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Abstract
When two Radon measures on the half line are given, the hacrnogan of their
Stieltjes transforms is again the Stieltjes transform ofa@éh measure. We study the
relationship between the asymptotic behavior of the rigulineasure and those of
the original ones. The problem comes from the spectral yhebsecond—order dif-
ferential operators and the results are applied to linefwsibns neither boundaries
of which is regular.

1. Introduction

Let H be the totality of the functions on (80) having the following representation:

_ do (§)
h(s)_a+/[0’w)s+s, s>0 (Fa=0)

whereo: R — [0,00) is a nondecreasing, right-continuous function vanishing—oco,0)

such that
o [ do (£)
< < o0
[000) L+ &

Let us callo the spectral functionof h (the reason will be clear in Section 5). For
hi, h, € H defineh by

11 11 1
- R (s o)

Then as is well known we again hatee ‘H (a property of Herglotz functions).

The aim of the present article is to study the relationshijwben the asymptotic
behavior ofo(A) as A — +0 and those ob;i(A) (i = 1, 2), whereo and o; are the
spectral functions oh and h;, respectively. Notice that the equation (1.1) is familiar
in the spectral theory of Sturm—Liouville operators and usdamental in the theory
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222 Y. KASAHARA AND S. KOTANI

of linear diffusions. Indeed, our problem is motivated bytiadg of the asymptotic be-
havior of the transition probability in the long term andstiiroblem will be discussed
in Section 6. Especially, Example 6.1 will illustrate the timation of our problem.

To describe our results let us prepare some notation. We edgfig= h;(+0)
(i =1, 2) andl = h(40) (< 00). By (1.1) it holds

1 1 1
(1.2) =4 =
| PPt
with the convention that /bo = 0 (namely, ifl; < oo andl, = oo thenl| = I4, while

if 1 =1, =00 thenl = 00).
We also define

3 o=ty (=) o= (=1)

when they make sense.
Very roughly speaking our result is as follows: Under a dertagularity condi-
tion, it holds

o1(A)o2(r) (=1, = 00)
o1(A) + o2(A) 1= ’
(1.4) o (k) ~ { pPo1(r) + qoa(r) (I1 < 00, I < 00),

A
I%/O £ doi(E) + 020) (I = 00, I < 00)

where, o] is the ‘dual of o7.

The precise statement will be given in Section 2 and will beved in Section 4.
In Section 3 we prepare some intermediate results we neeldeiproofs of the main
results. Sections 5 and 6 are devoted to applications of tiaswesults to linear diffu-
sions. Since we shall repeatedly make use of Tauberiandaheofor Lebesgue—Stieltjes
transforms, we listed necessary facts in Appendix for thevenience of the reader.

REMARK 1.1. We shall discuss only the case of (1.1), but the resaltseasily
be extended to the case where

1_ 1,11
h(s) — hi(s)  ha(s) ha(s)’

So our results may have applications to diffusions on somie afographs as well as
linear diffusions.
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2. Main results

We denote byR,(0) the totality of ultimately positive functions (definesh dome
interval (0,A)) varying regularlyat 40 with index«a (e R): i.e.,

f(cs)
s>+0 f(s)

c® (Vc=>0).

A regularly varying function with indexx = 0 is said to beslowly varying Clearly
f € R,(0) if and only if f(s) = s*L(s) with slowly varying L.

Theorem 2.1 (Case |) Suppose thatl< oo, |, < 0o and let p g be as in(1.3).
If ¢ € Ry(0) (@ = 1), then
0]
a(x) ~e() (—+0)
if and only if
opg(A) := PZo1(2) + APo2(2) ~ ¢(2) (A — +0).

(i) As a special casdf

oi(A) ~ce(l) (A — +0), i =1,2,
for ¢1, ¢, > 0 (cp + ¢ > 0), then
(2.1) a(A) ~ (cp? + %)e() (. — +0).

Here and throughoutf ~ cg meansf /g — c including the case = 0.

Theorem 2.2 (Case Il) Suppose thatl=1, =00 and letp € R,(0) (0<a < 1).
If o7(A) ~ cip(x) for ¢ € (0, 00), (i =1, 2),then

C1Co
C1+C2

(2.2) o(A) ~ o(A) (A — +0).
The assertion remains valid in the extreme cfise c; < oo, ¢; = oo, with the con-
vention gc;/(c; + C2) = C;.

(The restrictiona < 1 is necessary foh =, = 00.)
Apparently (2.2) may look quite different from (2.1), but.Zp is in fact the ex-
treme case of (2.1) ds, I, — oo with 11/l, = ¢;/co.
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Corollary 2.1 (Lopsided case ) Suppose thaty € R,(0) and o2 € Rg(0).
(i) fO0<pB<wa<1,then
o(A) ~o1(0) (n — +0).
(i) If 1 <a<§pB,then
o(r) ~ p?o1(r) (A — +0).

Proof. (i) Apply Theorem 2.2 withp(1) = o1(A) andc; = 1, ¢, = 0.
(i) Apply Theorem 2.1 (ii) withc; =1, ¢, = 0. O

It remains to discuss the case whéfe= oo, |, < co. To this end we need to
consider thedual of h: For a givenh € # its dualh* is defined by

1
h*(s) = —.
(s) ShS)
As is well known it holdsh* € ‘H. So leta* ando* correspond tch*: i.e.,
do*(§)
23 h*(s) = a* +/ —,
(2.3) (s) 0n) STE

We also definer®: R — [0, oo) by

do* A >0),
0y = { §40°E© (=0
0 * <0).

