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Abstract
In this paper, we describe the homotopy type of the homotopy fixed point sets

of S3-actions on rational spheres and complex projective spaces, and provide some
properties ofS1-actions on a general rational complex.

1. Introduction

An action of a groupG on a spaceM gives rise to two natural spaces, the fixed
point set MG and the homotopy fixed point setMhG. It is crucially important that
there is an injection

k W MG
! MhG.

Indeed, one version of thegeneralized Sullivan conjectureasserts that, whenG is a
finite p-group, andM is a G-CW-complex, then thep-completion ofk is a homotopy
equivalence. This conjecture was proved in the case whenM is a finite complex by
Miller [7].

For a finite groupG, the rational homotopy theory ofMhG has been studied by
Goyo [5].

In [1, 2], the authors studied the homotopy type ofMhG for a compact Lie group
G with particular emphasis whenG is the circle.

From now on, and unless explicitly stated otherwise,G will denote a compact con-
nected Lie group and by a topologicalG-space we mean a nilpotentG-space with the
homotopy type of a CW-complex of finite type andMG

¤ ;. Then the action ofG on
M induces an action ofG on M

Q

.
We then start by setting a sufficiently general context in which M

Q

hG has the
homotopy type of a nilpotent CW-complex. Identifying the homotopy fixed point set
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with the space Sec(� ) of sections of the corresponding Borel fibration

� W M ! MhG! BG,

we have that if�
>n(M) are torsion groups for a certainn > 1, thenM

Q

hG is a rational
nilpotent complex with the homotopy type of a CW-complex [1].

In this paper, we explicitly describe the rational homotopytype of the homotopy
fixed point sets of certainS3-actions.

Theorem 1.1. Given an S3-action on the rational n-sphere Sn
Q

.

(1) When n is odd, Sn
Q

hS3
has the rational homotopy type of products of odd dimen-

sional spheres, precisely, we have

Sn
Q

hS3

'

Q

Sa
� SaC4

� � � � � Sn,

where

a D

(

1, n D 4kC 1,

3, n D 4kC 3.

(2) If n D 4k, Sn
Q

hS3
is either path connected, and of the rational homotopy type of

S3
� Kk, where Kk has the minimal Sullivan model

(3((xs)1�s�k, (yr )2�r�2k), d)

with jxsj D 4s, jyr j D 4r � 1, dxs D 0 (1� s � k), dyr D
P

sCtDr xsxt (2 � r � 2k),
or else, it has 2 components, each of them has the rational homotopy type of

S4kC3
� S4kC7

� � � � � S8k�1.

(3) If n D 4kC2, Sn
Q

hS3
is path connected, and of the rational homotopy type of S3

�

S7
� Tk, where Tk has the minimal Sullivan model

(3((xs)1�s�k, (yr )3�r�2kC1), d)

with jxsj D 4sC 2, jyr j D 4r � 1, dxs D 0 (1� s� k), dyr D
P

sCtDr�1 xsxt (3� r �
2kC 1).

Theorem 1.2. Given an S3-action in the rational complex projective spaceCPn
Q

.
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(1) If n is odd, CPn
Q

hS3
is path connected, and has the rational homotopy type of one

of the following spaces:

CP1
� S7

� S11
� � � � � S2nC1,

S3
� CP3

� S11
� � � � � S2nC1,

S3
� S7

� CP5
� � � � � S2nC1,

: : : ,

S3
� S7

� � � � � S2n�3
� CPn.

(2) If n is even, CPn
Q

hS3
is path connected, and has the rational homotopy type of one

of the following spaces:

� � S5
� S9

� � � � � S2nC1,

S1
� CP2

� S9
� � � � � S2nC1,

S1
� S5

� CP4
� � � � � S2nC1,

: : : ,

S1
� S5

� � � � � S2n�3
� CPn.

In [1, Corollary 2], they give a criterion of an ellipticS1-space. We first show that
the conditionM is a finite complex is necessary by the following example: there is a nil-

potentS1-complexM which is not an elliptic space, such that each component ofM
Q

hS1

is elliptic. We also observe that anS1-finite nilpotent complexM is elliptic if and only

if one of the component ofM
Q

hS1
is elliptic, complementing the mentioned result.

