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Abstract
In this note, we consider the three-dimensional (3D) incompressible Boussinesq

equations. We obtain the logarithmically improved regularity criterion of smooth so-
lutions in terms of the velocity field. This result improves some previous works.

1. Introduction

This note is devoted to the study of the regularity criterionof smooth solutions for
the 3D Boussinesq equations

(1.1)
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:

�tuC (u � r)u � �1uCr p D �e3, x 2 R3, t > 0,

�t� C (u � r)� � �1� D 0, x 2 R3, t > 0,

r � u D 0, x 2 R3, t > 0,

u(x, 0)D u0(x), �(x, 0)D �0(x), x 2 R3,

where u D u(x, t) 2 R3 is the velocity, p D p(x, t) 2 R is the scalar pressure,� D
�(x, t) 2 R3 is the temperature ande3 D (0, 0, 1)T. � � 0 denotes the viscosity,� � 0
denotes the thermal diffusivity. The Boussinesq equationsare of relevance to study a
number of models coming from atmospheric or oceanographic turbulence where rota-
tion and stratification play an important role (see e.g. [10,12]).

Local existence and uniqueness theories of solutions to theBoussinesq equations
have been studied by many mathematicians and physicists (see, e.g., [1, 2, 9]). But due
to the presence of Navier–Stokes equations in the system (1.1) whether this unique
local solution can exist globally is an outstanding challenge problem. For this reason,
there have been a lot of literatures devoted to finding sufficient conditions to ensure
the smoothness of the solutions; see [4, 3, 5, 6, 14, 15, 13, 16, 17, 18, 19] and so forth.

Motivated by the above cited works, our aim is to establish a logarithmically im-
proved regularity criterion of smooth solutions in terms ofthe velocity field which sig-
nificantly extends the result in [19]. For the sake of simplicity, we set � D � D 1.
More precisely, we will prove

2010 Mathematics Subject Classification. 35Q35, 35B65, 76W05.
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Theorem 1.1. Assume that(u0, �0) 2 H3(R3) � H3(R3). Let (u, �) be a local
smooth solution of the system(1.1). If the following condition holds

(1.2)
Z T

0

kru(t)k2
PB�1
1,1

ln
�

eC kru(t)k
PB�1
1,1

� dt <1,

then the solution pair(u, �) remains smooth on[0, T ].

As a consequence of the factkruk
PB�1
1,1
� kuk

PB0
1,1

, we have the following result.

Corollary 1.2. Assume that(u0, �0) 2 H3(R3) � H3(R3). Let (u, �) be a local
smooth solution of the system(1.1). If the following condition holds

(1.3)
Z T

0

ku(t)k2
PB0
1,1

ln
�

eC ku(t)k
PB0
1,1

� dt <1,

then the solution pair(u, �) remains smooth on[0, T ].

REMARK 1.3. As the case� D 0, the system (1.1) reduces to the classical Navier–
Stokes equations. It is easy to see that the Corollary 1.2 is arefined improvement of that
Theorem 1 in [8] due to the well-known embedding BMO,! PB0

1,1.

2. The proof of the Theorem 1.1

This section is devoted to the proof of the Theorem 1.1. Throughout the paper,C
stands for some real positive constants which may be different in each occurrence.

Proof of Theorem 1.1. If (1.2) holds, one can deduce that for any small � > 0,
there existsT0 D T0(�) < T such that

(2.1)
Z T

T0

kru(t)k2
PB�1
1,1

ln
�

eC kru(t)k
PB�1
1,1

� dt � �.

Consequently, the main goal of this section is to establish the following a priori estimate

lim sup
t!T�

(kr3u(t)k2L2 C kr
3
�(t)k2L2) <1.

Thanks to the divergence-free conditionr �uD 0, from the temperature� equation, we
immediately have the global a priori bound for� in any Lebesgue space

(2.2) k�(t)kL p
� k�0kL p , 8p 2 [2,1],
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for any t 2 [0, T ].
We also have the following basicL2 energy estimate

(2.3)
1

2

d

dt
(ku(t)k2L2 C k�(t)k2L2)C kruk2L2 C kr�k

2
L2 � kukL2

k�kL2,

which together with (2.2) implies that for anyt 2 [0, T ]

(2.4) ku(t)k2L2 C k�(t)k2L2 C

Z t

0
(kruk2L2 C kr�k

2
L2)(� ) d� � C <1.

Multiplying the equation of (1.1)1 and (1.1)2 by 1u and1� , respectively, integration
by parts and taking the divergence free property into account, one concludes that

(2.5)

1

2

d

dt
(kru(t)k2L2 C kr�(t)k2L2)C kr2uk2L2 C kr

2
�k

2
L2

D �

Z

R

3
�e3 �1u dxC

Z

R

3
(u � ru) �1u dxC

Z

R

3
(u � r�) �1� dx

WD N1C N2C N3.