Another characterization af* will be given in (3.1).

Theorem 2.3(Case Ill) Suppose thatil= oo, |, < 0o and letp € Rz(0) (8 > 1).
Then

(2.4) o(A) ~o(A) (> — +0)
if and only if
(2.5) 136F(0) + 02(1) ~ (1) (A — +0).

(The restrictiong > 1 is necessary for the assumptibn< oc.)
Corollary 2.2. Lety € R,(0) 0<a <1)and g,c; > 0. If

o)) ~ay () (€ Ru(0), 02(1) ~ cA?/Y (1) (€ Rea(0)) ( — +0),
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then

o(x)~( al 3 +c)’\—zeR ©0) ( — +0)
2—ac{TA+a)lA—-a)2 ' 2Jym)  *° '

The assertion remains valid even(d; = co; 0 < ¢; < 00) or (0 < ¢; < 00; C; = 0;
a # 0) with the convention thal/oco = 0.

Proof. As we shall see in Proposition 3.2, the assumptigfr) ~ cy¥(A) im-
plies that

2 2
o 15

of () ~ 2—acT(1+a)l(L—a)?y(n)

(A — +0).

Therefore, the assertion follows immediately from Theor2® Note that whemx = 0
we may use the last part of Proposition 3.2. ]

By the last part of Corollary 2.2 we have

Corollary 2.3 (Lopsided case IlI) Leto; € R,(0) and o2 € Rg(0).
i) fO<a<l<panda+ B < 2,then

o(A) ~o2(A) (A — +0).

(i) FO<a<l<pBanda+ B > 2, then

2 2
o 15

(2.6) W TAT A=) o)

(A — +0).

(In (i) we excluded the caser = 0 because the the right-hand side of (2.6)
vanishes.)

Proof of Corollary 2.3. (i) Let/(1) = A?/02()) (€ Ro—p(0)). Theno(r)/¥(A) €
R.+p-2(0) and, hencey + B < 2 implieso1(X)/¥ (1) — oc. Therefore, we can apply
Corollary 2.2 withc; = oo, ¢ = 1.

For the proof of (ii) puty(1) = o1(A), then appeal to Corollary 2.2 witty = 1,
c, =0. OJ

Let us next consider the case= 1 which we excluded in Corollary 2.3.

Corollary 2.4 (Lopsided case Illx =1). Suppose that; € R;(0) and oz € Rg(0).
(i) fOo<pg<1,then

o(A) ~o1(2) (A — +0).
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(i) If B> 1, then

2.7) o)~ 122335 o)

L2

where

L(s) = /:o "t—(zu) du e Ry(0).

Note that[(s) — I (cf. (3.12)). So in (i), ifl1 < oo, then (2.7) may also be
written as

a(A) ~ pPPor(r) (. — +0),

becausep = 1/1;. This means that (ii) of Corollary 2.1 remains valid in thereme
casea = 1 whenl; < oo.

Proof of Corollary 2.4. (i) Ifl; = oo, we can apply Theorem 2.2 witty = oo
becauser; = 0(0,). Next consider the cade < co. By Theorem 2.3,

o(A) ~ 1205 (1) + o1(A).

By Proposition 3.2, we have) € R, 4(0) so thato) = o(s1). Thus we have the
assertion.

(i) Whenl; < oo, just apply Theorem 2.1 witp = 01, ¢; = 1, ¢, = 0. When
I; = 00, as we shall prove in Proposition 3.3, it holds

we

ofo) ~ 2

R.(0).

On the other hand, € Rg(0) with 8 > 1 implies o2 = 0(o}). Therefore, we deduce
the assertion from Theorem 2.3. O

In Corollary 2.2 we discussed the case whire- oo, |, < co ando € R, (0) with
0 < y < 2. For the caser > 2, we have the following result. Here, notice that the
condition o1(40) > 0 trivially implies o1 € Ry(0) andl; (= hy(+0)) = cc.

Corollary 2.5. Supposer;(+0) > 0 and ¢ € R,(0) with y > 2. If

02(2) ~ cp(A) (A — +0)
and

(2.8) 01(1) — 01(+0) ~ c1p(R)/2* (A — +0),
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for ¢, ¢ > 0 (c1 + ¢ > 0), then

C;|_|2 y—2
70~ (55572 + e )olo) € RO

Proof. As we shall see in Proposition 3.4 the condition (2s8¢quivalent to

-1 c y —2 GG y-—2
o) ~ ¥ S L) = ————="—"¢).
1(A) > Gl(+0)2y_1<p( ) o102 7109
Therefore, the assertion follows from Theorem 2.3. O

Theorem 2.4 (Case IV) Suppose that;(+0) > 0 and o2(+0) > 0. Then

_ 01(+0)o2(+0)
(2.9) o(+0) = m (> 0).

Furthermore if
(2.10) ai(}) —0i(+0) ~ Gp(r) (A — +0), i =1,2

for ¢ € Ry(0) (@ > 0) and g, c; > 0 (cy + ¢, > 0), then

(2.12) o () — 0 (+0) ~ (p2Cs + G2C)p(R) (A — +0),
where
_ 02(+0) _ 01(+0)
P = G0+ 02(10) T 51(10) + 02(+0)

3. Intermediate results

In this section we prepare a few propositions we need for theofp of
Theorems 2.1-2.4 in Section 2.
Throughout the paper, we put

ﬁ(s):%, ﬁi(s)=hi—ts) i =1,2).

