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Abstract

The properties of Lﬂ=1f resonance states observed in the

pion forward cross section of the 9Be(K—,ﬂ_)zBe reaction and the

21

structures of 1%0 and ANe are investigated by the microscopic

cluster model. In the former study we solve the coupled-channel

scattering problem, in which the three channels, iHe+a, A+SBe(O+)
and A+8Be(2+), are taken into account. Then, a quantitative

estimate of the cross section of the 9Be(K—,ﬂ_)iBe reaction is
performed by employing the continuum-state wave functions of iBe,
which are obtained by sblving the three-channel coupled problenm
under the butgoing wave boundary condition. We find two resonance
states: The L"=1Z state corresponds to the middle peak observed
in the (K7,7”) cross section, and its energy and width are in

good agreement with the experimental data. The L"=17 state has
not been seen experimentally, but it_is expected to be observed
if the coincidence experiments such as the 9Be(K—{ﬂ—a)iHe
reaction are carried out in future.

In the latter half of this paper the structures of 1i0 and

2}\Ne, which are the typical heavier p-shell and sd-shell

16041

hypernuclei, ére investigated by the microscopic 3a+A and o+
clustér models, respectively.v We calculate the energy spectra,
B(E2) values, root mean square radii, etc. The obtéined states are
classified into some rotational bands according to the underlying
intrinsic structure. We have many aspects characteristic of the
heafy.hypernuclei, which do not appear in the light p-shell
hypernuclei. The present studies put emphasis on clarifying

the dynamical coupling effects between the collective motions of

nuclear core part and the A single-particle motions.
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8§1. Introduction

Hypernuclear physics is the physics of the bafyon many—body
system including the nucleon’s one. The recent ceunter
experiments on the (K_,ﬁ—) strangeness exchange reaction and
their theoretical analyses have disclosed characteristic aspects
of the structure of hypernuclei, and the hypernuclear physics
has entered into a new stage.

Sihce the first discovery of hypernucleus at 1952, the
emulsion experiments have been the\unique source of information
on the hypernuclear structure in first two decades. The binding
energies and weak decay rates (life times) of mainly light
hyperﬁuclei have been measured1) and given the information on
lambda-nucleon (AfN) interaction and the A single particle

potentialz). The discovery of two double A-hypernuclei, A16\He and

AiBeVB)’A), have given the information on the properties of A-A
interaction. Very poor low-energy A-N and I-N scattering data,
for example, the A-p and Zi—p elastic scattering cross section

5)

and angular distribution”’, are available even at present. These
data are not enough to perform‘the'phase—shift analysis. The
'theoretieal analysis of the available data and predictions were
performed intehsively6).

The counter experiments on the (K™ ,m”) reaction performed at
CERN and BNL7)N17) in middle of 1970's have brought a new
"development of hypernuclear physics. Usihg this feaction,

hyperon can be produced in the excited state of hypernucleus and

we can investigate in detail the properties of hypernuclear



3*

structure; the major-shell spacing hQA, the effective A mass MA’

the depth of spin-orbit potential Ui° and the widths of
single—particle levels for A particle, in'addition to the depth
of single-particle potentiel UX. The mest interesting finding is
that the depth of A single-particle spin-orbit potential is about
zero. The energy of y-ray hae been measufed‘in coincidence with
pions from the (K ,yn ) reaction11)’14) and more detailed weak
decay rates have been studied experimentally15). The (K,7 )
reaction can also produce the Z—hypernuclei16)w18). The narrow
widths of I single-particle levels , in spite of large conversion
width of IN - AN; are unexpected findings. The quenching
mechanism remains as a mysterious unsolved problem.

k theoretical approach of the baryon-baryon interactions
using the one boson exchange (OBE) model has been performed by

19)

the Niimegen group They have proposed two OBE potentials,

model D and F, whieh'were based on the available N-N, A-N and Z-N
data with the aid of the SU(3) symmetry but had different
cheracteristics in some respects each other. For example these
two models lead to complete different results both for the N
and AA channels; the attractive/repulsive petential depth Ug and
the attractive/repulsive A-A effective interactions. Recently
the Brueckner G-matrix theory using the model D and F has been
20)

applied to the system with one hyperon (Y) in nuclear matter

the effective mass M* the

Y’ Y’

effective local Y-N interaction and eo on have been calculated.

The single-particle potential U

The development of the theory of baryon many-body system with

aceumulating more detailed experimental data will undoubtedly



lead to the unified underStanding of baryon-baryon interactions.
A systematic shell-model application to the p-shell

A-hypernuclei has been performed intensively by Dalitz, Gal,

21)n26)

Dover and their collaborators since the beginning of

1970’s. Their shell model calculations were done for {sﬁ p§-5sA}

4_A-5

or {SNPN_ s)»Pp} configurations using the interaction of Cohen

27),28) have

and Kurath for the core wave functions. Zofka et al.
also appliedbthe extended shell model approach including higher
configurations to light hypernuclei. The model study based on

the SU(3) group classification has been performed for the A=9~13

29) On the other hand, Bodmer et

hypernuclei by Zhang et al.

al.BO} have investigated the ground state properties of light

hypernuclei by the simple cluster‘modelB1)%34). A faddeev
.35)

equation approach has been made by Sunami, Nafuml and Oryu et
a1.36) In these applications the constituent.clusters, however,
have been treated as structureless particles.

A fully microscopic cluster model approach hés been made
systematically for light hypernuclei by Bando, Ikeda, Motoba,

1.37)m47) since thé beginning of 1980’s. 1In light

Yamada et a
hypernuclei the cluster aspect is essentially important since
this aspect widely proved to be indispehsable in describing the
structures of the ordinary p- and sd-shell nucleiAS)’Ag). In the
model the constituent clusters are treated as compositevparticles
and the antisymmetrization are propérly taken into account and
the effective two-body N-N and A-N interactions can be used. The

cluster model wave function includes not only the low-lying shell

model configurations but higher-shell model configurations

-3 -



without any spurious center-of-mass excitation. Thus, the
microscopic ciuster model is suitable for making the realistic
quantitative estimates df the properties of the ground and
excited states, the electromagmetic transition probabilities and
thé particle decay widths. Moreover, this model is also able to
describe the dynamical change of nuclear core part due to the
participation of a hyperon.

The study of the light p-shell A-hypernuclei within the
framework of the microscopic a+x+A cluster model (x=n,p,d,t, *He,
@) has been performed by Motoba, Bando and Ikeda et a137)’38)’402
They have calculated the energy spectra, electromagmetic
transition probabilities, effective neutron number in the (K™ ,7n")
reacﬂion and spectroscopic factors going to the (ak)—A and iHe—x
channel, etc. The existing data are>in reasonable correspondence
to the above results. The theoretical study of multi-strange
hypernuclei also has been'performed by the microscopic cluster
modelAB)m47). The particularly interesting AiHe hypernucleus,
which is called as "lampha", have been investigated by the a+A+A
cluster model. This has approximately the (Os)é—shell—model
configuration, which is the lightest closed shell of the p,n and
A system with a complete analogue to 4He=oz particle in the p,n
system.’.The lampha is considered to play the same important role
in hypernuclei as the alpha, which occupies an unique position in
ordinary nuclei as an important unit of the cluster model.

- The investigations of light A-hypernuclei including single

or multiple A particles have disclosed characteristic aspects of

hypernuclear structure: i) An interesting feature is the

- 4 -



staﬁilizationvof the system due to the glue-like role of the
hyperons. The sizes, defomations or clusterings undergo sizable
changes, which manifest themselves clearly in some observables
such as electromagmetic transitions. Hypernuclear physics, thus,
offers another way to investigate the dynamical response of
nuclei due to the participation of hyperons as impurities.
ii) Another feature is the appearance of many states with new
symmetries which can never be realized in ordinary nuclei because
of the Pauli principle. The states are éalled as "genuinely
hypernuclear™ in contrast to "analogue" which have their
correspondents in ordinary nuclei. How purely the genuinely
hypernucleér states are realized depends on the properties of the
individual states of the indiviaual hypernucleus due to the
different couplings with the other states. iii) The other
characteristic is the coexistence of weak and strong coupling
features. The low-lying levels of the (a+x+A) hypernucleus with
A particle occupying the S-state look very similar to the ground
band of the (a+x) nucleus, as if showing the weak coupling
feature, while the P-state A particle couples strongly with the
rotational motion of the nuclear part (a+x) to exhibit a strong
coupling type energy spectra. If the deformation is oblate, the .
situation chaﬁge to a certain extent. How such coupling will be
beyond p-shell hypernucleus is an interesting problem.

The purposes of this paper are the féliowing two: The first
one is to investigate quantitatively the pfoperties of resonance
states of typical light p-shell hypernucleus, ZBe, of which

structure was found to be deécribed nicely by the microscopic



at+a+h cluster model under the bound state approximation
(BSA)37)’38)’40). In the studies we treat the scattering
boundary conditions properly for the various two-body decay

39),40)

-channels This advanced treatment enables us to not only
make a theoretical analysis of available data but also give the
reliable predictions. The second one is to apply the microscopic
cluster model to heavier p-shell and sd-shell hypernuclei. It is
interesting whether the characteristic aspects obtained by the

investigations of light p-shell hypernuclei persist also in the

heavy region or not. We have obtained new aspects characteristic

of hypernuclei in this region. In this paper we report the
studies on the structures of 1%C and 2}\Ne as the typical heavy
hypernucle141)’42)..

9

In the previous studies of the ABe hypernucleus under the
BSA37)’38)’40), the important physical quantities of resonance
stafeé such the energiés and the particle—decay widths were
estimated on the basis of the reduced-width amplitudes deduced
from the BSA wave functions. Concerhing the analysis of the
(K—,ﬂ_) hypernuclcar producticn reaction, the effective neutron
numbers or the production ratios of hypernucleus through the
reaction were calculated,vbut the widths and their mechanisms of

peaks observed in the (K7,7”) reaction were not discussed

quantitatively. 1In the low-energy region of our interest, three

particle~decay channels, iHe+a, A+8Be(0+) and A+8Be(2+), are
open. Thus, we investigate the properties of resonance states of
9 S

ABe by solving the coupled-channel scattering problem, in which

the above three channels are taken into account39)’40). Then, a

-6 -



quantitative estimates of the excitation spectra of the
9Be(K_,TT_)?\Be hypernuclear production reaction are performed.
Note thét the RBe state produced by the (K ,m ) reaction lies in
the continuum state, where the three particle-decay channels are
open. We calculate the cross section of the (K ,7m ) reacfion by
employing the wave functions of the zBe continuum states, which
are obtained by éolving the three-channel coupled problem under
the Kapur-Peierls-type outgoing wave boundary cOndition5O). The
obtaiﬁed results are compared with the experimental data and some
predictions are given.

The structure of 120 in the low-energy region is known to be

51),52)

described nicely by the microscopic 30 cluster model The
Kﬂ=0+ band states (02—2:) starfing from 7.6 MeV excitation have
been interpreted to have a loosely coupled 30 cluster structure
contrastively to the shell-model-like compact structure of the
ground band (OT—ZY—AT). What kinds of couplings arise between
these states when A particle is added is a new prablem nqt
considered of KBe. Thus, we investigate the structure of 1%0 by
the micfoscopic 3a+A cluster modeléz), Which takes into account
botﬁ contrastive types of structures and their couplings in a
natural way.

20

The observed energy spectra of Ne in the low-energy region

are classified into six’rotatioﬁal bands, among which the ground
K"=0" band, the fourth K"=0" band starting from 8.3 MeV
excitation (higher nodal band) and the K"=0" band from 5.78 MeV
(parity doublet partner of the ground bandsB)) are described

152)%55)

successfully by the microscopic a+160 cluster mode . (The



other three bands can only be described well by taking into

accbunt the configuration of & plus excited 16O cluster52).) We

study the structure of 2}\Ne by the microscopic a+160+A cluster
mode141)’42). A new feature of 2}\Ne is that the addition of A

16

particle to the a+'~0 core induces a coupling between the

different»parity states, which should be quite strong, since the

.53)

energy gap between the double is not large. Such couplings

induced in 2}\Ne determine the properties of hypernuclear

eigenstates such as the selectivities on some particle-decay

modes. Another interesting feature is the stabilization of the

so-called higher nodal band in 2}\Ne, which has a large a-decay

20Ne.

width in the corresponding ordinary nucleus

Thé contehts of this paper are as followings: In §2 we give
the coupled-channel formulation of the scattering problem; and
the coupling mechanism of high-lying resonance states of ZBe is
diséussed. Then, the coupled-channel treatment with the
Kapur-Peierls-type outgoing wave boundary condition is
formulated and the cross section of the 9Be(K-,Tr_)iB'e

hypérnuclear production reaction is dalculated. The comparison

with experimental data is performed. Section 3 and 4 are devoted

21

to study the structure of 1%0 and ANe by the microscopic 3a+A

16,

and a+ “O+A cluster model, respectively. We show new aspects
characteristic of the two typical hypernuclei. Finally we give

in 85 a summary of our results and remarks.



