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Abstract
In this note, we consider the three-dimensional (3D) incasgible Boussinesq
equations. We obtain the logarithmically improved regtyacriterion of smooth so-
lutions in terms of the velocity field. This result improvesnee previous works.

1. Introduction

This note is devoted to the study of the regularity criteriddrsmooth solutions for
the 3D Boussinesq equations

U+ (U-V)u—vAu+Vp=~e;, xeR3 t>0,
&0 + (u-V)o —kAH =0, X eR3 t>0,
V.-u=0, xeR3 t>0,
u(x, 0) = ug(x), 6(x, 0)=6g(x), X €RZ,

(1.1)

whereu = u(x, t) € R® is the velocity, p = p(x,t) € R is the scalar pressuré, =
0(x,t) € R® is the temperature anes = (0, 0, 1J. v > 0 denotes the viscosity, > 0
denotes the thermal diffusivity. The Boussinesq equatianes of relevance to study a
number of models coming from atmospheric or oceanographtautence where rota-
tion and stratification play an important role (see e.g. [i1]).

Local existence and uniqueness theories of solutions tdBthessinesq equations
have been studied by many mathematicians and physicists €sg, [1, 2, 9]). But due
to the presence of Navier—Stokes equations in the systet) (dhether this unique
local solution can exist globally is an outstanding chajkerproblem. For this reason,
there have been a lot of literatures devoted to finding ssfiiciconditions to ensure
the smoothness of the solutions; see [4, 3, 5, 6, 14, 15, 13,7148, 19] and so forth.

Motivated by the above cited works, our aim is to establish gafdithmically im-
proved regularity criterion of smooth solutions in termstteé velocity field which sig-
nificantly extends the result in [19]. For the sake of simiplicwe setv = « = 1.
More precisely, we will prove

2010 Mathematics Subject Classification. 35Q35, 35B65, W0



418 Z.YE

Theorem 1.1. Assume thaiug, 6g) € H3(R3) x H3(R®). Let (u, #) be a local
smooth solution of the systefh.1). If the following condition holds

. ‘/T IVUOIZ,
| o In(e+IVu®ls )

dt < oo,

then the solution paiil(u, 8) remains smooth of0, T].

As a consequence of the fagVu|z. =~ |lullge , we have the following result.

Corollary 1.2. Assume tha{uo, o) € H3(R3) x H3(R®). Let (u, #) be a local
smooth solution of the systefh.1). If the following condition holds

Ju@®I2,
(1.3) /T Pooco dt < oo,
o Ine+ u@®lg )

then the solution paiil(u, &) remains smooth of0, T].

REMARK 1.3. As the casé = 0, the system (1.1) reduces to the classical Navier—
Stokes equations. It is easy to see that the Corollary 1.2efirred improvement of that
Theorem 1 in [8] due to the well-known embedding BMO ngo.

2. The proof of the Theorem 1.1

This section is devoted to the proof of the Theorem 1.1. Tgihout the paperC
stands for some real positive constants which may be differe each occurrence.

Proof of Theorem 1.1. If (1.2) holds, one can deduce that for smalle > 0,
there existsTp = To(€) < T such that

(2.1) dt <e.

/w IVUOIZ,
To |n(e+ ||Vu(t)||3501m)

Consequently, the main goal of this section is to establishfollowing a priori estimate

lim sup(|| V3u(t)[|?2 + V30 ()]I2.) < <.
t—>T-

Thanks to the divergence-free conditi8hu = 0, from the temperatureé equation, we
immediately have the global a priori bound férin any Lebesgue space

(2.2) [0M®)lIe < lI6ollLe, VP € [2, 00,
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for anyt € [0, T].
We also have the following basic? energy estimate
1d
2dt
which together with (2.2) implies that for artye [0, T]

(2.3) (lu@IIZ: + 10OIF) + I VullE. + IVOIE: < lull )iz,
t
(2.4) U@ + 16113 +/O (IVull?2 + IVe[.)(x) d < C < oo.

Multiplying the equation of (1.1)and (1.1} by Au and A6, respectively, integration
by parts and taking the divergence free property into adgame concludes that

1d
> qrUIVUOIE: + IVOWIE) + IV2ullg + V20T
(2.5) :-/ 9e3-Audx+/ (u-Vu)-Audx+/ (Uu- V) - A0 dx
R3 R3 R3
:= N7 + N2 + Na.

Integrating by parts and Young inequality, it yields
(2.6) N1 < C||Vu]|2|| VO]l 2.

In order to deal with the term&\, and N3, we need the following interpolation in-
equality due to Meyer—Gerard—Oru [11]

2.7) Ifllee <CIVEIZITIYZ , Ve R NBILRY).

L2 By’

By the above interpolation inequality (2.7) and Young ir@dy, we can bound the
terms N, and N3 as

N, = —/ (0ku - Vu) - o¢u dx
R3

289) < CIVulsVuli. < VUl V2ul2 Vule,
< IVl + CIVUIR,,_IVulZ.,
and
N3 = —/ (0ku - VO) - 3¢H dx
8
. < CIVUlLeVOI2. < CIVUle V20l Vol g

= C||Vull 2l VZ0llel€llsg . < CIVullLz| V20 2ll6] L

00

1
= §||V29||fz +ClOIE- VeI,
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where we have used the following fact in (2.9)
IV6llgs, < Cllbllge < Clll~.

