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Abstract
We show a homotopy decomposition of tipelocalized suspensio My, of a
quasitoric manifoldM by constructing power maps. As an application we investigat
the p-localized suspension of the projectianfrom the moment-angle complex onto
M, from which we deduce its triviality forp > dimM /2. We also discuss non-
triviality of m(p and X*x.

1. Introduction and statement of results

Manifolds which are now known as quasitoric manifolds weiteoitluced by Davis
and Januszkiewicz [4] as a topological counterpart of sin@objective toric varieties,
and have been the subject of recent interest in the study oifolds with torus action.
As well as toric varieties, quasitoric manifolds have betrdied in a variety of con-
texts where combinatorics, geometry, and topology inteira@ fruitful way. We refer
the reader to the exposition [2] written by Buchstaber andoRdor basics of quasi-
toric manifolds. This note studies a topological aspectuasiforic manifolds involving
their p-localized suspension. A quasitoric manifad over a simplen-polytope P is
by definition a &-manifold with a locally standard action of the compaetorus T"
such that the orbit spackl/T" is identified with the simple polytop® as manifolds
with corners. A fundamental example of quasitoric mangoid the complex project-
ive spaceC P" which is the only quasitoric manifold over thresimplex, whereas there
are several quasitoric manifolds on the same simple patyiopgeneral. Observe that
sinceCP" admits power maps, thp-localization of the suspensioBC P(r;)) splits into
a wedge ofp —1 spaces as in [6]. We prove that any quasitoric manifold atmits
power maps, and as a consequence phecalization of its suspension splits into a
wedge of p — 1 spaces.

Theorem 1.1. For a quasitoric manifold M there is a homotopy equivalence
EM(D) ) CRVARERY] prl

such that for each,iH,(X;; Z) = 0 unless* = 2i + 1 mod 2@ — 1).
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As a corollary we get a kind of rigidity of quasitoric manifisl over the same
polytope, which also follows from a more general result Bsifon 3.3.

Corollary 1.2. Let M, N be quasitoric manifolds over the same simple n-polytope.
For p > n there is a homotopy equivalence

) M(p) ~ X N(p).

To a simplicial complexK we can assign a spacg which is called the moment-
angle complex forK (see [4, 2]). The fundamental construction involving qtcass
manifolds is that every quasitoric manifold over a simpldytmpe P is obtained by
the quotient of a certain free torus action on the momenteaogmplex Z py, where
K (P) denotes the boundary of the dual simplicial polytopePofThen for a quasitoric
manifold M over P the projectionz: Zxpy — M is of particular importance. We
investigate thep-localization of the suspension of this projection througk p-local
stable splitting of Theorem 1.1. L&k be a simplicial complex on the vertex set
Recall from [1] that there is a homotopy equivalence

(1.1) 22~ \/ 'K
g#lcV

where K, denotes the full subcomplex &€ on the vertex set C V, i.e. K| ={o €

K | o C 1}, and |K,;| means the geometric realization &f;. We identify the map
) B2k ey — ZM(p through the homotopy equivalences of Theorem 1.1 and
(1.1). Note that ifP hasm facets, then the vertex set &f(P) is [m] :={1,..., m}.

Theorem 1.3. Let M be a quasitoric manifold over a simple polytope P with m
facets. Then through the homotopy equivalencedloéorem 1.1and (1.1), the map
) Z(Zke))ip) = ZM(p) is identified with a wedge of maps

\/  E"KP) ) — X

@#1C[m]
[l=i mod p—1

fori=1,...,p— L

Corollary 1.4. Let M be a quasitoric manifold over a simple n-polytope P. For
p > n, the mapZm(p: L(Zkp))p) = EM(p is null homotopic.

We also discuss necessity of suspension and localizatiotriféality of the pro-
jectionz: Zx ) — M in Corollary 1.4. Consider the complex projective sp&te! as
a quasitoric manifold. Then the projection is the Hopf mapS® — CP?, so neither
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%% nor m(p for any p is null homotopic. We will discuss this problem for more
general quasitoric manifolds.

