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Abstract

This paper considers an impulsive stochastic logistic adt infinite delay at
the phase spadgy. Firstly, the definition of solution to an impulsive stoctiagunc-
tional differential equation with infinite delay is estaltled. Based on this definition,
we show that our model has a unique global positive solufidren we establish the
sufficient conditions for extinction, nonpersistence ie thean, weak persistence and
stochastic permanence of the solution. The threshold leetweeak persistence and
extinction is obtained. In addition, the effects of impuésperturbation and delay on
persistence and extinction are discussed, respectivetally; numerical simulations
are introduced to support the theoretical analysis results

1. Introduction

A famous logistic model with infinite delay can be expressedallows

0
(1.1)  dx@)/dt = x(t)[r (t) — a(t)x(t) + bt)x(t — ) + c(t) f x(t + 6) du(e)},

wheret > 0 represents the time delay ap) is a probability measure on-60,0]. A
further and extensive feature is considered in the mod#) @r. systems similar to (1.1)
towards persistence, extinction or other dynamical behmaWwere, we only refer to the
references([1], [2], [3], [4], [5], [6], [7]). Particulay| [1] and [7] are good references
in this field.

In the real world, population models are always influencectbyironmental noises
(see e.g. [8], [9], [10], [11], [12], [13], [14], [15]). Moreer, May [10] has revealed
the fact that due to environmental noise, the birth rate, prtition coefficient and other
parameters involved in the system exhibit random fluctuat@a greater or lesser ex-
tent. Inspired by works referred above, we estimate thd bater (t) and the intraspe-
cific competition coefficiena(t) by an average value with errors which follow a nor-
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mal distribution. In other words, we may substitute the petersr(t), —a(t) with
r(t) + o1(t)wa(t), —a(t) + oa(t)ws(t), respectively. Here, for = 1, 2, oi(t) is positive
continuous bounded function dR; = [0, +oc) andoi%(t) represents an intensity of the
white noisew; att; (wi(t), wo(t)) is a 2-dimensional white noise, namely(t), w,(t))

is a 2-dimensional Brownian motion defined on a complete adity space 2, F,P)
with a filtration { }, g, satisfying the usual conditions. Then we obtain the foltayvi
stochastic model:

dx(t) = x(t)[r (t) — a(t)x(t) + b(t)x(t — ) + c(t) /O X(t +0) du(e)} dt

+ o1 ()X(t) dw1(t) + oa(t)x?(t) daws(t).

(1.2)

On the other hand, affected by a variety of factors both mdfuand artificially,
such as earthquake, drought, flooding, fire, crop-dustitagiting, hunting and harvest-
ing, the inner discipline of species or environment ofteffesa some dispersed changes
over a relatively short time interval at the fixed times. Inth@matics perspective, such
sudden changes could be described by impulses (see e.g.[1¥8] [18], [19], [20],
[21]). In this paper, we will study the following impulsiveaghastic logistic system
with infinite delay

dx(t) = x(t)[r (t) — a(t)x(t) + b(t)x(t — ) + c(t) [0 X(t + 0) d,u(@)} dt

1.3
13 + o1(OX(R) dor) + oaX) dant), t £ b, K € N,
X(t") — x(t) = hex(tk), ke N
where N denotes the set of positive integers<@; < ty---, limg_ o tk = +00.

Since phase spaddC((—o0, 0]; R) may cause the usual well-posedness questions
related to functional equations of unbounded delay ([3P],[423]), we let the initial
value ¢ be positive and belong to the phase sp@ge([3], [22]) which is defined by

cg={goec:((—oo, 0L R): gl = sup efS|¢(s)|<+oo}.

—00<S<0

where we choos@(s) = €5, r > 0. FurthermoreCq is an admissible Banach space
(31, [23)).

For the system (1.3), some important topics arise naturally
(Q1) The model (1.3) describes a population dynamics, thén dritical to investigate
the persistence and extinction of this model. Moreover, ial& important to obtain
the threshold between extinction and persistence for tleeisg.
(Q2) When analyzing population models, permanence is onth@fmost interesting
and important topics. Then under what conditions is the h@i8) permanent?
(Q3) What are the impacts of impulsive perturbation and ydeda the extinction,
persistence and permanence of the system (1.3), respgetive
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For the model (1.3) we always assume:
(Al): As far as biological meanings are concerned, we camsicH- hy > 0, k € N.
Whenhy > 0, is satisfied, the perturbation turns to be the descrigtimtess of plant-
ing of species and harvesting if not.
(A2): r(t), a(t), b(t) and c(t) are continuous and bounded functions &. and
inf.g, a(t) > 0.
(A3): n satisfies that

0
Hr =/ e 2 du(9) < +oo.
The assumption (A3) above may be satisfied whef) = €?(k > 2) for # < 0, so
there are a large number of these probability measures.

For the simplicity, we define the following notations:

fU=supf(t), f' = !Qé f(t), (x@)) = % /Ot x(s) ds,

teR

Xe = Itierinf X(t), x* =Ilimsupx(t), Ry = (0, +c0).
—>T0 t—>+o00
The following definitions are commonly used and we list theeneh

DEFINITION. 1. The population x(t) is said to be extinctive [13] if
limi_ 1o X(t) = 0.
2. The populatiorx(t) is said to be nonpersistent in the mean (see e.g., Liu and Ma
[24]) if lim sup,_, . (X(t)) = 0.
3. The populatiorx(t) is said to be weakly persistent (see e.g., Hallam and Ma [25])
if lim sup,_, ,,, X(t) > 0.
4. The populationx(t) is said to be stochastic permanence [13] if for an arbitrary
¢ > 0, there are constanfs > 0, @ > 0 such that liminf. ., P{x(t) > B} > 1—¢ and
liminfi_ 0 P{X(t) <o} >1—e¢.

The rest of the paper is arranged as follows. In Section 2, wwpgse a new def-
inition of solution for impulsive stochastic functionalffdirential equations with infin-
ite delay and verify that the model (1.3) has a unique pasigiobal solution. After-
ward, sufficient conditions for extinction are establistexi well as nonpersistence in
the mean, weak persistence and stochastic permanencetionSgc Section 4 devotes
to introducing some figures to illustrate the main resulténally, we end the paper
with a series of conclusions and remarks in Section 5.

