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Abstract
The famous Russell hypersurface is a smooth complex affireefibld which is
diffeomorphic to a euclidean space but not algebraicalynisrphic to the three di-
mensional affine space. This fact was first established by Makaanov, using al-
gebraic minded techniques. In this article, we give an elearg argument which
adds a greater insight to the geometry behind the origimabfpand which also may
be applicable in other situations.

1. Introduction

Russell's hypersurface
X:={(x,y,zt) € C*| x + X2y + 22 + t? = 0} — C*,

is one of the most prominent examples of an exotic variey, & variety which is
diffeomorphic to an affine space ([1], [6, Lemma 5.1]), but r@morphic to it. The
latter is an immediate consequence of Theorem 1 below, wéteties that there are not
sufficiently many actions of the additive gro@, on X, and the aim of this paper is
to give an elementary argument for this theorem. It inclusese important elements
of the original proof, but gives a greater geometrical ihsitp the situation.

The study of exotic varieties goes back to a paper of Ramanij&], where
a nontrivial example of a topologically contractible sntoatffine algebraic surfac&
over C is constructed. Ramanujam observed tBat C is diffeomorphic toC?3, and
asked whether this product is also isomorphictth This was later proven not to be
the case, and thus the algebraic structureCdncoming from S x C? is exotic [17].
Later on, many other exotic structures 63 have been constructed, see e.g. the intro-
duction of [18] for a list. Note also that there are no exotimictures on affine space
in dimension< 2 [16].
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The motivation for studying Russell’s hypersurface orédiyy came from the lin-
earization conjecture fo€3, which claims that eacl&-action onC? is linearizable.
In the proof of this result by Koras and Russell, they desctil list of smooth affine
threefolds diffeomorphic ta?® which contains all the potential counterexamples to the
conjecture, and thus it was reduced to determining whethef these so called Koras—
Russell threefolds are exotic [13]. Kaliman and Makar-Limarestablished exoticity
for some of them [10], and Russell's hypersurface is the tnsirmple” among the re-
maining ones. The difficulty with Russell's hypersurfaceswhat all the usual alge-
braic and geometric invariants failed to distinguish itnfr@®. Makar-Limanov finally
established exoticity of Russell's hypersurface (Theofdmand later on Kaliman and
Makar-Limanov were able to prove exoticity of the remainingré&—Russell threefolds
[8, 9] as well, elaborating on Makar-Limanov's methods. Todsmfirmed the lineariza-
tion conjecture [7].

From now on, we will focus on Makar-Limanov’s result, statedthe following
theorem.

Theorem 1 (Makar-Limanov, [14]) The projectionpr;: X — C, (X, Y, z,t) > X
is invariant with respect to ang,-action on X.

Some years after Makar-Limanov proved Theorem 1, Kalimawagatpusing non-
elementary birational geometry, that morphis@d — C with generic fiberC? can-
not have any other fibers [5]. Since all the fibers of:pX — C are C? except the
zero fiber p[l(O), it follows also from Kaliman’s result thaX 2 C3. In 2005, Makar-
Limanov gave another proof of the exoticity of Russell’'s ésgurface [15]; yet another
proof was given by Derksen [3], and Crachiola also proved ekaticity in the posi-
tive characteristic case [2]. The original proof of Theorémsed algebraic techniques,
while we rather focus on a geometric approach using fibratemd quotient maps.

An outline of our proof. In order to prove Theorem 1, we make use of an iso-
morphism X = U C M with an open subset) of a blowupz: M — C3, such that
D := M\ U is the strict transform of0} x C? < C2 and

X~UcCcM-—cC?

is the map X, y, z,t) = (X, z,t). That is, X is isomorphic to an affine modification
U of C3. The key-result is then thaP(M) c O(X) is invariant for anyG,-action on
X. Since O(M) = O(C?3), this allows us to conclude that for any givéh-action on
X, there is an induce@,-action onC? which makesr |x: X — C3 equivariant. Then
7(U) is obviously invariant, and it follows that its interi@* x C? is invariant as well.
Theorem 1 is obtained from this by observing that @wraction onC* x C? leaves
the first coordinate invariant: a nontrivi@,-orbit is isomorphic toC, but there are no
non-constant morphisms fro@ to C*.
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2. Russell's hypersurface in a blowup ofC?