Finally, we show that the injectionk is generally not a rational homotopy equivalence.

Theorem 1.3. For an S1-complex M which is simply connected with

dim�

�

(M)
Q <1.

Then

k W M S1

Q

,! MhS1

Q

is a rational homotopy equivalence if and only if M is rational homotopy equivalent
to a product ofCP1.

In the next section we prove Theorems 1.1 and 1.2. In Section 3we prove
Theorem 1.3.
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2. S3-rational spheres and complex projective spaces

Our results heavily depend on known facts and techniques arising from rational
homotopy theory. All of them can be found with all details in [4]. We simply remark
a few facts.

We recall that whenM is path connected, the Sullivan model ofM is a quasi-
isomorphism

mW (3VM , d)! AP L(M),

where (3VM , d) is a Sullivan algebra.
We also recall that a spaceM is elliptic if both H�(MIQ) and �

�

(M) 
 Q are
finite dimensional vector spaces overQ.

For a G-spaceM, we have the corresponding Borel fibration

� W M ! MhG! BG,

where MhG D (M � EG)=G. It is a classical fact that the homotopy fixed point set

MhG
D mapG(EG, M)

is homotopy equivalent to the section space Sec(� ) of this fibration.
Each fixed point gives rise to a trivial section of the productbundle

MG
! BG� MG

! BG.

Composing with the injectionMG � BG ,! EG� M=G D MhG gives a section of the
Borel fibration. Thus we have a natural injection:

k W MG
,! MhG.

For any G-CW complex M, there is an equivariant rationalizationmW M ! M
Q

,
that is, M

Q

is also aG-CW complex,m is an equivariant map, and (M
Q

)G
' (MG)

Q

.
Moreover, we have

Proposition 2.1 ([1, Proposition 12]). If M is a Postnikov piece, that is,
�

>N(M) D 0 for some N, then
(i) MhG has the homotopy type of a nilpotent CW-complex of finite type.
(ii) ( MhG)

Q

' (M
Q

)hG.

Note that if M
Q

is a Postnikov piece, then (M
Q

)hG makes sense and is a
rational space.

Now, we determine the homotopy type of the homotopy fixed point sets of certain
S3-actions.
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Proof of Theorem 1.1. (1) CASE 1: n is odd.
We only prove the casen D 4kC 3, the casen D 4kC 1 is similar, so we omit it.
As in the proof of [1, Theorem 19], it is not hard to get the model of the corres-

ponding Borel fibration

� W (A, 0) ,! ((3e)
 A, D)! (3e, 0),

where (A, 0)D (3x=xk, 0) and jxj D 4, jej D n. This fibration is trivial, so Sec(� ) '
Map(HPk, Sn).

By [1, Theorem 9], the model ofSn
Q

hS3
is (3(x1, x2, : : : , xnC1=4), 0). It is exactly

the model ofS3
� S7

� � � � � Sn. It follows that Sn
Q

hS3
'

Q

Sa
� SaC4

� � � � � Sn.
(2) CASE 2: n D 4k.
As �

�2n(Sn)
Q D 0, a model of the Borel fibration is

�2n W (A, 0) ,! (3(e, e0)
 A, D)! (3(e, e0), d),

where AD 3x=x2kC1, x, e, e0 are of degree 4,n, 2n� 1 respectively,DeD 0, De0 D
e2
C �xn=4e, de0 D e2.

(i) If � D 0, then�2n is trivial and

Sn
Q

hS3

' Map(HP2k, Sn)
Q

.

A straightforward computation shows that this mapping space has a model of the form

(3y1, 0)
 (3((xs)1�s�k, (yr )2�r�2k), d)

with jxsj D 4s, jyr j D 4r � 1, dxs D 0 (1� s� k), dyr D
P

sCtDr xsxt (r > 1).
(ii) If � ¤ 0, then the fibration�n has two non homotopic sections� , � which

correspond to the only two possible retractions of its model:

'

�

, '
�

W (3(e, e0)
 A, D)! (A, 0), '

�

(e) D 0, '

�

(e) D �xk.

