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Abstract

Let f: S— P! be a family of genugy > 2 curves with two singular fiber§,
and F,. We show thatF; = F>* and F, = Fi* are dual to each othef is a ruled
surface, the geometric genera of the singular fibers arel equéie irregularity of
the surface, and the virtual Mordell-Weil rank df is zero. We prove also that

c3(9 <-2if g=2, andci(S) < —4 if g > 2. As an application, we will classify
all such fibrations of genug = 2.

1. Introduction

It is well-known that a non-trivial familyf : S — P! of complex curves of genus
g > 1 admits at last two singular fibers. if is non-isotrivial, then the numbes of
singular fibers is at least 3 ([8]). Furthermore, fifis semistable, thes > 4 ([8]), or
s> 5 wheng > 1 ([24]).

A very interesting problem is to classify all familieg: S — P! with minimal
number of singular fibers. Beauville [9] proves that there exactly 6 familiesf of
semistable elliptic curves with 4 singular fibers, and eaailfy is modular. In [10],
U. Schmickler Hirzebruch classified all elliptic fibratiorfswith two singular fibersk;
and F,. She proves that there are 5 such families, and in each fafily= F>* in
Kodaira's notation. (See also [26] for the equations.)

For a fiberF = f~1(0) of genusg > 1, the dual fiberF* is defined as follows
(see [14], Definition 2.5). LeF = > niC; be the normal-crossing model &, let
Mg = lcm{n;} be the least common multiple dfh;}, andn be any positive integer
satisfyingn = —1 (mod Mg). F* is just the pullback fiber of under the base change
t = w". So the dual ofF is not unique. When the semistable modelFofis smooth,
then F* is unique. Two fibers=; and F; are said to be dual to each otherRf = F;
and F, = F/.

Let Fy,..., Fs be all singular fibers of a fibratiori: S— C, and letl; = |(F) be
the number of irreducible components Bf. When f has a section, the rank of the
Mordell-Weil group of f is denoted byr. We have a formula to compute the rank
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(see [22], Theorem 3),
r=p(9-2-2 ((R)-1),

where p(S) = rank NS) is the Picard number 06. When f has no sectior, is still
defined by the formula above. In the general casks, called the virtual Mordell-Weil
rank of f by Nguyen ([19], Definition 0.2).

The purpose of this paper is to try to classify familiés S — P! of curves of
genusg > 2 with exactly two singular fiber$; and F,. First we need to give a nu-
merical characterization of such families.

Theorem 1.1. Let f: S— P! be a relatively minimal fibration of genus ¥ 2
with two singular fibers Fand F,. Then k and F, are dual to each othei.e,, F; =
F* and B = F,".
(1) S is a ruled surfaceand the geometric genera of the singular fibers are equal to
the irregularity S) of S g(F1) = g(F2) = q(S) (see Sectior®).
(2) The virtual Mordell-Weil rank of f is zero.
(3) We have the following inequalities

-2, g=2
2 < ’ ’
ci(S) = {_4’ g>3.
EXAMPLE 1.1. The equatiory? = t(x9+1 —t)(x9*1 4-t) defines a familyf: S —
P! of curves of genug with two singular fibers.

_2, = 2, Oy = 2: 4!
oS = {—4 gz 3.4 9= {1 g=3.

As an application, we will classify all such fibrations of gen2.

Theorem 1.2. Let f: S — P! be a relatively minimal fibration of genus g
2 with two singular fibers F and £ Then f is isomorphic to one of the following
11 families.
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No. | F, F* in [18] Families Monodromies
EENE y2 =t(x> +ax* + bx3 +cx? + x) | [l3], [I3]
2 [, y2 = X8 + dxt + ext? + t° (3], [#3]
3|, y2 = x5 + dx3t + t2 (3], [#3],
4 | IV, IV y2 = (x5 + dx3t + to)t [¢313], [$513]
5 |V, V* y2 = x5 +1 [¢3], [¢3]
6 | VI, VI y2 = x° + ditx® + t2x [#2], [¢5]
ANNIE y2 = x5 + xt [¢2], [¢4]
8 | VI, VIIF-4 | y2=x5+t (1], [97]
9 | VIll.2, VI3 | Y2 =t(5 + 19 [43], [¢1]
10 | IXL, IX-4 y2 = x5 + (2 [¢2], [#3]
11 | IX-2, IX-3 y2 = t(t + x5) (7], [#3]

where[¢i]'s and[l3] are defined in[13], satisfying
[¢8] = [¢17°1al,  [#5] = [@57*1al = [93°), [dal = [¢31a], [93] = [¢3]