§2. zBe hypernucleus

The structure of %Be which is a typical p-shell hypernucleus

has been studied intensively by the shell model?')»2%)

l37),38)’,40)

and the
cluster mode . Figure 1 shows the forward pion cross
section of the 9Be(K“,ﬂ_)zBe reaction7), where three peaks are
observed. The microscbpic a+a+h three-cluster model under the

37),38),40)

bound state approximation (BSA) was found to describe

9

nicely the structure of ABe hypernucleus. Figure 2 exhibits the
energy spectra of KBe calculated on the basis of this model. In
Fig.2 and hereafter we refer to the orbital angular mementum L
specifying levels and thus, each level should be understood to be
degenerate with respect to A—spiﬁ up and down. The ground band
K"=0" (Lﬂ=0+—2+-4+) has the dominant configuration where the A
particle occupies the S—sfate with respect to the a+a symmetric
axis. In the K"=0"(L"=17-3"-5") and K"=1"(L"=1"-2"-3"-4") bands
the A particle occﬁpies the P-orbits parallel and berpendicular,
respectlvely, to the a+a symmetrlc axis. The states belonging to
the K"'=0" and 0~ bands are the so-called "genulnely hypernuclear
states" which can never be realized in ordinary nuclei because of
the Pauli exclusion principle. Since the K"=0" and 17 bands
correspond to the configurations with the SU(3) classification
(Au)=(40) and (31), they are called as "SBe—analogue" and
"9Be—analogueﬁ, respectively. The K"=0" band is.a group of
states with a new symmetry (Au)=(50), which has no correspondent
in ordinary nuclei and is called as "super-symmetric" by Dalitsz

and Galzz)



The peaks at EA2—6.7 MeV and 6.3 MeV observed in the forward
(K™,m ) reaction correspoﬁd to the Lﬂ=0+ (ground) and Lﬂ=12
levels, respectively. The Lﬁ=1I level is expected to be located
at E =0 MeV but it has not been separately seen in the excitation
function because of experimental cbnditions. Another strong peak
observed at EA=17 MeV is generated by the recoilless conversion
of a neutron in the « clustefs to A particle. Therefore this
state can not be described within the framework of the a+a+h

mode137) 138),40)

We confine ourselves to the Lﬁ=1; states with particular
interest in the width of the 1, state. The EAz6.3 MeV 12 state
shows a nice peak behavior with the width TI'=7-8 MeV in spite of
its considerably high location above the three particle—decay

thresholds: pHe+a at E,=-3.1 MeV, A+®Be(0%) at E
8

A=O.O MeV and

A+ Be(2+) at E,=2.9 MeV (see Fig.2). DNote that the experimental
resolution is’about 2-3 MeV. The height of the centrifugal
barrier for A-particle in the L"=1" state is.only.about 3 MeV.
Thus, the Ln=1; level is just located at the top of the
centrifugal barrier with‘respeét to ﬁhe A+8Be(2+) threshold.
With this in mind we study the energies and widths of the L'=1"
resonance states by solving the coupled-channel séattering
problem, in which the above three channels are taken into
account. The 2He and 8Be are represehted by the otA and o+o
cluster configurations, respectivély. These microscopic cluster

models describe nicely the gfound state of 2He and the ground

band of 8Be(ln:0+—2+—4+). In §2.1 we give a brief description

of the coupled-channel formulation under the scattering boundary

- 10 -



condition. The results are presented and the mechanism
underlying the obtained resonance states is discussed in detail.
The widths of resonance states obtained by solving the
coupled-channel scattering problem described above, however, do
not directly correspond to the ones in the excitation function of
the forward 9Be(K_,ﬂ—)zBe reaction. Note that the iBe state
produced by the (K ,7") reaction lies in continuum state, where
the three particle-decay channels are open. In order to makeA
realistic estimates of resonance energies and widths, we evaluate
the cross section of the 9Be(K—,ﬂ_)iBe hypernuclear production
reaction by employing the wave functions (wf’s) of RBe in
continuum state, which are obtained by solving the three-channel
coupled equation under the outgoipg wave boundary condition for
 each channel. The cross section of the (K”,n") reaction is
calculated by making use‘of the distorted wave impulse
approximation (DWIA) and the incoming K and outgoing 7 distorted
wf’s are obtained by employing the eikonal approximation. In
§2.2 the coupled-channel treatment with the outgoing wave
boundary condition iévfbrmulated, and the (K ,7m ) cross section

in DWIA is calculated. The results are compared with the

experimental data and discussed.

- 11 -



2.1. Particle-decay widths of L"=1" states

Throughout this paper we treat the A particle as a spinless
one, since the A-N spin-spin interaétion does not contribute to
the coupling potential between A particle and spin-saturated

a-cluster, and also the A one-body spin-orbit potential has been

experimentally found to be very week7).

2.1.1 Formulation

Labelling the 2He+a, A+8Be(0+) and A+8Be(2+) channels as
channels 1, 2 and 3, respectively, the trial wf WL of total

system with the total orbital angular momentum L is expressed as

b, = a1 a2 L 403 (2.1)
o{1) jzzﬁj'/§[¢(5ﬂe)¢<a> x<1)<Rl)Y Ry, (2.2)
of?)= [o(®pesn=0) x{P(ra)y (R)]y (2.3)
o = 1 [oPeesn=2) xPmar o) (2.4)

where ﬁB and X(B) (B=1,2,3) represent respectively the relative
coordinate and relative-motion wf’s between the relevant clusters
(see Fig.3). The operator /Y antisymmetrizes the nucleons
belonging to different clusters.
The relative-motion wf’s x\B) (g=1,2,3) in Egs.(2.2)n(2.4)
are’expanded in terms of the locally peaked Gaussian basis:
x) () =1 1P 0p) 97 57y) (Ry<RS), (2.52)

8 |
_ (-) ' (+) c
=8 Xy (kg oRg)=8 g xp " (kgRg)  (RORS),  (2.5)

B

- 12 -



yL(RB;DB) = 4ﬁ(2v8/ﬂ)3/4exp{—v8(Ré+Dé)} Ji(szDBRB)’ (2.6)

where the generator coordinate DB spe01f1es the relative dlstance
in the B-th channel and ji(z) is the spherical Bessel function
with an imaginary argument. The féB)(DB)’s denote the expansion
coefficients. The x( )(kB;RB) repreéent the incoming (-)/
outgoing (+) Coulomb wf with the channel wave number kB‘and SYB
the S-matrix from the B- to Y-th channel. The wf (2.5a) is
smoothly connected with the wf (2.5b) at the channel radius Rg.
The size parameter in thelwave packet ~?L(RB’DB) in Eq.(2.6) is

chosen so that combination with the associated reduced mass gives

the same harmonic oscillator (h.o.) frequency Q, for examples,

Vo= 4(4Mg+M, )/ (8M+M, ) N - (2.7a)

vN=MNQ/2h . (2.7b)

v2(=v3)= 8MA/(8MN+MA) Vg s

where MN(MA) is the mass of nucleon (A particle).
The wf ¢(a) represents the internal wf of the a-cluster with
the lowest h.o. configuratidn (Os)ﬁ. The internal wf ¢(2He) and

0(®Be;2) in Egs.(2.2)0(2.4) are described as

5(ZHe) = o(a) g () ¥, (A) with 2,0, (2.8)
0Ce30) = 7 [FEL K ota)otan, (1), () (2.9)
where &, (n) and %, denote respectively the wf and the angular

A
momentum referring to the a~A relative coordinate ﬁ, and wl(r)

énd 2 the a-o relative coordinate *. The relative wf’s Ez (n) in

Eq.(2.8) and wg(r) in Eq.(2.9) are also expanded in terms of the

- 13 -



locally peaked Gaussian basis

Y (ah) . '
&y, (M) = gl fzi (d1) §&A(n,d1), (2.10)
by ) =1 £8%)(a,) P, (r3d2), (2.11)
where the expansion coefficients féaA)(dl) and féaa)(dz) are

A
determined by solving the o+A problem with the folding model

and the o+a problem with the microscopic cluster model,
respectively. The expansion basis wf’s {?} in Egs.(2.10) and
(2.11) are defined by Eq.(2.6). Here the generator coordinate

di(d2) specifies the a-A (a-o) distance.

The total Hamiltonian operator H is given by the total
kinetic energy and nucleon(N)-nucleon(N) and lambda(A)-nucleon(N)

interactions,

H="T+ Vg + Vpy - (2.12)
8 o . .
- N , A
T = ‘Z ti + %t - Tc.m. ’ (2.13)
i=1
8 , 8 :
VNN = . Z— VNN(i’j)’ VAN =.§ VAN(A’i), ) (2"14)
i<j=1 i=1
where the center-of-mass kinetic energy Tc - is subtracted.
From the variational principle
<oolBlm_E v >0 (8=1,2,3), (2.15)

we get a set of coupled integro—differential equations to
determine the expansion coefficients f(B)(DB) and the S-matrix
elements SYB of the relative wf X(B)(RB) in Egs.(2.5a) and

(2.5b). Here we follow the variational method developed by

- 14 -



156)

Kamimura et a . The overlap and Hamiltonian kernels evaluated

in the framework of the generator coordinate method (GCM) are
given in the Appendix A.

From the S-matrix element the cross section is given as
2
I

oA(B_+ Y) = [(2A+1)/ké] | 6., - 8 , (2.16)

YB Y8

where X denotes the relative angular momentum of the Y channel.

2.1.2. Two-body interactions and model space

As the two-body N-N interaction we employ the Volkov No.2

(2-range Gaussian) potentia157) with Majonara parameter m,,=0.58.

NN

The Coulomb interaction is taken into account. The size

paraméter Vi for nucleons in the a-cluster is taken to be 0.2711
2

fm~ (vN=1/2b§, by=1.358 fm). This choice of interaction and
aboﬁe size parameter leads to a successful reproduction of the
a-0 scattering data including the resonance characters of 8Be.
ground band (2=0, 2 and 4)58). The two-body A-N interaction is
simply chosen as a Gaussian form with the range BAN equivalept to
the two-pion exchange Yukawa form,

Vap(T) = vy expl-(z/8,)%}, (2.17)

VXN = -38.14 MeV, = 1.034 fm. , - (2.18)

Ban

The strength VXN was determined so as to reproduce the observed

544 2)

AHe

A binding energy (BA=3.1 MeV) in within therframework of
the a-A folding model. |

" In the present caiculation the following channels and
parameter values are employed:

(I) The three channels (L"=17)

- 15 -



channel-1 : iHe +a |,
channel-2 : A + °Be(0¥) (a=1) ,
channel-3 s A+ 8Be(2+) (x=1) ,

(II) The generator coordinate mesh points.

Di = 2.5, 3.0, seeenuanas , 6.5, 7.0 fm (10 points), .
D2(Ds) = 0.5, 1.5, eeven. , 5.5, 6.5 fm ( 7 points),
d, = 0.5, 2.0, 3.5, 5.0 fm ( 4 points),

d2(ds) = 1.2, 2.4, 3.6, 4.8, 6.0 fn ( 5 points),
(ITI) The channel radii |
RS = 7.5 fm , RS (RS) = 7.0 fm .

8

The A=3 component in the A+ Be(2+) channel was found to be

t37)’38)’40) and 1s neglected here. Note that the

unimpprtan
essential importance is the reproduction of the experimental
threshold energies when we treat a scattering problem involving
the different channels. The adopted parametefs {d:} and {d,(d;)}
are satisfactory in this respect; The parameter choise of (II)
and (III)rdescribes well the behavior of wf in the internal

region and also guarantees satisfactorily the unitarity of the

S-matrix.

2.1.3. Energies and structure characteristics of L"=1" states

under the bound state approximation (BSA).

In order to clarify physical picture of the problem, first
we solvé the three-channel coupled problem under the BSA and
investigate the structure characteristics of the obtained
eigenstates. Let us define the channel probability which is the.

squared overlap of the three-channel coupled wf WBSA(LN) (N=I,11

- 16 -



,III) with each single-channel wf Q(Si(L ) (n=1 2) (or wf

ég;B)(Ln) (n=1,2) obtained by solving the A+ Be(O ,2+)

two-channel problem):

(B) _ (B) 2 :
Poy = | < eggp(T,) | Yoaa(y) > 17 o (2.19)

‘The obtained values are given ih Table I.

The L"=1£

complete overlap with the iHe+a channel (P(1)—O 980) and at the
2(213) (11))

same time very large overlap with the first solution ( BSA

of the A+8Be(0+,2+) two-channel eqﬁation. This indicates that

solution with E (=—B )=-0.5 MeV has an almost

three channels are not fully independent each other because of
the antisymmetrization among the nucleons. The L" _1II solution
with E =3.7 MeV has a complete overlap with the higher nodal
| solutlon for Q(;i(1z) of the 5He+0L channel. Since the energy
level is located considerably high with respect to the iHe+a
threshold, the resonance-like behavior should not appear when the
problem is treated under the scattering boundéry éondition. The
third solution Lﬂ=1£II with E =5 O MeV has a strﬁcture very

similar to the second solution 9$2%3)(137) of the 1+8Be(0,2")
BSA

two-channel equation (P(ZE%% =0.920) and also a considerable

amount of the A+8Be(2 ) channel component (P§3%II= 0.341). The
. ’ :

energy level is located around the top of the centrifugal barrier

with respect to the A+83e(2+) threshold. Thus this state is

expected to show a resonance-like structure under the scattering
boundary condition. From theseé consideration we learn here that
there can exist two 1~ states (15 and 1511) which will persist in

the scattering problem.
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2.1.4. Results and discussion

First we calculate the phase shifts of three independent

channels, iHe+a, A+8Be(0+) and A+83e(2+), without channel

couplings. The phase shift of the iHe+a channel does not reach

90° but we find a broad resonance-like structure in the cross

section at Ea=3.0 MeV because of the Coulomb plus centrifugal

5

barrier. The higher nodal resonance of the AHe+oz channel does

not appear as described in §2.1.3. Only the A+8Be(2+) channel

8

phase shift exceeds 90°, while the A+ Be(0+) one does not reach

90° but is saturated about 60° around EA:6 MeV. The reason is

that the A-8Be(2+) P-wave folding potential is enough strong to

8

make a quasi-bound state, while the A+ Be(0+) one is considerably

weak (see Fig.5). This type of difference between the two

8

folding potentials is due to the prolate deformation of the “Be

nucleus59). Note that these properties of the folding potentials
make small the ehergy gap between the diagonal energies of the

A+8

Be(0+) and A+8Be(2+) channels. Thus, the Lﬂ=1; states of the
single A+8Be(0+) and A+8Be(2+) channels without any channel
coupling are almost degenerate in energy. If the channel
coupling is introduced, the two states are strongly coupled and
largely separated in energy to form the L"=17 and 13 levels (sece
Fig.2 or Table I).