Since ﬁ(s) = sh*(s), we have

h'(s) = h*(s) + sh*'(s) = a* + /
0

L [T Edo@®)
a8 Greor

> do*(£) _/OQ s d*(§)
s+§ o (s+8)?
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Therefore,
* do*(¢)
* _1 ’
(3.1) A (s) = 2 +/o (s+¢&)2 (h=1)
| *  do*
(—1)n+1n!/0 ﬁ (n = 2).

Of course we have similar formulas ftn, h, € # and we may define” (i = 1, 2)
in the obvious manner.
Since (1.1) can be written as

(3.2) h(s) = hy(s) + ha(s),

it holds
h'(s) = hi(s) + hy(s)
and hence, by (3.1), we have
(3.3) o*(h) = af(A) + o5 (V).
Thus the proofs of the results in the previous section areced to the study of the

relationship between the asymptotic behavioroofo;, o2 and that ofo®, of, oF.
Next we define

#(h) = inf{k > 0; |h®(+0)| = oo}
(: inf{k =0,1,2,...; / do(8)/E1 = oo})
[0,1)

#(h) = inf{k > 0; |A®(4-0)| = oo}.

and

Proposition 3.1. If ng := #(h) > 1 (i.e, | < 00), then it holds that#(h) =
#(h) and

h(M(s) 1
im =——, Vn=>n.
s>+0 hM(s) 2’ =0

(3.4)

For the proof of Proposition 3.1 we prepare

Lemma 3.1. Supposét(h) =ng > 1 (i.e, | < 00). Then
(i)
<o (1=Vk<ng),

LK)
Jim | (S)I{=oo (Vk = no).
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(ii)
(3.5) h(M)(s) ~ —I2htM)(s) (s — +0).

Proof. (i) By the Leibniz formula we have, fon > 1,

> nCeh®(RM K(s) = (h(9)h(s))™ = 0.

k=0
Therefore,

(3.6) h™(s) = —m Z mCch®(s)h(™4(s).
Now we have the assertion by induction on= 1, 2,. .., n.

(i) As we have seen in (3.6), it holds that

no—1
(3.7) h(no)(s) = G ){h<"°>(s)h(s)+ > nCch®(s) Ao~ k>(s)}

k=1

and hence by (i) we have

h(o)(s) = —h()(s Sy h(s) + 0(1) = —h™(s)—— + O(1).
h(s) h( s)
Since|h(”°)(s)| — oo by the definition ofng, we can neglect th€©(1) in the right-hand
side and deduce the assertion. O

Lemma 3.2. Letn> 1. If| < oo and |h™(+0)| = oo, then for k=1,2,...,n—1
it holds

(3.8) h®(s) = o(™(s)[") (s — +0)
and
(3.9) h®(s)hK(s) = o(|h™(s)]) (s — +0).

Proof. Since (3.9) follows immediately from (3.8), we shatbve (3.8) only.
If |h®(+0)| < oo, then the assertion is obvious. So we assume|t{a{+0)| = oco.
For everye > 0, applying Holder’s inequality to

/8 do(§) / do (§)
o (S + é)k“ - o (S + 5)1—(k/n) . (S + é)(n+1)k/n
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with 1/p = 1— (k/n) and ¥q = k/n, we have
/f do(§) _ ( / da(s))“k/'” ( / do (€) )k/“
o (s+& 7 \Jo s+¢ o (s+&ntt
& da(%'))l(k/n)( *  do() )k/n
: (/0 3 /o (s+&ntt)
Therefore, using the conditiofin™(4-0)] = oo, we deduce
. * _do(§) * _do@®) \"_ ([ do®))"""
TIPS e (/0 (s+s)n+l) - (/o g ) |

Since the right-hand side converges to Osas 40 becausefow(l/é) do(¢) =1 <00
by assumption, we obtain (3.8). ]

Proof of Proposition 3.1. Let us prove the assertion by itidncon n (> ng).
The casen = ng is proved in Lemma 3.1 (ii). Next suppose that (3.4) holds rfoe
No,No+1,...,m, and let us see that (3.4) remains valid fo=m+1. By Lemma 3.1
we have

. 0(1) (1 <k < ng),
h®(s) ~ {_| 2hM(s) (no < k<§ ron).

So in any case,
h¥(s) = 0(h¥(s), k=1,2,...,m.

Therefore, for anjk = 1, 2,..., m,
h(m+lfk)ﬁ(k) — O(h(m+17k)h(k)),
and, hence by Lemma 3.2, we see
h(MH =R = W™Dy k=1,..., m,
or, changing the variablk, we have
(3.10) hWRMH1-K — oMy k=1,..., m.

Now as in (3.7), we have

hm1)(s) = ‘Wls) {h<m+1>(s)ﬁ(s) + nckh<k>(s)ﬁ<m“k)(5)}'
k=1
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So, applying (3.10) to the right-hand side we deduce

ﬁ(m+1)(S) — —%h(”hLl)(S)ﬁ(S) + o(h(m+1)(s)).

Thus we have
F](m+l)(s) ~ —] 72h(m+l)(s)’

completing the induction. ]

Proposition 3.2. Let¢ € R,(0) (0 <« < 1). Theno (1) ~ ¢(2) if and only if

o 1 A2
2—a (Tl +a)lL—a))2 o)

o*(1) ~ (A — +0).