The authors are grateful to Kouyemon Iriye and Shuichi Tdakdor useful
comments.

2. Cohomology of quasitoric manifolds

This section collects basic properties of the cohomologyquésitoric manifolds
which will be used later. LetP be a simplen-polytope, and letM be a quasitoric

manifold over P. Put fj(P) to be the number ofn(— i — 1)-dimensional faces oP
fori =—1,0,...,n—1. Theh-vector of P is defined by lio(P), ..., hy(P)) such that
fork=0,...,n,

(P) = 3 1) (” - i) fia(P).
= n—k

It is known that the module structure of the cohomology Mfis described by the
h-vector of P, implying that the module structure depends only Bn

Proposition 2.1 (Davis and Januszkiewicz [4, Theorem 3.1] (cf. [2])Let M be
a quasitoric manifold over P. Then we have

Ho%(M: z) = 0
and
HZ(M; Z) = zZ"®).

Let K be a simplicial complex on the vertex seth][ The moment-angle complex
Zy is defined by

Z¢:= J D) (c (DI

oeK

where D(o) = {(X1, ..., Xm) € (D?)™ | |xi| = 1 whenevei ¢ o} and D? is regarded as
the unit disk ofC. Then the canonical action Gf™ on (D?)™ restricts to the action of
T™ on Z¢. Let M be a quasitoric manifold over a simptepolytope P with m facets.

Then we may regard the vertex set §f(P) is [m]. As in [4, 2], M is obtained by
quotienting out the moment-angle compl&x ») by a certain freelT ™ "-action which

is the restriction of the canonicdl™-action. Then there is a homotopy fibration

(2.1) Zxpy > M S BT™,

One easily sees thatZxp) is 2-connected (cf. [2]), hence the transgression
HY(T™"; Z) — H2(M; Z) associated with the fibratiof ™" — Zxp) — M is an
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isomorphism. In particular the induced map: H3(BT™"; Z) — H2(M;Z) is an iso-
morphism. It is also known as in [4, Theorem 4.14] (cf. [2]atthhe cohomology ring
H*(M; Z) is generated by 2-dimensional elements. We record thesgefies of the
cohomology ofM.

Proposition 2.2. Let M be a quasitoric manifold over a simple n-polytope P
with m facets.
(1) The transgression HT™™";Z) — H?2(M;Z) associated with the fibration ™" —
Zkp) — M is an isomorphism.
(2) The mape*: H3(BT™™"; Z) — H3(M; Z) is an isomorphism.
(3) The cohomology ring H(M: Z) is generated by B(M; Z).

3. Proofs of the main results

Let P be a simplen-polytope withm facets, and letM be a quasitoric manifold
over P. We construct power maps d¥l. Let u be an integer. By the definition of
moment-angle complexes, the degreself-map of St induces a self-map: Zk @) —
ZK(p).

Lemma 3.1. There is a self-map: M — M satisfying
u* = uk: H¥(M: Z) - H*(M:; Z),
where the & means the multiplication by*u
Proof. SinceM is the quotient of the restriction of the canoniddl'-action to a

certain subtorus, the map: Zk py — Zkp) induces a map: M — M satisfying the
commutative diagram

Tm-n ZK(p) T M
N,
Tm-n ZK(p) T M

whereu: T™" — T™" js the product of the degree map of S. Then by Propos-
ition 2.2 and naturality of transgression, we see that thiensgp u: M — M has the
desired property. ]