2. Positive and global solutions

Now let (2, F,{Ft}i=0,P) be a complete probability space with a filtrati@# }i>0
satisfying the usual conditions. LeB(t) denote am-dimension standard Brownian
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motion defined on this probability space.

DErINITION 1. Considering the following impulsive stochastic funotd differ-
ential equation with infinite delay:

2.1) {dX(t) = F(t, X;) dt + G(t, X;)dB(t), t#t, keN,

' X(td) — X(t) = HieX(t), keN
where X; = {X(t +0): —oo <6 < 0} can be regarded &S4-value stochastic process.
The initial valueXo = & = {£(P): —oo < < 0} is an Fo-measurable&y-valued random
variable such that € M?((—oo, 0]; RY), where M?2((—o0, 0]; RY) is the family of all
Fo-measurableR%-valued processeg(t), t € (—oo,0] such thatEf_Ooo|<p(t)|2dt < +o00.
An RY-value stochastic proces¥(t) defined onR is called a solution of the equa-
tion (2.1) with initial data above, iX(t) has the following properties.
(i) X(t) is Fi-adapted and continuous on (@) and (x, tki1), K € N; F(t, X;) €
LY R4 RY and G(t, X;) € Z%(R,; R™™), where ZX(R,, RY) is all RY valued mea-
surable Fi-adapted processeq(t) satisfyingfoT| f(t)|dt < +o00 a.s. (almost surely) for
every T > O;
(i) for eachty, k € N, X(tJ) = lim_+ X(t) and X(t,) = limeq- X(t) exist and
X(t) = x(t) with probability one;
(i) for almost all t € [0, t1], X(t) obeys the integral equation

t

t
2.2) X(t):é(O)—i—/o F(s, Xs)ds+/0 G(s, Xs) dB(S).

And for almost allt € (t, txr1], kK € N, X(t) obeys the integral equation

t t
(2.3) X(t) = X(tk+)+/ F(s, Xsds+/ G(s, Xs) dB(S).

t tk

Moreover, X(t) satisfies the impulsive conditions at edck: tx, k € N with probabil-
ity one.

REMARK 2.1. Now let us demonstrate the derivation procedure of Dieim1.
First of all, noticing that the impulsive stochastic fulctal differential equation with
infinite delay (2.1) becomes the following stochastic fimeal differential equation with
infinite delay:

dX(t) = F(t, X;) dt + g(t, X;) dB(t)
on [0,t;] and each intervaltg, tx,1] € Ry, k € N. According to the definition of the

solutions of stochastic functional differential equatiomith infinite delay (see e.g. [26],
[27]), the condition (i), Equations (2.2) and (2.3) should &atisfied. Second, since
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there are impulsive perturbations in Equation (2.1), thed@oon (ii) and the impulsive
conditions in (iii) should be satisfied. According to the tfemts above, Definition 1 is
thus proposed.

Now consider the following stochastic functional diffetiah equation with infin-
ite delay:

dy(t)=y(t)[r(t)— [T @+hoaty®) + J] @+hob®yt—r)

O<ty <t O<ty<t—t
0
(2.4) vo) [ T] @+ hk)y(t+e)du(9)} dt + o1 (OY(1) den ()
~ O<ty<t+6

+ TT @+ h)oa(t)y*(t) des(t),

O<ty<t

with the same initial condition as the model (1.3).

Wei ([26], [27]) and Xu ([28], [29]) have proved that, in ordéor a stochastic
functional differential equation with infinite delay to lea unique global solution for
any given initial data € Cg, the coefficients of the equation are generally required
to satisfy the linear growth condition and the locally Lipgz condition. The locally
Lipschitz condition guarantees that the unique solutioistexon oo, te), Wheretg is
the explosion time(see Mao [30]). Clearly, the coefficiertEquation (2.4) satisfy the
locally Lipschitz condition, but do not satisfy the linearogith condition.

Lemma 2.1. Let the assumptionAl)—(A3) hold. In the model(2.4), for any
given initial condition¢ € Cg, there is a unique solution(k) on t € R and the solution
will remain in R, with probability 1.

Proof. Since the coefficients of Equation 2.4 are locallystiutz continuous, for
any given initial conditiorg € Cg, there is a unique local solutioy(t) ont € (—oo, 7e),

where 7. is the explosion time. To show this solution is global, we chée show that
e = +00 a.s. Letky > 0 be sufficiently large for

1 .
Q< _min 1§@) = _max [£(0)] < ko
For each integek > ko, we define a stopping time
. 1
K = mf{t € (—o00, 7e): Y(t) < K or y(t) > k},

where throughout this paper we set fif= oo (as usualz denotes the empty set).
Clearly, 7¢ is increasing a& — +00. Sett, o = limy_, 1o Tk, Whencer, o, < 7e a.s. for
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all t > 0. If we can show that,,, = +oo a.s., thente = 400 a.s. andx(t) € R;
a.s. for allt > 0. In other words, to complete the proof all we need to showhé t
Tioo = +00 a.5. Now let us define €2-functionV: Ry — Ry by V(y) = /Yy —1—
0.5Iny. Letk > ky and T > 0 be arbitrary. For &<t < tw A T, applying 1t6's formula
(see e.qg. [30, p.32], [31], [15]) t&(y), we have

1
dVv(y) = Vy dy+ Vi dt + évyy(dy)2

=o.5(y°-5—yl)[y<r(t)— [T@+hoaty+ ] @+ hob)yt—r)

O<ty<t O<ty<t—1

0
+ c(t) /_ [T @+nyyt+o) du(e)) dt

X O<ty<t+6

+o1(t)y dos(t) + [] @+ hooa(t)y? dwz(t)]

O<tg<t

4 0.5[-0.25y 15 + 0.5y ?]o(t)y? dt

2
+0.5[-0.25y715 4+ o.5y—2]( [T a+ hk)> oZ(t)y* dt

O<tg<t

=05 (t)(y*°—1)dt—05 [] (1+ hga(t)(y*® - 1)y dt

O<ty <t

+05 J] @+ h)b(t)(y*®- 1yt —1)dt

O<ty<t—1
0
+ 0.50(t)(y*® — 1) / [T @+hoy(t +6)du(©) dt

O O<ty<t+6

+ 0.5(-0.25y71° + 0.5y ?)o2(t)y? dt

2
+0.5(0.25y 15 + O.5y2)( [Ta+ hk)) oZ(t)y* dt

O<ty<t

+0.5(*® — D)o (t) dwn(t) + 0.5 —y) [] (1+ he)oa(t) dex(t)