As an extreme casé o € Ry(0), then

2

A

Proof. The assertion follows from Tauberian theorem (Taesoi7.1) as follows.
For the definition ofCy, see (7.1).

iff ps) i o 1 ~ 1
o)~ () = hE) ~ Cou== = M) = 15 ~ 275
&y~ — (RO,

Co,tCo,1« (1)
and the last one is also equivalent to

1 1—a A2

(1) ~
( ) CO,aCO,l—a 2—« Qﬂ(}v)

by Lemma 7.1 (apply with8 = 1—«).
When « = 0, the above argument does not hold becalsg , does not make
sense. So let us prove directly. df ~ ¢ € Ry(0), then
a(s) o(s) o(s)

h(s) ~ —, —h'(s)~ ——, h'(s)~2—.
O~ T N~ e ~ 2%

Therefore,

h”(s) 2 h'(s)? 1
h(s)2  so(s) h(E?  so(s)
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R _ h//(S) h/(s)z _ 1 — 1
h"(s) = _h(S)Z +2 h(s)® O(sg(s)) B 0(%)

Thus, recalling (3.1), we have

ngif;=°(§zo

and hencer®(£) = o(£2/¢(£)) (see Theorem 7.1). O

and so

Proposition 3.2 does not include the extreme case 1 (the right-hand side di-
verges). So, in this case we need a slight modification asvisllin order to know the
exact order ofo#(1):

Proposition 3.3. Leto € Ry(0). Then
fav [To)
L(S):L qu, s>0

varies slowly as s» +0 and

(3.11) h(s) ~ L(s) (s— +0).
Furthermore it holds
oy~ 2H 6 L),
L(2)?
Proof. Since
(3.12) / ig)du:/ do(u) =,
+0 U +0 U
we seel (+0) = |. Therefore, ifl < oo then the slowly varying property of and

(3.11) are clear. So let us consider the case widre0) (= 1) = co. Note first that

_cl'(cs) . co(cy) [o(s) . olc)
(3.13) ;! ['(s) s>+0 (c92/ &2  s-+0co(s)

The last equality holds by the assumptiore R;(0). Combining (3.13) with the con-
dition L(+0) = oo, we deduce

im S€9 _ gy CC
=40 L(s) 50 (L)
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Thus L varies slowly. Next note that, by Tauberian theorem (Cargll7.1),6 € Ry(0)
implies

(3.14) —h(s) ~ % (= —L'(s)).

Sincel = oo, (3.14) implies (3.11).
Next, combining (3.14) and (3.11) we deduce

' (s) = (1/h(s)) = —N'(s)/h(s)* ~ ? / L(s)?

namely, by (3.1),

© dot(x)  o(9)
(3.15) [O ST P € R 1(0),

which proves, by Tauberian theorem (Theorem 7.1),

11L(A)2  L()?

(A — +0). ]

ExampPLE 3.1. If o(X) ~ A, then by Proposition 3.3 we have

o (L) A

# ~ ~
M~ T~ Togny

(A — +0).

For,

L(s):/f%dumog% (s > +0).

In Propositions 3.2 and 3.3 we studied the case whére Rg(0) with 1 < 8 < 2 and
B =1, respectively. The following proposition is concernedhathe cases > 2.

Proposition 3.4. Let¢ € R,(0) (¢« > 0) and A> 0. If o(+0) = 09 > 0 then as
A — +0,

i A o
5 () = o(+0) ~ Ap(R) s /O £ do () ~ A—i()

; A
=0t~ 5

Ap(A
oga+1 ()

i A
<|:> o*(h) ~ — s 12p(0).
o

sa+2
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For the proof of Proposition 3.4, we prepare

Lemma 3.3. Supposer(+0) = op > 0 and n> 1. Then
1

(3.16) 0" ()™ ~ —=(she)™ (s> +0)
%0

provided that at least one of the two sides diverges to igfiag s— +0.

Proof. Since f*)* = h, the assertion can be reduced to Proposition 3.1 as fol-
lows. Clearly it holdssh(s) — . Therefore,h*(s) (= 1/(sh(s))) — I* = 1/op < o0
and we can apply Proposition 3.1 k3 in place ofh and (3.4) can be written as

(h)(s) ~ 172 0(s) =~ (SHEH® (s> +0),
99

which proves (3.16). Here we uséd(s) = 1/h*(s) = sh(s). O

Proof of Proposition 3.4. For the proofs of the first and th&t lelationship see
Lemma 7.1. So we shall prove the second one. Since

do (1) s do(1)
- /[o,oo) (s +A)?

(sh(s)) = h(s) + sh(s) = a+ /

[0,00) S+ A
Ado(A
[0,00) (8+ 1)

it holds

N n *  Ado(A)
(sh)? = -2yt [ 2 0=

On the other hand we have

do* ()

@) = orm [ S0 e

These two combined with (3.16) imply

/00 do* (1) 1 > Ado(r)
o (s+a)Mt o Jo (s+r)*t

for n > 2. Now appeal to the Tauberian theorem to deduce the assertio ]
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4. Proofs of Theorems 2.1-2.4
Proof of Theorem 2.1. Let
(4.1) hpa(s) = p*ha(s) + g*ha(s),

so that
dapq(‘f)

hpq(s)zf[om) et

By the Tauberian theorem (Corollary 7.2), it suffices to shbat

(4.2) h®(s) ~ h{)(s) (s — +0)
for somen > « — 1. To begin with let us see thathfy) = #(h) and (4.2) holds for
n > ng := #(h).
Since
(4.3) h®(s) = AY(s) + A (),

we see thah®(+0) = oo holds if and only ifh{(+0) = oo or h¥(s) = 0. So by
Lemma 3.1, #f) = ng if and only if min{#(h1),#(h2)} = no. Similarly, by the definition
of #(h), we see that #(,q) = min{#(h1), #{2)} = no.