Let us switch on the channel couplings among thrée channels.

L=1

- The calculated cross sections ¢ B » y) and the absolute values

of the S—matrix.elements, ISYB" for the incident iHe+u and
o .

A+ Be(0+) channels are shown in Fig.6 and 7, respectively, as a

function of the a(A) incident energy EQ(EA) in the center-of-mass
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frame (ESal: Exal + 2.5 MeV).

We see a somewhat broad resonance at Ea=2.3 MeV (EAZ—O;Z
MeV) with the width of about 2 MeV in the 2He+a elastic croés
sectioh. This corresponds to the K"=0" band"head state in the
BSA; LW=1T in Fig.2 or Ln=1E in Table I. Some structures also
appear in the cross sections 0L=1(6 + Y) (and the absolute values

8Be(0+) channel is

of the S-matrix elements, lSYBI) when the A+
open. Thesevare due to the effect of the channel couplings. In
the 9Be(K_,‘lT_)(KBe experiment the corresponding peak has not yet
been observed because of the following reasons: The ground state
of the target 9Be nucleus has the structure where a valence
neutron occupies the P-orbit perpendicular to the a-o symmetric
axis; while in the K'=0" band head state of the produced zBe
hypernucleus the A particle occupies the P-orbits parallel to the
at+a symmetric axis. Thus, the small overlap between the target
9Bé nucleus and the residual ZBe hypernucleus makes the cross
section in the (K ,m") reaction small. Moreover this peak seems
to be masked by the tail of the second big peak observed at
EA=6.3 MeV. It is expected to be observed, however, if the
coincidence experiments such as the 9Be(K—,ﬂ_a)iHe reaction are

carried out in future.

In the inelastic cross seqtidn 0L=1(2 + 3) from the

8 8

A+ Be(0+) to A+ Be(2+) channel, there appears a broad resonance

structure at EA=6.O_MeV with the width of about é MeV. This

resonance corresponds to. the K"=1" band head state in the BSA;

111
and the width (T'=6 MeV) are in good agreement with the middle

L"=17 in Fig.2 or L'=1 in Table I. The energy (EA:6.3 MeV)
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peak (Eiszé.B MeV and I'®*P=7_8 MeV) in tﬁe excitation spectra of
the 9Be(K—,ﬂ_)?\Be reaction. When the A+8Be(0+) channel is open,
in the resonance region, there appears a strong-energy dependence
of the [S,,| and l832|, while not so much in the |S,51, as seen
in Fig.7(b). This indicates that, around EAzé MeV, the A+8Be(0+)
and A+8Be(2+) channels are strongly coupled each other - but the
coupling of these two channels with the iHe+a channel is weak.
These properties have already seen in the BSA treatment (see
Table I) and persist in the case of the present three-channel
coupled scattering problem. The ehannel-coupling effects push up
the K"=1" band-head state to such a high energy position as EAz
6.0 MeV but still just at the top of the centfifugal barrier with
respeet to the A+8Be(2+) channel, so that the ﬁidth of this
resonance state comes to somewhat broad oﬁe (T=6 MeV).

A few words should be said here. Speaking exactly, the
widths of the resonance states obtained by the present
three-channel coupled scattering calculation do not directly
correspond to the actual widths in the excitation spectra of the

9

forward Be(K—,n—)ZBe reaction. The present evaluated widths,
however, are expected to simulate the experimental values because
of the following reason: The wf of the outgoing pion in the
(K7,m") reaction would not be distorted so largely by the nuclear
optical potential since the pion energy is very high (Pﬂz600
MeV/c, T 5480 MeV). Thus, the observed pione carry the
1nformat10n about the structure of the 2Be hypernucleus which is
just generated by the recoilless conversion of a valence neutron

to' A particle. A more realistic calculation of the ex1tatlon

function of the 9Be(K_,ﬂ_)KBe reaction is given in next §2.2.
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2.2. Strength function of the 9Be(k—,ﬂ_)2Be hypernuclear

production reaction

In order to make a realistic estimate of the energy and
width of the second peak (E; P~6.3 MeV and I'®*Px7-8 MeV) in the
excitation function of the forward 9Be(K",Tr_)iBe reaction7), we
evaluate the cross section of the 9Be(K_,ﬂ_)zBe hypernuclear
production reaction by employing the coupled-channel treatment
with the Kapur-Peierls-type outgoing wave boundary condition5o)
for each channel. Thus, the particle-decay width of zBe produced

in the (K7,m") reaction is taken into account in a natual way.

2.2.1. Formulation

9

a) Wave function (wf) of ABe with the outgoing wave

boundary condition

The particle-decay channel wf’s of the ZBe hypernucleus we

consider are the following three with the total angular momentunm

L"=1";
oV (g) - jz%A’[cb(ﬁﬂe)mm)x“)<Rl;E)Y,L=1(fm]L=1 , (2.20)
o2 (E) = [00%8e;0" %P (rasmiy, L (R, (2.21)
4OV = (0o P sy, Ra)) L, (2.22)

whefe é(a) is the internal wf of the o particle with the lowest
(Qs)é h.o. configuration. The internal wf’s, ¢(§He) and

¢(8Be;0+,2+), are given in Egs.(2.8) and (2.9), respectively.
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The other notations are self-explanatory (see §2.1,), The total

wf is given as
¥(78e;E) = o) (5) + 0(¥)(5) + 6(3)(m), (2.23)
E = E(KT) + B(%Be) - B(r) ,  (2.24)

- where E(9Be), E(K") and E(n) represent. the internal energy of
the ground state of thé target 9Be nucleus, the incoming kaon and
the outgiong pion.energies, respectively. Thus, E denotes the
available energy for ZBe in the 9Be(K—,ﬂ_)iBe.reaction.

The radial wf’s, X(B)(RB;E) (B=1,2,3), in Egs.(2.20)~(2.22)
are expanded in terms of the locally peaked Gaussian basis { ¢ }
and satisfj;the following outgoing wave boundary condition at the

channel radius Rg:

(B) (g _.}) = B)(p . . c
X"’ (Rg;E) —,]z) £270(Dg3E) Py (Rg5Dg)  (Rg<RZ) ,  (2.25)

B
_4a (8) ] (B) )
ar; RpX (R_B,m]/[RBx (Rg3E)] fRB:Rg
Oé(kB,Rg) /oB(kB,Rg) (RB=R§) , (2.26)

where the generator coordinate DBVdenotes the relative distance
between the relevant clusters. The f(B)(DB;E)’s are the
expansion coefficients and ?&(R;D) is given in Eq.(2.6). The
OB(kB’RB) is the ouﬁéoiﬁg Coulomb wf , which is expressed by

Og (kg ,Rg) = Gy _;(kg,Rg) + 1 §£=1(kB,RB) , (2.27)

where F£ and Gz are the regular and ifregular Coulomb functiohs,

| respectively. The kB'is the B-channel wave number of
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{(2u8/h2_)(E—EB)}1/2 where EB(uB) is the threshold energy (the
reduced mass) of B-channel.

The continuum-state wf W(ZBe;E) with the outgoing wave
boundary condition for each pafticle-decay channel are obtained
by solving the coupled-channel integro-differential equations
with the use of the Bloch operatoréo):

Rg (8”)
B’ .2 : B’ ,
%' Jo RB,dRB,(afBB,(RB,RB,) _»wn(E)NBB,(RB,RB,) X, (Rg)

— c —_—
=0 (RB<RB’ B=1,2,3) , (2.28)

){BB,(RB;RB,) = Hgg-(Rg,Rg.) + a[B(RB,bB)ags, , (2.29)

where HBB' and NBB' are the Hamiltonian and norm kernels,
respectively, in the framework of the resonating group method

(RGM). The Bloch operator <iB(RB,bB) is defined by

2
[ (r. . _n° _nC [ 4 _
oL g (Rg,Bg) sons S(Rg-RS)| —3p— Ry - By ] , (2.30)
gRg B
by = g [RBX(B)(RB;E)]//X(B)(RB;E) R s (2.312)
8 | B~
_nC A~ cy c .
= RS OB(ka,RB)/OB(kB,RB)I , (2.31D)

where bB is the logarithmic derivative of the radial wf

X(B)(RB;E) at the channel radius Rg and given in Eq.(2.31b) in
the present treatment. Note that bB is.complex because of the
outgoing wave boundary condition. In Eg.(2.28), Wn(E) denotes

the n-th eigenenergy which is complex

W, (8) = e, (B) - ir (E)/2 , | (2.32)
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with Fn being interpreted as a sort of width of the n-th
eigenstate ?h(zBe;E). As well known, the eigenstates satisfy the

following biorthogonality and completeness:

<¥ (JBe;E) | ¥ .(JBesE) > =5, (2.33)
Z’FIWn(iBe;E)> <& (FBesm)| =1, (2.34)
n .

¥ (7BesE) = ( v _(7Be;E) )T, (2.35)

where T is the usual time-reversal operator. In the present
calculation the radial wf X(B)(RB;E) is expanded as given in
Eq.(2.25), and the expansion coefficient f(B)(DB,E) and the
eigenvalue W(E) are obtained byrsolving the Eq.(2.28) with the
use of the variational method. “

The total Hamiltonian H of iBe system is given in Egs.(2.12)
~v(2.14). The N-N, A-N intéractions and the parameters of the
generator coordinate {DB} are the same as those used in §2.1.

For the channel radii, {Rg}, we take the following values:

R = 8.5 fm , RS (RS) = 8.0 fm . (2.36)

The above parameter choice is found to describe well the internal
behavior of wf (RB<R§) with the outgoihg wave boundary condition.
The expression of various matrix elements are given in Appendix

A, which are the same as those given in §2.1.

b) Strength function

The double differential cross section of the (X7 ,n7)
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reaction in the distorted wave impulse approximation (DWIA) is

expressed as

dc . _ { do '
aEdQ.  ~ [ dQn] K nsAn~ s(E) , (2.37)
where (dO/dQﬂ)K—n+Aﬂ— is the differential cross section of the
elementary process. The S(E) is the strength function and given
by the following formula:

S(E) = -1 1m< ¥(7Be) | O 0| ¥(7Be) >, (2.38)
E - H + ic

Here, H and E are given in Egs.(2.12) and (2.24), respectively,
and ?(9Be) is the ground-state wf of the target 9Be nucleus. The

- 61),62)

b

operator O in Eq.(2.38) is the n + A transition operator
~ -3 .(_)*—» (+) ;> 9 > >
o= X&) D@ [ osGE wm (2.39)
Pr- P k=1 kK-

where u_(k) denotes the u-spin lowering operator acting on k-th

nucleon:
u_n>=|A> , u_|p>=0. , (2.40)

Here, |n>, |p> and |A> express the state vectors of neutron,

proton and lambda, respectively. With the use of the

9
A

Egs.(2.33) and (2.34), we can express the strength function S(E)

biorthogonality and completeness of the /Be eigenstates given in

as
N, (E)

S(E) = -1 Inj (2.41)
n

"E - W (E)

N_(E) = <w(9Be)|6*|w(ZBe;E)> <Y (7Be;E)[0]¥ (TBe)>.  (2.42)
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9
A

by the recoilless conversion of a valence neutron of the target

Since the relevant L"™=17 states of 7Be hypernucleus are generated
9Be nucleus to A particle, we consider that the u_(k) in
Eq.(2.39) operates only the valence neutron.

The kaon and pion distorted waves are calculated by
employing the eikonal approximation since the incident K and

outgoing © energies are very high ( pg=790 MeV/c and pﬂ:éOO

MeV/c):
( )( ) - i K’ - "—1 U ( b2 72 ) dz’ (2 4 )
Xp r exXp; 1ip r 1 v l K v +2 Z ] 3 43
X( )(I) = e’Xp.[-—ip oT + i—L J U (¢B2+Z'2 ) az’ ] (2°44)

z = PgeT/pg, b =/r7-z%, Z =73 F/p, B =/r?-ZZ, (2.45)

where'pK (VK) and pﬁ (vﬁ) are the kaon and pion momentums
(velocities), respectively. As for the meson-nucleus optical
potential Um(r) (n=K,n), we employ the lowest order one given by

the multiple scattering theory:

Um(r) = - i _;g amN (1 - iam) o(r) (m=K,7). (2.46)
Here, EmN denotes the avarage total cross section of the
elementary process, and p(r) is the density distribution>of the
target 9Be nucleus, and o is the ratio of the real to imaginary
part. According to the Ref.61) and 62), we calcualte the
distorted waves by‘employing the parameters, EKN =5nN=30 mb and

um=0, for pK=79O MeV/c. The product of the distorted waves in
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Eq.(2.39) are expanded in the multipole series with the use of

the expressions in Egs.(2.43) and (2.44):

é;i@’) xé;<?>= L VAT V2K 15 Y (P 0,57 Y (B), (2.47)

X
where Gﬁ— is the pion scattering angle with respect to the kaon
incident direction.

For the ground-state wf of the target 9Be nucleus, we employ
the one obtained by the microscopic a+a+n cluster model63). The
model is found to describe nicely fhé structure of 9Be in the
low-energy region. The explicit expression of the squared
transition matrix element Nn(E) in Eq.(2.42) is givenrin

Appendix>B.