O<ty<t

< 0.5 (t)(y**~1)dt—0.5 [ (1+ hoa(t)(y*®— 1)y dt

O<tg<t

2
+0.062 ]_[ 1+ hk)> b2(t)(y®® — 1)? dt + y?(t — 7) dt

O<ty<t—1



IMPULSIVE STOCHASTIC LOGISTIC MODEL WITH DELAY

2
0
+ 0.062%2(t)(y*° — 1% dt + [ [ ]_[ (14 h)y(t +6) dﬂ(e)} dt

% O<ty<t+6

+ 0.5(-0.25y° + 0.5y ?)of(t)y? dt

2
+ 0.5(-0.25y"%5 + o.5y—2)< []a+ hk)> o2(t)y* dt

O<ty<t

+0.5(/%5 — 1oy (t) dwa(t) + 0.5y~ y] [ @+ hoz(t)y dwn(t)

O<ty<t

<05 (t)(y**~1)dt—-0.5 [ (1 + hoa(t)(y*®— 1)y dt

O<ty<t

2
+0.062 ]"[ 1+ hk)) b2(t)(y®® — 1)% dt + y?(t — 7) dt

O<ty<t—1

2
< [ (1+hk)) y2(t 4+ 0) du(6) dt

O<ty<t+6

0
+ 0.062%%(t)(y*° — 1)2 dt + /

—00

4 0.5(-0.25y71% 4 0.5y %)o2(t)y? dt

2
+0.5(-0.25y 1° + o.5y2)< ]_[ 1+ hk)) o2(t)y* dt

O<tg<t

+ 0.5(y%° — 1)o(t) dws(t) + 0.5[y*° —y] l_[ (1 + h)oa(t)y dwo(t)

O<tg<t
2 2
= {—0.12 []a+ hk)) oZ()y**+025 J] @+ hk)> o2(t)y?
O<ty<t O<tyg<t

—05 [ @+hgat)y**+05 ] (1+hdat)y

O<ty<t O<ty<t

2
+o.0629 [] @+ hk)) b2(t)y + 0.062%2(t)y + 0.5 (t)y°°

O<ty<t

2
—o0.125%(t)y>5—o0.129 J] 1+ hk)) b2(t)y®®

O<ty <t

2
—-0.1252(t)y**+0.0624 [] 1+ hk)) b2(t) — 0.5 (t)

O<ty<t—1

+ 0.062%2(t) + 0.25712(0} dt
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2
0
+[ ( ]_[ (1+hk)) y2(t 4+ 6) du(9) dt + y2(t — 7) dt

O<ty<t+6

+0.5(/°5(t) — Doa(t) dws(t) + 0.5¢°—y) [] (1 + hooz(t) dwa(t)

O<ty<t

0 2
=F(y)dt+/ ( I (1+hk)> y2(t + 6) duu(6) dt

% \O<ty<t+6
2
- ( []a+ hk)) y2 dt + y2(t — 7) dt — y? dt + 0.5[y%° — 1]oy(t) dws(t)
O<ty <t

+0.5(° —y) l_[ (1 + hy)oa(t) dwo(t),

O<ty <t

where

2
F(y)=-0.129 J] @+ hk)> o2(t)y?®

O<ty <t

2 2
+ [1+ 0.25( []a+ hk)) o5 (t) + < [Ta+ hk)) :|y2

O<ty<t O<tg<t

—05 [ @+hgat)y**+05 J] @+ hoat)y

O<ty<t O<ty <t

2
+006294 [] @+ hk)) b2(t)y + 0.062%2(t)y + 0.5 (t)y®®

O<ty<t—t

2
—0.1252(t)y>*—0.029 J] 1+ hk)) b?(t)y%® — 0.1252(t)y*S

O<ty<t

2
+0.0629 [] @+ hk)) b(t)

O<ty <t

— 0.5 (t) + 0.062%%(t) 4 0.2502(t).

Combined with assumption (A2), it is easy to see tR4y) is bounded, say b, in
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R.. We therefore obtain that
dVv(y(t))

0 2 2
<K dt—i—/ < I1 (1+hk)) y2(t +6) du(e)dt—< I1 (1+hk)) y2(t) dt

O<ty<t+6 O<ty <t
+ Y3t — t) dt — y dt + 0.5[y%5(t) — 1]o1(t) dews (t)
+ 0.5[y"5(t) — y()]oz(t) deoa(t).

Integrating both sides from O tg and then taking expectations, we have

t 0 2
EV(y() < V(y(0)) + Kt+Ef0[ ( I1 <1+hk)) y4(s + 6) du(6) ds

O<ty<s+6
t 2 t
(25 _E /0 <0<lt_[k<s(l+hk)) yA(s)ds+ E /O yAs— 1) ds
t
2
- ds.
E /0 y“(s) ds.
Moreover, we can derive that
(2.6)
t 0 2
[ / ( I1 (1+hk)) y2(s + 6) du(9) ds
0 J-oo O<ty<s+6
t —S 2
-/ [/ ( IT (1+hk)) V(s +6) du(0)
0 0 \O<ty<s+6
0 2
+/ ( I1 (1+hk)) y2(s + 0) du(e)} ds
—S \O<ty<s+6

t -s
— / dS/ e2r(s+9)y2(s + e)e—Zr(S+0) d,u(@)
0 00

0 t 2
+L du(e)/< I1 (1+hk)> y’(s+0)ds

0

O<ty<s+6
t 0 0 t 2
< eIz, /0 e¥ods [ e du@)+ [ du() /O (1‘[(1+hk)) y(s) ds
— - O<ty<s

2
t
< ||s||%gurt+/o < I1 (1+hk)> y4(s) ds.