The duality of the two singular fibers in Theorem 1.1 is a consece of
Matsumoto—Montesinos’ theory on the monodromy of degerwratif curves. The
proof of (1) and (2) in Theorem 1.1 is based on a new formula antew inequal-
ity on the Hodge numbeh®%(S) obtained in [15]. In order to get the optimal upper
bounds of the first Chern numbe#(S), we use the local-global formula of Kodaira
type obtained by the third author. The main part of the proepehds heavily on
the classification of singular fibers according to their tog@al monodromies and
Chern numbers.

2. Formulas for the invariants of fibrations

For a relatively minimal fibrationf: S— C of genusg over a smooth curv€ of
genusb, it is convenient to use the relative numerical invariarftshe fibration:

K% =ci(9-8(g—1)b- 1),
er =C(9—-4@9-1)b-1),
xt = x(0s) = (@ - 1) - 1),
gr = a(S) — g(C).

We can compute; topologically. It is the sum of the topological contribut® of
the singular fibers:

er = Y _(xop(F) — (2—20)),
F
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where F runs over all singular fibers. The third author [23] gives avrfermula for
er = xwop(F) — (2—29),
er = 2Ng + uF,

where g is the sum of the Milnor numbers of the singular points Bfg. N =
0g— pa(Freg) is an integer between 0 argd N = g iff Feqis a tree of smooth rational
curves, andNg = 0 iff F is reduced oig =1 andF is of type mln.

Let I'y, ..., I’k be all irreducible components of a given fibEr, and I > T
be the normalization of’j. g(F) := Z:‘Zl g(l) is called thegeometric genusf F.
We denote byF = o*F the normal crossing modedf F, i.e., o is the blowing-ups
of the singular points of such thatF = o*F is a normal crossing divisorNg :=
g — pa(Fred). Note that

9 > Pa(Fred) = Pa(Fred = 9(F) = qr,
the last inequality is due to Beauville (see [8], [15]). We ge
(1) 0<Nr = Ng =g-—qs.

Note thatNg = g, i.e., pa(Fred = O, if and only if F is a tree of smooth rational
curves. IfF is semistable, thelr = F and Ng = 0.

The relative invariants can be computed by using the modmariantsk(f), A(f)
and §(f).

Kf =x(f)+ ) c(R),

i=1

) er =8(f)+ ) _ c(F),
i=1

xt =M+ xr,

i=1

wherec2(F), c,(F) and x¢ are the Chern numbers of the singular fiker which are
nonnegative rational numbers, and each of them vanishaslibaly if F is semistable
(wheng > 2) (see [23], [25] or [14]). So for a semistable fibratidn

K2 =k(f), e =o(f), xi=A(f)
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If f is isotrivial, thenk(f) = §(f) = A(f) =0, so

ci(X) = 8(g - 1)(@(C) - 1) + Y _ ci(F),
i=1

©) c2(X) = 4@ - 1)EC) - 1)+ ) ca(F),

i=1

x(0x) =(@-1)@C) -1+ Y xe.

i=1

We refer to [25], [26] and [14] for more properties of the Qhetumbersc?(F)
and c(F).