- 2.2.2. Results and discussion

First we discuss the characteristics of tﬁe eigenstates
?n(zBe;E) and the energy-dependence of their eigenvalues wn(Ea)
(n=1-3) which are giveﬁ in Fig.8, where Ea corresponds‘to the

iénergy E in Eq.(R2.24) measured with respect to the iHe+a

theshold. According to the wf analysis under the BSA (see

5
A

combination, anz with the

§2.1.3), Wn=1 has a large overlap with the

He+a channel and
simultaneously with the
excited (1) ang ¥ _, with the ¢(#).6(3) combination. Thus, the
eigenstates, ¥ _, and ¥ =3 correspond to the K"'=0" and 1~

1

has width L (of Eq.(2.32)) of about 1 MeV which entirely comes

from the 2He+a decay, while Wn=3 has width of about 4 MeV for

band-head states, respectively. As seen in Fig.8, the state ¥ -

which all the three decay channels are open. This width comes
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almost entirely from the decay into the A+8Be(0+,2+) channels,
and its size at such a high energy position is relevant to the
present problem of our interest. The eigenstate anz has a large
decay width Fn=2=6—7 MeV since this state corresponds tp the
higher nodal state of the 2He+a channel, and the energy level is
located above the Coulomb plus centrifugél barrier.

Table II lists the calculated squared values 6f the
transition matrix element Nn(Ea) in Eq.(2.42) and also Wn(Ea)’
n=1-3, for pK—=79O MeV/c and 6ﬂ=0°. The value Ovan=1 is small
because of the following: In the ground state of the target 9Be
nucleus a valence néutron occupies the Kﬂ=1; molecular orbit,
while the A particle in the Lﬂ=1f state of the residual zBe
hypeénucleus occupies the K"=0" one. Thus, a small overlap
between both wf’s ﬁakes the Nn=1 value small. The state Wn=3,
howeyer, has a large Nn=3 value since the A particle occupies
the K'=1" molecular orbit. This substitutional state is expected
to be populated strongly in the strength function S(E). The
state’?nzz_has a small Nn=2 value and a large decay width Fn=2,
and thereforé should not appear as,aﬁy structure in the S(E).

Figure 9 shows the calculated strength function S(E) for Py~
=790 MeV/c and 0.-=0°, 5° and 10°, where the lowest ten states
(Wn(zBe;E), n=1-10) are taken into account. At the forward pion
angle (6ﬂ—=0°) for which the observation was done, there exist
tﬁo peaks: a small peak at EA2—0.5 MeV with the width TI'=2 MeV‘and
a big peak at EA26.O MeV with the width I=é MeV. The latter big

peak corresponds to the K'=1" band-head L"=1; state and is in

géod agreement with experimental data (Eisz6.3 MeV and T*P~7-8
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MeV). The origin of the width of this peak is the A escape width
for decay into the A+8Be(0+,2+) channels. The lower small peak
" corresponds to the genuinely hypernuclear Ln=1; state and the
width comes from the decay into the iHe+a channel. This state
has not been observed because of the various experimental
condition (see 82.1).

When the pion scattering angle an increases and the
momentum transfer becomes larger, the strength of the upper peak
decreases and at Gﬂ—=10° there is no longer'the visible-peak
behavior around EA=6 MeV since this state is the substitutional-
type. On the other hand, the small peak at EA:—O.S MeV remains
unchanged against increased Gn—. The interesting L"=17 state
willlbe hopefully observed, if the 7 o coincidence experiments

such as the 9Be(K—,ﬂ_a)iHe reaction are carried out in future.
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8§83, Structure of 1%0

In this sebtion, we present an investigation of the
structure of 1%0 by the microscopic 3d+A cluster modell’z)° The
nucleus 12C is typical coexistent nuclear system of the
shell-model like structure and the well-developed cluster
structure; that is, i) the éhell—model like ground Kﬂ=0t band
(8"=0%-2%-4%) and its parity-doublet K"=3" band (2"=37), ii) the
kK"=0% band (2ﬂ=03—2§) with the loosely bound 3a cluster
structure, iii) the K"=1" band (Zﬂ=1_) with the intermediaie

120 are known to be

structure. The two contrastive structures of
described nicely by the microscopic 3a cluster mode151)’52), as
shownfin Fig.10. Therefore the study of 1%0 within the framework
of the microscopic 3a+A cluster model can take into account the

effect of the dynamical coupling between the A particle motion

and the two kinds of characteristic nuclear structures.

3.1. Formulation of the microscopic 3a+A model

The total wf ¥ of a 1%0 state with the total orbital

angular momentum L is expanded as
s 1w (e eu, @ ], (3.1)
c,n L
where c=(il,A)L_denotes a channel of the angulaf momentum
coupling. Here, in Eq.(3.1), @ig(g) (£: whole nucleon

coordinates) represents the i-th state of 12

C with angular
momentum 2 obtained by solving the equation of the 3a resonating

group method (RGM) and unk(§)= unA(R)°YA(R) the normalized
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120 relative coordinate ﬁ

- harmonic oscillator (h.o.) wf of the A-
with N=2n+A quanta.
The total Hamiltonian of the 3a+MA system can be written in

the following form ;

H=n('%c) + 1, + v, , (3.2)
h(1%0) = 5 b, ¢ T wee(i,9) - T, (3.3)
i=1 1 iy=1 M G
12
Vpy = i£1 VAN(A,i) ) (3-4)

where h(120) is the internal Hamiltonian for the 3a nuclear part

with the center-of-mass (c.m.) kinetic energy T, subtracted and

G
the other notations are self-explanatory.
The equation of motioﬁ is expressed as a set of

coupled-channel linear equations for the coefficients wc(n) ;

+ UL (ean1,cons) ]';cz(nz) =0, (3.5
Ty(nune) = <ap (B 1y Juy (8> (3.6)
UL(cln1,Czn2>=<un;A1(R)| Uy (Rsea,c2) lunzng)> , (3.7)
pL(R;Cl’CZ)=<{®i12£g) ngﬁ)]L|VAﬁr[®122§5) L], (.8)
e, = <0, (&) n(*P0) f®i£(£>> : - G9)
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where E; is the total energy of a ';C state and €_ the

eigenenergy of if state of 12¢.

The channel coupling in Eq.(3.5) is induced by UL which is
the A-N interactions folded by the transition'density matrix of

the totally antisymmetrized 3a RGM wf’s @ig(i).‘ The transition

12

density matrix of C is defined by

@) = | az o] (6) 1 852, o (©), (3.10)
Pigm, 1720 (T = iem &) L OFTTE) By rgr (8), 3

and can be expanded in the following multipole series:

Psiom i’g’m’(;) =kz (2 m ku|2m) (-)2‘(4w(2k+1))1/?
2 ,]J

ORI CO I S C ORI C AL ED

> . > . .
where Ty (each nucleon coordinate) and r are measured with

respect to the c.m. of 12
s °(k)
matrix element pil,

C. The multipole transition density
i'l'(r) is approximately expanded in terms of

the Gaussian basis:

(k) oy =) &)

Pin i’e” 18,1

o)y (3.12)

,2,(n) (f/rn)k exp(-r?/r
n=1 ,

r =rTja B (n=1-N). : (3.13)

Here, after choosing a set of N, T, and Ty the coefficients
C§f)if2'(n) are determined in order to minimize the integrated
’

value of the Squaredvderivation of expansion. If the A-N

interaction is given in the form of Gaussian type as in Eq.(2.17)

, the folding potential UL(R;C1,02) in Eq.(3.8) is expressed by
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Up(Rsea,ee) = (9% [I0][] 0T D0e]

X y (A10A20!k0) W(Rl 122X23Lk) U(k% R(R)’ (3.14)
k s12
2 3/2
& (k) o 2 13/2 7 2(k) _™n
1121,1212( ) h VAN (WBAN) n£1 1121,122§n) Bz +f2
AN "n
rnR k
| e | R/ BawtTa)| s (3215)
BAN+rn

where [2] is 20+1, and Byy and vy are the range and depth of the
A-N interaction, respectively. We use the transition density

64)

matrices of 1ZC given by Kamimura

3.2. Electric quadrupole transition probability

The operator of the electric quadrupole transition acting

only on protons can be effectively given as

M(E2) = & [ Q) +am) | (3.16)

where Q(3a) is the mass quadrupole operator of 3a nuclear part
and Q(A) takes into account the recoil effect,

1

A 2 A ‘ '

Q(3a) = k£1 Yz(?k) ’ (3.17)

N 12M2 a

Q(n) = R? T,(R). - (3.18)
(12143, )%

The reduced quadupole transition probability B(E2;Li+Lf) is

expressed by
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B(E2;L; » L,) = ez[Lf] ¥ y mc (n,) w, (ni)

Cellp C Ny £ i
X +2 . —L
x 6y 2 8. . (o)t f /o] Wit L2, L, 52,2)
£ ey 1
£ N
f 151 °(2) 5
=) = V/Ix,] I ¢ r
il 776 L. Ykoa,k.0, Tn
2 +A .
+o8, , () T/ WAL LA L;38:2)
£f7i
_ ya
[ oM
x |72 (A£020]2,0) A(R)[Rzlu A(R)> ,(3.19)
(12M,+M, )2 f i
N A
where cl—(klzl,Al)Li and ¢ —(kf f’kf)Lf denote the initial and

flnal channels of the angular momentum coupling, respectively.

3.3. Root mean square (r.m.s.) radii

The r.m.s. radius of 3a nuclear part, ¢<r2>,~and that of the
- 2C(Ba) relative coordinate R, /<RZ>, are given by
3/2

<Y Irzl‘i’ > z 8 ,» 6 s W (n) w ,(n')
L L 8 ¢y e’ ,n 22 A c c

X (—)2' V[,Q,,] z C(O) ; I(n) I.l?l ) (3o20)

=1 ig,

It
t~1

<Y |R*|¥ > w,(n) w (n")

’
c,n,n

x  <u, (R)|R?|u_., (R)> . (3.21)

3+4. Model space and A-N interaction

Our model space is specified by the 3a-A h.o. guanta N=2A+ﬁ
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and the channel c=(i2,A)L. In the present calculation, the

following truncation of the model space is made:

(1) the 3a-A h.o. quanta.v

N=2n+\ with n=0,1,2,3,4 and A"=0",17,2%,3",
(2) the 'C(3a) states

£ = 01, 02 3 21, 22 ; 41 for.kn=0+;

% =1, for X"'=1" ; & = 3, for k'=3".

Figure 11 shows the energy levels of 120 calculated by the
3a RGM. Those corresponding to the observed states shown in

Fig.10 are drawn by solid lines. For energy spectra of 12

C given
in Egs.(3.5) and (3.9), we use the experimental energies for the
obser&ed states and the calculated RGM eigenvalues for the other
higher states. This ajustment of the calculated results is
necessary to see the realistic effect of the participation of A
particle. The truncation of model space and the ajustment of

120 energy mentioned above are found to be good enough to

describe the low-lying states of 1iC.

The two-body A-N interaction is simply chosen as a Gaussian
form with the range BAN=1.034 fm (equilvalent to the two pion
exchange Yukawa form) and the strength VKN=—35.4 MeV, which
reproduces the A-binding energy BS*P= 11.22 + 0.08 MeV in 3¢ 13)

We label each of the obtained bands of 13C(Kﬂ) by means of
~its leading component [ kol ], where k denotes the intrinsic

¢ 12 12

quantum number o C and XA a A-""C state.
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3.5. Energy spectra and structure characteristics

First we show in Fig.12 the density distributions of the
2”=Ot, 2?, 4?, oZ, 2;, 11 and 37 states of 126 calculated by the
30 RGM64). The correspohding s-wave folding potentials for
,A—12C(2") are also shown in Fig.12, toéether with the ehergy of
each eigenstate. The density distributions clearly exhibit the
coexistence of the shell-model-like states (£ﬂ=0t, 2?, 4?, 31)
and the loosely coupled 3a cluster-like states (2“=O;, 2:). Note
that the structure of 17 state is intermediate between them.
Reflecting the drastic dependence of the density distributions of
126 on its states, the folding potentials for A—12C(Ot,2i,4t) are
deep KN -35 MeV) and short-ranged (v~ 4.5 fm), while those for
A—120(O§,2;;1I) are shalléw (v =15 MeV) and long-ranged (~ 6.5
fm). Thus, the eigenstate for A—120(OT) gives a binding energy
of 3.5 times as large as that for A—120(O:), and the energy
splitting between them becomes about 15 MeV in contrast to 7.65

MeV between the OT and O; states in 12

7C. The s-wave folding
potential for A—120(3I) has an intermediate depth (~ -21 MeV) and

range (v 5.5 fm) among others. The reason of this is following:

The 37 state of 120, which constitutes an inversion doublet with
the ground state Of 52), has a rather shell-model-like character

but a little looser structure than 0} (/<r?>, =2.42 fm in O} vs.
2.77 fm in 37; cf. 3.55 fw in 03).

Let us switch on the channel-couplings. The obtained energy
levels can be classified into nine bands, némely, three K"=0"

bands, two K"=0" bands, three K"=1" bands and one K"=3" band.

Théy are shown in Fig.13 together with the calculated B(E2)

- 36 -



values. For comparison, Fig.13 contains also the energy spectra

of‘120.

+ o+

(I) The K“=oI, 0 177 and 37 bands

117 'II

With the A particle mainly in the (Os)A state, we obtain
these four bands, where the 30 part is similar to the kW=OT,
O;, 11 and 37 bands, respectively, of the isolated 3a sysfem.