O<tk<s
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On the other hand,

t t—t 0 t—1
2(c _ — 2 — 2 2
/Oy(s 7)ds /_ y2(s) ds i g(s)ds+/0 y%(s) ds

(2.7) . )
5/ g-z(s)ds+/ y(s) ds.
- 0

Substituting (2.6) and (2.7) into (2.5) leads to
0
(2.8) EV(y(t)) < V(¥(0)) + Kt + |5[Ig, it + | £%(9)ds.
Lett = A T, and we obtain that
0
EV(Y(n AT = VOO) + KT +el2,uT + [ e9ds

Note that for everyw € {7y < T}, Y(wk,w) equals eithek or 1/k, and hence/ (y(z,®))
is no less than either

vk =1-0.5logk)

1 1 1
\/; ~1-05 Iog(E) = \/; — 1+ 0.5logK).

V(y(t, ®)) = [Vk—1—0.5logk)] A [\/g ~1+05 Iog@)}.

or

Thus,

It then follows from (2.8) that

0
V(yO) + KT + el T + [ 9 ds

Z B[l <my(@)V(y(t, 0))]

> Plry < T}([JR— 1-0.5logk)] A [\/g— 1+0.5 |og¢<)D,

where 1, <1, is the indicator function ofrx < T}. Letting k — +o0 gives
Iim P{tg<T} =0
k——+o0

and hence
Pltieo =T} =0.
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SinceT > 0 is arbitrary, we derive
Pl{tico < +00} =0.
Thus P{t,o = +o0} = 1 as required. ]

Theorem 2.1. Let the assumption§Al)—(A3) hold. For the model(1.3), with
any given initial condition € Cy, there is a unique solution(¥) on t € R and the
solution will remain in R with probability 1.

Proof. Now let

xt) = [] @+ h)y),

O<tg<t

where y(t) is the solution of the system (2.4). We need only to show #{#} is the
solution Equation (1.3). In factg(t) is continuous ontg, tx,1) C (0, +00), k € N and
for everyt # t,

dx(t) = d[ []a+ hk)y(t)} = [] @+hydy)

O<ty <t O<ty <t

= [1 <1+hk)y<t)[r(t)— [T @a+h)amy®)+ [ @+hob)yt—1)

O<ty <t O<ty<t O<ty<t—1

0
+ c(t) [ [T @+nyyt+o) du(e)} dt

X O<ty<t+6

2
+ [ @+ hdor®)y(t) den(t) + ( [Ta+ hk)) o2(t)yA(t) daa(t)

O<ty<t O<ty <t
0
= x(t)[r (t) —a(t)x(t) + b(t)x(t — ) + c(t) / X(t + 0) du(e)] dt
+ o1 ()X(t) dwr (t) + oa(t)X3(t) dawa(t).
Moreover, for everyk € N andty € [0, +00),

x@) = fim [T @+h)y® = [T @+h)y)

k 0<'[J <t 0<tJ <tk

=@+h) J] @+h)y)

O<tj <tk

= (1 + h)x(t).
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In addition,

X(t) = fim [T@a+myt= [T @+h)y)

O<tj <t O<tj <tk

= [] @+hpy) = x(.

0<tj <tk

Now let us prove the uniqueness of the solution. Fer [0, t;], the model (1.3) be-
comes the following equation:

dx(t) = x(t)[r (t) — a(t)x(t) + b(t)x(t — ) + c(t) /O X(t +0) du(e)} dt

+ o1 (t)X(t) dewa(t) + o2(t)x3(t) dawa(t).

(2.9)

Since the coefficients of Equation (2.9) are locally Lipsridontinuous, by the theory
of stochastic differential equation (see e.g. Theorem 3132, p.91]), the solution
of Equation (2.9) is unique. Fdre (i, tx+1], k € N, the model (1.3) becomes:

dx(t) = x(t)[r (t) — a(t)x(t) + b(t)x(t — ) + c(t) / ’ X(t + 6) du(e)} dt

+ o1 (t)X(t) dw(t) + oa(t)x?(t)dwa(t).

(2.10)

Note that the coefficients of Equation (2.10) are also lgchipschitz continuous; then
the solution of Equation (2.10) is also unique. Conseqygettie solution of the model
(1.3) is unique. This completes the proof. ]

3. Persistence and extinction

In this section, we shall study the persistence and extinatif the model (1.3).

Theorem 3.1. Let the assumptionéAl)—(A3) hold. Suppose that() is a solu-
tion of Equation (1.3);then

t
lim supt Y In x(t) < lim supt1|: Z In(1+ hy) + / f(s) dsi| =G*, as,
0

t—+o00 t—+o0 O<ty <t

where f(t) = r(t)—0.502(t). Particularly, if G* < 0 and infcg, {a(t)—b(t +7)—c"} =
0, thenlim¢_, ., X(t) = 0 a.s.

Proof. The proof is rather technical so we divide it into twases.
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CAase 1. Db(t) > 0 andc(t) > 0: Applying Ité’s formula (see e.g. [30, p.32]), [31])
to Equation (2.4) leads to

_dy (dyy?
diny = 7 — 2—y2
af(t)
=|rO--=- [T a+haty+ [T @+hobyct-1)
O<ty <t O<ty<t—1

0
+c(t) /_ [T @+h)ytt+6)du®)

X O<ty<t+0

(Mo (2 + hk))zaf(t)yj "
- 2

+out)dor(t) + [] (L4 hooalt)y dos(t).

O<ty<t

Integrating both sides from 0 to, wheret € [0, t3] or t € (t, tkaa], k=1, 2,...,
we obtain

In'y(t) —In'y(0)

t 2
= fo [r(S)—UlT(S) - [T @+ha@)yE) + [] @+ hdbs)ys—1)

O<tx<s O<ty<s—1

0
+c(9) /_ [T @+ hoyis+6) du(®)

X 0<ty<s+6

(Mowy (1 + hk))zazz(s)yZ(s)} ds

2

(3.1) t

t
+ [ o don® + [ T] @+ hooa(o)y(s)doate

O<ty<s
= /t [r (s)— @ —a(s)x(s) + b(s)x(s — 7)
0

o2(s)x?(s)
> } ds

0
+ c(s) [ X(s+ 6) du(0) —

t t
+/O 01(S) da)l(s)+/0 02(S)X(S) dwa(S).
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On the other hand,
t t—1
/ b(s)x(s—1)ds= / b(s + 7)x(s) ds
0 -7
0 t—t
(3.2) =/ b(s + r)x(s)ds+/ b(s + 7)x(s) ds
-7 0
0 t
< / b(s + r)x(s)ds+/ b(s + 7)x(s) ds.
—T 0
Therefore, fort € Ry, substituting (3.2) into (3.1) gives