For the proof of (4.2) first consider the case wherl%l}#@ #(ﬁz) = ng. By Prop-
osition 3.1, forn > ng, it holds

~ ~ ~ 1 1
h®(s) ~ 12A0(s) = 1A (s) + AP () ~ '2(r2h&”><s> + .—zh(?(s)) = ha(s)
1 2

and hence (4.2) is proved for ail > nq.

When #b1) # #(h,), we need a slight modification. Consider the case where
#(hy) = ng and #0,) > no. In this case, fom such thatny < n < #(h,), the argu-
ment above does not hold, bhg‘)(s) and ﬁ(zn)(s) are bounded and hence negligible
when compared tdn(ln)(s) and ﬁ(ln)(s). Therefore we have the same conclusion. []

Proof of Theorem 2.2. There are two cases.
Case 1 (0 < o < 1) By Tauberian theorem (Theorem 7.1) we hdyés) ~
Co«Ci¢(S)/s. Therefore,

__ha(s)ho(s) CiCp 9(s)
NS = et ot s

which proves the assertion by Theorem 7.1. Whgn= oo, it meanso; = 0(o2) SO
that h; = o(h;) and henceh/h; = h,/(1+ (hy/hz)) — 1. Thus we havénr ~ h;, which
proveso ~ o; ~ C1¢.
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Case 2 ¢ = 1) In this case the above argument is insufficient becduseh;
does not necessarily imply ~ o1. However,h’ ~ h} implies o ~ o7. So let us prove
h" ~ hj. Observe thairy (L) ~ (C1/C)o2(A) implies W (s) ~ (c1/cz)h5(s), which also
implies hi(s) ~ (c1/c2)ha(s) (by de I'Hospital) and hencé(s) ~ {c1/(c1 + ¢2)}ha(S)
and h(s) ~ {cz/(c1 + ¢2)}hi(s). Since (1.1) implies

h(s) _ hi(s) , hy(s)

h(s)2  hi(s)? ~ hy(s)?’

we see

’ 2 / 2 2 2

2 L 5 Ci+C/) C CL+C CL+¢C
Thus we haven'/h, — c1/(c1+¢C2) and by Tauberian theorem as before we can deduce
o (L) ~ {cr/(c1 + c2)}oz(2). In the extreme case; = oo, it holds thath, = o(h;) and

h, = o(h}). The rest of the proof is the same. ]

Proof of Theorem 2.3. Sindg = oo andl, < oo, it holdsl =1, < oo and hence
#(h),#(h2) > 1. Therefore, we have from Lemma 3.1 thé® (s) ~ 12h((s) andh{’(s) ~
12h0(s) for all sufficiently largen. So

hM(s) ~ 12AM(s) = 1A (s) + 12A0(s) ~ 12A1(s) + h{V(s).

This implies, by (3.1),

/°° do(d) |2/°° dof(n) N /00 doa(A)

o (s+antt o (s+a)mt " Jo (s+a)tt
which proveso (1) ~ 126§(A) + 02(1). O]

Proof of Theorem 2.4. Since
o(+0) = lim sh(s), oj(+0)= lim sh(s),
s—+0 s—+0

we have from (1.1) that

1 _ 1 1
o(+0)  01(+0)  0y(+0)’

which implies (2.9).
By Proposition 3.4 we see that (2.10) is equivalent to

o

e,y

Cirg(R).
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Since (1.1) impliesh*(s) = hj(s)+h3(s), it holdso*(X) = o, (2) +0, (1), and therefore

C1 4 C ) @ "
o1(102 T op(102 Ja + 17O

7" = o) + 73) ~

Appealing to Proposition 3.4 again, this is equivalent to

C1 I Co
0’1(+0)2 0’2(+0)2

o(A) — o (+0) ~ a(+0)2( )go(,\) (A > +0). O

5. An application to positive recurrent linear diffusions

In this section we generalize a result of [5], where the fteomsdensity of positive
recurrent diffusions is discussed.
Let X = (Xi)t=0 be a diffusion onl = [0, co) with local generator

1/ d? d
(51) L= E(m + b(X)d—X), X > 0,

b(x) being assumed to be an elementlgf ([0, oo), dX). We put reflecting boundary
condition at the left boundary.
Define

W(X) = exp(/oX b(u) du), x > 0.

Then Feller's canonical form of (5.1) is

_d
~ dm(x) ds(x)’
where
X X d
m(x)=2/0 W du, s = | W(l:).

Note that the scale-changed proc&gs= s(X;) corresponds to

L where m(-) := m(s™(-)).

B d
~ dm(s) ds’

It is well known that the transition densitg(t, x, y) with respect todm(x) exists and
p(t, 0, 0) has the following spectral representation:

(5.2) p(t, O, 0)=/[0 )e*M do(r), t=>0.
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The spectral functiom can be characterized by the following formula: If we define

Gs(x, y) 1= fo e Slp(t, x, y)dt, s> 0,

then (5.2) implies

s> 0.

do
h(s) := G¢(0, 0) = /[0 | S-I-(Sé)’

How to calculateGg(x, y) (and hencen(s)) from £ will be explained in Section 6. We
remark that it is known that (:= h(+0)) = s(+o0). (This fact will easily be seen
from (6.2).) Therefore, it holds that

* du
o W(u)

(5.3) | =

The authors recently obtained the following result: We denfay R,(oco) the to-
tality of functions varying regularly ato with index «.

