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Abstract
In this note we establish a new discreteness criterion fooraelementary group
G in SL(2, C). Namely, G is discrete if all the two-generator subgroups are dis-
crete, where one generator is a non-trivial eleménin G, and the other is in the
conjugacy class off.

1. Introduction

The discreteness of Mdbius groups is a fundamental probldmchahas been dis-
cussed by many authors. By using the well-known Jgrgendaatguality, Jgrgensen
[6] proved that a non-elementary subgroGpof Mobius transformations acting dR?
is discrete if and only if for eachf and g in G, the group(f, g) is discrete. This
important result has become standard in literature. It shtiat to test the discrete-
ness of a non-elementary Mobius group, it is enough to testlideeteness of all its
subgroups of rank two. Then a natural problem arises: whetieediscreteness of the
whole group can be determined by the discreteness of a pait ik two subgroups?
There are many further discussions in this direction (£g4][5, 9, 10, 11, 12]). Among
them, we cite here the following two results. Gilman [4] asddhenko [5] showed that
the discreteness of all two-generator subgroups, where gacerator is loxodromic, is
enough to secure the discreteness of the group. This is atficeet consequence of
Rosenberger’s result [7] about minimal generating systém non-elementary Mdbius
group. From another perspective, Chen Min [2] showed thagrgi@ non-elementary
Mobius groupG and a non-trivial Mdbius transformatiofi, if each group generated
by f and an element i is discrete, therG is discrete. A novel feature of this dis-
creteness criterion is that the test mépneed not be inG, which suggests that the
discreteness is not a totally interior affair of the invalvgroup.

The purpose of this note is to discuss the aforementionebdlgomrofrom a different
view. Our aim is to show that the discreteness of all two-gatoe subgroups, where
both generators are in the conjugacy class of a fixed elensriough to determine
the discreteness of the whole group. The main result is thewimg:
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Theorem 1.1. Let G be a non-elementary subgroup of(&LC) and f a fixed
non-trivial element in G. If for each elementgyG the group(f, gfg™) is discrete
then G is discrete.

Note that in the theory of Kleinian groups, there are someroftaces where the
role of conjugacy classes is crucial. A typical example is #iguments of the proof
of Jgrgensen’s inequality. It is well-known that Jgrgefsémequality says if( f, g} in
SL(2, C) generate a discrete and non-elementary group, then

[tr’(f) — 4] + |tr(fgftg™Y) —2| > 1.

Consider the dynamic ofj,,1 = gnfg;! in the conjugacy class of one generatby
wherego = g. If the above inequality fails, a calculation shows that cae find some
N such thatgy = f. However, this will implies that{ f, g) is elementary (except for
the simple case thaf is order 2), which is the desired contradiction.

We shall prove the main theorem by dividing into three case® (Theorems 3.1,
3.2 and 3.3 in Section 3), according to that the fixed nfajs elliptic, loxodromic or
parabolic. Note that our proof also applies to the situatidrere the the fixed mar
is not in the groupG. This shares the same feature as in [2].

In practice, the applications of our theorem are possibleng can find a “good”
test map f, such that its conjugacy claggfg: g € G} have some additional fea-
tures. For instance, the size of the conjugacy class ,0br equivalently, the index of
its centralizer, is finite. The following is a simple exampleet f be loxodromic or
elliptic, and g elliptic of order two which exchanges the fixed points bf Denote
by G the group generated by and g. It can be easily obtained that the conjugacy
class of f consists of two elements, that i, and f 1. Then our theorem gives the
discreteness o6.

2. Preliminaries

We begin with some elementary notations about Mobius grolips. reader is re-
ferred to [1] for more details.

Denote by M6b(2) the group of all (orientation-preserving)d transformations
of the extended complex plar@ = R? U co. Recall, any matrixA € SL(2, C) as the

form (": g) induces a Mobius transformatiofn(z) = (az+b)/(cz+d). Then Mdb(2)

is isomorphic toSL(2, C)/{#1}, where| is the identity matrix. Let &(fa) = tr’(A),
where tr denotes the trace @f It is easy to see #(f,) — tr?(f) when f,, converges
to f in SK2, C). Non-trivial elements ofSL(2, C), or equivalently of M6b(2), can be
classified into three types considering the Jordan nornrahdo

