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Abstract
This paper considers an impulsive stochastic logistic model with infinite delay at

the phase spaceCg. Firstly, the definition of solution to an impulsive stochastic func-
tional differential equation with infinite delay is established. Based on this definition,
we show that our model has a unique global positive solution.Then we establish the
sufficient conditions for extinction, nonpersistence in the mean, weak persistence and
stochastic permanence of the solution. The threshold between weak persistence and
extinction is obtained. In addition, the effects of impulsive perturbation and delay on
persistence and extinction are discussed, respectively. Finally, numerical simulations
are introduced to support the theoretical analysis results.

1. Introduction

A famous logistic model with infinite delay can be expressed as follows

(1.1) dx(t)=dt D x(t)

�

r (t) � a(t)x(t)C b(t)x(t � � )C c(t)
Z 0

�1

x(t C �) d�(�)

�

,

where� � 0 represents the time delay and�(�) is a probability measure on (�1,0]. A
further and extensive feature is considered in the model (1.1) or systems similar to (1.1)
towards persistence, extinction or other dynamical behavior. Here, we only refer to the
references([1], [2], [3], [4], [5], [6], [7]). Particularly, [1] and [7] are good references
in this field.

In the real world, population models are always influenced byenvironmental noises
(see e.g. [8], [9], [10], [11], [12], [13], [14], [15]). Moreover, May [10] has revealed
the fact that due to environmental noise, the birth rate, competition coefficient and other
parameters involved in the system exhibit random fluctuation to a greater or lesser ex-
tent. Inspired by works referred above, we estimate the birth rater (t) and the intraspe-
cific competition coefficienta(t) by an average value with errors which follow a nor-
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mal distribution. In other words, we may substitute the parametersr (t), �a(t) with
r (t)C �1(t) P!1(t), �a(t)C �2(t) P!2(t), respectively. Here, fori D 1, 2, �i (t) is positive
continuous bounded function onR

C

D [0,C1) and� 2
i (t) represents an intensity of the

white noise P!i at t ; ( P!1(t), P!2(t)) is a 2-dimensional white noise, namely, (!1(t),!2(t))
is a 2-dimensional Brownian motion defined on a complete probability space (�,F ,P)
with a filtration {Ft}t2R

C

satisfying the usual conditions. Then we obtain the following
stochastic model:

(1.2)
dx(t) D x(t)

�

r (t) � a(t)x(t)C b(t)x(t � � )C c(t)
Z 0

�1

x(t C �) d�(�)

�

dt

C �1(t)x(t) d!1(t)C �2(t)x2(t) d!2(t).

On the other hand, affected by a variety of factors both naturally and artificially,
such as earthquake, drought, flooding, fire, crop-dusting, planting, hunting and harvest-
ing, the inner discipline of species or environment often suffers some dispersed changes
over a relatively short time interval at the fixed times. In mathematics perspective, such
sudden changes could be described by impulses (see e.g. [16], [17], [18], [19], [20],
[21]). In this paper, we will study the following impulsive stochastic logistic system
with infinite delay

(1.3)

8

�

�

�

<

�

�

�

:

dx(t) D x(t)

�

r (t) � a(t)x(t)C b(t)x(t � � )C c(t)
Z 0

�1

x(t C �) d�(�)

�

dt

C �1(t)x(t) d!1(t)C �2(t)x2(t) d!2(t), t ¤ tk, K 2 N,
x(tCk ) � x(tk) D hkx(tk), k 2 N

where N denotes the set of positive integers, 0< t1 < t2 � � � , limk!C1

tk D C1.
Since phase spaceBC((�1, 0]I R) may cause the usual well-posedness questions

related to functional equations of unbounded delay ([3], [22], [23]), we let the initial
value � be positive and belong to the phase spaceCg ([3], [22]) which is defined by

Cg D

�

' 2 C((�1, 0]I R) W k'kcg D sup
�1<s�0

ers
j'(s)j < C1

�

,

where we chooseg(s) D e�rs, r > 0. Furthermore,Cg is an admissible Banach space
([3], [23]).

For the system (1.3), some important topics arise naturally.
(Q1) The model (1.3) describes a population dynamics, then it is critical to investigate
the persistence and extinction of this model. Moreover, it isalso important to obtain
the threshold between extinction and persistence for the species.
(Q2) When analyzing population models, permanence is one ofthe most interesting
and important topics. Then under what conditions is the model (1.3) permanent?
(Q3) What are the impacts of impulsive perturbation and delay on the extinction,
persistence and permanence of the system (1.3), respectively?
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For the model (1.3) we always assume:
(A1): As far as biological meanings are concerned, we consider 1C hk > 0, k 2 N.
When hk > 0, is satisfied, the perturbation turns to be the descriptionprocess of plant-
ing of species and harvesting if not.
(A2): r (t), a(t), b(t) and c(t) are continuous and bounded functions onR

C

and
inft2R

C

a(t) > 0.
(A3): � satisfies that

�r D

Z 0

�1

e�2r� d�(�) < C1.

The assumption (A3) above may be satisfied when�(�) D ekr� (k > 2) for � � 0, so
there are a large number of these probability measures.

For the simplicity, we define the following notations:

f u
D sup

t2R
f (t), f l

D inf
t2R

f (t), hx(t)i D
1

t

Z t

0
x(s) ds,

x
�

D lim inf
t!C1

x(t), x� D lim sup
t!C1

x(t), R
C

D (0,C1).

The following definitions are commonly used and we list them here.

DEFINITION. 1. The population x(t) is said to be extinctive [13] if
limt!C1

x(t) D 0.
2. The populationx(t) is said to be nonpersistent in the mean (see e.g., Liu and Ma
[24]) if lim supt!C1

hx(t)i D 0.
3. The populationx(t) is said to be weakly persistent (see e.g., Hallam and Ma [25])
if lim supt!C1

x(t) > 0.
4. The populationx(t) is said to be stochastic permanence [13] if for an arbitrary
" > 0, there are constants� > 0, � > 0 such that lim inft!C1

P{x(t) � �} � 1� " and
lim inf t!C1

P{x(t) � �} � 1� ".

The rest of the paper is arranged as follows. In Section 2, we propose a new def-
inition of solution for impulsive stochastic functional differential equations with infin-
ite delay and verify that the model (1.3) has a unique positive global solution. After-
ward, sufficient conditions for extinction are establishedas well as nonpersistence in
the mean, weak persistence and stochastic permanence in Section 3. Section 4 devotes
to introducing some figures to illustrate the main results. Finally, we end the paper
with a series of conclusions and remarks in Section 5.

2. Positive and global solutions

Now let (�,F ,{Ft}t�0,P) be a complete probability space with a filtration{Ft}t�0

satisfying the usual conditions. LetB(t) denote am-dimension standard Brownian
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motion defined on this probability space.