Thus we could call them the 17

C-analogue bands. In order to see
the effects of channel couplings, the energy eigenvalues obtained

with (without) channel couplings are given in Table III.

i) The Kn=0; groundvband,

The main channel of this band is the (Q,A)L=(L;O)L with 98%
channel probability. The energy gain due to the couplings with
the other channels is only 0.4 MeV. The separation energy of the

¢ particle in 120 is about 13 MeV, which is much larger than the

value of about 7 MeV in 120. This stabilization is caused by an
additional A-3a interaction. A similar energy gain is obtained
for the 2} and 4; members. Then the 4; state Becomes stable.
against the a-decay, though this level may have a small A-decay
width due to its appearance at about 2 MeV above the A+120(g.s.)
threshold. | |

The calculated r.m.s. radii /<r?>
12

' SoR 2 13
3q and V<R >3a—A of AC

as well as /Z¥f§5a of C are displayed iﬁ Table IV. We see only
a slight contraction of /2;?;3a of 1iC(KﬂzO;) compared with that
of,120(kﬂ=OT). This contractionvreduces the intra-band B(E2)
values in 1XC (see Fig.11 and 13). 1In the zBe case, such
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reduction of B(E2) is rather drastic as emphasized in Ref.37),
38) and 40), while it is not so remarkable in the present 126
ground band, reflecting its compact shell-model-like structure.
More significant change should be seen in the 1%0 excited states.

The obtained O; and 2; states have good correspondences to
the first and second peaks, respectively, in the excitation

function of the forward 13C(K_,ﬂ_)113\0 reactionTB).

+

.. T
ii) The K —-OII

band

The dominant component is the [ 12C(kﬂ=0:)®(Os)A ]
intrinsic configuration with 70-79 % probability. The largest
mixing comes from the coupling with the [ 126(x"=01)e(15.04) ]
configuration, which amouﬁts to almost 14-%Z. Thus the energy
gain due to the channel coﬁplings is large, about 1.5 MeV.

The 12C(kﬂ=O:) band states are characterized by the loosely
coupled-Ba intrinsic structure and hence an extended density
distribution as seen in Fig.12. We find in Table IV that the
addition of A leads to a cosiderablevreduction of /Z;?;3a
(3.48v3.62 fm from 3.55v3.91 fm) aﬁd a significant extension of
/ZE?;Ba—A .(3.24m3.70 fm) compared with the groundrKﬂ=O; band
(2.07v2.17 fm). The intra—band‘B(ﬁZ) value is reduced to even
. half, in contrast to the very.small reduction in the case of
the ground band, but étill remainé fifteen fimes as large as
ﬁhe B(EZ;.ZT - OT) value.

" The binding energy of A;120(Of) in the ground state is as

large as 11 MeV, while that of A-'°C(03) in the L"=0}  state is

+

1T state

only 4 MeV, thus making the excitation energy of the O
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twice as high as the corresponding one in 120. As described

above, this is due to the drastic difference of the folding
potentials for A—120(OT) and A—120(O§) (see Fig.12). This
striking distinction of the potential forms causes the difference
of binding energy and /2§7;;a—A between the LN=O; and OII stateéal
'iii) The K'=17; band
The wf of the band head L"=17_ state with the 17.5 MeV

IT
excitaion energy is given by

ILW=1£I>=/O.665( 120(1I)®SA ]+/b.2§9{ 120(21‘)spA oo . (3.23)

The component of the [ 1-ZC(ZT)@pA ] configuration is quite large
but that of the [ 26 (01)ep, ] is very small (v1.5 %). The
reason of this is following : Among the three configurations

[ 120(Of)®pA ], [ 120(2T)®pA ] and [ 120(1;)@sA , the first one
is separated from the othefs in ehergy, while the latter two are
approximately degenerate in energy. The second oﬁe is locatéd at
Ex(p,) + Ex(21) = 12.6 + 4.4 = 17.0 MeV excitation, while the
lést one at Ex(17) + Ae = 10.8 + Ae, where Ac is the difference
between Sy binding energies due to the 1ZC(OT)—A and 120(1;)—A
folding potentials. See Fig.TA showing the relevant diagonal

potentials. The 12

C(11) state provides a potential shallower
than 12C(Of) and hence gives a sizable positive value ~ 7 MeV for
Ae. This is again explained by the compact (OT) and non-compact

(11) structures.
iv) The Kﬂ=3£ band
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The band head Lﬂ=3£ state is characterized by the
[ 120(3;)®SA ] configuration with 98 % channel probability. Thus
the r.m.s. radius /<r2>3a is almost the same as the 120(3'{)

state. It is interesting to compare the Lﬂ=3£ state with the

+
I

considerably larger than that of the ground state_1i0(0;) and in

ground L"=07 state. The 1/<R2>30L__A value of this state is

between those of 1%0(0}) and 1%0(0;1) (see Table IV). The

binding energy of A+'2C(37) in the 1L"=3] state is about 7 MeV,

while that of A+12G(07) in the L"=0] state is about 11 MeV. The

energy splitting between the Of and 3 states in 120, which

constitute an inversion doublet52), is about 10 MeV, and

therefore that in 1%0 is now about 14 MeV. This is due to the

significant difference between the folding potentials for

A—1ZC(3T) and A—120(OT) as already seen in Fig.12.

(II) The K"=17, 07 and K"'=17_., 02. bands
I II1’ “II

I
The excitation of the A particle to (Op)A—orbit leads to the

formation of the four bands, where the Kﬂ=1—, 07 bands and the

I
Kﬂ:jEII’ OEI bands are dominated by the k"=07 and k"=0} nuclear
parts, respectively. The K"=1" and 0~ bands could be,
respectively, identified with the intrinsic structures in which
the,(Op)A—orbit is parallel (K"=17) or perpendicular (K"=07) to

the 30 oblate deformation plane in the sense of the strong

couplihg picture.

i) The K'=1] and 0] bands

12

Since the ground band of C has an oblate deformation, the
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Kn=1E band appears at a lower energy than the KH=QI one in
contrast to the iBe and lee cases with prolate deformation. In
the SU(3) shell-model limit they correspond to the

(Au)=(14)§i1,2’3,4’5 and (03)%:?,3 , respectively, constructed

from (04)e(10)79).

Reflecting the structure of the main configuration
[ 1ZC(kW=OT)®(Op)A 1, the r.m.s. radii /Z;?SBQ’S do not show any
noticeable difference from those of the 12C ground band (see
Table IV); The /2§733a—A values are 3.203.9 fm, which are
relevant to the (Op)A wf. '

The wf’s of the Kﬂ=1i and OE band head states (Lﬂ=1£ and
1511,.respectively) have the following main components

| 27=13 > ~/0:500( 2o (0f)ep, |-/o08z( Po(2llen, J+.. (3.24)

| L7=17

III>=/5TTZB[ 26(01)ep, ]+/o.6oo[ ¢ (2l)ep, ]

+ /0.217[ 120(1;)®SA ]+;... (3.25)

As seen in Eq.(3.24) tﬁe Lﬂ=1£ state consists of the two

[ 1ZC(OT)®pA ] and [ 120(2f)®pA ] configurations coupled rather
weakly. This is related to the energy difference (v4.4 MeV)
between '2C(07) and '20(27) states and a folding potential for
A-12C(27) shallower than that for a-12G(07) (see Fig.14), of
which the difference is due té the oblate deformation of 126.
(Relation between the strong and weék couplings is discussed in
Ref.59)). 1In the case of the Lﬂ=1£II state, however, the mixing
of the [ 120(1I)GSA component is quite large (v22 %). This is

caused by the same reason as discussed in iii) of (I). These two
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Lﬂ=1i and-1£II states with the substitutional components

correspond to the third and fourth peaks, respectively, which are
experimentally observed in the excitation function of the forward

1BC(K;,Tr_)1iC reactions13)

1"=17  ; E$*'= 11.5 MeV vs. EX*P= 10.4 Mev. (3.26)

Lﬂ=1£11 ; E$%'= 18.0 MeV vs. EP= 16.4 MeV.  (3.27)

III'and OEI bands

ii) The K'=1
These bands are constructed mainly by the configuration with

the Op-state A particle and the kn=0§ band of ‘3¢ nuclear part.

Reflecting the wellédeveloped cluster structure of the kﬂ=O;

band bf 12
3q

C, the r.m.s. radii /<r?> and intra-band B(E2) values
are larger than those of the K"=1I and OE bands. V
m

state and K"=02

The wf’s of the K'=12 1

I1T
state are written by

band head L =1IV

‘n'__
band head L _1VI

BAEES >=/———o.592[ '26(08)ep, ]-/—_‘0.229[ 2 (27)ep, ]+., (3.28)

- >=/Q.27o[ 126 (03)ep, ]+/b.672[ 2 (2])ep, ]+.. (3.29)

In contrast to the case of the Kﬂ=1£ and OE bands, the above two
L"=1" states are described by the [ 12C(O:)@pA ] and

[ 120(2:)®pA ] configurations coupled'strohgly, The reason of
this is fdllowing:'The energy difference between the OZ and 2;
states in '°C is small (v2.7 MeV). As seen in Fig.15, the
folding potential for A—120(2:) is shallower.at the central

reéion but deeper and long-ranged at the surface region than that
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for A—120(O;). Thus the eigenstates for A—12C(O§) and A—120(2§)
are approximately degenerate in energy. In addition, the
coupling potential connecting 12C(O:) and 120(2:) are quite
strong as shown in Fig.15.

Since the;Lﬂ=1£V,state is located around the top of the
centrifugal barrier with respect ﬁo the A—120(O§) threshold, it

may have a chance to become a quasi-bound state.

T_A+
(III) The K —OIII band

The coupling of A in the (1s)A state with the 3a nuclear

+
I1I

band. However, there is a remarkable amount of mixed component

core still remaining in the kﬂ=OT_band pfoduces~this K"=0

(v10 %) where the 3a part is excited to the kﬂ=O: band with A‘
occupying s-state (mainly Os). |

This band'head Lﬂ:O;II state is located at 6.0 MeV above the
A-12c(0%) threshold but below the A+'2C(0}) threshold. It is

hardly expected, however, that this state appears as a resonance

due to the coupling with the A+ <C(0}) channel.
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21Ne

8. Structure of A

This section is concentrated to study the structure of 21Ne

A
16

by the microscopic a+ ~0+A cluster mode141)’42). The microscopic

a+160 cluster model52)m55) of 2ONe is known to describe nicely
thé structure of the ground K"=0" band, its parity-doublet
partner K"=0" band53) starting from 5.78 MeV excitation and the
fourth K"=0" band starting from 8.3 MeV excitation which is
called as the higher nodal band, as shown in Fig.16. Note that
the ground band has a shéll—model—like structure characteristic
with a considerable clustering, while the latter two bands have a
wéll—developed cluster structure. The other bands shown in
Fig.16 (the second and third K"=0% bands, and the K"=2% band) can
only be described by taking into account the configuration of q

4 16 52) 21

0 cluster . A characteristic of A

coupling between the positive and negative parity bands of the

plus excite Ne is the
core nucleus which appear in the same energy region, while such a
parity coupling is quite unimportant in p-shell hypernuclei.

16

4.1. Formulation of the microscopic o+ ' ~0+A cluster model

?!Ne state with the

orbital angular momentum L is expanded in terms of the generator

The total wave function (wf) TL of a

coordinate (GC) basis ®(%2;d) for the u+160 relative part and the
normalized harmonic oscillator (h.o.) wf unk(ﬁ)zunx(R)'YA(R) with

quanta N=2n+)X for the (a+160)—A relative part:

¥ = c’g’nwc(d,n) @(R;d)@unk(ﬁ) L (4.1)
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where wc(d,n) is the expansion coefficient and c=(2,A)L denotes a
channel of the angular momentum coupling with T and R reffering
to the a—160 and (a+160)—A relative coordinates, respectively, as

shown in Fig.17(a). The GC basis is expressed as

o(2;d) = ‘ﬂ;§§A{ 6(0)6('°0) 9, (r;0)7, () | . (4.2)

Here, ¢(a) and ¢(160)‘represent the internal wf’s withih.o. (Os)ﬁ
and (Os)f\;(Op);\I2 configurations, respectively, with the same
nucleon size parameter Vs and the operator Aiantisymmetrizes the
nucleons belonging to different clusters. The wave packet
ga(r;d) with the generator coordinate d specifying the rglative
a—160;distance is given in Eq.(2.6) and is expanded in terms of
the h.o. basis:

QP (r;d) = ril a o (d) u,(r) , (4.3)

ane (@) = ()7 vZ 224 [ r(ue1) r(nsnedyz) ]7V3

x (/572 a)*ntt exp[ -~ T2 4)* ] . (4.4)

All size parameters appearing in the following are chosen to give

the same h.o. frequency Q as for nucleons, for eiample,

16 =O0M) |
Vr =5 Vn o VR T RO M, VN (4.5)
vy = Mg / 2n, . - (4.6)

where MN'(MA) is the mass of nucleon (A particle).
16

The total Hamiltonian H of the a+ ~0+A system can be written

in the form of
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H o= Hy + T, + Vo, (4.7)
2 a3
Hy = )t 4 vy (133) = T (4.8)
S T R - A G
20
Taw = L vt (4.9)

where HN is the internal Hamiltonian for the nuclear a+160 part
with the center-of-mass TG,subtracted, TA the kinetic energy with
respect to the (a+160)—A relative coordinate ﬁ, VAN the sum of
A-N interactions. |

The equation of motion is deriVéd from the variational
principle fof the functional <WL|H—EL]WL>, and then we obtain a
set of coupled-channel linear equations for the coefficient

wc(d,n) in Eq.(4.1)

8
Ci1Co NN,

5 {[ By (d1,d2) BN (di,d2) | 6

c2,4z,n;

+ TlgnlynZ)Nzgdl,dZ)éc

102+ UL(Cldlnl;Czdznz)}wc§d29n2)=oy (4~1O)'

with the normalization condition of

) w,(di,n) Np(di,d2) w_(d2,n) =1 . (4.11)
C,dl,dz,n

The matrix elements in Eq.(4.10) are defined by

Hg(d1,d2) | HN .