Integrating by parts and Young inequality, it yields

(2.6) N1 � CkrukL2
kr�kL2.

In order to deal with the termsN2 and N3, we need the following interpolation in-
equality due to Meyer–Gerard–Oru [11]

(2.7) k f kL4
� Ckr f k1=2L2 k f k1=2

PB�1
1,1

, 8 f 2 PH1(R3) \ PB�1
1,1(R3).

By the above interpolation inequality (2.7) and Young inequality, we can bound the
terms N2 and N3 as

(2.8)

N2 D �

Z

R

3
(�ku � ru) � �ku dx

� CkrukL2
kruk2L4 � CkrukL2

kr

2ukL2
kruk

PB�1
1,1

�

1

2
kr

2uk2L2 C Ckruk2
PB�1
1,1
kruk2L2,

and

(2.9)

N3 D �

Z

R

3
(�ku � r�) � �k� dx

� CkrukL2
kr�k

2
L4 � CkrukL2

kr

2
�kL2
kr�k

PB�1
1,1

� CkrukL2
kr

2
�kL2
k�k

PB0
1,1
� CkrukL2

kr

2
�kL2
k�kL1

�

1

2
kr

2
�k

2
L2 C Ck�k2L1kr�k

2
L2,
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where we have used the following fact in (2.9)

kr�k

PB�1
1,1
� Ck�k

PB0
1,1
� Ck�kL1 .

Substituting (2.6), (2.8), and (2.9) into (2.5), we arrive at

(2.10)

d

dt
(kru(t)k2L2 C kr�(t)k2L2)C kr2uk2L2 C kr

2
�k

2
L2

� C(1C k�k2L1 C kruk2
PB�1
1,1

)(kruk2L2 C kr�k
2
L2).

For any t 2 (T0, T), we denote

y(t) WD max
�2(T0,t ]

(ku(� )k2H3 C k�(� )k2H3).

It should be noted thaty(t) is a nondecreasing function.
Thanks to the Gronwall inequality, it follows from (2.10) that for any T0 � t < T

(2.11)

kru(t)k2L2 C kr�(t)k2L2 C

Z t

T0

(kr2u(� )k2L2 C kr
2
�(� )k2L2) d�

� (kru(T0)k2L2 C kr�(T0)k2L2) exp

�

QC
Z t

T0

(1C k�kL1 C kruk2
PB�1
1,1

)(� ) d�

�

� M exp

�

QC
Z t

T0

kru(� )k2
PB�1
1,1

d�

�

� M exp

2

4 QC
Z t

T0

kru(� )k2
PB�1
1,1

ln
�

eC kru(� )k
PB�1
1,1

� ln
�

eC kru(� )k
PB�1
1,1

�

d�

3

5

� M exp

2

4 QC
Z t

T0

kru(� )k2
PB�1
1,1

ln
�

eC kru(� )k
PB�1
1,1

� ln
�

eC ku(� )k
PB0
1,1

�

d�

3

5

� M exp

2

4 QC
Z t

T0

kru(� )k2
PB�1
1,1

ln
�

eC kru(� )k
PB�1
1,1

� ln(eC ku(� )kL1) d�

3

5

� M exp

2

4 QC
Z t

T0

kru(� )k2
PB�1
1,1

ln
�

eC kru(� )k
PB�1
1,1

� ln(eC ku(� )kH3) d�

3

5

� M exp

2

4 QC
Z t

T0

kru(� )k2
PB�1
1,1

ln
�

eC kru(� )k
PB�1
1,1

� ln(eC y(� )) d�

3

5

� M exp

2

4 QC
Z t

T0

kru(� )k2
PB�1
1,1

ln
�

eC kru(� )k
PB�1
1,1

� d� ln(eC y(t))

3

5.
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We want to state here that from the above observationQC is an absolute constant and
M depends onkru(T0)kL2, kr�(T0)kL2, T0, T and �0.