DEFINITION 1. Considering the following impulsive stochastic functional differ-
ential equation with infinite delay:

(2.1)

�

d X(t) D F(t, Xt ) dt C G(t, Xt ) d B(t), t ¤ tk, k 2 N,
X(tCk ) � X(tk) D Hk X(tk), k 2 N

where Xt D {X(t C �)W �1 < � � 0} can be regarded asCg-value stochastic process.
The initial valueX0D � D {� (�)W �1< � � 0} is anF0-measurableCg-valued random
variable such that� 2M2((�1, 0]I Rd), whereM2((�1, 0]I Rd) is the family of all

F0-measurable,Rd-valued processes'(t), t 2 (�1,0] such thatE
R 0
�1

j'(t)j2dt <C1.
An Rd-value stochastic processX(t) defined onR is called a solution of the equa-
tion (2.1) with initial data above, ifX(t) has the following properties.
(i) X(t) is Ft -adapted and continuous on (0,t1) and (tk, tkC1), k 2 N; F(t, Xt ) 2
L 1(R

C

I Rd) and G(t, Xt ) 2 L 2(R
C

I Rd�m), whereL k(R
C

, Rd) is all Rd valued mea-

surableFt -adapted processesf (t) satisfying
R T

0 j f (t)jdt < C1 a.s. (almost surely) for
every T > 0;
(ii) for each tk, k 2 N, X(tCk ) D limt!tCk

X(t) and X(t�k ) D limt!t�k X(t) exist and
x(t�k ) D x(tk) with probability one;
(iii) for almost all t 2 [0, t1], X(t) obeys the integral equation

(2.2) X(t) D � (0)C
Z t

0
F(s, Xs) dsC

Z t

0
G(s, Xs) d B(s).

And for almost allt 2 (tk, tkC1], k 2 N, X(t) obeys the integral equation

(2.3) X(t) D X(tCk )C
Z t

tk

F(s, Xs dsC
Z t

tk

G(s, Xs) d B(s).

Moreover, X(t) satisfies the impulsive conditions at eacht D tk, k 2 N with probabil-
ity one.

REMARK 2.1. Now let us demonstrate the derivation procedure of Definition 1.
First of all, noticing that the impulsive stochastic functional differential equation with
infinite delay (2.1) becomes the following stochastic functional differential equation with
infinite delay:

d X(t) D F(t, Xt ) dt C g(t, Xt ) d B(t)

on [0, t1] and each interval (tk, tkC1] 2 R
C

, k 2 N. According to the definition of the
solutions of stochastic functional differential equations with infinite delay (see e.g. [26],
[27]), the condition (i), Equations (2.2) and (2.3) should be satisfied. Second, since
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there are impulsive perturbations in Equation (2.1), the condition (ii) and the impulsive
conditions in (iii) should be satisfied. According to the twofacts above, Definition 1 is
thus proposed.

Now consider the following stochastic functional differential equation with infin-
ite delay:

(2.4)

dy(t) D y(t)

"

r (t) �
Y

0<tk<t

(1C hk)a(t)y(t)C
Y

0<tk<t��

(1C hk)b(t)y(t � � )

C c(t)
Z 0

�1

Y

0<tk<tC�

(1C hk)y(t C �) d�(�)

#

dt C �1(t)y(t) d!1(t)

C

Y

0<tk<t

(1C hk)�2(t)y2(t) d!2(t),

with the same initial condition as the model (1.3).
Wei ([26], [27]) and Xu ([28], [29]) have proved that, in order for a stochastic

functional differential equation with infinite delay to have a unique global solution for
any given initial data� 2 Cg, the coefficients of the equation are generally required
to satisfy the linear growth condition and the locally Lipschitz condition. The locally
Lipschitz condition guarantees that the unique solution exists on (�1, �e), where�e is
the explosion time(see Mao [30]). Clearly, the coefficients of Equation (2.4) satisfy the
locally Lipschitz condition, but do not satisfy the linear growth condition.

Lemma 2.1. Let the assumptions(A1)–(A3) hold. In the model(2.4), for any
given initial condition� 2 Cg, there is a unique solution x(t) on t 2 R and the solution
will remain in R

C

with probability 1.

Proof. Since the coefficients of Equation 2.4 are locally Lipschitz continuous, for
any given initial condition� 2 Cg, there is a unique local solutiony(t) on t 2 (�1,�e),
where�e is the explosion time. To show this solution is global, we need to show that
�e D C1 a.s. Letk0 > 0 be sufficiently large for

1

k0
< min

�1<��0
j� (�)j � max

�1<��0
j� (�)j < k0.

For each integerk � k0, we define a stopping time

�k D inf

�

t 2 (�1, �e) W y(t) �
1

k
or y(t) � k

�

,

where throughout this paper we set inf¿ D C1 (as usual¿ denotes the empty set).
Clearly, �k is increasing ask!C1. Set�

C1

D limk!C1

�k, whence�
C1

� �e a.s. for
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all t � 0. If we can show that�
C1

D C1 a.s., then�e D C1 a.s. andx(t) 2 R
C

a.s. for all t � 0. In other words, to complete the proof all we need to show is that
�

C1

D C1 a.s. Now let us define aC2-function V W R
C

! R
C

by V(y) D
p

y� 1�
0.5 lny. Let k � k0 and T > 0 be arbitrary. For 0� t � �k ^ T , applying Itô’s formula
(see e.g. [30, p. 32], [31], [15]) toV(y), we have

dV(y) D Vy dyC Vt dt C
1

2
Vyy(dy)2

D 0.5(y�0.5
� y�1)

"

y

 

r (t) �
Y

0<tk<t

(1C hk)a(t)yC
Y

0<tk<t��

(1C hk)b(t)y(t � � )

C c(t)
Z 0

�1

Y

0<tk<tC�

(1C hk)y(t C �) d�(�)

!

dt

C �1(t)y d!1(t)C
Y

0<tk<t

(1C hk)�2(t)y2 d!2(t)

#

C 0.5[�0.25y�1.5
C 0.5y�2]� 2

1 (t)y2 dt

C 0.5[�0.25y�1.5
C 0.5y�2]

 

Y

0<tk<t

(1C hk)

!2

�

2
2 (t)y4 dt

D 0.5r (t)(y0.5
� 1) dt � 0.5

Y

0<tk<t

(1C hk)a(t)(y0.5
� 1)y dt

C 0.5
Y

0<tk<t��

(1C hk)b(t)(y0.5
� 1)y(t � � ) dt

C 0.5c(t)(y0.5
� 1)

Z 0

�1

Y

0<tk<tC�

(1C hk)y(t C �) d�(�) dt

C 0.5(�0.25y�1.5
C 0.5y�2)� 2

1 (t)y2 dt

C 0.5(�0.25y�1.5
C 0.5y�2)

 

Y

0<tk<t

(1C hk)

!2

�

2
2 (t)y4 dt

C 0.5(y0.5
� 1)�1(t) d!1(t)C 0.5(y1.5

� y)
Y

0<tk<t

(1C hk)�2(t) d!2(t)

� 0.5r (t)(y0.5
� 1) dt � 0.5

Y

0<tk<t

(1C hk)a(t)(y0.5
� 1)y dt

C 0.0625

 

Y

0<tk<t��

(1C hk)

!2

b2(t)(y0.5
� 1)2 dt C y2(t � � ) dt
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C 0.0625c2(t)(y0.5
� 1)2 dt C

"

Z 0

�1

Y

0<tk<tC�

(1C hk)y(t C �) d�(�)