By the same way in [1], we have that the model of Sec
�

(�2n) is of the form

(3((xs)1�s�k, (yr )1�r�2k), Qd)

with jxsj D 4s, jyr j D 4r � 1. The linear part ofQd is:

Qd(yr ) D �xr

for 1� r � k, which shows that the minimal model of Sec
�

(�2n) is

(3(yr )kC1�r�2k, 0).
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Replace� by ��, we have that the model of Sec
�

(�2n) is the same.
(3) Case 2: n D 4kC 2.
As �

�2n(Sn)
Q D 0, a model of the Borel fibration is

�2n W (A, 0) ,! (3(e, e0)
 A, D)! (3(e, e0), d),

where AD 3x=x2kC1, x, e, e0 are of degree 4,n, 2n� 1 respectively,DeD 0, De0 D
e2, de0 D e2. It follows that the fibration�2n is trivial, we have

Sn
Q

hG
' Map(HP2k, Sn)

Q

.

The model ofSn
Q

hG is

(3(y1, y2), 0)
 (3((xs)1�s�k, (yr )3�r�2kC1), d)

with jxsj D 4sC 2, jyr j D 4r � 1, dxs D 0 (1� s� k), dyr D
P

sCtDr�1 xsxt (3� r �
2kC 1).

The desired result follows.

Proof of Theorem 1.2. First, we assumen D 2k C 1. As �
�4kC4(CPn

Q

) D 0, it
suffice to use the model of�2nC2

(A, 0)! (3(e, e0)
 A, D)! (3(e, e0), d),

where AD (3x)=xkC2, jxj D 4, jej D 2, je0j D 4kC 3, and

DeD 0, De0 D enC1
C

k
X

jD1

� j e
j xnC1�2 j , � 2 Q, j D 1, : : : , n.

The retraction of this model of fibration is just'(e) D 0. So we have Sec(�4kC4) is
connected, and the model of it is

(3(e, (e0r )1�r�kC1, Qd)

with jej D 2, je0r j D 4r � 1, Qd(e0r ) D �kC1�r e2r for 1� r � k and Qd(e0kC1) D e2kC2.
If �1 ¤ 0 this is a model of

S2
� S7

� � � � � S4kC3.

If �1 D � � � D �i�1 D 0 and�i ¤ 0, this is a model of

S3
� � � � � S4k�4i�1

� CP2kC1�2i
� S4k�4iC3

� � � � � S4kC3.
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Finally, if all �i D 0, then it is a model of

S3
� S7

� � � � � S4k�1
� CP2kC1.

For n even, the proof is similar, so we omit it.

3. The Inclusion k W MS1
,! MhS1

We begin with some interesting observations onS1-actions.
In [2, Example 12], there is anS1-action onM D K (Z, n)�K (Z, nC1), such that

the model of it’s Borel fibration is

�n W (3x, 0) ,! (3x 
3(z, y), D)! (3(z, y), d),

where jxj D 2, jzj D n, jyj D nC 1, D(z) D 0, and D(y) D xz. For n D 2k, there is
only one retraction� : � (z) D � (y) D 0. Thus Sec(�2k) is path connected.

By the same method used in [1], a model of Sec(�2k) is

(3((zi )1�i�k, (y j )1� j�kC1), d),

where jzi j D 2i , jy j j D 2 j � 1 and d(yi ) D zi . Since the minimal model of Sec(�2k)
is (3ykC1, 0), Sec(�2k) '

Q

S2kC1 is an elliptic space. However,M is not an elliptic
space.

Next we complement [1, Corollary 2] with the following

Proposition 3.1. For an S1-space M which is a nilpotent finite complex, the follow-
ing conditions are equivalent:
1) M is elliptic.

2) Each component of M
Q

hS1
is elliptic.

3) One of the components of M
Q

hS1
is elliptic.

Proof. 1)) 2): [1, Theorem 15].
2)) 3): Trivial.
3)) 1): By [2, Theorem 13], 2dim�

�

(Sec
�

(� )
Q) � dim�
�

(M)
Q. By Sec
�

(� )
is elliptic, dim�

�

(Sec
�

(� ))
Q is finite, so dim�
�

(M)
Q is finite. ThenM is elliptic.

REMARK 3.2. The theorem holds also forG D S3. The proof is similar.

The rest of the section is devoted to showing Theorem 1.3.
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Let M be anS1-space andMG
¤ ;. Then the inclusionM S1

,! M induces a map
of Borel fibrations:

(3.1)

M S1
M

CP1

� M S1
MhS1

CP1.

