelian variety ab-component irﬂaih:lJ(Xi)®Z
Q. Then we define
logNorm}: A(C) ®z Q — Cp
by
h
logNorm(R)) == > logNorms (R ) (1),

i=1

for any (P) € A(Cp) ®z Q C @ih:l J(Xj) ®z Q. Here, IogNornﬁi is constructed in
the end of Section 2.4.

Now we state one of the main results of this paper.

Theorem 4.2. Let ®, X; and ¢' be as above. Let (X;) be the Jacobian variety
of Xi. Let A be the abelian variety ab-component inEBih=1 J(Xi) ®z Q. Then for
any P= (P)I", € A(Cp) ®z Q, we have

h
I¢<Z I5i> = logNorm)(P),
i=1

where P, is a lift of P in Divg(X;).

Proof. Letu; be the universal measure associatedtoas in Theorem 2.16. We
have the decomposition into Hecke eigenspaces:

h
Cp ®z (@ Coker(Tr}i) = EB Vj.
i

i=1

Let Vo be an eigenspace correspondingdto Put P := )", B and P:= > P;. Then
by Theorem 3.35 and as in Section 2.4, we have:

14 (P))

=1 Z{IogNormp Rzt + 2'(0)(idc, ®z g o (ordp ®Zid)}|\,o(][~ a)e;,“):|,

i P

logNorms (P)(1z4:)

=1 Z{IogNormp ®z iy — (ldc, ®z 1y) o Lo (0rdy ®z id)}|\/o(j[~ wﬂ)}

i P
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where: Cp ®z Cp, — Cp is the national multiplication map and := /3|0@,No,mp is
the L-invariant attached to the homomorphism logNgmBy similar arguments as in
Section 2.4, we have

—20/(0) ) (id ®z pg)| =Y _(id ®z pgi) 0 Llv,. O
i Vo i

4.2. Heegner points andp-adic integrals. As in Section 4.1, letB be a def-
inite quaternion algebra ovef, which is ramified at all archimedean places and the
finite places associated to prime ideals dividing Let a be a non-zero ideal oD,
relatively prime ton™ and letR an Eichler order ofB of level a.

DerINITION 4.3. LetK be a quadratic extension over. An optimal embedding
of levela from K into B is a pair (¢, b) € Home_a4(K, B) x (B*/R*) satisfying

W(Ok) = bRb™ N w(K).
For an optimal embeddingly, b) of level a, we define
Ry := BNbRb™.

Then Ry is an Eichler order of levek, and ¥ gives an embedding addx into R,. We
define an action ofj € B* on an optimal embeddingy(, b) by conjugation:

g- (¥, b):=(gvg™, gh).

We denote by ¥, b] the orbit of (I, b) associated with the subgroup* c B*. The
set of the orbits of optimal embeddings of levelis denoted by Emp(K, B, a). We
also define an action of the ideal class group ®jc[ of K by identifying it with
RX/KX@Q and for anyp € Pic(Ok) we often denotep - [V, b] by [¥?, b?].

The set Emb(K, B, a) is described as follows. LeEE = Xy(a, n7). As in Sec-
tion 3.2, there is a bijection

IS 1:1 ~
Nrdg,r : B*\B*/By'S — FI\A{ (/Of =: Cle 4.

Then we have a decomposition
h

(32) B*=| |B*xB;=
i=1

whereh = #CIt is the narrow class number &, the elemenk; € B* satisfies Xi)p =1
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and the images ok, ..., X, by Nrdg,r gives a set of complete representatives of the
finite groupCIt. Via the bijectiong, as in Section 3.2, we have a natural inclusion:

h
(33) Emb:(K, B, a) = |_| [ \(Homo,-aig(Ok [1/p], R[L/p]) x P(a)).
i=1

We always regard the left hand side as a subset of right hatel $tor an element
[V, b] € Emb:(K, B, a), if [¥, b] belongs to thei-th component, we denote it by
[Wi, Li], which is the class of §;, L;) € Homp,.ag(Ok[1/p], R[1/p)).

From now on, we suppose the following three conditions atisfaed:

AssumpPTION4.4. 1. All prime idealsg of Ok dividing a split in K.
2. All prime idealsq of Ok dividing n~ are inert inK.
3. The prime ideab dose not split inK.

REMARK 4.5. The above assumptions 1 and 2 are calledHbegner condition
Under these two assumptions, an optimal embedding of lkewstists. (see [18], The-
orems 3.1 and 3.2).