#2

dt

C 0.5(�0.25y�1.5
C 0.5y�2)� 2

1 (t)y2 dt

C 0.5(�0.25y�1.5
C 0.5y�2)

 

Y

0<tk<t

(1C hk)

!2

�

2
2 (t)y4 dt

C 0.5(y0.5
� 1)�1(t) d!1(t)C 0.5[y1.5

� y]
Y

0<tk<t

(1C hk)�2(t)y d!2(t)

� 0.5r (t)(y0.5
� 1) dt � 0.5

Y

0<tk<t

(1C hk)a(t)(y0.5
� 1)y dt

C 0.0625

 

Y

0<tk<t��

(1C hk)

!2

b2(t)(y0.5
� 1)2 dt C y2(t � � ) dt

C 0.0625c2(t)(y0.5
� 1)2 dt C

Z 0

�1

 

Y

0<tk<tC�

(1C hk)

!2

y2(t C �) d�(�) dt

C 0.5(�0.25y�1.5
C 0.5y�2)� 2

1 (t)y2 dt

C 0.5(�0.25y�1.5
C 0.5y�2)

 

Y

0<tk<t

(1C hk)

!2

�

2
2 (t)y4 dt

C 0.5(y0.5
� 1)�1(t) d!1(t)C 0.5[y1.5

� y]
Y

0<tk<t

(1C hk)�2(t)y d!2(t)

D

(

�0.125

 

Y

0<tk<t

(1C hk)

!2

�

2
2 (t)y2.5

C 0.25

 

Y

0<tk<t

(1C hk)

!2

�

2
2 (t)y2

� 0.5
Y

0<tk<t

(1C hk)a(t)y1.5
C 0.5

Y

0<tk<t

(1C hk)a(t)y

C 0.0625

 

Y

0<tk<t

(1C hk)

!2

b2(t)yC 0.0625c2(t)yC 0.5r (t)y0.5

� 0.125c2(t)y0.5
� 0.125

 

Y

0<tk<t

(1C hk)

!2

b2(t)y0.5

� 0.125� 2
1 (t)y0.5

C 0.0625

 

Y

0<tk<t��

(1C hk)

!2

b2(t) � 0.5r (t)

C 0.0625c2(t)C 0.25� 2
1 (t)

)

dt
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C

Z 0

�1

 

Y

0<tk<tC�

(1C hk)

!2

y2(t C �) d�(�) dt C y2(t � � ) dt

C 0.5(y0.5(t) � 1)�1(t) d!1(t)C 0.5(y1.5
� y)

Y

0<tk<t

(1C hk)�2(t) d!2(t)

D F(y) dt C
Z 0

�1

 

Y

0<tk<tC�

(1C hk)

!2

y2(t C �) d�(�) dt

�

 

Y

0<tk<t

(1C hk)

!2

y2 dt C y2(t � � ) dt � y2 dt C 0.5[y0.5
� 1]�1(t) d!1(t)

C 0.5(y1.5
� y)

Y

0<tk<t

(1C hk)�2(t) d!2(t),

where

F(y) D �0.125

 

Y

0<tk<t

(1C hk)

!2

�

2
2 (t)y2.5

C

"

1C 0.25

 

Y

0<tk<t

(1C hk)

!2

�

2
2 (t)C

 

Y

0<tk<t

(1C hk)

!2#

y2

� 0.5
Y

0<tk<t

(1C hk)a(t)y1.5
C 0.5

Y

0<tk<t

(1C hk)a(t)y

C 0.0625

 

Y

0<tk<t��

(1C hk)

!2

b2(t)yC 0.0625c2(t)yC 0.5r (t)y0.5

� 0.125c2(t)y0.5
� 0.125

 

Y

0<tk<t

(1C hk)

!2

b2(t)y0.5
� 0.125� 2

1 (t)y0.5

C 0.0625

 

Y

0<tk<t

(1C hk)

!2

b2(t)

� 0.5r (t)C 0.0625c2(t)C 0.25� 2
1 (t).

Combined with assumption (A2), it is easy to see thatF(y) is bounded, say byK , in
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R
C

. We therefore obtain that

dV(y(t))

� K dt C
Z 0

�1

 

Y

0<tk<tC�

(1C hk)

!2

y2(t C �) d�(�) dt �

 

Y

0<tk<t

(1C hk)

!2

y2(t) dt

C y2(t � � ) dt � y dtC 0.5[y0.5(t) � 1]�1(t) d!1(t)

C 0.5[y1.5(t) � y(t)]�2(t) d!2(t).

Integrating both sides from 0 tot , and then taking expectations, we have

(2.5)

EV(y(t)) � V(y(0))C Kt C E
Z t

0

Z 0

�1

 

Y

0<tk<sC�

(1C hk)

!2

y2(sC �) d�(�) ds

� E
Z t

0

 

Y

0<tk<s

(1C hk)

!2

y2(s) dsC E
Z t

0
y2(s� � ) ds

� E
Z t

0
y2(s) ds.

Moreover, we can derive that

Z t

0

Z 0

�1

 

Y

0<tk<sC�

(1C hk)

!2

y2(sC �) d�(�) ds

D

Z t

0

"

Z

�s

�1

 

Y

0<tk<sC�

(1C hk)

!2

y2(sC �) d�(�)

C

Z 0

�s

 

Y

0<tk<sC�

(1C hk)

!2

y2(sC �) d�(�)

#

ds

D

Z t

0
ds
Z

�s

�1

e2r (sC�)y2(sC �)e�2r (sC�) d�(�)

C

Z 0

�t
d�(�)

Z t

��

 

Y

0<tk<sC�

(1C hk)

!2

y2(sC �) ds

� k�k

2
Cg

Z t

0
e�2rs ds

Z 0

�1

e�2r� d�(�)C
Z 0

�1

d�(�)
Z t

0

 

Y

0<tk<s

(1C hk)

!2

y2(s) ds

� k�k

2
Cg
�r t C

Z t

0

 

Y

0<tk<s

(1C hk)

!2

y2(s) ds.

(2.6)
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On the other hand,

(2.7)

Z t

0
y2(s� � ) dsD

Z t��

��

y2(s) dsD
Z 0

��

�

2(s) dsC
Z t��

0
y2(s) ds

�

Z 0

��

�

2(s) dsC
Z t

0
y2(s) ds.

Substituting (2.6) and (2.7) into (2.5) leads to

(2.8) EV(y(t)) � V(y(0))C Kt C k�k2Cg
�r t C

Z 0

��

�

2(s) ds.

Let t D �k ^ T , and we obtain that

EV(y(�k ^ T)) � V(y(0))C K T C k�k2Cg
�r T C

Z 0

��

�

2(s) ds.

Note that for every! 2 {�k � T}, y(�k,!) equals eitherk or 1=k, and henceV(y(�k,!))
is no less than either

p

k � 1� 0.5 log(k)

or
r

1

k
� 1� 0.5 log

�

1

k

�

D

r

1

k
� 1C 0.5 log(k).

Thus,

V(y(�k, !)) � [
p

k � 1� 0.5 log(k)] ^

"

r

1

k
� 1C 0.5 log(k)

#

.

It then follows from (2.8) that

V(y(0))C K T C k�k2cg
�r T C

Z 0

��

�

2(s) ds

� E[1{�k�T}(!)V(y(�k, !))]