We now recall the result of [6], where we reproduce the proobider to clarify
naturality. LetX be a CW-complex of finite type connected satisfying
(1) Hogd(X; Z) = 0 and Heve{ X; Z) is free, and
(2) there is a self-map: X — X satisfyingg. = uX: Hx(X; Z) — Hx(X; Z) for any
k > 0, whereu is an integer whose modulp reduction is the primitive g — 1) root
of unity of Z/p.
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Define a self mapy: X — =X by ; := (Zp—ul)o---0(Zg —u')o---0(Zep—-uP?)
fori =1,...,p—1. Then &).: Has1(SX:;Z/p) — Hau1(EX; Z/p) is trivial for
k#i mod p—1 and is the isomorphism fdt =i mod p— 1. Put

X = hocolim{):X(p) ﬂ) 2 X(p) i) 2 X(p) i) .- 1
Then it is easy to check thaX; is p-locally of finite type and

Ha1(EX:Z/p), k=i mod p—1,

Har1(Xi: Z/p) =
x+1(Xi: Z/p) {O, k#£imodp-1

such that the canonical mapX; — X; induces the projection in mog homology.
Then the composit& Xy — ZX(p) V- -V E X = X1V---V Xp_1 is an isomorphism
in mod p homology, hence an isomorphism in homology with coeffici&p since
spaces on both sides apelocally of finite type, where the first arrow in the composite
is defined by using the suspension comultiplication. Tleeeeby the J.H.C. Whitehead
theorem we obtain:

Lemma 3.2 (Mimura, Nishida and Toda [6]) Let X and X be as above. There
is a homotopy equivalence

EXp) 2 Xy VeV Xp
such thatH,(X;: Z/p) = O unlesss = 2 + 1 mod 2p—1) fori =1,..., p—1

We now prove the main results.

Proof of Theorem 1.1. Combine Lemmas 3.1 and 3.2. O

Proof of Corollary 1.2. Recall thaM is of dimension 8. Apply Theorem 1.1
to M, then we getSMp) >~ Xy v --- Vv Xp1. If p > n, the spaceX; is torsion free
in homology overz, and satisfiesH,(Xi: Z/p) = 0 unlessx = 2i + 1. Then since
X is simply connectedX; is a wedge ofstzg))“, where the number of spheres is the
2i-dimensional Betti number oM which is equal toh;(P) by Proposition 2.1. So
we obtain a homotopy equivalenceM ) =~ \/ipz_l1 VP ¥ Wwe can get the same

p)
homotopy equivalence foN as well, and therefore the proof is completed. ]

Proof of Theorem 1.3. Define a mah: X Zxpy — ZZkp) by fi = (Zu—ub)o

-eh0 (ﬁ—\u‘) o---o(Bu—uPYfori=1,..., p—1, whereu is an integer whose
modulo p reduction is the primitive § — 1) root of unity of Z/p. Put

. Bi Bi Bi
Yi = hocolim{Z(Zk @) = Z(Zk@)p = Z(Ek@)p = -}
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By naturality of the homotopy equivalence (1.1) with resper self-maps ofS* [1,
Theorem 2.10], the self-map: X Zxp) — X Zk(p) is identified with a wedge of the

degreeu!' maps
ul'lh: SR ()| - =12 K (P), |

for @ # | c [m]. Then we haveY; = \/ gzcm XZ!'""?|K(P);| and the canonical
I'|=i mod p—1

map X(Zkp))p) — Yi is the projection |silmilarlyp to the proof of Proposition 3.80

the Compositeil(ZK(p))(p) — E(ZK(p))(p) VeV E(ZK(p))(p) —->YrV:--V Yp,]_ is a

homotopy equivalence, where the first map is defined by theesisgon comultiplication

and the second map is a wedge of the canonical maps into thetbpyncolimits. On

the other hand, by Lemma 3.1 there is a commutative diagram

Bi
EZK(p) — EZK(p)

- J»

M —% 5 9™

where ¢; is as above. Then there are maps Y; — X; satisfying a commutative
diagram

E(ZK(P))(p) E— Yl VooV Yp,]_

lzﬂ(p) lj‘[l\/---\/ﬂp,l

ZM(p) _— Xl\/---\/Xp_l

where the horizontal arrows are the prescribed homotopyalgaces. Thus the proof
is completed. O