Fix an isomorphismy: By 5 GLy(F;). For an optimal embeddingl(, b), let 7y
be the fixed point of ,(¥(K)) in H(Qp) satisfying:

ww) (7 ) =e( 7).
for any o € K.

Let ¥k : Pic(Ok) — {£1} be an unramified quadratic character o¥er Via the
isomorphism (31), let

h
(&I, € €D DIV(I\H(Cp)) 82 Q
i=1

be the element corresponding to the Hodge ckass Pic(Xg)(F) ®z Q, which has
degree one on each geometric component, and satisfies #immel

T(0D& = (Nro() + 1)§

for any prime ideall of O prime topn*n~.
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DEFINITION 4.6. For an unramified quadratic characteg : Pic(Ox) — {£1},
we define a poinPy, belonging toEBih=1 J(Xi) ®z Q as follows:

Pl/fK = Z ?ﬁK(P)([T\W]iw - Siw/))'

pEPiC(OK)

REMARK 4.7. Theimage oP,, by the projection to the-part can be described as

(Nejo(@) + 1—a(a, @) (Neg(@) +1-T@) D vr(olrwlis
pePic(Ok)

whereq is a prime ideal ofOr prime topn*n~ satisfying Ng/g(q) + 1 # a(q, ).

REMARK 4.8. Whenyp is inert in K, by the complex multiplication theory, the
point P, is global point and belongs to Jacobi@!‘zlJ(Xi)(Kw)@)z Q, whereKy,
is the quadratic field oveK cut out byvk. For details, see [14], Sections 4.2 and 4.3.

DEFINITION 4.9. DenoteK = F(A) where € K is the element such thaf € F
and is totally negative. Theartial p-adic L-function£, associated tob and a class
optimal embedding ¥, b] = [¥;, L;] of level n* is defined by

(G - |NrdB/F(xi)|AH)5/20;,“'(5; Li) if pis inert in K,

— 1
Eo(® W, S)1= 1 (G- Nl () )72 5051 (S5 L) + 6 (550 (W 0)L1)
if p is ramified inK,

Whel’eCi = C/\/| NF/Q(—NrdB/F(A))hR.
We also define, for any unramified quadratic charagtger Pic(Ox) — {£1},

Lo(®, ¥, 9) = Y vi(p)Lp(®, W7, 9).

pGPiC(OK)

Proposition 4.10. The following equalities hold

9 @ vk 9)

ds = |<I>(P1/f»<)

s=0

h
= > logNorms! (Py, i) (1)
i=1

where Py, is a lift of P, in EBih:l Divo(I'i \H(Qp)) ®z Q, and Py, ; is the image of
the projection to JX;).
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Proof. The first equality follows from the definition of thedigfinite integrals and
Proposition 3.34 by using Remark 4.7. The second equalltgvie from Theorem 4.2.
0

4.3. p-adic L-functions of Hilbert modular forms. Let A be a modular abelian
variety of GL(2)-type over= which is multiplicative atp (in addition, if [F : Q] is odd,
suppose thatA is multiplicative at some prime other tharn). Let f be the Hilbert
modular eigenform corresponding # of weight 2, leveln := pn*tn~ and trivial char-
acter (heren™ andn~ are non-zero ideals prime o andn~ is a square free ideal
such that #q: prime dividingn™} = [F : Q] mod 2). Letf,, be the Hida family of f
and we denote byf, f¥ the weightk specialization off., and its p-stabilization re-
spectively. Let® be a quaternionic automorphic form of weight 2 and lgwet cor-
responding tof by the Jacquet—Langlands correspondence.

We briefly recall thep-adic L-functions and the two-variabl@-adic L-functions
of Hilbert modular forms ([7], [14]). We shall explain them & general situation. Let
g be a cuspidal Hilbert modular eigenform of parallel weigh&nd ordinary ap, and
let x (resp.¥) be a finite order Hecke character Bf unramified outside and infin-
ite places (resp. at the conductor gf. There existsp-adic L-function Ly(s, 9, x )
defined ons € Z such that

Lp(r! gv XI//)
_ (1_ xy o (PN (p)”) (1_ (x o) M (p)aalp, g)) LI g (o)
ai(p, 9) N(p) Qg,xy.r
for anyr = 1,...,k — 1. Here,L(s, g, x¥wt") is the complexL-function of g,

a1(p,q) (resp.az(p,q)) is the p-adic unit root (respp-adic non-unit root) of the Hecke
polynomial