� P{�k � T}

 

[
p

k � 1� 0.5 log(k)] ^

"

r

1

k
� 1C 0.5 log(k)

#!

,

where 1{�k�T} is the indicator function of{�k � T}. Letting k!C1 gives

lim
k!C1

P{�k � T} D 0

and hence

P{�
C1

� T} D 0.
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Since T > 0 is arbitrary, we derive

P{�
C1

< C1} D 0.

ThusP{�
C1

D C1} D 1 as required.

Theorem 2.1. Let the assumptions(A1)–(A3) hold. For the model(1.3), with
any given initial condition� 2 Cg, there is a unique solution x(t) on t 2 R and the
solution will remain in R

C

with probability 1.

Proof. Now let

x(t) D
Y

0<tk<t

(1C hk)y(t),

where y(t) is the solution of the system (2.4). We need only to show thatx(t) is the
solution Equation (1.3). In fact,x(t) is continuous on (tk, tkC1) � (0,C1), k 2 N and
for every t ¤ tk,

dx(t) D d

"

Y

0<tk<t

(1C hk)y(t)

#

D

Y

0<tk<t

(1C hk) dy(t)

D

Y

0<tk<t

(1C hk)y(t)

"

r (t) �
Y

0<tk<t

(1C hk)a(t)y(t)C
Y

0<tk<t��

(1C hk)b(t)y(t � � )

C c(t)
Z 0

�1

Y

0<tk<tC�

(1C hk)y(t C �) d�(�)

#

dt

C

Y

0<tk<t

(1C hk)�1(t)y(t) d!1(t)C

 

Y

0<tk<t

(1C hk)

!2

�2(t)y2(t) d!2(t)

D x(t)

�

r (t) � a(t)x(t)C b(t)x(t � � )C c(t)
Z 0

�1

x(t C �) d�(�)

�

dt

C �1(t)x(t) d!1(t)C �2(t)x2(t) d!2(t).

Moreover, for everyk 2 N and tk 2 [0,C1),

x(tCk ) D lim
t!tCk

Y

0<t j<t

(1C h j )y(t) D
Y

0<t j�tk

(1C h j )y(tCk )

D (1C hk)
Y

0<t j<tk

(1C h j )y(tk)

D (1C hk)x(tk).
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In addition,

x(t�k ) D lim
t!t�k

Y

0<t j<t

(1C h j )y(t) D
Y

0<t j<tk

(1C h j )y(t�k )

D

Y

0<t j<tk

(1C h j )y(tk) D x(tk).

Now let us prove the uniqueness of the solution. Fort 2 [0, t1], the model (1.3) be-
comes the following equation:

(2.9)
dx(t) D x(t)

�

r (t) � a(t)x(t)C b(t)x(t � � )C c(t)
Z 0

�1

x(t C �) d�(�)

�

dt

C �1(t)x(t) d!1(t)C �2(t)x2(t) d!2(t).

Since the coefficients of Equation (2.9) are locally Lipschitz continuous, by the theory
of stochastic differential equation (see e.g. Theorem 3.15in [32, p. 91]), the solution
of Equation (2.9) is unique. Fort 2 (tk, tkC1], k 2 N, the model (1.3) becomes:

(2.10)
dx(t) D x(t)

�

r (t) � a(t)x(t)C b(t)x(t � � )C c(t)
Z 0

�1

x(t C �) d�(�)

�

dt

C �1(t)x(t) d!1(t)C �2(t)x2(t)d!2(t).

Note that the coefficients of Equation (2.10) are also locally Lipschitz continuous; then
the solution of Equation (2.10) is also unique. Consequently, the solution of the model
(1.3) is unique. This completes the proof.

3. Persistence and extinction

In this section, we shall study the persistence and extinction of the model (1.3).

Theorem 3.1. Let the assumptions(A1)–(A3) hold. Suppose that x(t) is a solu-
tion of Equation (1.3);then

lim sup
t!C1

t�1 ln x(t) � lim sup
t!C1

t�1

"

X

0<tk<t

ln(1C hk)C
Z t

0
f (s) ds

#

D G�, a.s.,

where f(t)D r (t)�0.5� 2
1 (t). Particularly, if G�

< 0 and inft2R
C

{a(t)�b(tC� )�cu} �

0, then limt!C1

x(t) D 0 a.s.

Proof. The proof is rather technical so we divide it into two cases.
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CASE 1. b(t) � 0 andc(t) � 0: Applying Itô’s formula (see e.g. [30, p. 32]), [31])
to Equation (2.4) leads to

d ln y D
dy

y
�

(dy)2

2y2

D

"

r (t) �
�

2
1 (t)

2
�

Y

0<tk<t

(1C hk)a(t)yC
Y

0<tk<t��

(1C hk)b(t)y(t � � )

C c(t)
Z 0

�1

Y

0<tk<tC�

(1C hk)y(t C �) d�(�)

�

�

Q

0<tk<t (1C hk)
�2
�

2
2 (t)y2

2

#

dt

C �1(t)d!1(t)C
Y

0<tk<t

(1C hk)�2(t)y d!2(t).

Integrating both sides from 0 tot , where t 2 [0, t1] or t 2 (tk, tkC1], k D 1, 2, : : : ,
we obtain

(3.1)

ln y(t) � ln y(0)

D

Z t

0

"

r (s) �
�

2
1 (s)

2
�

Y

0<tk<s

(1C hk)a(s)y(s)C
Y

0<tk<s��

(1C hk)b(s)y(s� � )

C c(s)
Z 0

�1

Y

0<tk<sC�

(1C hk)y(sC �) d�(�)

�

�

Q

0<tk<t (1C hk)
�2
�

2
2 (s)y2(s)

2

#

ds

C

Z t

0
�1(s) d!1(s)C

Z t

0

Y

0<tk<s

(1C hk)�2(s)y(s) d!2(s)

D

Z t

0

�

r (s) �
�

2
1 (s)

2
� a(s)x(s)C b(s)x(s� � )

C c(s)
Z 0

�1

x(sC �) d�(�) �
�

2
2 (s)x2(s)

2

�

ds

C

Z t

0
�1(s) d!1(s)C

Z t

0
�2(s)x(s) d!2(s).
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On the other hand,

(3.2)

Z t

0
b(s)x(s� � ) dsD

Z t��

��

b(sC � )x(s) ds

D

Z 0

��

b(sC � )x(s) dsC
Z t��

0
b(sC � )x(s) ds

�

Z 0

��

b(sC � )x(s) dsC
Z t

0
b(sC � )x(s) ds.