Proof of Corollary 1.4. Sincep > n, the mapZn(p: Z(Z2kp))p) — ZM(p) is
identified with a wedge of the mapy -y i (X" 2K (P)i )p = V Sy * for i =

1,...,p—1. If dimK(P), = |l|—1, thenK(P) is a simplex, sqK(P),| is contractible.
Then\/, cim.iij=i =" THK(P)i | is homotopy equivalent to a CW-complex of dimension
at most 2, completing the proof. O

We close this section by showing a general homotopy thealeproperty of finite
complexes consisting only of even cells from which Corgildr2 also follows since
there are cell decompositions of quasitoric manifolds dmtyeven dimensional cells.

Proposition 3.3. Let X be a finite dimensional simply connected finite complex
consisting only of0 and odd cells. If p> n, then X is homotopy equivalent to a
wedge of p-localized odd spheres.



p-LOCAL STABLE SPLITTING OF QUASITORIC MANIFOLDS 849

Proof. Induct on the skeleta oK. We may assume the 1-skeleton is a point
since X is simply connected, so the claim is trivially true for theskeleton. Sup-
pose thatX{s ™ ~ \/I77 /™ §4%. Then the attaching maps of K2+ 1)-cells of
X(p are identified with maps? — \/|1 \/™ S&*. By the Hilton—Milnor theorem,

Q(Vierv™ r|>)+1) is homotopy equivalent to a weak product of the loop spaces of

p-local odd spheres of dimension 3. Then sincep > k and ngj(Sz'“)(p) = 0 for
j <+ p—1, the attaching maps are null homotopic, hence the indugtioceeds. []

4. Non-triviality of the projection =

Let M be a quasitoric manifold over ampolytope P and letz: Zxpy — M de-
note the projection. By Corollary 1.&m, is trivial for p > n. So one would ask
whetherz(, and Xz are trivial or not. This section shows non-triviality af, and
examines non-triviality ofx*°x for quasitoric manifolds over a product of simplices
and low dimensional quasitoric manifolds. We first consitter p-localization.

Proposition 4.1. The p-localizationrp is not null homotopic for any prime p.

Proof. Recall that there is a homotopy fibration (2.1). Themg) were null
homotopic, we would hava g™ =~ (Zkp))) x 2M(g), implying that Zk ) is ration-
ally contractible since it is simply connected [2, Corofi@.19]. On the other hand,
Zkp) is a compact simply connected+ n-dimensional manifold without boundary by
[2, Lemma 6.2]. ThenZkp) is not rationally contractible, a contradiction. Therefor
() iS not null homotopic, completing the proof. ]

We next consider non-triviality o&=*°z for quasitoric manifolds over a product
of simplices. We start with the easiest case. Recall thatctdmplex projective space
CP" is the only quasitoric manifold over thesimplex A", and that the projection
is the canonical mag®"** — CP". Then since the cofiber of is CP"*! whose top
cell does not split after stabilization, one sees thatz is not null homotopic. We
here record this almost trivial fact.

Lemma 4.2. The projectionz: Zxany — CP" is not null homotopic after
stabilization.

It is helpful to recall the fact on moment-angle complexegarding products of
simple polytopes. For simple polytopdd, P, the productP; x P, is also a simple
polytope andK (P, x Py) = K(Py) % K(P,), the join of K(P;) and K(P,). By definition
we haveZK(plxpz) = ZK(Py+K(Py) = ZK(P) X ZK (P and in particularZK(pl) is a retract
of Zx(pxp,)- We prove a simple lemma needed later.
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Lemma 4.3. Let P be a simple polytopeand let M be a quasitoric manifold
over P x AK. If there is a map q M — CPX satisfying a homotopy commutative
diagram

proj
Zr(Pxak) —> ZK(ak)

| I

M —1 5 CPk

then the projectionr : Zyxpxaky — M is not null homotopic after stabilization.