(i) Elliptic elements are diagonalizable and have two didtieigenvalues with absolute

value 1, that is, those are conjugated(té 19r) with |r| = 1. In this case, &(f) is
real and 0< tr?(f) < 4.
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(i) Parabolic elements are not diagonalizable. They amgugated to(é i) Then

tr’(f) = 4 if f is parabolic.
(i) Loxodromic elements are diagonalizable and the eigéres do not have absolute
value 1, that is, those are conjugated (té 1(/)r) with |r| > 1. If tr’(f) is real and

tr’(f) > 4, then f is calledhyperbolicand if tP(f) is not in the interval [0400), then
f is termedstrictly loxodromic We use the term loxodromic to include both hyperbolic
and strictly loxodromic elements. Sincé(tf,) — tr?(f) when f, converges tof in
SL(2, C), the set consisting of all loxodromic elements is operSl2, C);

Recall that Mdbius transformations are a finite compositibmeersions in spheres
and planes of the extended complex plane. Through Poiscaséension, the action

of f = (‘2 3) can be extended to an action on the hyperbolic 3-sjfate= {w =

Zz+tj:ze C, t > 0} by the formula f(w) = (aw + b)/(cw + d). A subgroupG
of M6b(2) is called elementary if there exists a finiBeorbit in the closure ofH® in
Euclidean 3-space. Otherwise, the group is referred aseteamentary.

For eachf andg in M6b(2), let [f,g] denote the commutatdirg f ~g~t. Gehring and
Martin introduced the following three parameters for the tyemerator subgroupf, g):

B(f) =tr’(f)—4, B(g) =tr’(g) — 4,
y(f,9) =tr(fgftgt)—2.

In terms of those parameters, the well-known Jgrgenseaguality gives a sharp lower
bound for|y(f,g)| when|B(f)| <1 or|B(g)| < 1. In [3], Gehring and Martin obtained
the following result.

Lemma 2.1. Let (f, g) be a discrete and non-elementary group ofBIC) with
B(f) = B(g). Then|y(f, g)| > 0.193

G is referred to be an elementary group of elliptic typeSifcontains only elliptic
elements and the identity. It is well known that the elemesftan elementary group
of elliptic type have a common fixed point iH® (cf. Theorem 4.3.7 of [1]). In [12]
the authors give a characterization of such a groups in teinbe above parameter
y(f, g). For the completeness, we include its proof as the follgwin

Lemma 2.2. Let (f,g) be an elementary group of elliptic type in @LC). Then
y(f.g) <0

Proof. We may assume, up to conjugation, tat= (6 1c/)r) and g fixes the

point (0, 0, 1) in the upper half-space model if. Henceg has the matrix form as

(-aB g) with |aj2 + [b|2 = 1 (cf. Theorem 2.5.1 of [1]).



1050 S. NG AND T. ZHAO

Recall thatr = &% for some#y # 0 (mod 2r), it follows that
1\2 . _
B(f) = (r + F) —4=¢?% 4 g% _ 2 = 2[cos(Pp) — 1] < 0.

Therefore, we have/(f, g) = tr(fgf~1g=!) — 2 = |b]?8(f) < 0. O

We also need the following lemma, which is a direct consegeieof the well-
known proposition in [8, Section 1].

Lemma 2.3. Let G be a non-elementary and non-discrete subgroup ¢2,%L).
After replacing G by its subgroups of indéxif necessaryG is
(8) dense in S(2,C), or
(b) conjugate to a dense group of @LR).

3. Main results

Theorem 3.1. Let G be a non-elementary subgroup of(&LC) containing an
elliptic element f. If for each elementgG the group(f, gfg™?) is discrete then G
is discrete.

Proof. Suppose to the contrary th@tis not discrete. Then we may assume that
G is either dense ir5L(2, R), or dense inSL(2, C) by Lemma 2.3.
Normalize the grous by possible conjugations such thiats represented by the ma-

trix (6 1(/)r ) and such thagy = (g 3) € G with b = 0 # c. This is possible sinc& is

non-elementary. By setting = ((1) t1> we gethgh™! = (a * ct —ct? +O§d_;ta)t + b).
SinceG is dense, there exists a sequefieg} in G which converges td.