Theorem 1 ([6, Theorem 4.2]) Letp > 0. If
(5.4) W(-) € R,_1(c0)
then as t — oo,

1 1

(5.5) p(t, 0, 0)~ 20127 (p/2) /TW(/) <

R_p/z(oo).

If we recall the canonical representation of slowly varyfogctions (see e.g., [1,
p.12]), we easily see that a sufficient condition for (5.4) is

(5.6) xb(X) = p—1 (X — 00),
or, equivalently,

b(x) = pT_l + o(%) (X = 00).

We remark that, by (5.2) and Tauberian theorem for Laplaaasforms (see e.g. [1,
p.37]), (5.5) is equivalent to

1 N

(5.7) oO) ~ e, 2y W(L/VA)

(A = +0).
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Now the aim of the present section is to study the case whed¢ (®lds forp <
0. In this case we see

rh::/ooodm(x)=2/:oW(x)dx<oo,

which is, probabilistically, equivalent to that the progés positively recurrent.
Since, as is well known,

(5.8) o(40) = %

we see thath < oo implies o(+0) > 0 and therefore,
(0,0)> = (t— )
- — — 00

p 1 L m

(cf. [2, pp.35-37]). So let us evaluagt, 0, 0)— 1/m ast — oo. Since (5.8) implies

p(t, 0, 0)— i = / e do(n),
m (0,)

our problem will be reduced to the study of
o(x) —o(+0) ( — +0).
To this end let us consider thdual processof (5.1):
. 1/d? d
L _E(W_b()()&)’ X > 0.

Note the following argument remains valid under the condif < 2 rather tharp < 0.
The functionsW, s, m, m, h, o corresponding toZ* will be denoted byw*, s*, m*,
m*, h* ando*®, respectively. Since they correspond-tb in place ofb, we have

We(x) = exp(— /0 ’ b(u) du)

so thatW*® = 1/W, and henceW* € R_(,_1)(00) = R,._1(00) wherep® := 2 —p. If
p < 2, it holds p* > 0. So we can apply Theorem 1 teb(x) to deduce

(5.9) a*(A) ~ CoVAW(L/V2) € Ry 20)  (n — +0),

where
1 2r/2

o= T 2E ~ 2= T (@ = p)/2R
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We next consider the relationship betweehando* defined in (2.3). To this end
we recall Krein's correspondencésee e.g. [8]): The correspondence betwéeand
m is one-to-one andh*(x) := M 1(x) corresponds td*(s) = 1/(sh(s)). Furthermore,
cm(cx) corresponds to (k)h(s) (and, hencecm*(cx) to (1/c)h*(s)). Sinces*(x) =
(1/2)m(x) and m*(x) = 2s(x), we havem*(x) = 2m1(2x) = 2m*(2x). This proves
that h*(s) = (1/2)h*(s), which implies

o*(W) = —0 (1)
So by (5.9) we have

Proposition 5.1. Suppose tha{5.6) holds withp < 2. Then
(5.10) o*(\) ~ C:VAW(L/V2) € Ry 2(0) (o — +0),

where
2(p/2)+1

2-pr(2-p)/2%

Ci=2C, =

REMARK 5.1. When O< p < 2 we can confirm (5.10) directly as follows: Since
o € R,2(0), we haveh € Ry,2-1(0), h*(s) = 1/(sh(s)) € Ry/2-1(0) and o* €
Ri—(»/2(0). Therefore,

A 1 1 1 A
0 ~ — ()~ .
Co,1-(p/2) Co,1-(p/2) N(A)  Co,1-(o/2Co,p/2 0 (1)

Combining this with (5.7) we obtain

o) ~ 2@ D) frvy ) /7y = oo VI Va).
Co,1(0/2)Co,p/2

Now let us return to the case < 0 instead ofp < 2. In this casex := (p*/2) —
1= —p/2> 0 and we can apply Proposition 3.4 to (5.10) to obtain

U*(k)

a+1
o(x) —o(+0) ~ (+0)2 € Ru(0) = R,/2(0).
Thus we have the following result, which extends Example &.§], where only
the case-2 < p < 0 is discussed.

Theorem 5.1. Suppose thaf5.6) holds withp < 0. Then

(5.11) a(r) — 1 - ! ! ) € R,2(0) ( — +0),

A
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where
2(p/2)+1
D)= ———>-
lpIT'((2—p)/2)

Notice that, by the reason we explained before, (5.11) isvatgnt to
1 1 P
p(t, 0, 0)— =~ ﬁDpr 1- > VIW(V) € Ryja(o0)  (t — o0).

6. An application to bilateral diffusions

The aim of this section is study how our results in Section 2kwehen we wish
to apply Theorem A in the previous section to ‘bilateral’ fd#ions. Here, ‘bilateral’
means that neither boundary of the state space is regular.