Proof. SinceZkak is a retract of Zx(pyax), it follows from Lemma 4.2 that
¥°°(q o ) is not null homotopic. Therefore SiNCE*(q o ) = £*°g o X*x, the
proof is completed. ]

There is a class of quasitoric manifolds over a product ofpitas called gener-
alized Bott manifolds which have been intensively studieddric topology. See [3]
for details. By definition a generalized Bott manifoRl over A™ x --- x A™ satisfies
a commutative diagram

ZK(AMxxAN) > ZK(AMxexAN-1) > 10 > ZK(anmxA) —> ZK(am)
I iy & I
BI q Bl—l -1 . 9 B2 qu Bl

where the upper horizontal arrows are the projections. ESBc= CP™, we get the
following by Lemma 4.3

Corollary 4.4. If B is a generalized Bott manifold ovex™ x---x A", then the
projection 7 : Zkamx.-xanmy — B is not null homotopic after stabilization.

In order to examine non-triviality ok>°x for quasitoric manifolds other than Bott
manifolds, we give a cohomological generalization of Len#na

Lemma 4.5. Let X be a space such that 2#X;Z) = Z(xq, ..., X) and
Hedd(X;Z/p) = 0, and let F be the homotopy fiber of a map= (x1, ..., X): X —
BTX. Suppose the following conditions hold
(1) There are xe H2-2(BTK; Z/p) and transgressive & H?~(F; Z/p) such that

7(a) = (x)

for some degre@i Steenrod operation.
(2) There is a map f S?~1 — F such that f(a) # 0 in mod p cohomology.
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Then the stabilization of the fiber inclusion & X is not null homotopic.

Proof. Leti: F — X and j: X — Cj,s+ denote the inclusions, whet@; means
the mapping cone of a mag. Then there is a commutative diagram

0 H2-YS2-1Z/p) —2— H2Z(Ciot; Z/p) AN H2(X;Z/p) —— 0

I i I

H2Y(F: Z/p) —— HA(X, F:2/p) «— H?(BT 2/p)

with exact top row, wheref : Ci.s — C; denotes the map induced byxigand f. Put
x = f* oa*(x). Sincer(a) = 6(x), we haved(X) = f* oa*(8(x)) = § o f*(a) # 0.
Then we see that any splitting of the top row

H*(Cior:Z/p) = A (0(X)), A= H"(X:Z/p),

as modules implies that(A) ¢ A by x € A. If =i were null homotopic, we would
haved(A) C A which contradicts to the above calculation, 3&i is not null homotopic.
O

We apply Lemma 4.5 to quasitoric manifolds over a productaf simplices which
are not necessarily generalized Bott manifolds.

Proposition 4.6. If M is a quasitoric manifold over\k x A™* and neither ki 2
nor n—k + 2 is a power of2, then X*x is not null homotopic.

Proof. By Lemma 4.2 we may assume<k < n. It follows from Proposition 2.2
that H?(M; Z) is a free abelian group with a basis y. Let «: M — BT? be the
classifying map of the principal bundi€? — Zkry =~ M, and putg = (X, y): M —
BT2. Then by Proposition 2.2 there is a self mapof BT? satisfying 8 ~ h o «,
so it is sufficient to show that the inclusion of the homotopyefi of 8 is not null
homotopic by applying Lemma 4.5. By [3] the mod 2 cohomolodyM is given by

H*(M; Z/2) = Z/2[x, yl/(x* "1 (x + y)!, y" )

for somel > 0, wherek’ = k or k' = n—k andx, y are the mod 2 reduction of,
y respectively. Choose € H?(BT?; Z/2) satisfying8*(t) = y. Letr be the largest
integer satisfyingh —k’ + 1 > 2" — 1. Then sincen — k' 4+ 2 is not a power of 2, we
have f— Kk +1)— (2 —1) < 2" —1, so we get((nfk,fl;f(z_l)) # 0 mod 2 by Lucas'’
theorem. Thus we obtain