It follows from the condition (2.1) that

kru(t)k2L2 C kr�(t)k2L2 C

Z t

T0

(kr2u(� )k2L2 C kr
2
�(� )k2L2) d� � C(eC y(t))

QC� .(2.12)

Applying r3 to the equation (1.1)1 and (1.1)2, multiplying the resulting equations by
r

3u andr3
� respectively and adding them up, we have

(2.13)

1

2

d

dt
(kr3u(t)k2L2 C kr

3
�(t)k2L2)C kr4uk2L2 C kr

4
�k

2
L2

D

Z

R

3
r

3
�e3 � r

3u dx�
Z

R

3
r

3(u � ru) � r3u dx�
Z

R

3
r

3(u � r�) � r3
� dx

WD K1C K2C K3.

It follows from Young inequality that

(2.14)

K1 � Ckr3ukL2
kr

3
�kL2

� Ckr2uk1=2L2 kr
4uk1=2L2 kr

2
�k

1=2
L2 kr

4
�k

1=2
L2

�

1

4
kr

4uk2L2 C

1

4
kr

4
�k

2
L2 C C(kr2uk2L2 C kr

2
�k

2
L2),

where we have applied the following Gagliardo–Nirenberg inequality

kr

3 f kL2
� Ckr2 f k1=2L2 kr

4 f k1=2L2 .

Now we recall the following commutator estimate (see [7])

(2.15) k[3s, f ]gkL p
� C(kr f kL p1k3

s�1gkL p2 C k3
s f kL p3kgkL p4 ),

with s> 0, p2, p3 2 (1,1) such that 1=p D 1=p1C 1=p2 D 1=p3C 1=p4.
From the divergence-free condition and the commutator estimate (2.15), we obtain

K2 D �

Z

R

3
[r3, u � r]u � r3u dx

� CkrukL2
kr

3uk2L4

� CkrukL2
kr

2uk1=4L2 kr
4uk7=4L2

�

1

8
kr

4uk2L2 C Ckruk8L2kr
2uk2L2,

where we have used the following Gagliardo–Nirenberg inequality

kr

3ukL4
� Ckr2uk1=8L2 kr

4uk7=8L2 .
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Similar to the estimate ofK2, the termK3 can be bounded as

K3 D �

Z

R

3
[r3, u � r]� � r3

� dx

� CkrukL2
kr

3
�k

2
L4 C kr�kL2

kr

3ukL4
kr

3
�kL4

� CkrukL2
kr

2
�k

1=4
L2 kr

4
�k

7=4
L2 C kr�kL2

kr

2uk1=8L2 kr
4uk7=8L2 kr

2
�k

1=8
L2 kr

4
�k

7=8
L2

�

1

8
kr

4uk2L2 C

1

4
kr

4
�k

2
L2 C C(kruk8L2 C kr�k

8
L2)(kr2uk2L2 C kr

2
�k

2
L2).

(2.16)

Combining the previous estimates, we get

(2.17)

d

dt
(kr3u(t)k2L2 C kr

3
�(t)k2L2)

� C(kruk8L2 C kr�k
8
L2)(kr2uk2L2 C kr

2
�k

2
L2)C C(kr2uk2L2 C kr

2
�k

2
L2).

Integrating the inequality (2.17) over (T0, t), we easily get

kr

3u(t)k2L2 C kr
3
�(t)k2L2 � (kr3u(T0)k2L2 C kr

3
�(T0)k2L2)

� C
Z t

T0

(kr2uk2L2 C kr
2
�k

2
L2) d� C C

Z t

T0

(kruk8L2 C kr�k
8
L2)(kr2uk2L2 C kr

2
�k

2
L2) d�

� C(eC y(t))
QC�
C C

Z t

T0

(eC y(� ))4 QC�(kr2uk2L2 C kr
2
�k

2
L2)(� ) d�

� C(eC y(t))
QC�
C C(eC y(t))4 QC�

Z t

T0

(kr2uk2L2 C kr
2
�k

2
L2)(� ) d�

� C(eC y(t))
QC�
C C(eC y(t))5 QC�

� C(eC y(t))5 QC� ,

(2.18)

which immediately implies that

eC y(t) � CT0 C C(eC y(t))5 QC� , CT0 D kr
3u(T0)k2L2 C kr

3
�(T0)k2L2.