We denotehngh,! by (2” 3” ) Let I, = hogh,fhagth 1. By direct calcula-

tion, we explicitly obtain

| a, b, r O d, —by
nT Cnh dn 0 1/r —Cn an
1 1
rand, — r—bncn —anby (r — F)

1 1
cndh (r — F) Fandn —rbncn

From the assumption, it follows the groups$, I,) are discrete for alh.
Now we divide our proof into two cases.
Case 1. G is dense inSL(2, C).
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From the above, we obtaip(f,1,) = a,bncyda|r — 1/r|%, which converges tir —
1/r [*c(ct + a)(ct — d)[ct? + (a — d)t —b] asn — oco. Appealing to the fundamental
theorem of algebra, we can take the valuet & C such that|r — 1/r |*c(ct + a)(ct —
d)[ct? + (a — d)t — b] is sufficiently small and positive, say,

4

(%) c(ct + a)(ct —d)[ct? + (a—d)t —b] = 0.1.

1
r — —
r

By Lemma 2.1, we see that the discrete groypsl,) must be elementary for
large n. Furthermore, Lemma 2.2 shows that it is of either parabotidoxodromic
type. Notice that the third entrg,d,(r — 1/r) of |, is close toc(d — ct)(r — 1/r),
which is not zero from our assumptian# 0 and the equation«j. This implies that
the elliptic elementsf and |, can’t be in the same cyclic group. Then the only pos-
sibility is that (f, l,) is of loxodromic type, where one of andl, exchanges the
fixed points of the other (cf. pp.87-89 of [1]). After nornztion, a direct calcula-
tion shows thatfl, f 1,1 must be elliptic. This is the desired contradiction to that
y(f,1n) =tr(flof~1-1) — 2 is close to 0.1.

CASE 2. G is dense inSL(2, R).

From the assumption th&t= 0, we obtain that/(f,l,) = (r —1/r)*ct(ct + a)(ct —
d)[ct+ (a—d)]. It is easy to see that(f,l,) is a continuous real function with respect
to t. Note that lim_ y(f, 1) = +o00, and y(f, 1) = 0 whent = 0. Then we can
also choosé € R such thaty(f,1,) = (r — 1/r)%ct(ct + a)(ct — d)[ct + (a — d)] is
sufficiently small and positive. Again we get the desiredtramtiction. ]

Theorem 3.2. Let G be a non-elementary subgroup o &IC) with a loxodromic
element fe G. If for each element g G the group(f, gfg™?) is discrete then G is
discrete.

Proof. Suppose to the contrary th@t is dense. Then we can find a sequence
{gn}52, of distinct loxodromic elements i such thatg, — |. In fact, it is obvious to
see that there exists a sequerigg} of loxodromic elements converging to the identity.
Since G is dense, there ig, € G arbitrarily close tog;, for eachn. Theng, is also
loxodromic.

By Jargensen’s inequality we may assume thtg, fg, 1) = (g fg,1f 1, f) are
discrete and elementary for ail Then f andg, share the same fixed points. SinGe
is non-elementary, there e G which has distinct fixed points from that df. Note
that gg,g* — |. Similarly, f and gg.g~* must share the same fixed points for large
n. This is the desired contradiction. O

Theorem 3.3. Let G be a non-elementary subgroup of&IC) containing a para-
bolic element f. If for each elementgG the group(f, gfg™) is discrete then G
is discrete.
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Proof. NormalizeG such thatf(z) =z+ 1 is in G.

First we claim that the stabilizer afo in G, denoted byStah,, is discrete. Sup-
pose to the contrary that there is a sequefmgs>, in Stab, such thatg, — I. If
On is not parabolic, thery, fg;2 f~1 is parabolic by [1, Theorem 4.3.5]. This implies
that one can always find a sequence of parabolic elementstedemy {h,}, which
fixes oo and converges to the identity. SinG is non-elementary, there is a parabolic
h ¢ Stah,. According to Jgrgensen’s inequality, the subgrgdphh,h=* fhh th=1) =
(hhph~fhh th~1f -1 f) is discrete and elementary of parabolic type for langéThis
deduce thahh,h=1 f hh;th=1(c0) = 0o. Thenhh,h™(c0) = oo and henceh(co) = oo.
This is the desired contradiction.

Second we show the horobal(z, t) € H3: t > 1} is precisely invariant under
Staly,. For anyg(z) = (az+ b)/(cz+ d) in G with ¢ # 0, gfg™! is parabolic with
1/|c?| as the radius of its isometric sphere. Applying Jargensiee'guality to the dis-
crete and non-elementary subgro(h gfgt), we obtain ¥|c?| < 1, and then |c| <
1. Note that the left term represents the radius of the isamsphere ofg. This im-
plies that{(z, t) € H3: t > 1} is precisely invariant undeBtab, by viewing elements
in SL(2, C) as isometries offI®. Now the discreteness @& follows from combining
the above two aspects. ]
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