2 -1

SRl-K+1)-@ -1)2 -1 _
« nh—k+1)—(2 —-1)

)tnk’+l — tn—k’+1
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Since Zg (akxany = S x SZO-K+1 there is a spherica € HZM KT Zy aieaniy;
7./2) satisfyingz(a) = t"**1 for a degree reason. Therefore the proof is donel]

We next specialize Lemma 4.5 for applications to low dimensi quasitoric
manifolds.

Proposition 4.7. Let M be a quasitoric manifold. If there is non-zero ex
H?(M; z/2) satisfying ¥ = 0, then ¥®x is not null homotopic.

Proof. It is sufficient to check that the conditions of Lemm& 4re satisfied.
Let P be a polytope on whichM stands. SinceZkp) is 2-connected, there ia
H3(Zk(p): Z/2) satisfyingz(a) = t2, wheret € H3(BT™™"; Z/2) satisfiesa*(t) = x.
Then fort? = Scft, the condition (1) of Lemma 4.5 is satisfied. We also have that
the Hurewicz maprs(Z2kp)) — Ha(Zk(p); Z) is an isomorphism, so any element of
H3(ZK(p);Z/2) is spherical. Then the condition (2) of Lemma 4.5 is satikfiand
therefore the proof is done. ]

We now apply Proposition 4.7 to low dimensional quasitorianifolds.

Corollary 4.8. If M is a 4-dimensional quasitoric manifoldthen Xz is not
null homotopic.

Proof. Suppose that the quasitoric manifditi stands over a 2-polytop®. If
P = A2, the corollary follows from Lemma 4.2 sing@P? is the only quasitoric mani-
fold over A2, If P # A2, then P is ak-gon fork > 4, hencehy(P) =1 <k -2 =
h1(P). Then it follows from Proposition 2.1 that dild*(M; Z/2) < dim H3(M; Z/2),
implying that there must be non-zesoe H?(M; Z/2) satisfyingx? = 0. Thus the
proof is completed by Proposition 4.7. ]

REMARK 4.9. We here remark thaty(P) = hy(P) by the Dehn—-Sommerville
equation for dimP = 3 andh;(P) < hy(P) for dim P > 3 by the g-theorem (cf. [2]),

so the argument in the proof of Corollary 4.8 does not workdion P > 3.

Corollary 4.10. If M is a quasitoric manifold over th&8-cube then X*°x is not
null homotopic.

Proof. It is calculated in [3, 5] that the mod 2 cohomology Mfis given by

H*(M: Z/2) = Z/2[x, Y, Z]/(x* + x(ay + b2), y* + y(cx + d2), ZZ + z(ex+ fy))
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for a,b,c,d, e f € Z/2 satisfying

ac=df =0,

oo P
[oRN N o]
oo
|
-

We now suppose thab? # 0 for all non-zerow € H3(M;Z/2). Then forx: # O
we have 4, b) is either (1, 0), (0, 1), (1, 1). Consider the casgelf) = (1, 0). That
a=1impliesc =0, sod =1 sincey? # 0. Then f = 0, implying e = 1 sincez® #

|1lce 101 o
0. Hence we obtaina 1 f|=|1 1 0 = 0, a contradiction. In the case,(b) =
bdl 011

(0, 1), (1, 1) we can similarly getc(d, e, f) = (0, 1, 1, 0), so a contradiction occurs.
Thus there is non-zerw € H3(M; Z/2) with w? = 0, and therefore the proof is done
by Proposition 4.7. ]

For the last we dare to conjecture the following from Propass 4.6, 4.7 and
Corollaries 4.4, 4.8 and 4.10.

CONJECTURE4.11. For any quasitoric manifoltfl, Xz is not null homotopic.
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