Therefore, fort 2 R
C

, substituting (3.2) into (3.1) gives

(3.3)

ln y(t) � ln y(0)�
Z t

0

�

r (s) �
�

2
1 (s)

2
� (a(s) � b(sC � ))x(s)

C c(s)
Z 0

�1

x(sC �) d�(�) �
�

2
2 (s)x2(s)

2

�

ds

C

Z 0

��

b(sC � )x(s) dsC M1(t)C M2(t),

where M1(t) D
R t

0 �1(s) d!1(s) and M2(t) D
R t

0 �2(s)x(s) d!2(s).
By the assumptions (A2) and (A3), we can compute that

Z t

0
c(s)

Z 0

�1

x(sC �) d�(�) ds

D

Z t

0
c(s)

�

Z

�s

�1

x(sC �) d�(�) dsC
Z 0

�s
x(sC �) d�(�)

�

ds

D

Z t

0
c(s) ds

Z

�s

�1

er (sC�)x(sC �)e�r (sC�) d�(�)C
Z 0

�t
d�(�)

Z t

��

c(s)x(sC �) ds

� cu
k�kcg

Z t

0
e�rs ds

Z 0

�1

e�r� d�(�)C cu
Z 0

�1

d�(�)
Z t

0
x(s) ds

� cu
k�kcg

Z t

0
e�rs ds

Z 0

�1

e�2r� d�(�)C cu
Z 0

�1

d�(�)
Z t

0
x(s) ds

�

1

r
cu
k�kcg�r (1� e�r t )C cu

Z t

0
x(s) ds.

Consequently,

ln y(t) � ln y(0)�
Z t

0

�

r (s) �
�

2
1 (s)

2
� (a(s) � b(sC � ) � cu)x(s) �

�

2
2 (s)x2(s)

2

�

ds

C

1

r
cu
k�kcr�r (1� e�r t )C

Z 0

��

b(sC � )x(s) dsC M1(t)C M2(t).
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The quadratic variation ofM1(t) is hM1i(t) D
R t

0 �
2
1 (s) ds� (� u

1 )2t . Making use of the
strong law of large numbers for martingales (see e.g. [30] onp. 16) leads to

(3.4) lim
t!C1

M1(t)

t
D 0, a.s.

The quadratic variation ofM2(t) is hM2i(t) D
R t

0 �
2
2 (s)x2(s) ds. By virtue of the expo-

nential martingale inequality, for any positive constantsT0, 
 and Æ, we have

P

�

sup
0�t�T0

�

M2(t) �



2
hM2i(t)

�

> Æ

�

� e�
 Æ.

ChooseT0 D k, 
 D 1, Æ D 2 ln k. Then it follows that

P

�

sup
0�t�k

�

M2(t) �
1

2
hM2i(t)

�

> 2 ln k

�

�

1

k2
.

The Borel–Cantelli lemma implies that for almost all! 2 �, there is a random integer
k0 D k0(!) such that fork � k0,

sup
0�t�k

�

M2(t) �
1

2
hM2i(t)

�

� 2 ln k.

This is to say

M2(t) � 2 ln kC
1

2
hM2i(t) D 2 ln kC

1

2

Z t

0
�

2
2 (s)x2(s) ds

for all 0� t � k, k � k0 a.s. Substituting this inequality into (3.3), we can obtainthat

(3.5)

ln y(t) � ln y(0)�
Z 0

��

b(sC � )x(s) ds

C

Z t

0

�

r (s) �
�

2
1 (s)

2
� (a(s) � b(sC � ) � cu)x(s)

�

ds

C 2 ln kC
1

r
cu
k�kcg�r (1� e�r t )C M1(t)

for all 0� t � k, k � k0 a.s. On the other hand, it follows from (3.5) that
X

0<tk<t

ln(1C hk)C ln y(t) � ln y(0)

�

X

0<tk<t

ln(1C hk)C
Z 0

��

b(sC � )x(s) ds

C

Z t

0

�

r (s) �
�

2
1 (s)

2
� (a(s) � b(sC � ) � cu)x(s)

�

ds

C 2 ln kC
1

r
cu
k�kcg�r (1� e�r t )C M1(t)
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for all 0� t � k, k � k0 a.s. In other words, we have shown that

(3.6)

ln x(t) � ln x(0)�
X

0<tk<t

ln(1C hk)C
Z 0

��

b(sC � )x(s) ds

C

Z t

0

�

r (s) �
�

2
1 (s)

2
� (a(s) � b(sC � ) � c(s))x(s)

�

ds

C 2 ln kC
1

r
cu
k�kcr�r (1� e�r t )C M1(t)

for all 0� t � k, k � k0 a.s. Therefore, fork � 1� t � k, k � k0, a.s., we have

ln x(t) � ln x(0)�
X

0<tk<t

ln(1C hk)C
Z 0

��

b(sC � )x(s) dsC
Z t

0

�

r (s) �
�

2
1 (s)

2

�

ds

C 2 ln kC
1

r
cu
k�kcg�r (1� e�r t )C M1(t).

Then we have the desired assertion by the assumption (A2) andthe equality (3.4).
CASE 2. b(t) � 0 andc(t) < 0; b(t) < 0 andc(t) � 0; b(t) < 0 andc(t) < 0.
Applying the arguments above and comparison theorem of stochastic differential

equations, we can easily draw the conclusion.

Theorem 3.2. Let the assumptions(A1)–(A3) hold. If G�

D 0 and inft2R
C

{a(t)�
b(t C � )� cu} > 0, then the population modeled by Equation(1.3) is non-persistent in
the mean a.s.

Proof. We only give the proof of caseb(t) � 0 and c(t) � 0. Making use of
comparison theorem of stochastic differential equations,the proof of caseb(t) � 0 and
c(t) < 0; b(t) < 0 and c(t) � 0; b(t) < 0 and c(t) < 0 are easily derived, respect-
ively. From G�

D 0 and the assumption (A2), for arbitrarily" > 0, there exists a

constantT such thatt�1
�

P

0<tk<t ln(1C hk)C
R t

0 f (s) ds
�

C t�1
R 0
��

b(sC � )x(s) dsC

t�1(1=r )cu
k�kcg�r (1� e�r t )C 2 ln k=t C M1(t)=t < " for all T � k� 1� t � k, k � k0

a.s. Substituting this inequality into (3.6) yields

ln x(t) � ln x(0)�
X

0<tk<t

ln(1C hk)C
Z 0

��

b(sC � )x(s) dsC
Z t

0

�

r (s) �
�

2
1 (s)

2

�

ds

C 2 ln kC
1

r
cu
k�kcg�r (1� e�r t )C M1(t)

< "t �
Z t

0
(a(s) � b(sC � ) � cu)x(s) ds

for all T � k � 1� t � k, k � k0 a.s.
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Define h(t) D
R t

0 x(s) ds and I D inft2R
C

[a(t) � b(t C � ) � cu]. The rest of proof
is similar to Theorem 3 in [15] and is hence omitted.

Theorem 3.3. Let the assumptions(A1)–(A3) hold. If G�

> 0 and c(t) � 0, then
the population x(t) modeled by(1.3) is weakly persistent a.s.

Proof. If this assertion is not true, letF D {lim supt!C1

x(t) D 0} and suppose
P(F) > 0. In the light of (3.1), we derive

X

0<tk<t

ln(1C hk)C ln y(t) � ln y(0)

D

X

0<tk<t

ln(1C hk)C
Z t

0

�

r (s) �
�

2
1 (s)

2
� a(s)x(s)C b(s)x(s� � )

C c(s)
Z 0

�1

x(sC �) d�(�) �
�

2
2 (s)x2(s)

2

�

ds

C M1(t)C M2(t),

which implies

(3.7)

t�1 ln x(t) � t�1 ln x(0)

D t�1
X

0<tk<t

ln(1C hk)C t�1
Z t

0

�

r (s) �
�

2
1 (s)

2
� a(s)x(s)C b(s)x(s� � )

C c(s)
Z 0

�1

x(sC �) d�(�) �
�

2
2 (s)x2(s)

2

�

ds

C

M1(t)

t
C

M2(t)

t
.