. = <o(2;dy) | | e(n3dz2) >, (4.12)
N/Q'(dlde) '

Ty(ni,me) = <up ZR) | T, | w ((R) >, (4.13)
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UL(cldlnl;ch2n2)=<un1A§R);UL(R;cldl,CZdz)|un2AgR)>, (4.14)

where UL(R;cld1,02dz) is the folding potential between the A

16

particle and the a+ ~0 nucleus , which is defined by

U (Rjeads,02dz)=< @(zl;dl)wkgR)]lvANl[@(h;dz)@YAgR)]x (4.15)

The channel coupling in Eg.(4.10) is induced by UL’ whose
explicit expression is given in Appendix C for the A-N
interaction with the Gaussian type.

For later discussion we introduce here the channel

probability and the h.o. state probability in a channel defined

by
2
WC = Z Wc(dl,n) Nz(dl,dz) WC(dZ,n).y (4-16)
dl,dz,n -
2,y _ 2
wc(n) - z Wc(dl)n) Ng(dlyd2) Wc(dZ’n)/wc ’ (4°17)
dy,d;z
respectively, where ) Wi = 1. From these quantities, we can see
. c
what channels and what components are important in a noted
hypernuclear state of 2}\Ne.

Lo2. \Expressions-of various physical quantities
4.2.1. Electric quadrupole transition probability
The electric quadrupole transitidn.operatof can be
effectively expressed as
M(E2) = —S- ( Q(a+'%0) + q(n) ] , (4.18)

16

where Q(a+ ~0) and Q(A) are the mass quadrupole operators for
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16

a+ ~0 nuclear part and its recoil effect,

Q(a+1%0) = == rfY,(x) + @1%a) + 1" (%0) ,  (4.19)

2
N C nR

5 R
(2OMN+MA)

20M

Q(n) = Y,(R) . (4.20)

The explicit expression of the reduced E2 transition probability

B(E2) is given in Appendix D. Note that the contributions of

Qint vanish due to the closed shell configuration assumed for «

and 160.

4L.2.2. Root mean square (r.m.s.) radii

The r.m.s. radii /<r?> and /<R?> for the relative

coordinates shown in Fig.j7(a) are expressed by

<Y_|r?ly. > = Y w_(di,k) w _(da,k)
L L C,k,d1,dzc c

2
X nlinzanlg(dl) anzz(dZ) My <un12(r)|r ]unzz(r)>, (4.21)
3 .

<WLIRZIWL> = ) Wc(dlykl) Ng(dlydz) WC(dZ:kZ)y
C,dl’dz,kl,kz -

x <uk1k(R)|R%|uk2A(R)> . (4.22)

The coefficient My in Eq.(4.21) is the eigenvalue of the norm

kernel defined by

Y
<o (@o("%0)| Alotro(MCoru, (]> = wy u, () (4.23)

with N=2n+2 and expressed as
A vad gy N[ 5 \N-r
o(q) ) zo(r)e(N.?) T [ - YT 2w

Tr=
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where 6(x)=1 for x20 and 0 for x<0. The notation N< in

Eq.(4.21) represents the smaller value of Ni(i=1,2).

4.2.3. Reduced width amplitudes (RWA) and spectroscopic factors

We consider the following four kinds of two-body decay
channels with low-energy threshold and the corresponding widths

65) ,66)

are deduced by the separation method

a) a+1KO(s) and a+1XO(p) channels

The a+' 10 RWA’s with A particle occupying the lowest s or p

orbit are defined by

o) = [B9) o <ot@o (Moo Y (8) ¥, (4.25)

oo (e)= [B7) 0 oo oy ()] 1y (4.26)

1

> . . . : 7 .
where p is the relative coordinate between o and AO as shown in

Fig.17(b). The internal wf of 1XO is given by

o(1T0) = ¢("%0) g, () Ty () (3=0,1) (4.27)

where the relative wf Ez(n) is expanded in terms of h.o. basis:

g = 1 el u . | (4.28)

The coefficients {cég)} are given in Table V.
. The explicit expression of Egs.(4.25) and (4.26) are given
by |
L gy &)
Y ()= ] ) wo(d,N:) ay o (d) R

A c,d N;,N3;,N,3
(4.29)
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x ) <Naay (7),N2L7(8) [N232(F) ,WaA(R)>  puy -2 (),

N2=N1+N21-N31
where we employ the notation of the h.o. quantum number
(N=2n+£,%) in place of (n,%), and <|> indicates the h.o.
Moshinsky bracket for the coordinate transformation from the
coordinate system in Fig.17(a) to that in Fig.17(b). Note that,
for the a+1ZO(p) decay from a natural parity state (L) of 2}\Ne,
the angular momentum L° takes the values bf L*1 because of the
parity conservation, while, for an unnatural parity state, the

L’ is restricted to L. The spectroscopic factor S? is defined by

L .
the norm YQAL'(D)’

. _ [ L 2 '
8% = fodp {YgAL'(p)} . (4.30)
b) 2He+160 channei
The 2He+160 réduced width amplitude is expreésed by
_ [0 5 16 - :
1(2) = [B9) z<oGrero(Cory; (2)1v > O (43)
= '2 z w (d,Nl) a (d) c H :
C,d Nl,NlZ,N23 c N23’Q/ N12 N23
(4.32)
x ) <N120(3), M50 (2) |22 (F), WA (R) >, 2 uy, 1.(2),

N3=Ni+N23-Ni12

where the <|> is the h.o. Moshinsky bracket between the
coordinate systems shown in Fig.17(a) and (b). The coefficients

{cN}vin Eq.(4.32) are obtained by expanding the A-a relative wf
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- in terms of the h.o. basis, which are given in Table V. It
should be noted , however, that the A-a folding potential is
obtainedAby adopting the o-cluster wf with an appropriate nucleon

. N -2 _ 2 _
size parameter vy=0.511 fm (vN—1/2bN, by=1.358 fm).

c) 20Ne(2)+A channel

2

The RWA of ONe(2)+1\ channel is given by

IR = R <[ePoMe(2))T,(R)] 1¥p> (4.33)

= c;dgd’,nwc(d’n) No(d,a”) £,(d") R u,(R). (4.34)

20 16

The free

Ne wf @(ZONe(Z)) is described by the microscopic a+ -0

cluster model and expressed by

2(*%e(2)) = I £(a) e(ssa), (4.35)

where ®(2;d) is given in Eq.(4.2),

L.3. Model space and two-body interactions

Ouf model space.is specified by the channel of angular
momentum coupling c:(Z,A)L, the a4160 relative distance parameter
d and the (a+160)—A h.o. quanta (N=2n+A,A); In the present
calculation, we make the following truncation of the model space,

which are found to be enough to describe the low-lying states of

21

ANg:

16

(I) the a-'"0 orbital angular momenta

2=0,2,4,6,8, for K"'=0" and 2=1,3,5,7,9 for K"=0",
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(II) the geherator-coordinate mesh points
d=1.2,.2.4, 3.6, 4.8, 6.0 fn ,
(III) the (a+'0)-A h.o. quanta
N=2n+A with n=0,1,2,..... ,9 and A"=0",17,27,37,4",

As the two-body N-N interaction we employ the Volkov No.2

157)

(2-range Gaussian) potentia with Majonara parameter m,,=0.62.

16

NN

"The h.o. size parameterAfor nucleons in the a- and O-cluster is

fixed to vN=O.16O fm—2 (vN=1/2b§, bN=1.77 fm). The Coulomb

interaction is treated exactly by the computational method

67) for the GOM—RGM calculation. This

developed by Tohséki-Suzuki
choice of parameters leads to a succesfull reproduction of the
energies and other pfoperties of the observed Kﬁ=0j, 071 and O:
(experimentally forth K"=071) bands of 2Oye (see Fig.16)52)%55).

The two-body A-N interaction is simply chosen as a Gaussian

form with the range BAN=1.034 fm (equivalent to the two-pion

exchange Yukawa form) and the strength VXN=—38'O MeV. By solving
the 16O-A problem with the folding model, the strength VXN is
determined so as to reproduce the A binding energy in 1ZO given

2)

by the empirical formula BA=(27.O—81.9A_2/3)i1.5 MeV, where A

is the baryon number.

The main component of the obtained bands of ZANe(Kﬂ) is

labeled by [ koA ]; where k represents the intrinsic quantum

16

nunber of the a+'~0 nuclear part and X a (a+160)—A state.

Lol Positive parity states

Figure 18 shows the calculated energy spectra and B(ER)
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values of the positive parity states of 2)\Ne, which are able to
be classified to seven bands; hamely, six K"=O+ and one KW=1+
bands. In order to see the effects of the a—160 parity
couplings, there are given in Table VI the energies and channel
probabilities for all seven band-head states obtained with

(without) parity couplings.

i) The K"=0] ground band

The main channel of this band is the (E,A)L=(L,O)L with 98%

channel probability, and the energy gain due to the parity

coupling is very small (about 0.3 MeV). The a+160 nuclear part

16

is similar to the ground band of the isolated a+ "0 system and

the A;particle occupies mainly the (Os)A state. Thus this band

n?0

is called as the Ne-ground-band-analogue". The binding energy

17
AO
(BA=14.8 MeV), and the separation energy of the o particle in

2}\Ne is about 7.5 MeV, which is also much larger than the one in

20

of A is about 17 MeV, which is much larger than the one in

Ne (Ba=4.5MeV). These energy stabilization are due to the

16

additional A-(a+ ' 70) interaction, and make the 6; member a bound

state which is unbound in <ONe.

The moment of inertia extracted from the energy spectrum is

16

almost the same as that of the a+ "0 ground band. This does not

simply mean that the a—160 distance is unchanged. The calculated

r.m.s. radii ¥/<r?> are displayed in Fig.19. We see a certain

1
A

20Ne(Kﬁ=OT). This contraction sizably reduces the intra-band

contraction of v<r2?> in 2 Ne (Kﬁ=0;) compared with that in

B(E2) values in 21

The reduced width amplitudes (RWA) and their spectroscopic

Ne as shown in Fig.18.
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factors for o+

170 and 5He+16 2 16 20

A A |
are shown in Fig.20 and Table VII. (The S

0 in 1Ne(L=O) and for at+ "0 in Ne

2(20Ne+/\)—factor can be
inferred from the channel probabilities Wi in Table VI.) The
overall behaviors of the three'RWA’s are common to all these

cases, but an appreciable shrinkage of the outermost peak is seen

in the former two in compérision with the latter one. Thus, the

21
A

0)-factors in 2ONe(Kn=O41-). These facts reflect the

Sz(a+1zo(s))—factors in
16

Ne(Kn=O;) are smaller than the
Sz(a+
energy stabilization and the contraction due to the A
participation.
ii) The K"=0I; band

This band has the dominaﬁt channel (Q,,A)L:(L,O)L of the
[(kﬂ=0§)®OsA] configuration, and therefore is analogous to the
higher nodal band in 2ONe 52)N55). The parity coupling,'however,
is considerably strong: For example, the (2,A)=(1,1) channel
probability is about 18%, and the energy gain due .to the parity
coupling amounts to 2.1 MeV as shown in Table VI.
17 16

5 ’ +
AO and AHe+_ O RWA’s of the OII

'state have one more node than those of the O; ground state and

Figure 20 shows that the a+

extend to the outer region, which manifests a developed-cluster
structure. Reflecting the structure characteristic, the B(E2)
values of the intra-band transition are more than five times as
large as those of the ground band, and simultaneously the r.m.s.

radius /<r?> is about 5.5v6.0 fm which is larger than that of fhe

+
I

point is the distinect increase of the spectroscopic factors

K"=0% band (/<r2?>=3.473.8 fm) (see Fig.19). Another remarkable

-82(a+1ZO(p)) as seen in Table VII. These results are caused by
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the activation of the a—160 relative vibrational mode.

It is interesting to compare the KW=O;I band in 2}\Ne with
20 20

the corresponding Kn=0; band in Ne. In Ne the higher nodal

O; state has a large a—decay.width since it is located at 3.6 MeV

16

above the a+ "0 threshold, which is just on the top of the

Coulomb barrier. The cdrreéponding higher nodal state (O;I) in

2XNe, however; comes down to the energy of about 2 MeV lower than

the top of the barrier, and therefore has very small

penetrability. This different situation results in the fact that

the RWA of 2}\Ne(O;I) damps in outer region faster than that of

“Oe(0%) as seen in Fig.20. The a-decay width is estimated by

65),66)

employing the separation energy method and giveh in Table

2ONe higher nodal states are a very

VIII. Considering that the
rare realization of the "nuclear di-molecular vibrational mode",

its further stabilization in 2}\Ne is worth while to be noted.

. s T_ A+
iii) The X —OIII band
In the dominant channel (Q,A)L=(L,O)L, the a—160 relative wf
has two more nodes than the ground band with the A particle
occupying (Os)A state. The band head state O;II appears at the

energy lower than the A+20

Ne threshold but remarkably higher than
.the potential barrier with respect to the a+1ZO one. Under the
present bound state approximation, it seems inadequate to discuss
about the properties of this band further. Whether such higher

vibrational states appear in this energy region as definite

resonances, however, is an interesting problem.

+

v and 1+ bands

iv) The K"=0
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The dominant configuration [(kﬂ=OI)®OpA characterizes these
two bands, which are respectively identified with the intrinsic
structure where the Op-orbital is parallelr(K=O) or perpendicular

16

(K=1) to the o+ "0 symmetry axis in the molecular orbital

terminology. In the SU(B) classification they correspond to the
(A,u)=(10,0)%:8’2’...’10 and (8,1)%:1,2,...,9 constructed from
(9,0)9(1,0). The calculated B(E2) values reveal this strong
coupling type two-band structure.