By appropriately selecting� < 1=(5 QC), the above inequality allows us to show

y(t) � C(kr3u(T0)kL2, kr3
�(T0)kL2, T0, T) <1, 8t 2 [T0, T ].

As a consequence, we get the boundness ofH3
� H3-norm of (u, �) for all t 2 [0, T ].

Consequently, The proof of Theorem 1.1 is completed.

ACKNOWLEDGEMENTS. The author would like to thank the referees for their valu-
able comments and suggestions, which are very helpful for author to improve this paper.



REGULARITY CRITERION FOR 3D BOUSSINESQEQUATIONS 423

References

[1] D. Chae and H.-S. Nam:Local existence and blow-up criterion for the Boussinesq equations,
Proc. Roy. Soc. Edinburgh Sect. A127 (1997), 935–946.

[2] D. Chae, S.-K. Kim and H.-S. Nam:Local existence and blow-up criterion of Hölder continu-
ous solutions of the Boussinesq equations, Nagoya Math. J.155 (1999), 55–80.

[3] J. Fan and T. Ozawa:Regularity criteria for the3D density-dependent Boussinesq equations,
Nonlinearity 22 (2009), 553–568.

[4] J. Fan and Y. Zhou:A note on regularity criterion for the3D Boussinesq system with partial
viscosity, Appl. Math. Lett.22 (2009), 802–805.

[5] S. Gala, Z. Guo and M.A. Ragusa:A remark on the regularity criterion of Boussinesq equations
with zero heat conductivity, Appl. Math. Lett.27 (2014), 70–73.

[6] Z. Guo and S. Gala:Regularity criterion of the Newton–Boussinesq equations in R3, Commun.
Pure Appl. Anal.11 (2012), 443–451.

[7] T. Kato and G. Ponce:Commutator estimates and the Euler and Navier–Stokes equations,
Comm. Pure Appl. Math.41 (1988), 891–907.

[8] H. Kozono and Y. Taniuchi:Bilinear estimates in BMO and the Navier–Stokes equations, Math.
Z. 235 (2000), 173–194.

[9] A.J. Majda and A.L. Bertozzi: Vorticity and Incompressible Flow, Cambridge Univ. Press, Cam-
bridge, 2002.

[10] A. Majda: Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture
Notes in Mathematics9, New York Univ., Courant Inst. Math. Sci., New York, 2003.

[11] P. Gerard, Y. Meyer and F. Oru:Inégalités de Sobolev précisées; in Séminaire sur les Équations
aux Dérivées Partielles, 1996–1997, Exp. IV, 11 pp, École Polytech., Palaiseau.

[12] J. Pedlosky:Geophysical fluid dynamics, New York, Springer-Verlag, 1987.
[13] Y. Qin, X. Yang, Y. Wang, X. Liu:Blow-up criteria of smooth solutions to the3D Boussinesq

equations, Math. Methods Appl. Sci.35 (2012), 278–285.
[14] Y. Taniuchi: A note on the blow-up criterion for the inviscid2-D Boussinesq equations; in The

Navier–Stokes Equations: Theory and Numerical Methods (Varenna, 2000), Lecture Notes in
Pure and Appl. Math.223, Dekker, New York, 131–140.

[15] H. Qiu, Y. Du and Z. Yao:A blow-up criterion for3D Boussinesq equations in Besov spaces,
Nonlinear Anal.73 (2010), 806–815.

[16] Z. Xiang: The regularity criterion of the weak solution to the3D viscous Boussinesq equations
in Besov spaces, Math. Methods Appl. Sci.34 (2011), 360–372.

[17] F. Xu, Q. Zhang and X. Zheng:Regularity criteria of the3D Boussinesq equations in the
Morrey–Campanato space, Acta Appl. Math.121 (2012), 231–240.

[18] Z. Ye: Blow-up criterion of smooth solutions for the Boussinesq equations, Nonlinear Anal.
110 (2014), 97–103.

[19] Z. Zhang:Some regularity criteria for the3D Boussinesq equations in the class L2(0,T I PB�1
1,1),

ISRN Appl. Math. (2014), Art. ID 564758, 4 pp.

School of Mathematical Sciences
Beijing Normal University
Laboratory of Mathematics and Complex Systems, Ministry of Education
Beijing 100875
People’s Republic of China
e-mail: yezhuan815@126.com