On the other hand, for8! 2 F , we have limt!C1

x(t, !) D 0. Consequently, by
the law of large numbers for local martingales (see e.g. [30,p. 12]), we obtain that
limt!C1

M2(t)=t D 0. Substituting this equality,c(t) � 0 and (3.4) into (3.7), one can
deduce a contradiction

0� lim sup
t!C1

[t�1 ln x(t, !)] D G�

C lim sup
t!C1

t�1
Z t

0

Z 0

�1

x(sC �) d�(�) ds

� G�

> 0.

REMARK 3.1. Theorems 3.1–3.3 have a direct and fantastic biological explana-
tion. It is obvious to see that the extinction and persistence of populationx(t) mod-
eled by (1.3) largely rely on the assumptions (A1)–(A3),G�, c(t) and inft2R

C

{a(t) �
b(t C � ) � cu}. Under the assumption (A1)–(A3), ifG�

> 0 andc(t) � 0, the popula-
tion x(t) will be weakly persistent; Under the assumptions (A1)–(A3), if G�

< 0 and
inft2R

C

{a(t) � b(t C � ) � cu} � 0, the populationx(t) will be extinct. That is to say,
under the assumptions (A1)–(A3), if inft2R

C

{a(t) � b(t C � ) � cu} � 0 and c(t) � 0
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hold, thenG� is the threshold between weak persistence and extinction for the popu-
lation x(t).

REMARK 3.2. Generally speaking, as the biology implied, Theorem 3.1 reveals
that the population probably will go to an end in the worst cases, while Theorem 3.2
shows that the living chances are considerably rare. From Theorem 3.3 we can easily
find that the population size is limited to zero with the time permitted, however, the
opportunity of the survival of it still exist. This can well explain why the conditions
are gradually stronger from Theorem 3.1 to Theorem 3.3.

When it comes to the study of population system, the role of stochastic perma-
nence indicating the eternal existence of the population, can never be ignorant with its
theoretical and practical significance. And its importancehas catched the eyes of sci-
entists all over the world. So now let us show thatx(t) modeled by Equation (1.3) is
stochastically permanent in some cases.

Assumption (A4): There are two positive constantsm and M such thatm �
Q

0<tk<t (1C hk) � M for all t > 0.

REMARK 3.3. Assumption A4 is easy to be satisfied. For example, ifhk D

e(�1)kC1
=k
�1, thene0.5

<

Q

0<tk<t (1Chk)< e for all t > 0. Thus 1�
Q

0<tk<t (1Chk) � e
for all t > 0.

Theorem 3.4. Let the assumptions(A1)–(A4) hold. If (r (t) � � 2
1 (t)=2)

�

> 0,
b(t) � 0 and c(t) � 0, then the population x(t) represented by Equation(1.3) will
be stochastic permanence.

Proof. First, we claim that for arbitrary" > 0, there is constant� > 0 such that
lim inf t!C1

P{x(t) � �} � 1� ".
Define V1(y) D 1=y2 for y 2 R

C

. Applying Itô’s formula to Equation 2.4 we can
obtain that

dV1(y) D �2y�3 dyC3y�4(dy)2

D 2V1(y)

"

1.5

 

Y

0<tk<t

(1Chk)

!2

�

2
2 (t)y2

C

Y

0<tk<t

(1Chk)a(t)y�r (t)C1.5� 2
1 (t)

�

Y

0<tk<t��

(1Chk)b(t)y(t�� )

�c(t)
Z 0

�1

Y

0<tk<tC theta

(1Chk)y(tC�) d�(�)

#

dt

�2�1(t)y�2 d!1(t)�2
Y

0<tk<t

(1Chk)�2(t)y�1 d!2(t).
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Since (r (t)� � 2
1 (t)=2)

�

> 0, we can choose a sufficient small constant 0< � < 1 such
that (r (t) � � 2

1 (t)=2)
�

� �(� u
1 )2

> 0.
Define

V2(y) D (1C V1(y))� .

Making use of Itô’s formula again leads to

dV2 D �(1CV1(y))��1 dV1C0.5�(��1)(1CV1(y))��2(dV1)2

D �(1CV1(y))��2

(

(1CV1(y))2V1(y)

"

1.5

 

Y

0<tk<t

(1Chk)

!2

�

2
2 (t)y2

C

Y

0<tk<t

(1Chk)a(t)y�r (t)C1.5� 2
1 (t)

�

Y

0<tk<t��

(1Chk)b(t)y(t�� )

�c(t)
Z 0

�1

Y

0<tk<tC�

(1Chk)y(tC�) d�(�)

#

C2� 2
1 (t)(��1)V2

1 (y)

C2

 

Y

0<tk<t

(1Chk)

!2

�

2
2 (t)(��1)V1(y)

)

dt

�2�(1CV1(y))��1y�2
�1(t)d!1(t)

�2�(1CV1(y))��1y�1
Y

0<tk<t

(1Chk)�2(t)d!2(t)

D �(1CV1(y))��2

( 

�2r (t)C3� 2
1 (t)�2

Y

0<tk<t��

(1Chk)b(t)y(t�� )

�2c(t)
Z 0

�1

Y

0<tk<tC�

(1Chk)y(tC�) d�(�)

C2� 2
1 (t)(��1)

!

V2
1 (y)C2

Y

0<tk<t

(1Chk)a(t)V1.5
1 (y)

C

 

3� 2
1 (t)�2r (t)�2

Y

0<tk<t��

(1Chk)b(t)y(t�� )

�2c(t)
Z 0

�1

Y

0<tk<tC�

(1Chk)y(tC�) d�(�)
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C (2�C1)

 

Y

0<tk<t

(1Chk)

!2

�

2
2 (t)

!

V1(y)

C2
Y

0<tk<t

(1Chk)a(t)V0.5
1 (y)C3

 

Y

0<tk<t

(1Chk)

!2

�

2
2 (t)

)

dt

�2�(1CV1(y))��1y�2
�1(t) d!1(t)

�2�(1CV1(y))��1y�1
Y

0<tk<t

(1Chk)�2(t) d!2(t)

� �(1CV1(y))��2{(�2r (t)C� 2
1 (t)C2�� 2

1 (t))V2
1 (y)C2Ma(t)V1.5

1 (y)

C (3� 2
1 (t)�2r (t)C (2�C1)M2

�

2
2 (t))V1(y)C2Ma(t)V0.5

1 (y)C3M2
�

2
2 (t)} dt

�2�(1CV1(y))��1y�2
�1(t) d!1(t)

�2�(1CV1(y))��1y�1
Y

0<tk<t

(1Chk)�2(t) d!2(t)

� �(1CV1(y))��2

�

�2

��

r (t)�
�

2
1 (t)

2

�

�

�"��(� u
1 )2

�

V2
1 (y)C2au MV1.5

1 (y)

C (3(� u
1 )2
�2r l

C (2�C1)M2(� u
2 )2)V1(y)C2au MV0.5

1 (y)

C3M2(� u
2 )2

�

dt

�2�(1CV1(y))��1y�2
�1(t) d!1(t)

�2�(1CV1(y))��1y�1
Y

0<tk<t

(1Chk)�2(t) d!2(t)

for sufficiently larget � T . Now, let � > 0 be sufficiently small satisfy

0< �=� <

�

r (t) �
�

2
1 (t)

2

�

�

� �(� u
1 )2
� ".