X2 —a(p, 9)X + e, N (p)?
with

{0 p|(the conductor ofg),
Gp =

1 otherwise,

and Qg,,,r € C* is a complex number such that

L. g (v ) g
ngxdf,r

We always regard an element @ as in Cp through the fixed embeddin@ — Cp.
Note thatQg ,yr can be described as the productperiod of f and some non-zero
constants (see [14], Section 5.1).
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4.4. Proof of the main theorems. Let L (s, f,¢) be the p-adic L-function of f
with x = 1. Clearly, wheny (p) = «,, we have trivial equality

Lp(1, f,4) =0,

and we call itexceptional zero
According to [15], Theorem 6.8, we can construct thgo-variable p-adic
L-function Ly(s, k, ¥) such that

Lp(si m, ‘W) = LP(S! frﬁ' w)

foranyme U NZ andm =2 mod 2{ — 1), whereU € Z, is an open neighborhood
of 2.

We prove the main theorem of this paper which is a gener@izaif the main
results of [3] and [14].

Theorem 4.11. Let ¥ be a quadratic Hecke character of F of conductor prime
to n. We assume that the following conditions are satisfied

V(p) = ap,
e(f,y)=-1,

where «,, is the Hecke eigenvalue of(d) and (f, ¥) is the sign of the functional
equation of the complex L-function(d. f, ¥). Let A be the abelian variety @bL(2)-
type associated to f as in beginning of the previous secfidiren we have

(1) There exists a global point Pe A(F¥) ®z Q and | € Q(f)* such that

d2
WLp(k/zv K, ¥) T | - (logNormf(Py))?,
where P is a quadratic extension corresponding ¢o

(2) The element P is of infinite order if and only if the derivative of the complk-

function is nonzero 1(1, A/F, v) # 0, where L(s, A/F, ¥) is the L-function of A. In
that case

dimg(r)(A(F?) ®z Q) = 1.

Proof. We can choose a quadratic Hecke charagtewhich is unramified at the
primes dividingn and the conductor is prime to that @f such that

Lp(1! Z!W/) € Q(f)x

and the quadratic extension ovér associated withyry’ is a CM extension with
p inert.
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By [14], Propositions 5.1 and 5.3, there exists an open teidioodU € Z, and
a p-adic analytic functiory on U such that

(34)  Lp(®@, Yk, 9 =n(s+ 2Lp((s+2)/2,5+ 2, ¥)Lp((s +2)/2,5+ 2, ),
n(2) € Q(f)*,

where Yk is the Hecke character d associated with the composition of the fields
F, and Fy., which are the quadratic extensions overassociated withy and ’.

Since L y(k/2,k, ¥) has trivial zero and(f, ) = —1, we see from the functional
equation that the order of vanishing bi(k/2,k, ¥) is at least 2:

Lp(1,2,9) = L)(1, 2¢) = 0.
Thus by calculating the second derivativesat 0 of (34), we have

d2

ﬁ Lp(k/z, kv 1/f)

2
_0) @)L 2.7)

d
Z(d—sﬁp(cb, Yk, S) s

Putl :=2n(2)1Lp(1, 2,¢') € Q(f)*, we have

d2
dk?

d
Lok/2,k ¥) =1 (d_sﬁp((b' Yk, S)
k=2

)2
s=0

On the other hand, by Proposition 4.10, the right hand sidegisal to

h 2
I <Z logNornyy' (Py, i ) (g )) ,

i=1

whereP,, is a global point and belongs to the Jacob@ﬁ‘:lJ(Xi)(K,,,K)@Z(Q, where
LI X; is the Shimura curve as in Section 4.1 (see Remark 4.8).
By [19] and the proof of [14], Corollary 4.2, we have

Py € A(F?) ®z Q,

where R,,K is the image ofP,, by the projection l‘romEBih:1 J(Xi)(Kyy) to A(Ky,).
We have (1) by puttingP, := Py, .
For (2), by the results of Zhang ([20]), we have

P, is of infinite orders L'(1, f/K, y«) # 0

whereL(s, f /K, ¥k) is the Rankin—Selberg convolutido-function of f andy«. On
the other hand, we have

L(s, f/K, vk) = L(s, f, %) L(s, f, ¥').
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Thus, by the choice ofy and ', we have

L'(Q, /K, ¥x) #0< L'Q, f,¥) #0< L'(1, A/F, ¢) # 0.

The second equivalence follows from [19], Theorem A. Them&f we have the first
assertion of (2). The second assertion of (2) is obtainechbythieorem of Kolyvagin—
Logachev [13]. ]
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