We recall the realization of Russell's hypersurface as fineamodification ofC3,
see also [11, Example 1.5]. Lé¥ < C? = Spec(|[z, t]) denote the affine cuspidal
cubic curve given by

N:={(zt)eC?| 2 +t?=0},
and letl := (g,h) C C[x,zt] denote the ideal which is generated by the two relatively

prime polynomialsg(x, z,t) = x? and h(x, z, t) = x + z° + t2. The zero set ofl is
{0} x N, and the blowup

M := Bl (C3) = {((x, z, 1), [u: v]) € CZx P | h(x, z, t)u + g(X, z t)v = 0}

of €2 along | is a hypersurface €3 x P! with singular locus of codimension two:
SingM) = {0} x N x {[0: 1]}. In particular,M is a normal variety.

REMARK 2.1. Russell's hypersurface is isomorphic to the open subdsef M
given byu # 0, via the embeddingk — M, (X, v, z,t) = ((X, z, 1), [1 : y]).

We denote the complement of in M by D. Note thatD is then given byu = 0,
and that the image off under the blowup morphism ig(U) = C* x C2 U ({0} x N).

3. Additive group actions on Russell's hypersurface

In order to see thaD(M) C A := O(X) is invariant for everyG,-action onX, we
show the equivalent fact th&(M) C A is stable under every locally nilpotent deriva-
tion 3: A— A. This obviously holds for the triviaz5-action onX, so we may assume
that 9 # 0. The first step is to characterize(M) in terms of a filtration onA.

REMARK 3.1. With the filtration
A<n = Onp(M) = {f e C(M)* | div(f) > —nD} U {0}

we have Ay = O(M) = 7*(O(C?)), so 7*(O(C?)) is stable with respect to a locally
nilpotent derivationd: A — A if and only if 3(A<g) € A<o.

In order to understand the above filtration, we trdaas a subset of(x, z,t) and
note that multiplicities alond are simply multiplicities along0} x C?; sox, y, z and
t have multiplicities 1,—2, 0 and 0, respectively. Now every elemehEe A\ {0} can
be written in the form

k
f= Z yi Pi (X1 Z, t),
i=0
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where eachp; is at most linear inx for i > 1 (and px # 0). Thus

AzéAk

k=—00

is a direct sum of fre&C[z, t]-modules A of rank 1 defined as

Clz t]xM, if k<0,
1) A= 13Cl[zt]y, if k=2 >0,
Clz t]xy, if k=2 —-1>0,

and one can check that

Asn :@Ak

k=n

We thus obtain an explicit description of the associatedieplaalgebra

B:=Gr(A) =@ B, with By:=Ac/Acns.

nez

It is generated by the elements xjr€ B_1, gr(y) € By, gr(2), gr(t) € By and
W := SpecB) = {(X, Y, z,t) € C* | xX°y + 22 + t> = 0}.
In particular By = C[gr(2), gr(t)] >~ C[z, t].
REMARK 3.2. This grading was also used by M. Zaidenberg, see [18, leeih4].

Let | =1(3) € Z be minimal with the property thai(A<n) C A<y for all n e
Z; the existence of such anfollows from the fact that bothA<g and B are finitely
generated graded algebras, dngt —oc since we consider a nontrividb,-action. It
follows thatd: A — A induces a nontrivial homogeneous locally nilpotent deidra
on B of degreel; we will denote it bys. With this notation it is enough to show that
| <0 in order to obtaind(Asg) € Asp. In fact, more is true:

Proposition 3.3. With B as aboveany nontrivial locally nilpotent homogeneous
derivations: B — B has degree k 0.

Before going into the proof, let us start with a discussionh&f geometry ofV —
C* and prove Lemma 3.6 below. As a hypersurfaceCf, W is a normal variety
since its singular set Sing() = {0} x C x {0} x {0} has codimension two. It admits
two different group actions: th&,-action ¢, w) — 7 - w corresponding to the locally
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nilpotent derivations: B — B; and theGn-action corresponding to the grading Bf
The latter is given by

GmxW =W, @, (X, y,z1)+— *1x 1%y, z1t),
and sinceBy = C|z, t], the Gy,-quotient morphism is given by
p: W — C? = SpecCl[z t]), (X,V,zt) (z1).
It is trivial aboveC?\ N: the map
(C2\N) X G — pHC?\N), ((z 1), ) > (AL (2 +1H)22, 7, 1),
is a Gym-equivariant isomorphism with inverse
PHC*\N) = (C*\N) x G, (X, ¥,2t) > ((z, 1), x7D).

As for N, we havep }(N) = F_ U F,, where F_ and F, are the subsets gf*(N)
given by y = 0 andx = O respectively.

REMARK 3.4. The setF_ consists exactly of the pointes € W for which
lim;_ Aw exists, andF, consists exactly of the points® € W for which lim;, o Aw
exists.