Define V3(y) D e�t V2(y). By virtue of Itô’s formula, we derive

dV3(y) D �e�t V2(y)C e�t dV2(y)

� �e�t (1C V1(y(t)))��2

�

�(1C V1(y))2
=�

� 2

��

r (t) �
�

2
1 (t)

2

�

�

� " � �(� u
1 )2

�

V2
1 (y)

C 2au MV1.5
1 (y)C (3(� u

1 )2
� 2r

�

C (2� C 1)M2(� u
2 )2)V1(y)C 2au MV0.5

1 (y)
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C 3M2(� u
2 )2

�

dt

� 2�e�t (1C V1(y))��1y�2
�1(t) d!1(t)

� 2�e�t (1C V1(y))��1y�1
Y

0<tk<t

(1C hk)�2(t) d!2(t)

� �e�t (1C V1(y(t))��2

�

�2

��

r (t) �
�

2
1 (t)

2

�

�

� " � �(� u
1 )2
� �=�

�

V2
1 (y)

C 2au MV1.5
1 (y)C (3(� u

1 )2
� 2r

�

C (2� C 1)M2(� u
2 )2

C 2�=�)V1(y)C 2au MV0.5
1 (y)C 3M2(� u

2 )2
C �=�

�

dt

� 2�e�t (1C V1(y))��1y�2
�1(t) d!1(t)

� 2�e�t (1C V1(y))��1y�1
Y

0<tk<t

(1C hk)�2(t) d!2(t)

D e�t H (y) dt � 2�e�t (1C V1(y))��1y�2
�1(t)d!1(t)

� 2�e�t (1C V1(y))��1y�1
Y

0<tk<t

(1C hk)�2(t) d!2(t)

for t � T . Note that H (y) is bounded inR
C

, namely H D supy2R
C

H (y) < C1.
Consequently,

dV3(y(t)) D He�t dt � 2�e�t (1C V1(y(t)))��1y�2(t)�1(t) d!1(t)

� 2�e�t (1C V1(y))��1y�1
Y

0<tk<t

(1C hk)�2(t) d!2(t)

for sufficiently larget . Integrating both sides of the above inequality and then taking
expectations, we have

E[V3(y(t))] D E[e�t (1C V1(y(t)))� ]

� e�T (1C V1(y(T)))� C
H

�

(e�t
� e�T ).

That is to say

lim sup
t!C1

E[V�

1 (y(t))] � lim sup
t!C1

E[(1C V1(y(t)))� ] <
H

�

.

In other words, we have just shown that

lim sup
t!C1

E

�

1

y2� (t)

�

�

H

�

.
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Then

lim sup
t!C1

E[1=x2� (t)] D lim sup
t!C1

"

Y

0<tk<t

(1C hk)

#

�2�

E[1=y2� (t)] � m�2� H

�

D H1.

So for any" > 0, set� D "1=2�
=H1=2�

1 , by Chebyshev’s inequality, one can derive that

P{x(t) < �} D P

�

1

x2� (t)
>

1

�

2�

�

�

E[1=x2� (t)]

1=�2�
.

This is to say

lim sup
t!C1

P{x(t) < �} � �2�H1 D ".

Consequently

lim inf
t!C1

P{x(t) � �} � 1� ".

Next, we prove that for arbitrary" > 0, there are constants� > 0 such that
lim inf t!C1

P{x(t) � �} � 1� ".
Let 0< p < 1 and choose"1 2 (0, 2r ), Applying Itô’s formula to Equation (2.4)

obtains

dyp(t) D pyp�1(t) dy(t)C
1

2
p(p� 1)yp�2(t)(dy(t))2

D pyp�1(t)

" 

y(t)

 

r (t) �
Y

0<tk<t

(1C hk)a(t)y(t)C
Y

0<tk<t��

(1C hk)b(t)y(t � � )

C c(t)
Z 0

�1

Y

0<tk<tC�

(1C hk)y(t C �) d�(�)

!!

dt

C �1(t)y(t) d!1(t)C
Y

0<tk<t

(1C hk)�2(t)y2(t) d!2(t)

#

C

1

2
p(p� 1)� 2

1 (t)yp(t) dt C
1

2
p(p� 1)

 

Y

0<tk<t

(1C hk)

!2

�

2
2 (t)ypC2(t) dt

� pyp�1(t)

" 

y(t)

 

r (t) �ma(t)y(t)C Mb(t)y(t � � )

C Mc(t)
Z 0

�1

y(t C �) d�(�)

!!

dt

C �1(t)y(t) d!1(t)C
Y

0<tk<t

(1C hk)�2(t)y2(t) d!2(t)

#
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C

1

2
p(p� 1)� 2

1 (t)yp(t) dt C
1

2
p(p� 1)M2

�

2
2 (t)ypC2(t) dt

�

�

r (t)pyp(t)C
p2M2b2(t)y2p(t)

4
C y2(t � � )C

p2M2c2(t)y2p(t)

4

C

Z 0

�1

y2(t C �) d�(�)

�

dt

C p�1(t)yp(t) d!1(t)C p�2(t)
Y

0<tk<t

(1C hk)ypC1(t) d!2(t)

�

1

2
p(1� p)� 2

1 (t)yp(t) dt �
1

2
p(1� p)M2

�

2
2 (t)ypC2(t) dt

D F(y(t)) dt

�

�

"1yp(t)C e"1� y2(t) � y2(t � � ) �
Z 0

�1

y2(t C �) d�(�)C �r y2(t)

�

dt

C p�1(t)yp(t) d!1(t)C p�2(t)
Y

0<tk<t

(1C hk)ypC1(t) d!2(t),

where

F(y) D e"1� y2
C �r y2

C ("1C r (t)p)yp
C p2b2(t)y2p(t)C p2c2(t)y2p

�

1

2
p(1� p)M2

�

2
1 (t)yp

�

1

2
p(1� p)M2

�

2
2 (t)y2Cp.

From 0< p < 1 and the assumption A2, we haveF(y) is bounded inR
C

, namely

H2 D sup
y2R

C

F(y) < C1.

Therefore we have

dyp(t) D [H2 � "1yp(t) � e"1� y2(t)C y2(t � � )] dt

C

Z 0

�1

y2(t C �) d�(�) dt � �r y2(t) dt

C p�1(t)yp(t) d!1(t)C p�2(t)
Y

0<tk<t

(1C hk)ypC1(t) d!2(t).

Once again by the Itô’s formula we have

d[e"1t yp(t)]

D e"1t ["1yp(t)dt C dyp(t)]

� e"1t

�

H2 � e"1� y2(t)C y2(t � � )C
Z 0

�1

y2(t C �) d�(�) ds� �r y2(t)

�

dt

C e"1t

 

p�1(t)yp(t) d!1(t)C p�2(t)
Y

0<tk<t

(1C hk)ypC1(t) d!2(t)

!