In v(t) — / [ 2()
y) =Iny(@) = [ |r(s) - — (a(s) — b(s + 7))x(s)

2 2
(3.3) +o(s) / X(s + 6) du(6) — 22 (S)ZX (S)} ds

0
+/ b(s + 7)x(s) ds+ Ma(t) + My(t),

where M(t) = [ 01(s) dwa(s) and Ma(t) = f3 o2(S)X(S) dw(s).
By the assumptions (A2) and (A3), we can compute that

t 0
/ c(s) / X(s+ 0) du(0) ds
0 —00

t —s 0
:[ c(s)[/ X(s + 6) du(e)ds+/ X(s+6) du(e)] ds
0 —

o] —S

t —S 0 t
- /0 o(s) ds [ (s 0)e ) du(s) + [ du(®) / cl9x(s+ ) ds

t 0 0 t
50“||$||cg/0 e*fst/ e’ du(9)+C“/ d,u(@)/(; x(s) ds
t 0 0 t
SC”IISIICQf0 e*rSdS/ e du(9)+0”/ d“(e)/o x(s) ds
1 u —rt u ‘
< 1¢lelle i -e )+ [ x(ods

Consequently,

()

In y(t) — In y(0) < /O [r (s) — —(a(s) — b(s + ) — c")x(s) —

0
+ %Culléllc,ur(l— e +f b(s + )x(s) ds+ My(t) + Ma(t).

o7(S)X*(s)
2

]ds
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The quadratic variation oMy(t) is (M{)(t) = fé o2(s)ds < (o})?t. Making use of the
strong law of large numbers for martingales (see e.g. [30pdib) leads to

(3.9) jim M2

t—+o0 t

=0, as.

The quadratic variation oMa(t) is (Ma)(t) = [y 02(s)x*(s) ds. By virtue of the expo-
nential martingale inequality, for any positive constaf§sy and 3§, we have

79{ sup [Mz(t) - g(Mz)(t)} > 5} <

0<t<To

ChooseTo =k, y =1, § = 2Ink. Then it follows that

{ sup[l\/lz(t) - }(Mz)(t)] > 21In k} <=

0<t<k

The Borel-Cantelli lemma implies that for almost alle €2, there is a random integer
ko = ko(w) such that fork > kg,

sup [Mz(t) — }(Mz)(t)] <2Ink.

0<t=<k
This is to say

t
Ma(t) < 2Ink + %(Mg)(t) =2Ink+ % /O o2(s)x?(s) ds

for all 0 <t <k, k> kg a.s. Substituting this inequality into (3.3), we can obttiat
0
Iny(t) —Iny(0) < / b(s + 7)x(s) ds
(3.5) / [r (s) — 2(5) —(@(s)—b(s+1) - c“)x(s)} ds
0

+2Ink + Fculléllcgur(l —e )+ My(t)

forall 0 <t <k, k> ko a.s. On the other hand, it follows from (3.5) that
>~ In(1+ hy) + In y(t) - In y(0)

O<ty <t

< Z In(1+hk)+/ b(s + 7)x(s) ds

O<ty <t
/ [r (s) — 2( S) —(a(s)—b(s+ 1) — c“)x(s)} ds
0

1
+2Ink + FCUIISIIcg/Ar(l— e ) + Ma(t)
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for all 0 <t <k, k> kp a.s. In other words, we have shown that

Inx(t) —Inx©) < Y In(1+hy) + b(s + 7)x(s) ds

O<ty <t
(3.6) n / [r(s) - & @) —b(s + 1) - c(s))x(s)] ds
0
+2Ink+ %c“nsnc,m(l— &) + Ma(t)

for all 0 <t <k, k> kg a.s. Therefore, fok —1 <t <k, k> kp, a.s., we have

Inx(®) —Inx©) < > I+ hy) + / b(s + 7)x(s) ds+ / [r(s) 1(3)]

O<ty <t

1
+2Ink + Fculléllcgur(l — &) + My(t).

Then we have the desired assertion by the assumption (A2}rendquality (3.4).
CASE 2. b(t) > 0 andc(t) < 0; b(t) < 0 andc(t) > 0; b(t) < 0 andc(t) < O.
Applying the arguments above and comparison theorem ohatiic differential

equations, we can easily draw the conclusion. ]

Theorem 3.2. Let the assumption@A1)—(A3) hold. If G* = 0 andinf, g, {a(t) -
b(t + ) — ¢!} > 0, then the population modeled by Equati¢ih3) is non-persistent in
the mean a.s.

Proof. We only give the proof of cask(t) > 0 andc(t) > 0. Making use of
comparison theorem of stochastic differential equatiohs,proof of casé(t) > 0 and
c(t) < 0; b(t) < 0 andc(t) > 0; b(t) < 0 andc(t) < 0 are easily derived, respect-
ively. From G* = 0 and the assumption (A2), for arbitrarily > 0, there exists a
constantT such thatt ™[} ,_, . IN(1+ hy) + [y f(eds] +t1 fl b(s + t)x(s) ds +
t—l(l/r)c“||§||cgur(l—e—”) +2Ink/t+ Myt)/t <eforall T<k—-1<t =<Kk, k>ko
a.s. Substituting this inequality into (3.6) yields

Inxt) ~nx© =< > |n(1+hk)+[ b(s+r)x(s)ds+/t[r(s) Z(S)]

O<ty<t

£ 2K T o (1€ + My(D)
t
< et — / (a(s) — b(s + ) — c")x(s) ds
0

forall T<k—1<t <Kk, k>kpa.s.
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Define h(t) = /, x(s) ds and | = inf,g_[a(t) — b(t + r) — c"]. The rest of proof
is similar to Theorem 3 in [15] and is hence omitted. ]

Theorem 3.3. Let the assumptionfA1)—(A3) hold. If G* > 0 and (t) > 0, then
the population %) modeled by(1.3) is weakly persistent a.s.