 

!

 

!

 

!

 

!




 

!

�

 

!

�

If there exists someN such that�
�N(M

Q

)D 0 and�
�N(M S1

Q

)D 0. Thenk is identified
with the corresponding

M S1
,! Map((CP1)(N), M S1

)! Sec(�N) � MhS1
,

which can be obtained by truncating in the diagram (3.1):

M S1
M

FN EN

(CP1)(N).

 

!

 

!

 

!

 

!


N

 

!

�N

 

!

�N

Now let

(3.2)

(A
3V, D) (3V, d)

(A, 0)

(A, 0)
 (3Z, d) (3Z, d)

 

!

 

!

 

 

!

'

 

!

 

!

 

!

be a model of the above diagram, where (A,0)D (3x=(3x)>N ,0), (3V,d) and (3Z,d)
are minimal Sullivan models ofM and M S1

, respectively.
Then we have the following

Theorem 3.3. [1, Theorem 21]The composition

(3(V 
 A#), Qd)
�

�! (3(Z 
 A#), Qd)



�! (3Z, d)
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is a model of kW M S1

Q

,! MhS1

Q

. The morphisms above are defined by

�(v 
 �) D ��1[ (v)
 �], v 
 � 2 V 
 A#,


 (z
 �) D

(

z � D 1,

0 � ¤ 1,
z
 � 2 Z 
 A#.

Then we give some information about . First, let (3x 
3V, D) be a model of
the fibration� , we can decompose the differentialD in A
3V into

D D
X

i�1

Di , Di (V) � 3x 
3i V .

Proposition 3.4. [2, Lemma14] The vector space V can be decomposed into a
direct sum W� K � S where
(1) W� K D ker D1,
(2) K and S have the same dimension admitting bases{vi }i2I , {si }i2I , and for any
i 2 I , there exists ni � 1 such that D1(si ) D xni

vi .

Let K D Q(x), the field of fractions of3x, we obtain a morphism of (ungraded)
differential vector spaces

N

 W (K
 V, D1)! (K
 Z, 0)D (Z
K

, 0).

If we assumeK concentrated in degree 0 and consider inV and Z the usualZ2-
grading given by the parity of the generators, then the Borellocalization theorem
claim that:

Theorem 3.5. [1, Theorem 22]The morphism

N

 W (K
 V, D1)! (Z
K

, 0)

is a quasi-isomorphism.

By Proposition 3.4, we have

Lemma 3.6. (1) dimW D dim Z.
(2) There are{w j } j2J , {zj } j2J which are homogeneous basis of W and Z respectively,
and non negative integers{m j } j2J such that

 (w j ) D xm j zj C 0 j , 0 j 2 R
3�2Z, j 2 J,

and

 (si ) 2 R
3�2Z,  (vi ) 2 R
3�2Z, si 2 S, vi 2 K , i 2 I .
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Theorem 3.7. For an S1-complex M which is simply connected with

dim�

�

(M)
Q <1.

Then the inclusion

k W M S1
,! MhS1

is a rational homotopy equivalence if and only if M is rational homotopy equivalent
to a product ofCP1.

Proof. By Theorem 3.3, the model ofk is

� W (3(V 
 A#), Qd)! (3(Z 
 A#), Qd)! (3Z, d).

By [1, Theorem 24],�
�

(k)
Q is injective, so we only consider the surjective part.
By [1, Theorem 11], (3(V 
 A#), Qd) is a model ofMhS1

Q

. Then we have

H k(V 
 A#, Qd1) � Hom(�k(MhS1

Q

), Q),

wherek � 1.
By Proposition 3.4,V DW�K �S. An easy computation shows that (W
 A#)�

S� H�(V 
 A#, Qd1). It is obvious that

�(w j ) D 0, m j ¤ 0,

�(w j 
 (xi )#) D 0, m j ¤ i ,

�(sj ) D 0.

If there exists somej such thatjw j j � 2 or S¤ ;, then H (�, Qd1) is not injective,
so k is not a rational homotopy equivalence.

If jw j j D 2, for each j 2 J, and SD ;, we have (3W, d) is a model of a product
of CP1. It is easy to show thatk is a rational homotopy equivalence.
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