Another feature of the'Kﬂ=O§v band is a large admixture of
the [(k“=01)®(1s.0d)A] configuration (see Table VI). The
calculated spectroscopic factdrs given in Table VII indicate that
these two configurations are admixed in such a way that
I, and reduced in K"=0} and o}

IV Vv VIis
2.5 16 T+ .
In fact theVS (AHe+ 0) factors of the K —OIV band is much larger

Sz(gHe+160) are enhanced in K"=0

than those of other bands. This fact is interpreted that the
KTT=OJIrV band has the configuration assigned in terms of the
coordinate system in Fig.17(c) rather than that in Fig.17(a).

The coupling between the above two configurations leads the
structure that the A particle févors to go wifh iHe, not 1ZO. In
the SU(3) (A,u) context this may by said as a linear combination
of three (10,0)’s from (80)®(20), (90)®(10) and (10,0)®(00) of

16 16

the a- "0 and (a+ ~0)-A relative wf’s constitutes a new (10,0)

160. The actual

made up from (00) for a-A and (10,0) for 2He+
situation of couplings depends on the energies of the
configurations, which are determined by the energy splitting of

20

the A states and the energy spectra of Ne. All these dynamical

interplays underlie our calculated results.
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v) The K"=01 and 0. bands

A VI

As discussed just ébéve in iv), these bands are the
counterpart of the Kﬂ=O;V band and have the configuration of
[(k"=of)®(1s.0d)A with a significant admixture of [(k“=o;)®0pA],
In the SU(3) (A,u) classification they correspond to (A,u)=
(10,0)%:8,2,;‘.,10 and (62)%22’4,6, respectively, of which the
latter comes from (80)®(20)=(10,0)+(81)+(62). Such a strong
coupling picture is supported by the B(E2) values in Fig.18,
althdugh the obtained wf components are not really like those of
the SU(3) (X,u).

As seen in Table VII, the Sz—féctors for the three decay

channels are very small, since the wf components effective for

these channels have gone to the lower bands.

vi) The substitutional L"=17 state

It is interesting to predict the energy of the state which

is generated in the recoilless (K—,Wi) reaction by substituting

21Ne (21

a A particle for a valence nucleon in target. Na). Since

21Ne (21

the main component of the Na) ground state is the SU(3)

(A,u)=(81)Ki1 configuration, we predict in the present
’1=1,2,...,9 »
calculation that the Lﬂ=1+'state is found at the excitation:

energy of 22.1 MeV, i.e., BA=—4,8 MeV.

L.5. Negative parity states

The calculated energy spectra and B(E2) values of negative

parity states are shown in Fig.21. There are four rotational
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bands, that is, three K'=0" and one Kﬂ=1_, whose band head L"=1"

20

states lie below the A+"“Ne threshold. The reason why so many

negative parity bands appear in the low-energy region are i) the

20

existence of the negative parity K"=0" band in Ne starting from

only 5.8 MeV excitation, ii) the small energy gap (v10 MeV)

between the s- and p-state of A particle.

i) The K'=07 band
This band has mainly the [(kn=OI)®OsA] configuration, and

nR0

therefore could be called the Ne Kﬂ=OI—band analogue', The

band head 1~ state of 2ONe is unstable for the a-decay since it

appears at 1.05 MeV above the a+16

corresponding Lw=1£ state of 21Ne is particle-stable because of

O threshold, while the

its location at 1.16 MeV below the a+':0 threshold. The a-'00
parity coupling is considerably strong: For example, the (2,)\)=
(0,1) and (2,1) channel probabilitiés are 5.1% and 8.4%,
respectively, and the energy gain dﬁe to the parity coupling is
1.4 MeV as shown in Table IX. Thus, we understand that the
strong parity couplihg induced by the glue-like role of A makes
the 15 member a bound state. 7 | |

The RWA’s for the a+1ZO and 2He+16orchannels have very large
amplitudes outside the outermost nodal point as seen in Fig.22.
This indicates that the developed-cluster structure in the Kﬂ=OI
band of 2ONe persists in 2}\Ne, although a shrinkage of the system
is seen in the r.m.s. radii /<r?> (Fig.19), the
82(d41Z0(s))—factors (Table X) and the intra-band B(E2) values

(Fig.21).

. . T_
ii) The K —OII

and 1~ bands
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These bands are constructed mainly by the [(kﬂ=Ot)®OpA
configuration, which agéin splits into the two strong coupling
type bands. They correspond to the SU(3) limits, (Au)=(90) and
(71), respecti?ely.

The two bands lie above the a-decay threshold but their band
head states appear below the other thresholds. The calcﬁlated
¢-decay widths are given in Table VIII. Those of the KH=O£I band
are fairly large since the 82(a+1XO)—factors'for this band are
not small (see Table X). Some.of the a-decays from the unnatural

parity states of the K'=1" band is forbidden because of the

parity conservation.

iii) The Kﬂ=OIII band

16

The dominant configuration is [(kﬂ=OZ)®OsA] where the a+ 0

part is the "negative parity higher nodal state". The admixture
due to the parity coupling is remarkable (20%) and the associated
energy gain amounts to 3.2 MeV. The strong couplings result in
the fact that the [(kﬂ=OT)®OpA configuration is located Qlose to

the donimant configuration in energy. The band head energy is

17

just around the top of the a+ AO Coulomb barrier, and therefore

this situation is similar to that of the positive parity state in

20Ne(2ﬂ=0§, experimentally Ot). The possible realization of this

21

"negative parity higher nodal band" in ANe which does not exist

in 20Ne is entirely due to the stabilization induced by the

participation of A.
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§5. Summary

We have studied the properties of L"=1" resonance states
found in the forward cross section of the 9Be(K_,Tr-)zBe reaction
"and the structures of 1%C and 21Ne by the microscopic cluster
model. The model is suitable to make realistic estimates and
predictions of the particle-decay widths and electromagnetic
transition probabilities as well as energy properties, since the
model space covers wide-range shell-model space without the
rspurious center-of-mass excitation, and the antisymmetrization is
taken into account properly. The obtained results éxhibit
variogs aspects characteristic of the hypernuclear structures,
which.are generated by the participation of A particle to core
nuclei. We summarize main results and remarks.

Section 2 has been devoted to investigate thé properties of
high-lying L"=1Z resonance state of zBe, which corresponds to the
second peak (E5*P=6.3 MeV and I®*P27-8 MeV) in the excitation
function of the forward 9Be(K—,ﬂ—)ZBe reaction. The |
coupled-channel scattering problem including the 2He+a, A+8Be(0+)

8Be(2+) cluster configurations has been solved in order to

and A+
estimate the energies and widths of LM=1" states.‘ We have found
two resonance states by studying the energy dependence of the
elastic and inelastic cross sections as well as the absolute
values of S-matrix elemenfs in the energy region up to about 15

MeV above the 2He+a threshold. A broad resonance state has been

obtained at EAzé.O MeV with the width TI'~6 MeV in the inelastic
' 8 8

cross section from the A+ Be(0+) to A+ Be(2+) channel, which is

- 60 -~



identified as the K'=1" band head L"=1; state obtained under the
bouhd'state approximation (BSA). This resonance corresponds to
the second peak observed in the 9Be(K",TT—)XBe reaction, and the
energy and width are in good agreement with the experimental
data. On the other hand, the microscopic a+a+A cluster model
under the BSA has predicted the K'=0" band head L"=17 state
around EAﬁO MeV, which is called as "genuinély hypernuclear
state". However, it has not been seen in the execitation function
of the forward 9Be(K_,Tr—)zBe reaction since it might have small
cross section and be hidden by the tail éf the big peak observed
at EiXpﬁé.B MeV. The present investigation justifies the
previous prediction obtained by the BSA treatment and furthermore
prediéts the 11 resonance state at EAZ—O.Z MeV with the width T'=2
MeV which will be seen in the iHe+a elastic cross section.

The widths of the resonance states obtained by solving the
above coupled-channel scaftering problem, however, do not
directly correspond to those in the excitation spéctra of the
forward 9Be(K”,Tr_)zBe reaction. In order to compare directly
with the experimental data, the double‘differential cross section
or the strength function of the 9Be(K_,Tr")ZBe reaction has been
evaluated with the help of the distorted wave impulse
approximation (DWIA) by employing the continuum-state zBe wi’s.
The wf’s have been obtained by solving the three-channel éoupled
equation under the Kapﬁr—Peierls;type outgoing wave boundary
condition. Therefore, the particle-decay widths of continuumv

states of the iBe hypernucleus produced in the (K ,m ) reaction

ha&e been taken into account in a natural way. The distorted
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kaon and pion wf’s have been calculated with the use of the
eikonal approximation. The microscopic a+a+n cluster model wf
has been employed as the ground state wf of the target 9Be
nucleus. We have obtained two peaks, a small peak at EA2—0.5 MeV
with the width T=2 MeV and a big peak at EA=6.O MeV with the
width T'=6 MeV, by studying the enérgy dependence of the strength
function for P~ = 790 MeV/c and Sn— = 0° where the observation
was done. The latter big peak corresponds to the second peak in
the excitation funcfion of the 9Be(K—,ﬂ_)%Be reaction.and is in
good agreement with the experimental data (Eiszé.B MeV and
r®*Px7_g MeV). The width of this peak comes from the decay into
the Aj8Be(O+,2+) channels. The lower small peak corresponds to
the genuinely hypernuclear,Lﬂ=1T state, and the origin of the
width of this peak (v 2 MeV) is mainly due to the a decay into
the 2He+a channel. This state has nof been observed because of
the small cross section and large width in addition to the poor
experimental resolution. It is hoped to be obser&ed, however, if
the coincidence experiments such as the 9Be(K—;ﬁ_a)iHe reaction
are carried out in future. |

21

In 83 and 4 the structures of 1%0 and ANe, which are the

typical heavier p-shell and sd-shell hypernuclei, have been
16

investigated by the microscopic 3a+A.and a+ “0+A cluster models,
respectively. Various physical quantities such as the B(E2)

- values, the root mean square (r.m.s.) radii, the reduced width
~amplitudes and the spectroscopic factors-for two-body decay

channels have been evaluated in order to study the structure

characteristics. The obtained many states have been classified
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into some rotational bands according to the underlying intrinsic
structures which‘afe characterized by thé kﬂ(Ba or u+160) and A
(A) as two building blocks. We have found many interesting
aspects; a) coexistence of weak and strong coupling features, D)
realizations of genuinely hypernuclear states with new symmetry,
c) stabilization dﬁe to the glue-like role of A particle, 4)
appearance of many new bound and quasi-bound states. Some of
them have already been found in the investigations of light
p-shell hypernuclei. However, there appeared additionél aspects
characteristic of the heavy region, which do not. appear in the
light p-shell hypernuclei; for example, i) in.1iC, the dynamical
couplings between the A particle motions ((Os)A,(Op)A,(1sOd)A,.°)
and tﬂe two contrastive nuclear structﬁres, that is, the
shell—model—liké structure and the loosely-coupled 3a cluster

21

structure, ii) in ANe, the parity couplings induced by the

addition of A, which connect the ground K"=0" band with its

parity-doublet partner K"=0" band in <°

Ne since the energy gap
between them is not large. We summarize the main results

obtained in 83 and 4 as follwings:

1iC hypernucleus

i) The folding potentials for A—120(OT,2T,AT) are deep and
short-ranged, while those for A—12C(O;,2§,1I) are shallow and
long-ranged. The one for A—12C(3I) has intermediate depth and
range. These differences are due to the drastic dependence of

12

the density distributions of C on its states, induced by the

a-clustering.

- 63 -



ii) Reflecting the drastic difference of the folding

potentials fér_A—120(O§) and A—120(O;), the binding energy

+
I

(V14 MeV) is twice as large as that of

state and the LTT:O;I
12

C (v7 MeV). A similar

difference between the ground 1L"=0 state

situation occurs in the case of the Lﬂ=1£I or BE states.
iii) The intra-band B(E2) values and the r.m.s. radii

V<r2>3a’s of the ground Kﬂ=0; band with the dominant

configuration {120(kw=01)®(Os)A] are almost same as those of the

126 ground band. This indicates that the 12

C nuclear core part
with the compact shell-model-like structure scarcely change in
spite of the A participation.

iv) The first (Bisz11.3 MeV) and the second peaks (BiXp:6°9

MeV) 6bserved in the forward cross section of the 1BC(K—,ﬂ_)1iC
cal +

A I
cal T+ : .
(BA 26.9 MeV) states of the K =0; ground band, respectively.

reaction correspond well to the Lﬂ=O; (B ~11.3 MeV) and 2

Similarly, the K'=17 band head Lﬁ=1£ (Bcalz-o,1 MeV) and K"=02

I A I
band head Lﬂ=1£II (Bxal=—7.3 MeV) states have good correspondence
to the third (Bisz—O.9 MeV) and the fourth (BiXp=—5.1 MeV) peaks

observed in the (K~ ,n ) reaction.
21
ANe hypernucleus

i) The A particle plays a glue-like role and induces a

parity coupling to stabilize the system in energy; for example,

the 6; member of the ground band and the band head 17 state of

I
the Kﬁ=O£ band newly become particle-stable, and the higher nodal

17

(KW=O;I) states come down below the o+ AO potential barrier as

cal

o =0.7v0.8 MeV). 1In

the definite resonances with small widths (T
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addition, a negative parity higher nodal band (Kﬂ=O£II) may be
realized, whose corresponding band in 20Ne does not appear.

ii) The energy stabilization due.to A participation reduces
-the intra-band E2-transition probability and the r.m.s. radii
/??3§a_1so’s in comparision'with those of 2ONe. For example, the
B(E2) values in the 2}XNe ground band is half as large as those in

20Ne ohe.