Proof. If this assertion is not true, Iét = {limsup_,, ,, X(t) = 0} and suppose
P(F) > 0. In the light of (3.1), we derive

>~ In(1+ hy) + In y(t) — In y(0)

O<ty<t
ai(s)
- 2w [[Jro-% )
+ ¢(s) /_Zo X(s + 6) du(0) — GzZLZXZ(S)] q

+ Ma(t) + Ma(t),
which implies
t~tInx(t) —t 1 In x(0)

=t Z In(1 + hy) + t_l/ [r (s) — 2( s) —a(s)x(s) + b(s)x(s — 1)
O<ty<t

3.7)
+ c(s)/ X(s + 6) du(6) — w} q
Ml(t) n Mz(t).

+ t t

On the other hand, fovw € F, we have lim. . X(t, ) = 0. Consequently, by
the law of large numbers for local martingales (see e.g. [8Q,2]), we obtain that
lim_ 100 M2(t)/t = 0. Substituting this equalityg(t) > 0 and (3.4) into (3.7), one can
deduce a contradiction

t 0
0 > limsugt In x(t, )] = G* + limsupt ™! / / X(s + 6) du(p) ds
0 J-oo

t—+o00 t—+o0

>G*>0. 0

REMARK 3.1. Theorems 3.1-3.3 have a direct and fantastic biolbgxplana-
tion. It is obvious to see that the extinction and persisteat populationx(t) mod-
eled by (1.3) largely rely on the assumptions (A1)—(AG);, c(t) and inf.g, {a(t) —
b(t + ) — c!}. Under the assumption (A1)—(A3), &* > 0 andc(t) > 0, the popula-
tion x(t) will be weakly persistent; Under the assumptions (A1))(AB G* < 0 and

nfieg, {alt) —b(t + 7) — c'} > 0, the populationx(t) will be extinct. That is to say,
under the assumptions (A1)-(A3), if jok, {a(t) — b(t + r) —c"} = 0 andc(t) = 0
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hold, thenG* is the threshold between weak persistence and extinctiothé popu-
lation x(t).

REMARK 3.2. Generally speaking, as the biology implied, Theorefin rBveals
that the population probably will go to an end in the worstesasvhile Theorem 3.2
shows that the living chances are considerably rare. FroeoEm 3.3 we can easily
find that the population size is limited to zero with the timermitted, however, the
opportunity of the survival of it still exist. This can welkglain why the conditions
are gradually stronger from Theorem 3.1 to Theorem 3.3.

When it comes to the study of population system, the role oflsistic perma-
nence indicating the eternal existence of the populatian, rever be ignorant with its
theoretical and practical significance. And its importahes catched the eyes of sci-
entists all over the world. So now let us show thdt) modeled by Equation (1.3) is
stochastically permanent in some cases.

Assumption (A4): There are two positive constambsand M such thatm <
[Toct<t(L+he) =M for all t > 0.

REMARK 3.3. Assumption A4 is easy to be satisfied. For examplehif=
eV K_1, thene®® < [To_y (1+hi) < efor all t > 0. Thus 1< [T, . (1+h) <e
for all t > O.

Theorem 3.4. Let the assumptiongA1l)—«(A4) hold. If (r(t) — o2(t)/2). > O,
b(t) > 0 and dt) > 0, then the population {t) represented by Equatiofl.3) will
be stochastic permanence.

Proof. First, we claim that for arbitrary > O, there is constang > O such that
liminfio 1o P{X(t) > B} = 1—c¢.

Define Vi(y) = 1/y? for y € R,.. Applying Itd’s formula to Equation 2.4 we can
obtain that

dVi(y) = —2y 3 dy+ 3y *(dy)?

2
= 2V1(y)[1.5( []a+ hk)> oZ)y’+ [] @+hatt)y—r(t)+1.502(t)

O<ty<t O<ty<t

- J] @+hdb)yt-1)

O<ty<t—1

0
—c(t)/_ ]_[ (I+hy(t +0) du(e)} dt

 0<ty<t+ theta

—201(t)y 2 den(t) -2 [ (1+hoa(t)y " den(t).

O<ty<t
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Since ((t) —olz(t)/Z)* > 0, we can choose a sufficient small constant ® < 1 such
that ¢ (t) — o 2(t)/2). — k(0})? > 0.
Define

Va(y) = (1+ Va(y))*.
Making use of Ité’s formula again leads to

dVb = k(14 Va(y)) "t d Vi 4+ 0.5¢(k — 1)(1+ Va(y)) ?(d V)2

2
= K(1+V1(Y))”2{(1+V1(Y))2V1(Y)[1-5( [T @+ hk)) a3 (t)y?

O<ty<t

+ [] @+hatyy—r(t) +1.507(t)

O<ty<t

- [T @+hobt)yt—1)

O<ty<t—1
0

o) [ ] @enayero) dM(G)}
~ 0<ty<t+6

+ 20 () (k — L)VE(Y)

2
+2< l_[ 1+ hk)) azz(t)(K—l)Vl(y)} dt

O<tx<t
— 2 (1+ Va())* "ty 2o (t)dews (1)
— 2@+ Vo) Ty [ (@+hooa(t)dan(t)

O<ty <t

=x(1+v1(y))K2{(—2r(t)+3af(t)—2 [T @+hobye-r)

O<ty<t—1

0
o) [ [ @rhove+6)due)

 0<ty<t+6

+207(t)(k — 1)) Vi) +2 [ @+hoat)Vvi-y)

O<ty <t

+<3012(t)—2r(t)—2 ]‘[ (1+h)b(t)y(t —1)

O<ty<t—1

0
2o [ [ @rhove+0)duee)

 O<ty<t+6
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2
+(2<+1)( [T a+ hk)) ozz(t))vl(y)

O<ty<t

2
+2 J] a+ hk)a(t)VlO'S(y)+3< [T a+ hk)) og(t)} dt

O<ty<t O<ty<t

—2c(L+Va(Y))*ty Zou(t) den(t)
—2c(L+Va) Ty [T @+hoa(t) des(t)

O<ty<t

< kc(L+Va(Y) (=2 (1) + o7 (t) + 2cof (D)) VE(Y) + 2Ma(t) Vi (y)
+ (Bo(t) — 2r (t) + (2c +1)M202(1)) Vi (y) + 2Ma(t)VL(y) + 3M 26 2(t)) dt
— 2 (14 Va(y))* "ty %ou(t) daoa(t)
—2c(+Va) Tyt T @+hoz(t) doz(t)

O<ty<t
2
<1+ vl(y))”‘z{—z((r (t)— ”12“)) —¢ —K(of)z) VA(y) +2a"MVLS(y)

+ BY)?—2r' + (2 + 1)M2(05)P)Va(y) + 28" MVLS(y)

+ 3M2(02”)2} dt
—2c(L+ Va(Y))ty Zou(t) den(t)
—2c(L+Va) Ty [T @+haoa(t) des(t)

O<ty<t

for sufficiently larget > T. Now, letn > 0 be sufficiently small satisfy

af(t)

0<n/k < (r(t) — T) — k(o) —e.