To begin with let us quickly review necessary facts on lingdfiusions. LetX =
(Xi)h=0 be a regular, conservative diffusion on an intervalRn For simplicity, we
change the scale if necessary so that the local generatdrtige dorm

d _d I x <
= —, —l_<X<
dm(x) dx *
where O0< |_, I, < oo and m(x) is a nondecreasing right-continuous function defined
onl =(—I_,1.). (We need not to assume th@at is strictly increasing so that gener-

alized diffusions such as birth—death processes are iadlyd

It is well known that the transition density(t, x, y) with respect todm(x) can be
computed as follows (see e.g. [4]): For eack C, we can definep, (x) and v, (x) as
the unique solutions of

—Lu=2Au, xel

with the initial conditions that ((0), u'(—0)) = (1, 0) and @(0), u'(—0)) = (0, 1), re-
spectively; or, precisely, the solutions of the followingdgral equations:

o) =11 / (=)o) (),

(6.1) g
160 =x = [ (<= 9)0a(3) dm(y)
-0
with the convention thaf™ = — [ ° if x < 0. Then,
e Y0 (L [0 dx
(62) h+($) = )l(lm ¢7S(X) (— ](; m), s>0
and

) ([0 dx
-e)==lm (_/o ws(—x)Z)’ >0
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are called thecharacteristic functionof m. It holds thath,, h_ € #, and hence we
have the following representation:

(6.3) hi(s) =a. + /[;) | d;j_(i),

For everys > 0, we put

U(S:X) = p_a(X) — rl(s)w_s(x);
1

Ux(s; X) = ¢_s(X) + r(S)W—s(X)-

These two are nonnegative solutions of

Lu(x) =su(x), xel,
{u(O) =1

such thatu; is nonincreasing and, nondecreasing. The Wronskian is

(6.4) Wlua(s; ), ua(s; -)] (i= ugup —uju) = h,i(s) + h+1(s)'

So the Green function is given by

_ Jh(s)uz(s; X)ua(s; y) (X =),
(6:5) Gslx. ¥) = {h(S)ul(s; Xuz(s;y) (X >y),
whereh(s) = 1/W[ui(s; -), ux(s; -)]; namely, by (6.4),
1 1 1
(6.6) @ = F(S) + F(S)
Note that it holds
(6.7) Gs(0, 0)= Nh(s),

which follows immediately from (6.5) becausg(s; 0) = 1.
The transition densityp(t, X, y) (with respect todm(x)) can be obtained from
Gs(x, y) via the following formula:

/OO e S'p(t, X, y) dt = Gs(x, y) (s> 0) dm(x)dm(y)-a.e.
0

Especially, by (6.7) we have

(6.8) /:o e S'p(t, 0, 0)dt = h(s) (s> 0)
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provided that Oc Supddm(x)}. Notice that, if o is the spectral function oh(s),
then (6.8) implies

(6.9) p(t, 0, 0)= [: e do(h), s> 0.

In this way the asymptotic behavior of the transition dgngift, 0, 0) will be reduced
to those of two diffusions; one is on-[_, 0] and the other on [Q,.).

Let X = (Xi)i=0 be a diffusion with generator (5.1) on the whole lifie with
b(-) € LL,(R). Notice that the results in the above are applicable firshesuitably
scaled proces¥; = s(X;) and hence toX. So, for example, there exists the transition
density p(t, X, y) with respect tadm(x) := 2exp(f5‘ b(u)du) dx and (6.9) remains valid
if we choose the scale functiog(x) so thats(0) = 0.

Define

X
W, (x) = exp/ b(u) du, X >0,
0
X
W_(x) = exp—/ b(—u)du, x>0
0

as in Section 5. The reason whyb(—x) appears in the definition oN_(x) is simply
because the diffusion—X;);>o0 corresponds to

1( d? d
L= E(dx2 B b(_X)dx)
in place of (5.1).

By (6.2) we easily see that (:= hi(+0)) = si(4+00), wheres, (x) is defined in
a similar way as in the previous section, and hence it holds th

| °dx (< 00)
= Q).
T e Wa(0 T
Sol := h(+0) is obtained by
| = [l
I

(see (1.2)). Also as in the previous section we have

O':|:(+0) = ,\1 , My = 2/ W:t(U)dU
+ 0

3

and therefore,
04 (+0)o_(+0)

0= G0 +o (40) ~

1
m,
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(see (2.9)), where
m=rm, +m (: 2/00(W+(u) + W_(u)) du).
0

Theorem 6.1 (Balanced case) Suppose that

Jim xb(x) = p+ =1 (o4 #0)
and

A
(6.10) Iim/ b(u)du=log—— (O<r <1).
A—oo J_p 1-r

@) If (0O<pr <2)or (pyr =214 = 00), then
o(A) ~ror(A) (A — +0).

@ii) If (or >2)0r (pr =21, < 00), then

o(1) ~ (p2 + qzlrj)m(x) ( — +0),

where p=1/l, and g=1/I_.
(iii) If py <0, then

-3 (5 o)

Proof. (i) It holds W, € R,,_1(00) and o, € R, 2(0) as before (see (5.6)
and (5.7)). By the balancing condition (6.10), it holds

W_(x) 1—r
% _!
W, (X) r
which implies, by (5.7),
o (%) — C:= L

Therefore, by Theorem 2.2 we deduce

c

) ~
oM~

0.(0) =ro () (A — +0).

(i) Similarly, by Theorem 2.1, we see

70~ PP (1) + o) ~ 9P+ G o)



TAUBERIAN THEOREM 245

(i) The assertion can be shown in a similar way by using Taats 2.4 and 5.1.
U

Theorem 6.2 (Lopsided case) Suppose that

liMy_s o0 XB(X) = pp — 1,
Iimxa—oo Xb(X) = p-— 1;

wherep, > 0 and p_ € R. Then
(i) In the following three cases it holds

(6.11) 0(1) ~ 01 () € Ry, 2(0) (n — +0).