Let Fi, ..., Fs, be all singular fibers satisfying(F) < g. By [15, Theorem 1.4],
we have the following new formula

St
2x1 =(9—91)(29(C) —2+s1) — > _(9(F) —qr)

i=1
@) . .
- (hl'l(s> —29(C)ar —2— Y _(I(F) — 1)) +Y Ng

i=1 i=1
and the following inequalities
g(F)—ar =0,
lei = g—0qs,
S
htX(S) - 29(C)ar —2— ) "(I(R) - 1) = 0.

i=1

®)

3. Matsumoto—Montesinos’ theory on the degeneration of cwes

Let (f, F) be a fiber germf: S— A whose semistable model is smooth, jebe
a monodromy homeomorphism along a simple closed curve drpua f(F) =0€ A
in a neighborhood ofp, and let ] be the topological monodromy off(F), i.e., the
conjugacy class oft in the mapping class group of Riemann surface of gequsn
particular, ju] = [id] iff the central fiber F is smooth [17, Corollary 1.1]. LeE be the
d-th root model of F under a local base change of degkkeotally ramified overp
defined byw = t9 (see [14]). Denote by/{] the topological monodromy of the germ
of F. It is well-known that fi] = [u9]. If [9] = [id], then [u] is periodic, which is
equivalent to the fact that the semistable modelFomust be smooth.

From Matsumoto—Montesinos’ theory on degenerated Riemarfaces [14, 15],
one has a bijective map as follows:

d: A— B, (f,F)—[ul
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where A is the set of topologically equivalent classes of fiber gewita smooth semi-
stable models, and is the set of all conjugacy classes of periodic maps in the-map
ping class group. Furthermore, from Matsumoto—Montesinwsoty, the periodic topo-
logical monodromy is uniquely determined by the dual graptthe minimal normal-
crossing model([14, Definition 2.2]) F of F.

From Matsumoto—Montesinos’ theory, or Xiao’s theory on piple components
[28], one can see thad can be written as follows:

(6) If=nC0+ZFi,

i=1

whereIj’'s are disjointH-J branches([14, Definition 3.4]), andF contains only one
principle componentC, which is a nonsingular curve satisfyif@ol'i g = 1 for all i.

One can check that the-th root model of F is smooth, but for anyd < n, the
d-th model of F is not smooth. Thus the order ofi] is equal ton.

Let Mg be the least common multiplicity of the coefficients of theeducible com-
ponents in the divisoF. The dual modeF* of F in the sense of [14, Definition 2.5]
is just the Mg — 1)-th root model ofF. Denote by [t*] the conjugacy class of the
monodromy of F*. Then [u*] = [uMF~2]. By definition, n is a factor of Mg. Thus
[uMF] = [id]. In particular,

] =[n

From the bijiective mapb, we see thaf* is determined uniquely by. As a conse-
quence, our notiorF* coincides with the one defined by using the monodromy (when
the semistable model df is smooth).

Let F* be the dual model of. By the definition of F*, under a base change of
degreen — 1, we gets the minimal normal-crossing model 6t as follows

(7) Fr=nC5+> 17,
i=1

whereT'{’s as the pull-back of"j’s are disjoint H-J branches ang’ ,Cg = 1.

REMARK 3.1. We refer to [16], [17], [5], [4], [6] for more details ofhé
Matsumoto—Montesinos’ theory.

4. Proof of Theorem 1.1

Let f: S— P! be a fibration with two singular fibers; and F,. In this case,f
is isotrivial (see [8]).

Now consider then-cyclic base changer: P* — P! totally ramified over 0=
f(F1) and oo = f(F,). Let f: S— P! be the pullback fibration off underz. It
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is well-known that f is semistable for soma. Becausef is isotrivial, f must be a
trivial fibration. Hence there is a generically finitecoverI1: S= F xP! --> S, which
implies that«(S) = —oo.

Let o1 (resp.o2) be the loop around & f(F;) (resp.oco = f(Fz)) such that
o100 = 1 € m(P1—0—00). Let u; be the topological homeomorphism aloag Thus
[n1opo] = [id], i.e., [u1] = [1,1]. Thus F; is the dual model of;, F, = F1*. By (3),

(8) K2 = c2(F1) + A(F1*), xt = xr + XF» € = Co(F1) + Ca(F1%).
In our cases=2,9(C) =0, xs =g—4q(S). (4) and (5) imply that
9) ss=2, h*{(9=Il1+1l2 g(R)=a(9, Ng =g-—aS.

So the Mordell-Weil rank = 0.