Substituting (2.6), (2.8), and (2.9) into (2.5), we arrite a

d

< CEA+ 10N + IVullg, )UVullg: +1IVOIE).
For anyt € (Ty, T), we denote
- 2 2
y(t) := ng?g](IIU(r)llHa + 160(0)l;2)-

It should be noted thay(t) is a nondecreasing function.
Thanks to the Gronwall inequality, it follows from (2.10)athfor anyTo <t < T

t
IVU@IIE2 + IVO@)IIE. + /T (IV2u@)l1E2 + V20 (2)IIZ2) de
0
t
< (VU + 190(TE exp| [ (1 folus + 19Ul ) o |

- t
< M exp| é/ IVu()II3 df]
L To e

o V@I,
M exp c/ o |n(e+ ||Vu(r)||ggolw) dr
™ In(e+ ||Vu(r)||B;O%w) |

IA

VU3,

t
2.11) =" exp_C /To |n(e+ IIVu(r)IIB;o%m) |”(e+ ||u(r)||ggw) dr:|

IVu()Il3
M exp é/t B2 In(e+ Ju(r)flx) de
T |n(e+ ||Vu(r)||3;%w)

IA

IVu(z)lZ_,
M exp C/t Pl In(e + |Ju(z)||ys) dT
To |n(e+ ||Vu(f)||3;%w)

IA

M exp| C / t ”VU(T)”E‘%*M In(e + y(z)) dr
BRL |n(e+ ||Vu(f)||3;%w)

IA

e IVUEIR,
M exp C/ ~ dr In(e+ y(t)) |.
L |n(e+ ||Vu(f)||B;o%w)

IA
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We want to state here that from the above observafiois an absolute constant and
M depends or|Vu(To) L2, |VO(To)llL2, To, T and 6p.
It follows from the condition (2.1) that

t -
(2.12) [Vu®)Z. + IVO®)IZ. + /T (IV2u(x) 2. + IV?0(2)||Z,) dT < C(e + y(1)“".

Applying V2 to the equation (1.1)and (1.1), multiplying the resulting equations by
Veu and V3¢ respectively and adding them up, we have

2 S VU0l + 199012 + IVl + 19012,
(2.13) =/ V39e; - V3u dx—/ V3(u- Vu) - V3u dx—/ V3(u- Vo) - V3 dx
]R3 ]R3 R3
= K1 4+ Ky 4+ Ks.

It follows from Young inequality that

K1 < C||V3ul|2|| V36| .2
1/2 1/2 1/2 1/2
(2.14) < C||v2u|| ! ||v4u|| ZIvEe |2Vl

||v4u||Lz +5 ||V49|| + C(IV2ulZ. + IV20122),
where we have applied the following Gagliardo—Nirenberggumality
IV Hlle < CIVZE IV I
Now we recall the following commutator estimate (see [7])
(2.15) ILAS, f1glle < CAUIV FllellASgllie + (A% flLrallgllie),

with s> 0, p2, ps € (1,00) such that Ip=1/p; +1/p2 = 1/pz + 1/ pa.
From the divergence-free condition and the commutatomedé (2.15), we obtain

—/ [V3, u-V]u-Viudx
R3

< C|IVull2|V3u||2,
1/4 7/4
< C|[Vull 2| V2ull L VAull [

=< §IIV4UIlfz + C| VUL (IV2ult,
where we have used the following Gagliardo—Nirenberg iaétyu

1/8 7/8
IV3ullLe < CIV2UlI IV Aul [
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Similar to the estimate oK,, the termK3; can be bounded as
(2.16)
K3=—:/[V§U-Vw-Vﬁ9dx
R3
< C||Vull 2l V30)12, + VO]l 2] V3l 4] V30| e
< CIIVUll V2OV S + VO VUl VAl 21 v2e v ee [y

1 1
< SIVAUIZ: + ZIVOIZ: + UV + VOIS V2l + [ V%6]22)

Combining the previous estimates, we get
d
(2.17) dt
< C(IVullg. + [IVOIT)UIV2ullZ2 + IV20132) + CUIVAUlIZ. + IV26]1F2)-

(IVCu®F2 + IV30)1E2)

Integrating the inequality (2.17) ovef{, t), we easily get

(2.18)
IVl + V2012 — (IV3u(To)li2 + IIV30(To)lI?2)

t t
<c / (IV2ul2, + |V?0|2) dr +C [ (19Ul + [VOE)IV2ul: + [V20]2,) dr
To To
~ t ~
< Cle+y)> +C / e+ y(O) e (IV2u[2, + [V?6]2)(r) dr
To

< Cle+ y®)> + Cle+ yt)* /T (VU + V261 de
0
< C(e+ y(1))° + C(e + y(t)>
< Ce+ ()™,
which immediately implies that
e+ y(t) < C, + Cle+ y(®)**, Cr, = |[V3u(To)|2: + | V36(To) 2.
By appropriately selecting < 1/(5C), the above inequality allows us to show
y() < CUV3u(To)lz, IV30(To)llz, To, T) < 00, Vit € [To, T].

As a consequence, we get the boundnessidk H3-norm of (U, 8) for all t € [0, T].
Consequently, The proof of Theorem 1.1 is completed. ]
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