Define V3(y) = €"'V,(y). By virtue of Ité’s formula, we derive
dVs(y) = ne” Va(y) + € dVa(y)

< k(1 + vl(y(t)»”{n(l VL)

~2( (- A0 - etot) Vi)

+2a' MV 3(y) + (3(01')* — 2r.
+ (2¢ + )M (03)?)Va(y) 4 2a*MVL(y)
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+ 3M2(02“)2} dt
— 2 (14 Va(Y)) Tty Pou(t) den(t)
—2c€(L+Va) Tty [ (@ + hioa(t) dan(t)

0<t<t
SK@%1+\AWG»“4{—2((N0-Z§9)*—8—ﬂd032—nﬂ)VfW)
+ 2a"MVE3(y) 4 (3(0)? — 2r, + (2« + 1)M?(05)?
+ 2n/K)Va(y) + 28“MVLS(y) + 3M(03)? + r}//c} dt
— 20€"(1 4 Va(y)) Ly 2os(t) day(t)
— 21+ Vi) Ty [ @+ hoat) des(t)

O<ty<t

= " H(y) dt — 2ce™ (1 + Va(y))* Ly 2ou(t)dws(t)
—2ce™(1+ Vi) Tyt [T @+ hooalt) dan(t)

O<ty<t

for t = T. Note thatH(y) is bounded inR;, namely H = sup.g, H(y) < +oo.
Consequently,

dVs(y(t)) = He™ dt — 2ce™ (1 + Va(y(1)))* 'y *(t)oa(t) deos(t)
—2c€(L+Va) Ty [ (@ + hoa(t) don(t)

O<tg<t

for sufficiently larget. Integrating both sides of the above inequality and theimntak
expectations, we have

EVa(y(®)] = E["(L + Va(y(t))"]
s@ﬂ+wmnw+%@hww

That is to say

lim supE[V (y(1))] < Iimfup E[(1 +Va(y®))] < %

t—+o00 t

In other words, we have just shown that

. 1 H
lim supE[W} <—

t—+o0 o n
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Then

-2
lim supE[1/x%(t)] = lim sup[ ]‘[ 1+ hk)] E[1/y* ()] < m‘zk% = Ha.
t—+4o0

t=>+oo O<ty <t

So for anys > 0, setg = ¢¥/%/H./* by Chebyshev's inequality, one can derive that

B 1 1 E[1/x%(t)]
PO <#1 =P > | < g

This is to say
lim supP{x(t) < B} < B*H, =e.

t—+o0

Consequently
Itim+inf Pix(t) = B} = 1—¢.

Next, we prove that for arbitrary > 0, there are constants > 0 such that
liminfi_ 10 P{X(t) <} > 1—c.

Let 0 < p < 1 and choose; € (0, 2), Applying 1t6’'s formula to Equation (2.4)
obtains

1
dyP(t) = pyP (t) dy(t) + SP(p— 1)yP2(t)(dy(t))?

= py“(t)[(y(t)(r(t)— [T @+hoaty®)+ J] @+hobmyt—r1)

O<ty<t O<ty<t—1

+ c(t) /O [T @+hyyet+o) du(9)>) dt

O O<t<t+6

+o1®)y(t) doa(t) + [ (24 hoa(t)y*(t) dwz(t)}

O<ty<t

2
+5P(p~ DoY) dt + 5 p(p - 1)( [Ta+ hk)) oY) dt

O<ty<t
< pyP(t) [(y(t) (r (t) — mat)y(t) + Mb(t)y(t — 7)

0
+ Mc(t)/ y(t + 0) dMG))) dt

+o1®)y(t) doa(t) + [ (L + hoa(t)y*(t) dwz(t)}

O<ty <t
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+50(p— DoFOYP O dt+ 3 p(p — DMZ3OYP (0 e

p2M2b2(t)y2P(t) p*M2c2(t)y?P(t)
4 4

IA

[r (t)pyP(t) + + Y3t — 1) +

+ /_ZO y2(t + 6) du(e)} dt

+ por(t)yP(t) dos(t) + poa(t) [T (1+hyP () desft)

O<ty<t
— 2P PO dt — 3P~ DMZFOYP () e
F () dt
0
- [P0 + 0~y -1~ [+ 0) @) + ey | at

+ por(t)yP(t) dos(t) + poa(t) [] (L+hoyP (1) dea(t),

O<ty<t

where
F(y) = €7y + ury? + (e + 1 (0)P)YP + pPDP()Y?P () + p*c*(t)y?P
- %p(l — PMZof(t)yP — %p(l — PMZoZ(t)y**P.
From O< p < 1 and the assumption A2, we ha¥y) is bounded inR,, namely

H, = sup F(y) < +oc.
YER,
Therefore we have

dyP(t) = [Ha — e1yP(t) — €77 yA(t) + y*(t — 7)] dt
0
+ / Y2(t + 0) du(6) dt — 1 y2(t) dit

+ por(t)yP(t) dos(t) + poa(t) [] (L+hyP (1) dea(t).