REMARK 3.5. The above trivialization extends to a trivializatioR x G, — W\
F., but for W\ F_ there is no such trivialization since th@qy-isotropy group of a
point in F, \ F_ has order 2.

Now let us turn to theG,-action G x W — W, (z, w) — 1 - w, corresponding to
8: B — B. Sinceé is homogeneous of degrégit is normalized by theG-action, i.e.
for w e W, r € G and A € G,,, we have

(1) - (o) = AT - w).
In particular this implies that O is a Ga-orbit for any Ga-orbit O.

Lemma 3.6. Lets: B — B be a nontrivial locally nilpotent derivatignhomo-
geneous of degree |I. Then either
(1) I <0 and F, is invariant, or
(2) | >0 and F_is invariant.

Proof. Since the locally nilpotent derivatidn B — B is homogeneous, its kernel

B :={feB|8(f)=0={feB| f(r-w)= f(w), Vr € Gy}
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is a graded subalgebra, i.e.:

B’ = P B

nez

Given f € By \ {0}, we haves’f € Bﬁﬂl \ {0} for a suitablev € N. It follows that
(1) if I =0, we haveB? # {0} for all n # 0,

(2) if I > 0 we haveB} # {0} for somen > 0,

(3) if I <0 we haveB} # {0} for somen < 0.

First assume thdt > 0, so thatB? # O for somen, and letf € B? \ {0}. Then f
vanishes onF_ since f(Ax) = A" f(x) and since lim_ . AX exists inW for x € F_.
It follows that F_ is invariant since it is an irreducible component of the imaat set
V(f) c W of dimension two. Ifl <0, it follows analogously thaF, C W is invariant.
It remains to show thalt cannot be zero.

If | =0, bothF_ and F, are invariant. Sg~(N) is invariant andw \ p~X(N) as
well. Then for any nontrivialG,-orbit O c W\ p~1(N) the map £ +t?)o p|o has no
zeros, and thus must be constant, say with valueC*, sinceO = C. However, any
morphism p|o: O — V(C?; 2 + t? — a) from the complex line to the smooth affine
elliptic curve V(C?; 22 + t2 — a) is constant, soO is contained in ap-fiber. Since
p(0) € C2\ N, this p-fiber is isomorphic toG, as p is a Gy-principal bundle over
C?\ N. This gives a contradiction sinc& cannot be embedded int@,. ]

Proof of Proposition 3.3. By Lemma 3.6 it is enough to showwstbat F_,
given by y = 0, is not invariant. Suppose to the contrary tiat is invariant; then
its complement inW, given byy # 0, is invariant as well. Since there is no non-
constant invertible function o,-orbits, all G,-orbits in W\ F_ are contained in level
hypersurfaces of. In particular the hypersurfacé ¢ W which is given byy = 1 is
invariant and we have/ ~ {(x, Y, 2) € C3 | x? + 8 +t? = 0}. The restriction of the
Gm-quotient projection

Vvi=plv:V—->C% (X,zt)—(z1)

is a two sheeted branched covering @f with branch locusy 1(N) = N and deck
transformation

o: V>V, X2zt (X, 21),

which is simply the action of-1 € G,. In particulars (O) is a G,-orbit for anyG,-orbit
O. Assume for the moment that every nontrivi@h-orbit intersectsy—1(N) exactly
once. Since the hypersurfatgis a normal surface, there is a quotient map

x:V = V//G, := SpecO(V)®?),
the generic fiber of which is &,-orbit [4, Lemma 1.1]. Thus the restriction

xly-1ny: ¥ HN) = V//Ga
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is injective on a nonempty open subset wf(N). Hence,V//G, being a smooth
curve, it follows from Zariski's main theorem that this méstion is an open embed-
ding. However, this is a contradiction since the affine atdapicubic curvey —1(N)
has a singular point.

Finally, any nontrivial G,-orbit O intersectsyy—*(N): otherwisey|o would be a
non-constant morphism to an affine elliptic cuzfett? = a for somea € C*, which is
impossible. Note that a point i® N ¥ ~1(N) is a common point of the tw@,-orbits
0(0) and O, so ¢(0O) = O. Choose an equivariant isomorphisth=~ O such that
0 € C corresponds to a point igr—X(N). Then the involutions: O — O corresponds
toC — C, ¢ — —¢, and as a consequence every nontridgtorbit O < V intersects
the branch locusy—3(N) = We (the fixed point set ofr) in exactly one point. [
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