Now we will prove (3) of Theorem 1.1. Equivalently, we needpmve K? =
c2(F1) + c3(F2) < 89 — 12, whereF, = F;*. In this case, the semistable models of
the two singular fibers are smooth. Whegn= 2, according to the classification of
Namikawa-Ueno [18], there are exactly 11 paifs,F:*) (see Theorem 1.2 or the next
section), one can compute directt§(S) = —8(g — 1) + c2(F1) + c?(F2) and check
directly thatcf(S) < —2. So we can assume thgt> 2.

Note that singular fibers satisfyingf(F) > 4g — 11/2 are classified in [14, The-
orem 2.1]. There are totally 22 types. But only Types 1, 2, &nd 6 have nonsingu-
lar semistable models, whege= 6, 4, 3, 3, and 3, and the Chern numbef¢F) are
130/7, 54/5, 7, 487 and 2Q3, respectively. On the other hand, one can compute the
dual modelsF*. The following is the dual graphes of the normal crossing et®adf
F* corresponding to the fibers of Typei, which are trees of smooth rational curves.

7 ‘- 5 T Srozl T7 3T

*—eo—0—e *—O0—o—o —eo—eo o—eo—o—o *—o—e—o
3 2111 1 3 9151 3 121 1 5 14 2 15 9 1
Type I Type 2 Type 3 Type & Type 6

By a direct computationcf(F*) are respectively 77, 16/5, 2, 297, and 73.

If one of F; and F, satisfiesci(Fi) > 4g — 11/2, then the singular fibers are of
Type k and Typek* for somek = 1,..., 4, or 6, we can check thd? = c?(F) +
c(F*) < 8g—12.

If c2(F) <4g—11/2 fori = 1,2, we need the following lemma whose proof will
be given in Section 6.

Lemma 4.1. There is no fiber F whose semistable model is smaatd

11
CH(F) = ci(F") = 49— =,
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where F* is the dual model of F.

Then one of the inequalitiesf(F;) < 4g—11/2 andc?(F,) < 4g—11/2 is strict. Hence
K% = ci(F1) + c3(F,) < 89— 11, i.e.,K? < 8g—12.

5. Proof of Theorem 1.2

5.1. Classification of genus 2 singular fibers. Suppose thaf : S— P! has ex-
actly two singular fiberd= and F*. From the complete list of genus two singular fibers
(see [18]), we can check that there are 11 pairs of fib&rsF(*) whose semistable
models are smooth.

Fl oo N [W IV V VI VIV V2 [ IXL ] I1X-2
4 12 8 6
2 2 | 2] 2 1] 2 1 = —— = =
“ 3 5 5 5 5
cc| 10 (4|10 9] 5]10] 5 4 12 8 6
F* [ 1goo | [0V T VETVE[ VI [ VII-4 [ VIN-3 [ IX-4 | 1X-3
16 13 12 | 14
2 2 |2 2]3|3]2 3 = = = | =
“ 5 5 5 5
co| 10 [4|10] 9 [15]10] 15 16 7 12 | 14

We haveK? = c2(F) + c2(F*) and x1 = (1/12)C(F) + c2(F)) + (1/12)(2(F*) +

C2(F™)).

(1) Type (IV,IV): K2 =6, xt =2, q(S =0;

(2) Type (VII-2, VIII-3): K2 =5, x; =2, q(S) =0;
(3) Type (I 1): K§ =4, x1 =1,0q(5 =1,

(4) Others:K? =4, xy =2, q(S) = 0.

According to [1, Lemma 1.2] and [29, Lemma 5.1.4]; S— P! is the relatively
minimal model of a normalized double cover. ¥ — X, over a Hirzebruch surface
Y. — P! branched along a curvB. Namely, in the process of the canonical resolution,
the multiplicities of singular points of the horizontal b curves are at most 3.

From [11], we know the local structure of the branch curvearnthe singular
fibers. In the following, the dashed line is not contained e branch locus. The
number is the intersection number of the curve with the defitiar Fo of the ruling
e — PL.