O<ty <t
Once again by the Itd’'s formula we have
d[e " yP(t)]
= e [e1yP(t)dt + dyP(t)]

< et [Hz —e1TY2(t) + YAt — 1) + /O y2(t +60) du(P) ds— uryz(t)i| dt

+ e (pol(t)yp(t) do(t) + poa(t) ] (X +hdy" () dwz(t)>-

O<ty <t
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Hence we derive that
ettH, H,

SUELYP] = £7(0) + — = —

t t
- E/ estary2(s)ds+ E / eSy?(s — ) ds
0 0

t 0 t
+ E/ e’flS[ y2(s+ 6) du(9) ds — E/ wr€1y?(s) ds
0 —00 0

et H, H,
&1 &1

=§P(0) +

t—t

t
- E/O estary2(s) ds + E/ estary?(s) ds

-7

t 0 t
+ E/ e“S/ y2(s + 0) du(0) ds— E/ wr€y?(s) ds
0 —00 0

etH, H
2__2+

0
< s p(o) + e£15+611’ yZ(S) ds

-7

t 0 t
+ E/ e’flS/ y2(s+ 6) du(9) ds— Eur/ e3y2(s) ds.
0 —00 0
From the assumptions (A1) and (A2), we have
t 0
/ geis / V3(s + 0) dpu(6) ds
0 —00
t —s 0
=/ eflS[/ Y2 (s+0)du@®) + [ y(s+6) du(e)}ds
0 —00 —s
t —s 0 t
=/ élsds/ e Hy2(s 4 9)e 2+ du(9)+/ du(e)/ e15y%(s + ) ds
0 —00 —t —0
t —s 0 t+6
= / e ds / e?HNy2(s + 0)e ) d () + / du() / e16y2(s) ds
0 —00 —t 0
t 0 0 t
<lelg [ @ 2as [ e du@)+ [ e au) [ enpeds
0 —00 —0o0 0
t
< leRut + e [ @y ds
0
This immediately implies that

limsupE[yP(t)] < H—

2
t—+o00 €1
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Consequently,

p
. . H,
IItrEfoLipE(Xp(t)) = ntm sup|: [T a+ hk)} E(xP(t)) < |:M pg_l} =a.

—>+o0 O<tg<t

Then the desired assertion follows from the Chebyshev iaégu This completes the
whole proof. O

REMARK 3.4. From Theorems 3.1-3.3, we found that the delay has ectesh
the persistence and extinction of the stochastic mode) (&.&utonomous case.

REMARK 3.5. The present paper is the first attempt, so far as our leugel
is concerned, to investigate the stochastic populatiotesys with infinite delay and
impulsive perturbation at the phase sp&g In view of

G* =lim supt‘l[ Z In(1 + hy) + /t(r (t) — 0.502(t)) ds}
O<ty<t 0

t—+o0

in Theorems 3.1-3.3, we can find that the impulse does nattaffe properties includ-
ing extinction, nonpersistence in the mean, weak persistand stochastic permanence
if the impulsive perturbations are bounded and some chasigedficantly if not.

4. Examples and numerical simulations

In this section, we shall cite an example to illustrate thalgical findings. For
convenience, let the probability measyréd) be € on (—oo, 0]. Thus the stochastic
nonautonomous the model (1.3) will be written as

0

dx(t) = x(t)[r (t) — a(t)x(t) + b(t)x(t — ) + c(t)e™ / €£(0) do

—00

(4.1) + c(t)e™ / t & x(0) de} dt
0

+ o1 (t)X(t) doa(t) + o2(t)X?(t) dowa(t), t#t, K €N,
X(tk+) - X(tk) = th(tk), k € N.

By employing the Euler scheme to discretize this equatiomere the integral term is
approximated by using the compos#teule as a quadrature [33]. Takirgd) = e 0¥
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and r = 0.3, we can obtain the discrete approximate solution witpeet to (4.1):

0
X1 = Xi + Xi [r (kAt)—a(kAt)xy + b(KAt)X_z00-+ c(KAt)e kAL / e¥ do

—00

K
(4.2) +o(kat)e Aty " el Aty } At
i—0
+x(AB1)k+X2(ABk, t#t, KeN,
Xk+1— Xk = X, t=1tg, KEN,

where AB;)x = Bi((k+1)At)—Bj(kAt), k=0,1,2,..,i =1,2. The general composite
0-rule has weights

f, o, o} =10,1,...,1-6},0 €[0, 1]

and Y g0l =k k>o0.

Here, we choose(t) = 0.2+ 0.05sirt, a(t) = 0.2+ 0.01 cog, b(t) = 0.03, c(t) =
0.06, 0,(t) = 0.03 and step sizat = 0.001. In Fig. 1 (a), Fig. 1 (b) and Fig. 1 (c), we
considera?(t) = 0.5+ 0.1sint. The only difference between conditions of Fig. 1 (a),
Fig. 1 (b) and Fig. 1 (c) is that the representationhgfis different. In Fig. 1 (a), we
choosety = 10k andh, = 0. Then the conditions of Theorem 3.1 are satisfied. In view
of Theorem 3.1, the populatiox(t) will be extinct. In Fig. 1 (b), we considag = 10k
andhy = €*®—1. Then the conditions of Theorem 3.2 hold. By virtue of Theeor3.2,
populationx(t) will be nonpersistent in the mean. In Fig. 1 (c), we chotse- 10k
and h, = %7 — 1, then the conditions of Theorem 3.3 are satisfied. That isatg
the populationx(t) will be weakly persistent. In Fig.1(d), we considef(t) =01+
0.1sint, t, = 10k and hy = e~k _ 1. Then the conditions of Theorem 3.4 hold,
which means that the populatiaa(t) will be stochastic permanence. By comparing
Fig. 1 (a)—(c), we can see that the impulsive perturbation d@ange the properties of
the population system significantly.

5. Conclusions and remarks

With the spaceCy as the phase space, we investigate the persistence and-extin
tion of an impulsive stochastic logistic model with infinitelay. Sufficient conditions
for extinction are established as well as nonpersistendbdnmean, weak persistence
and stochastic permanence. In addition, the threshold destwveak persistence and
extinction is obtained.

Some interesting topics deserve our further engagemerg. r@ay put forward a
more realistic and sophisticated model to integrate thered| noise into the model
[32]. Another significant problem is devoted to multidimemal stochastic model
with impulsive perturbation and infinite delay, and suchestigations are to be done
in future.
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Fig. 1. The horizontal axis and the vertical axis in this and
following figures represent the time and the populations size
X(t) (step sizeAt = 0.001).
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