.
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Hence we derive that

e"1t E[yp(t)] � � p(0)C
e"1t H2

"1
�

H2

"1

� E
Z t

0
e"1sC"1� y2(s) dsC E

Z t

0
e"1sy2(s� � ) ds

C E
Z t

0
e"1s

Z 0

�1

y2(sC �) d�(�) ds� E
Z t

0
�r e

"1sy2(s) ds

D �

p(0)C
e"1t H2

"1
�

H2

"1

� E
Z t

0
e"1sC"1� y2(s) dsC E

Z t��

��

e"1sC"1� y2(s) ds

C E
Z t

0
e"1s

Z 0

�1

y2(sC �) d�(�) ds� E
Z t

0
�r e

"1sy2(s) ds

� �

p(0)C
e"1t H2

"1
�

H2

"1
C

Z 0

��

e"1sC"1� y2(s) ds

C E
Z t

0
e"1s

Z 0

�1

y2(sC �) d�(�) ds� E�r

Z t

0
e"1sy2(s) ds.

From the assumptions (A1) and (A2), we have

Z t

0
e"1s

Z 0

�1

y2(sC �) d�(�) ds

D

Z t

0
e"1s

�

Z

�s

�1

y2(sC �) d�(�)C
Z 0

�s
y2(sC �) d�(�)

�

ds

D

Z t

0
e"1s ds

Z

�s

�1

e2r (sC�)y2(sC �)e�2r (sC�) d�(�)C
Z 0

�t
d�(�)

Z t

��

e"1sy2(sC �) ds

D

Z t

0
e"1s ds

Z

�s

�1

e2r (sC�)y2(sC �)e�2r (sC�) d�(�)C
Z 0

�t
d�(�)

Z tC�

0
e"1(s��)y2(s) ds

� k�k

2
cg

Z t

0
e("1�2r )s ds

Z 0

�1

e�2r� d�(�)C
Z 0

�1

e�"1� d�(�)
Z t

0
e"1sy2(s) ds

� k�k

2
cg
�r t C �r

Z t

0
e"1sy2(s) ds.

This immediately implies that

lim sup
t!C1

E[yp(t)] �
H2

"1
.
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Consequently,

lim sup
t!C1

E(xp(t)) D lim sup
t!C1

"

Y

0<tk<t

(1C hk)

#p

E(xp(t)) �

�

M p H2

"1

�

D �.

Then the desired assertion follows from the Chebyshev inequality. This completes the
whole proof.

REMARK 3.4. From Theorems 3.1–3.3, we found that the delay has no effect on
the persistence and extinction of the stochastic model (1.3) in autonomous case.

REMARK 3.5. The present paper is the first attempt, so far as our knowledge
is concerned, to investigate the stochastic population systems with infinite delay and
impulsive perturbation at the phase spaceCg. In view of

G�

D lim sup
t!C1

t�1

"

X

0<tk<t

ln(1C hk)C
Z t

0
(r (t) � 0.5� 2

1 (t)) ds

#

in Theorems 3.1–3.3, we can find that the impulse does not affect the properties includ-
ing extinction, nonpersistence in the mean, weak persistence and stochastic permanence
if the impulsive perturbations are bounded and some changessignificantly if not.

4. Examples and numerical simulations

In this section, we shall cite an example to illustrate the analytical findings. For
convenience, let the probability measure�(�) be e� on (�1, 0]. Thus the stochastic
nonautonomous the model (1.3) will be written as

(4.1)

8

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

:

dx(t) D x(t)

�

r (t) � a(t)x(t)C b(t)x(t � � )C c(t)e�t
Z 0

�1

e�� (�) d�

C c(t)e�t
Z t

0
e�x(�) d�

�

dt

C �1(t)x(t) d!1(t)C �2(t)x2(t) d!2(t), t ¤ tk, K 2 N,
x(tCk ) � x(tk) D hkx(tk), k 2 N.

By employing the Euler scheme to discretize this equation, where the integral term is
approximated by using the composite�-rule as a quadrature [33]. Taking� (�) D e�0.5�
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and � � 0.3, we can obtain the discrete approximate solution with respect to (4.1):

(4.2)

8

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

:

xkC1D xkCxk

"

r (k1t)�a(k1t)xkCb(k1t)xk�300Cc(k1t)e�k1t
Z 0

�1

e1.5� d�

Cc(k1t)e�k1t
k
X

jD0

!

(k)
j ej1t x j

#

1t

Cxk(1B1)kCx2
k (1B2)k, t ¤ tk, K 2 N,

xkC1�xkD hkxk, t D tk, k2 N,

where (1Bi )k D Bi ((kC1)1t)�Bi (k1t), kD 0,1,2,:::, i D 1,2. The general composite
�-rule has weights

{!
(k)
0 , !(k)

1 , : : : , !(k)
k } D {� , 1, : : : , 1� �}, � 2 [0, 1]

and
Pk

jD0 !
(k)
j D k, k � 0.

Here, we chooser (t) D 0.2C0.05 sint , a(t) D 0.2C0.01 cost , b(t) D 0.03, c(t) D
0.06,�2(t)D 0.03 and step size1t D 0.001. In Fig. 1 (a), Fig. 1 (b) and Fig. 1 (c), we
consider� 2

1 (t) D 0.5C 0.1 sint . The only difference between conditions of Fig. 1 (a),
Fig. 1 (b) and Fig. 1 (c) is that the representation ofhk is different. In Fig. 1 (a), we
choosetk D 10k andhk D 0. Then the conditions of Theorem 3.1 are satisfied. In view
of Theorem 3.1, the populationx(t) will be extinct. In Fig. 1 (b), we considertk D 10k
andhk D e0.5

�1. Then the conditions of Theorem 3.2 hold. By virtue of Theorem 3.2,
populationx(t) will be nonpersistent in the mean. In Fig. 1 (c), we choosetk D 10k
and hk D e0.7

� 1, then the conditions of Theorem 3.3 are satisfied. That is tosay,
the populationx(t) will be weakly persistent. In Fig.1(d), we consider� 2

1 (t) D 0.1C

0.1 sint , tk D 10k and hk D e(�1)kC1
=k
� 1. Then the conditions of Theorem 3.4 hold,

which means that the populationx(t) will be stochastic permanence. By comparing
Fig. 1 (a)–(c), we can see that the impulsive perturbation can change the properties of
the population system significantly.

5. Conclusions and remarks

With the spaceCg as the phase space, we investigate the persistence and extinc-
tion of an impulsive stochastic logistic model with infinitedelay. Sufficient conditions
for extinction are established as well as nonpersistence inthe mean, weak persistence
and stochastic permanence. In addition, the threshold between weak persistence and
extinction is obtained.

Some interesting topics deserve our further engagement. One may put forward a
more realistic and sophisticated model to integrate the colored noise into the model
[32]. Another significant problem is devoted to multidimensional stochastic model
with impulsive perturbation and infinite delay, and such investigations are to be done
in future.
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Fig. 1. The horizontal axis and the vertical axis in this and
following figures represent the timet and the populations size
x(t) (step size1t D 0.001).
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