FAMILIES OF CURVES OVER P!

|
0-0-0

O_
o
o
L]
FTTTT
L]
FTTTT

t=0 t=o00
Type (.00 16-0-0)

6 :6
t=0 =0
Type (I, 111)
:C ~
\YJ \ V*
56 %
t=0 t =00
Type (V, V¥)
’ e
VIl \ Vi K
55 5
t=0 t =00
Type (VII, VII*)

t=0 t=o00

Type (Il, 11)
™ ™
\Y; _/g \Y, _/g
t=0 t =00
Type (IV, IV)
wk o owk
55 5
t=0 t=o00
Type (VI, VI)
5 -
VIl C Vill-4 R
!5 6
tl =0 t=o00

Type (VIII-L, VIII-4)

91
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Y Y = e
VIII-3 VIII-2 IX-3 IX-2 N_
5 6 6 5
t=0 t=o00 t=0 t=o00
Type (VIII-2, VIII-3) Type (IX-2, IX-3)

IX-1

t=0 t=o00
Type (I1X-1, IX-4)

5.2. Determination of the Hirzebruch surfaces. We will determinee of the
normalized double cover: ¥ — X induced byf: S— P

Lemma 5.1. We have e= 0 and ¥, = P! x PL.

5_ [6.:2, if Ki=4a9=0,
(6, 4), otherwise.

Proof. From [27, Theorem 2.1K? = 4= 4g—4 andq(S) = 0, if and only if S
is a double cover oveP! x P ramified over a curve of type (6, 2). It is easy to see
that this double cover is normalized.

Now we consider the remaining cases. Suppose $#& a normalized double
cover over a Hirzebruch surfacge branched along a curvB = 6Cy + 2aky, where
Co is a section withcg = —e and Ry is a fiber of the rulingy: =, — P! Let
Ky 1= Ky, p1 = —2Co —ek. ThenK, B = 6e—4a, B? = 24a — 36e.

From the formulae for the invariants of a double cover s@fame has

1K B+182 1§k: ( 1)=2a—3e—|
= — - - = wi\wj — = - - f
Xf 2 v g 2i=l i (Wi P

where Ip = (1/2) YF_; wi(wi — 1).
Type (II, I). x¢ = 1. By the canonical resolution, we havg = 3. Thusa =
(3/2)e+ 2 ande is even.
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In this case, each singular point of the horizonal parBos of type (3— 3) with
a vertical tangent line, i.e., it is topologically equivale¢o a singular point defined by
t3 4+ x5 = 0. In particular, B contains no section anfy C B, so BCy = 2a — 6e >
FoCo > 1, i.e.,a>3e+1, it impliese < 2/3. Soe= 0 anda = 2. HenceZ, = P! xP*!
and B = 6Cy + 4F is of type (6, 4).

TvypPe (VIII-2,VIII-3). x¢ = 2. By the canonical resolution, we see that= 2.
Hencea = e+ 2 ande is even.

If B does not contairCy, BCy > 0, i.e.,a = (3/2)e + 2 > 3e. Hencee =0 and
B = 6Cy + 4F.

If B containsCgp, since B is a reduced curve containing two fibeB,— 2F; — Cy
does not contairCy. Thus BCy > 2FCop + Cg =2-¢ie,22a—-5e>2 Hencee=0
and B = 6Cy + 4F.

TyPe (IV, IV). x; =2 andlp =2. Soa =(3/2)e+ 2 ande is even. SinceB
does not contairCy, BCy > 0, i.e.,a > 3e. Hencee = 0 and B = 6Cq + 4F. O

5.3. The case WherKf2 = 4. Now we will classify genus 2 fibrationg : S —

P! with 2 singular fibers according to the types of the fibe8ds a normalized double
cover overP! x P! ramified over a curveB of type (6, 2) or (6, 4). Suppose thakt is
defined by an algebraic equatitix,t) = 0, then f: S— P! is defined byy? = h(x,t).

By a suitable transformation, we can always assume Bhaas two singular points
(0,0) and kg,00). We claim thatxy # 0. Indeed, otherwise, the sum of the intersection
numbers ofB with the line x = 0 would be bigger than 2 or 4. Hence we can also
assume thakg = oo.

If B is of type (6, 2), then

h(x, t) = ha(X)t? + hy(X)t + ho(x),

where dedn;(x) < 6. In the neighborhood ofof, 0c0), we can use the coordinates=
1/x ands = 1/t. Thenh can be written as

h(u, s) = hy(u) + hy(u)s + ho(u)s?,

where h; (u) = u®h; (1/u).