(1) p-<ps <2,
(@) p- <2<pi, p-+pr <4,
Q) p-<pyr=2
(i) f2<pr<p_or(2=py <p_,ly<o0),then

o(2) ~ po (L)
(i) If (- <2< ps, p—+ pr >4)or (2= p- < ps, |- =00), then
(6.12) o(A) ~126*() € Ro—(p_j2(0) (A — +0).

Proof. First we remark thaiy € Ry,,v0)2(0).

(i) In each of the cases (1)—(3) we can apply Corollary 2.1@rollary 2.3 (i),
and Corollary 2.4 (i), respectively.

(i) Apply Corollary 2.1 (ii) and Corollary 2.4 (ii), respé&gely.

(i) Since o_ € Ro_(, ;2(0) ando,. € R,, 2(0), the assertion follows from The-
orem 2.3. O

As we mentioned before the transition densjift, x, y) with respect todm(x) =
2 exp( fox b(u) du) dx exists and especiallp(t, 0, 0) satisfies (6.9). So by Karamata—
Tauberian theorem for Laplace transforms the results ferstrectral functionr can be
translated into those fop(t, 0, 0). Thus we have

EXAMPLE 6.1. Letb(x) = bp(x) + n(x) where

- (x> 1),
(6.13) bo(x) = 10 (x| =1),
~72 (x<-1)
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andn(-) € LY(R, dx).

Since W4 (x) ~ const x*+~1 (x — o0), we see that. < oo if and only if p1. > 2,
and alsorh < o if and only if pL < O.
Q) f(p-<py <2;py>0)0r2<p. <p_, then,

p(t, 0, 0)~ const t *+/2  (t — c0).
2) If po <2< pg, then
p(t, 0, 0)~ const maxt —2+(-/2 t=+/2}  (t — o0).
(3) If 2=p_ < py, then
p(t, 0, 0)~ const-t Y(logt) 2 (t — o0).

(4) If p—- <py <0, then

1
p(t, 0, 0)— = ~ const /2 (t > 00).
Since (1) and (2) are immediate from Theorem 6.2 (and Taabehieorem for Laplace
transforms), let us see (3) and (4) only. (3) follows from dteen 6.2 (iii): Since
o_(1) ~ const- A and o (1) ~ const- A*+/2 (see (5.7)), we see from (6.12) and Ex-
ample 3.1 that

o (1) ~ const o#(1) ~ const: (» — +0).

_
(log(1/2))?

Thus we have (3). Similarly, we can deduce (4) by Theoremgi) and Theorem 5.1.

7. Appendix

In this section we briefly sum up some results on Tauberiaarémes for Stieltjes
transforms.

For a nondecreasing, right-continuous functien (—oo, o0) — [0, 0o) such that
a(x) = 0 on (oo, 0), we define thegeneralized Lebesgue—Stieltjes transfdoyn

N do(x) 1 o (1) da
Ha(o:s) = /[o,oo) (s+ 1)1 n+1 /[o,oo) (s + A)n+2 (n=0)

provided that the integral converges. The generalized dgue-Stieltjes transform de-
termines the measumo (1) uniquely. For an inversion formula see [9, Appendix].
The most important case is the following: Let<Ox < n+ 1. Then

o(A)=21% A1>0
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if and only if
Ho(or:8) = Cnos* ",
where
& da” rmM+1—a)f(l+a)
7.1 C o = =
(7.1) " /O (14 a)n+1 r(n+1)

The well-known Karamata’'s extension of Hardy—Littlewoodulberian theorem is

Theorem 7.1. Let0O<a <n+1, A>0,and ¢ € R,(0). Then

o(A) ~ Ap(A) (A — +0)
if and only
Hn(0:8) ~ AChy 0(s)s ™ (s — +0).
For the proofs we refer to [1, p.40] and [7, Appendix].
The assertion holds even & = 0 with the convention thaf ~ Ag meansf /g —

A. Also, ‘A, s — +0' may be replaced byx, s — o0’
Let h € . Sinceh™(s) = (—1)"n! Hy(c; S) we have,

Corollary 7.1. LetO<a <n+1. Theno € R,(0) if and only if HV € R,_n_1(0),
and then

(~1)"h™(S) ~ (N + 1— )T (L + &)s " to(s), s— +0.

Corollary 7.2. LetO<a <n+1and A>0. If o1 € R,(0) (or, equivalently if
h{ € Ry-n-1(0)), then
iff
hi(s) ~ AR(s) (s > +0) <= 52(1) ~ Aay(3) (A — +0).

Lemma 7.1. Letg € Rg(0) (8 >0) and B> 0.
(i) If B> 0,then

(7.2) o(A) —o(+0) ~ Bp(r) (L — +0)

if and only if

A
B
/(; Edo(§) ~ Bmkw(k) (A = +0).

(i) If B =0, then(7.2) implies

A
/O £ do(€) = o(p(h) (n — +0).
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Proof. (i) By Tauberian theorem for Laplace transforms Y h@ds if and only if

/(Om) e’Sdo (1) ~ BI(B + 1)¢(§) (s > o).

Then, by the monotone density theorem (see e.g. [1, p. 38)ishequivalent to

o0 1 /1
[ erdo(r) ~ BI'(B + 1),3—(/)(—),
0 s’ \s
which is also equivalent to

BV 000 = 8L 000,

A
/Ogda(g)~ T(B +2) B+1

(i) Without loss of generality, we may assume that+0) = 0. Since
A A
| €0 = ot [ o0 e

and the second term of the right-hand side is asymptotieallyal toro (1), we deduce
the assertion. O
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