Because the calculations are similar, we will only do thecwaialttions for several
typical types.

Tvype (lIl, 11). In this case, (0, 0)e B is a singular point of typeAs with a
double tangent ling? = 0. Henceh,(0) # 0, h1(0) = ho(0) = 0. Since the intersection
number of the linet = 0 with B at (0, 0) is 6,ho(x) = ax® (a # 0). Similarly, (o, o)
is a singular point of typeAs with tangent lines = 0, we can see that® dividesh,(u).
Thus hy(x) is a nonzero constart, we can assume that= 1.

The multiplicity of the singular point (0, 0) oB is 2, sox? divides hy(x). If x3
does not divideh(x), then the singular point is analytically isomorphic 6 = v,
which is of type As, a contradiction. Thus?® divides hy(x). Symmetrically,u® divides
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hi(u). Hencehy(x) = bx3. By a linear transformation ok, we haveh(x, t) = t2 +
dx3t + x6.
TyPE (II, I1). In this case,B contains the vertical liné = co and so

h(x, t) = ha(X)t> + ha(x)t? + hy(X)t + ho(x), degh; < 6.

The singular point oB at (0, 0) has multiplicity 3 and admits a triple tangent line
t3 = 0. Similarly, ho(x) = ax® (a # 0), h3(0) # 0, x? | ha(x) and x3 | hy(x). We can
assume thaa = 1 by a linear transformation of.

The local equation oB at (0o, c0) is as follows.

s+ (N3(u) + ha(U)s + h1(u)s? + ho(u)s®) = 0.

Symmetrically,u® | hs(u), hencehs(x) is a nonzero constant, we can assume that this
constant is 1 by a linear transformation tof

If x* does not divideh;(x), then by blowing up at the singular point (0, 0), we
can see easily that the strict transform Bfis smooth, which contradicts with the fact
that the singular pointg, (0, 0)) is of type (3— 3). Hencex* | hy(x).

In the neighborhood ofcp, oc), we have also

Thus hy(x) = ex? and hy(x) = dx*, whered ande are constanth(x,t) = x® 4+ dx*t +
ex’t? + t3,

5.4. The case wherK? > 4. We will use Ishizaka’s method to get the defining
equations.

TYPE (IV,1V). The monodromy type of the pair (Il Ill) is 3], [#3]), and that
of (IV,1V) is ([¢§I3],[¢§I3]). According to [13, Lemma 1.2], the equation of the branch
curve corresponding to Type (IV, IV) is-h(x,t) = 0, whereh(x,t) = 0 is the equation
of the branch curve corresponding to the Type (lll, lll). Bhilhe defining equation of
the family isy? = t(t? + dx3t + x5).

Type (VIII-2, VIII-3). The equation can be obtained from that ofpe (I1X-1,
IX-4) because @3], [¢]]) = ([¢31a], [¢213]). We haveh(x, t) = t(x® + t2).

6. Proof of Lemma 4.1

In this section, we use freely the notations used in [14].

Lemma 6.1. Let F and F be written as in(6) and (7). Suppose the semistable
model of F is smooth. Then
(1) F admits at worst one singularity which is not a node.
(2) BF =B, Br+Br- =s, and F or F* is a nodal curve(See[14, Section3.1 and
Section3.2] for the definitions offr, BF).
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(3) KTired = ury and KT * 4 = ur, where ur is the sum of Milnos numbers of
the singularities ofT"gg.

Proof. (1) Letp € F be a singular point which is not a node. Consider the
minimal partial resolution of §, F) such that the total transform df is a normal
crossing divisorF. Let E be the support of the exceptional curves, andGebe a
(=1) curve in E. Then the minimality of the resolution implies th& meets in at
least 3 points with the other componentsfn So C is exactly theCy in (6). If q €
F is another non-nodal singularity, the®y, lies also in the exceptional set of, a
contradiction.

(2) Br = B¢ is obviously a consequence of (6).

Let C; (resp.C") be the unique irreducible component Bf (resp.T") meeting
with Cy (resp.Cj), and letn; (resp.n) be the multiplicity of C; (resp.C) in F
(resp.F*). Thenn® = n—n; for all i. Thus one get¥e = s— B¢ by Lemma 2.1
in [14].

If F has a non-nodal singularity, the@y is a (~1)-curve ands > 3. Son =
Y 5_ini by Zariski's Lemma. Thus-(C})?> =s—1> 2. It means thatC} is not a
(=1)-curve. HenceF* = F*.

(3) Note thatur, + 1 (resp.ur; + 1) is the number of irreducible components
of T (resp.T). (3) is directly from [21, p.222]. O

Let F and F* be as in (6) and (7). From Lemma 6.1 (2), we can assumeRhat
is a nodal curvecf(F) = CE(F*) = 4g—11/2 is equivalent to the following equalities.

11 - .
5 = 4Pa(Fied — Figg+ B + D mi(m —2),

i=1
% = 4pa(ﬁred) - (F;gd)Z + B+
Every terms in the right hand sides of the above equalitiesnan-negative. Note that
pa(lfred) = pa(lfred) = 1: .BF + /3F* =s2>2 (Lemma 6-1) anGZir=1 m; (mi - 2) <5,
So Feg has at most one non-nodal singularity which is of type A;, A3, D4 and
Yi_ m(m —2) =3 (see [14, Lemma 3.3]). If sucp exists,s = 3 since allm; < 3
and Cy is a (—1)-curve.

Suppose thapa(Freq) = 1. It implies thatF is a nodal curvesF2, = F;gdz =-1
and Bg = Bg- = 1/2 from the above inequalities. Thys + B = 1, a contradiction.

Hence pa(Freq) = 0, i.e., the dual graphs df, F* are trees of smooth rational curves.

Claim 1. F is also a nodal curve.
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Suppose thaF has a singularityp as above. We get

= l:redKS + ,BF,

NI Nl

= FerKS + BE-.

Obviously, 8¢ > 1 is an odd integer. By Example 3.1 of [14r = 1 (if p is of type
Az), 1/2 < B <1 (if pis of type Az) or B < 1 (if p is of type D4). So B = 1/2
and p is of type Ds. Thus FregKs = 2, Be+ = s — B¢ = 2 and F5Ks = 1. Hence
F has at most two components which are neR)-curves. It implies thaF* consists
of one (3)-curve and some—2)-curves. By Lemma 6.1 (3), the dual graphfhas

two posibilities:

C2 C2
Case A I Case B I
e} O O O
C, Co Cs Cy Co Cs Cs

1
ga FedKs=2=e +e&+e-9, =3

In Case B,

1 1 1 €3
r=g=" o+ ,
2 e & ee-1

FredKs=2=e+ e +e+e1—-11, g = 3.

By a straightforward computation, one can prove that botfesare impossible.
ThereforeF must be a nodal curve and

= l:redKS + ,BF,

NI NN

= FerKS + ,BF*'

Claim 2. FregKs = FiKs=1.
Let & = —CZ and €} = —(C%)?. It is obvious thats = e + €} > 4. Since
7 = (Fred + Frzd)KS + Sa

(Frea + FzgKs = 3. Without loss of generality, we assume tHatKs = 1. Hence
Br = 5/2 and F consists of one-{3)-curve and some—2)-curves.
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If FiyKs=2, thens=4, e =€ =2 andfr- = 3/2. By Lemma 6.1 (3), the
dual graph ofF* is as follows.

Let g = —C?2. One hasg > 2 and

o3 1,11 e
T2 e e & as-1

FedKs=2=e+ & +e+e+ 6 —10.

By a straightforward computation, one can prove that it ipassible. Hencé=,Ks =
1 ands =5.

Claim 3. Such F does not exist.

Without loss of generality, we can assume tapé= 2 ande} = 3. SinceF;Ks =1,
the irreducible components &* are (2)-curves except foCj}. Again by Lemma 6.1
(3), the dual graph of is as follows.

C
2 Ce

Case D
C, Co Cy
Cs

Hencept = 1/3 + (1/2) x 4 # 5/2, a contradiction.
Up to now, we complete the proof of Lemma 4.1. ]
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