~the
iii) There is a sﬁrong coupling or admixture among the
configurations which could be assigned the same (Ap) label in the
shell-model limit. A typical case is the three (10,0)-1like
configurations which are constituted from (80)®(20), (90)®(10)

and (10,0)®(00). They are coupled strongly and recombined so

that each new (10,0) gives a large (Kﬂ=O§V) or small (KTT=O$II and
O;) iHe+160 channel probability (spectroscopic factor).
iv) We predict that the substitutional state generated by

21Ne(21Na) méy be found at the excitation

the (K~ ,m) reaction on
energy of 22.1 MeV, i.e., BA=—4.8 MeV.

Before cbncluding this section, we give some remarks on the
next step for the present investigations>of light hypernuclei.
As for the iBe hypernucleus, there remains a problem of the
biggest peak observed at EA217 MeV in the excitation spectra of
the 9Be(K_,Tr_)zBe reaction. This state is considered to be
generated by the recoilless conversion of a neutron in the «
clusteré to a A particle. Therefore it éan not be described by
the a+a+A model. We are now studying the structure of this state

by the microscopic (a+3N+N)+A cluster model. Since this model

includes the space spanned by the microscopic a+a+A cluster
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model, it can describe simultaneously not only the low-1lying

states of ZBe but also the high-lying ones (iBe*), and take into

account the coupling between the configurations a+a+A and a+o* +A.

As an application of this model, there is a structure study of

9
z

reaction, by the microscopic (o+3N+N)+Z cluster model. This

thé I-hypernucleus /Be, which is observed in the (K™ ,7n" )
investigation will give some solutions on the mysterious
quenching mechanism of the narrow widths of £ single-particle
levels in spite of the large conversion width IN + AN, since in
this model the I particle-N hole interactions, which are
considerably strong and exﬁected to play an important role in fhe
quenching mechanism, are taken into account in a natﬁral way.
Concerning the 1%0 and 2)\Ne hypernuclei, we need to make a
realistic and quantitative estimate of the energies and widths of
resonance states as in the iBe case. These investigations enable
us to not only make a analysis of existing data but also give
reliable predictions. ‘

Since the accurate and enough data for wide-range
hypernuclei are necessary for the advancement of hypernuclear
physics, we hope highly the'further development of hypernuclear

experiments and especially expect the results of experiments

which will be perfomed at KEK.
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Appendix A

Iﬁ this Appendix we present the expressions of thé overlap
and Hamiltonian kernels pertinent to the generator éoordinate
method (GCM) applied to the-iHe+a and A+°Be configurations with
2He and 8Be consisting of o+A and a+a, respectively.

The basis wf’s for Egs. (2.2)n(2.4) are written as

Ci1 7 N
o aap (@) = [HEL AT 4(0)g, (nsanz, ()

x (o) P (Ry3D0)Y, (Ry) |-, (A1)
Al Al L

C2

0 n,nldi02) = [ 2 AL Alo(e)o ()9, (r3a0)T, (3

< Pu(Rasd)L (Ra) |1, (A.2)

5

wheré‘cl and c, denote the AHe(a+A)+a and A+8Be(a+a) channels,
respectively. The kinetic energy and interaction operators are

defined by Egs. (2.12)~(2.14). The N-N interaction used ig of
the form

— 0 2
VNN(r) = VEN exp{—(r/BNN) } (W 4+ BPO— HPT— MPOPT ). (A.3)
In addition, the following quantities are defined :
- R 2 2 _ .2 2 2
a = v/ (28520 ], vy = vf/ (2087 o/ 0]

Ty = viy(2085,/02)%/2 (8i+4B-4H-21),

v

. = vy (2082 /02)3/2 (swesm-4n-2w),

_ : 2 ,.2\3/2
Van= 47y (RY By /b7 s

"
I

(4My+ )/ (8M M, ),y = AMy/ (8My+M, ),
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X" = MA/(SMN+MA), y o= 8MN/(8MN+MA),

+ -
nk = (4—k2)27 nﬁ ) = ”k t 2q22,
*
£, = Ax-k, ) =g 2,
€, = ksz s(i) =€, * 29z
k ’ k x - ~9%
+
%k = (R-k)z, Hé ) = %k t 2qz,
€ = 2-k, %Jl(ci) =€ * 2q,
: 21831
8(21232422,J1J2J3J4;J) = [2:][22] 23] [2u] (242272
. Jaduyd

X (210250]/J10)(220240]/J20)(210240]J30)(230220|J40)
F(J1J20A3185) = {[Jl][Jz]}1/2[25] (2£50710[20) (250320]10)
X W(Jllek;Lgs) 5

with [2]=20+1. It is convenient to redefine the generator

coordinate as

B=1,2 and 3,

(1) The overlap kernels

1 i C1 , , L+A
<®2AL(dl;Dl)lél'X'L(dl;Dl)> = (—) Nclcl
L1+, 4
x 1 (=) B(21258402,8087° A7 31) T (_)k(ﬁ)
21~2g k=O

* fuinaa) [y (g im0) Jofextiod) fyegainn

C2

C2
. 2 W — 2
<®2AL(dz,Dz)[@z'A;L(dz,Dz)> = GZZ'GAA' chcz (1+(—) )

x jA(SX'DzDE)[ j2<2d2d;>-4)2<d2d;)+3620,
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. _ L4A
QAL(dl D1)|<1>2 aopldasD2)> = ()70 N

x z (_)21’!‘234‘24

B(2123%482,802727 ;L) j2(4x’D1D2)
2
214

4 " N
jzgézdlDz) kEO(-)k (é) jﬁsnkdldz) /zSEledz>’

where Nclclz (4n)2-exp[-{Zx(D%+DI2)+2z(d%+d{2)}],
N0202= (4m)2/2 -exp[~{4x‘(D§+D§2)+(d§+d§2)}],
N0102= (Aw)z//ﬁ'-exp[—(ZxD§+4X'D§+2zd§+d§)]o

(2) The kinetic energy kernerls

01'
NIFVACES

Cy
- {6—[x(Df+D{2)+z(d§+d{2)}}-<®2AL(d1,D1 |q>2 yop(d15D1)>

D;) lTl@ D7 )>/nQ

poarpldis

CicC:

+ + ’, ,
(-)2’ A {522'5)\)\' (-)2 A[ZZdldl jg(ﬂodldl) j}\(CODlDl)
+2xD; DI Jl(ﬂodlc}i) jA(CoDlDI)l

+ 27 B(218s2402,000707 ;L) (-)%1FE2
L1~y

V 4— w )
"k_z_-1[ Akdldl le(ﬂkdldl) jﬁ,z(cleDl) J£§€kd1D1) jngEkdlDl)
(1). , : ’ @ .1 ’ ’
+ AleDl /ll(nkdldl) ng(CleDl) J2§€kd1D1) /ngskdlDl)
)

o)
+ AkdlDl Jll(nkdldl) jzz(CleDl) jzggkdl])l) /Q‘SEkdaDl)

@)
+ A(g)dlDlj (T] d dl)} CleDl)j (e dlDl) Z(Ekd;Dl)]}
Y s

Whéfé by = (-)k['(i)z_(kfd ], A (_)k[(i)x_(kEJ]’

|
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C2 C2 ’, , N
<®ZKL(d2;D2)ITI@Q'A’L(dZ;D2)>/hQ |
L’ 2 ’ 2 1 2 2 C2 C2 ’, »
= 6—[2X (D2+D3 )+§(d2+d2 )] <®2XL(d2;D2)|¢2'K'L(d2;D2)>

f L
F8ggr Sy Ny (1))

5 {AX'DzDé J§(8X'D2D5) [ jz(zdzdi);A 2(dzdz():%w]
+ fa(ex'D2D8) (4aaf) [/2’(25.2(15)“2 /g(dzdé)}J

P
Ci1 C2
<@ ,1,(d13D1) [ T[@p .0 (d25D2)> /R0
Ci C2
= {6_[xn%+2X'D%+zd%+%d§]j <®2AL(d1;D1)IQQ,A,L(dz;D2)>

+ ’ 7
e, (M T (R ¥, 0007075 1)

21~y
e &, ® A ~
X 3&§4X D1D2) j2§42d1D2)k£0 Bk[ zd d, jzgﬂkdldz) jRSEledz)

n W A
+ Di1d» Z(dele) 2$€kD1dz)]

1

w
+ 2{ X’DIDZ jQZ(AX'D]_Dz) jzs(AZdlDZ)
A W

+ zd:D} J2§4X'D1Dz)' 2§4zd1D2) ]

4 o
k(4 j n n
Ly ) (¥) £§”kd1d2)<;2$€led2)} .
where )}  denotes the exclusion of summation for k=2, and
k=0
' 1 for k=0

SR ORI

for k=1~4

(3) The N-N interaction kernels
Ca Ci A

2 +A
Clcl(-)

x {Z(Vd+ve)[(“)l+xéll'ékx' jg(nodldi)(/k(CODlDi)
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21~y
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LsJ1 2 5 LeT3dy 6
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L1~y
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(4) The A-N interaction kernels

Ci
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Appendix B

In this Appendix we give an explicit expression of the
squared transition matrix element Nn(E) in Eq.(2.42).

The 8Be(da)—n‘reduced width amplitude ,zk q. (R) for

1A1LN’

the normalized 9Be—ground—state wave function WJ(gBe) (Ji=3/2—)
i

obtained by the microscopic a+o+n cluster model63)is defined by.

R
iyg leN’d (®)

- 9 <Y (9Be)l[[ b, (®Be) %25<R'—R)YA§§’)]L x97
1

>, (B.1)
y /2|3

i
wji(%e) S f@jA/[wam(a) Py, (7505 Yli(é')] ,  (B.2)

where Zi and Ai denote the angular momentums with respect to the

a-a and (a+a)-n relative coordinate, r and R, respectively, and
Ly is the total orbital angular momentum, iN =%, +%,. The

generator coordinate (GC) di in the wave packet §&n(r',di) which
is defined in Eq.(2.6) specifies the a-a relative éistance, and

6?/2 is the spin function of the valence neutron.

The n-th ZBe eigenstate ?EA(RBe;E) with the Kapur-Peierls-
type outgoing wave boundary condition in Eq.(R.23) can be
expanded in terms of the GC basis wzl( Be) (see Eq.(B.2)) for the
a+e relative part and the wave packet 3)A (R;D ) (see Eq.(2.6))

for the (a+a)-A part, as shown in Fig. 3(b) and (c),

c

L , a A
WnA(zBe;E)~ % Anf(df,Df;E)[wzi(sBe)?3§R;Df)YA§R) 1y (8:3)
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c
where Anf(df,Df;E) is the expansion coefficient obtained by

solving the coupled-channel integro—differential equations with
the Bloch operator in Eq.(2.28), and c.=(L_.,A,.) denotes a

, f £278L,
channel of the angular momentum coupling. Other notations are
self-explanatory.

With the use of Egs.(B.1) and'(B.B), the transition matrix

element Nn(E) is expressed by

1

N (E) = —— ) ) M, (J.,3.3E) |*, (3;4)
" [3.] J.=1,%1/2  k,u [ LU ]
My (T, 3 5E)= sz(gf’lf)L LN IERIEARSIERIENIS
A i’ i LN
x (AiOkO|AfO) W(LA1/2kJi;JfLN) w(zfAiLAk;LNxf) Sy o
. ivf
- C
X (?)l A, (dg,Dy5E)

v - .
x < ?}\f(R;Df)!Jku(PK;Pﬂ:e;SR/g)l RiAiLN’df(R)>, (B.5)

where-[k]=2k+1, and }ku is given in Eq.(2.47).
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Appendix C

The folding potential between the A particle and the at100
nucleus is defined in Eq.(4.15). The explicit expression for the

Gaussian A-N interaction of Eq.(2.17) is given in terms of the

spherical Bessel function with an imaginary argument }Q(Z).

3/2, o _4 Yo a2
U(R Cldl,Czdz) = 167l'V (YQBAN) eXp[—'YoR - -5—6-2 + m (d1+d2)]
N

e [IM][A2] L (A10X20]qu0) W(Z1A182223Lqs)
 Qu , v

X

x o (-)drFdatas [a:11[a2][as](q10920[210)(q10q950[220)
Q192943 '
. V ' k ddzI‘
x (020930]qs0) W(219222933;9194) Z (=) ( ) ) (k) -
. r=0 2b2

x {exp[— g—omama)] jéf)_(hl(km‘ldz) aqz(%Yole) agqa 5Yod2
- exp|- g—oyod%]‘{[ (- —a3) j(r)(hl(k)d d,)
(gt + R comen | (e fo ey
L (Do (b [ )
24) 48 waian) |
+ Yodada (e + }—OJ(.“”(hl(k)dldz) ] J read) f, froan)
+ (YediR) j(r)(hﬂk)dldz)) Loas) {1 (v, dﬂQ}

(£1(a1,2,R) jéf)(hs(k)dldz) + 1=(v3bid:d, ))flf”)(hs(k)dldz)]

] 1
g ﬂq")('?“ dl& )%(’5” dzR)

2rgpd) [T e aan (@) J{D(Frean) qu(—%YodzR)

I
[0}
™
d
—
1
3
o
2
o
o
NN
Nt
TN
"
4
Qs
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+ (dz2R) qu (—%Yodl@;c(ll)(—%YodzR)]

+ [fz(dl,dz,R) Jéf)(ha(k+1)d1d2)+Yod1d2fa(R)(}éf+1)(h3(k+1)d1dz)
Y3
Y (r+2) 1 1
- 5g(aid}) Jql (ha(k+1-)d1d2)] qu (—gy.ole)an (—gvodzR)
: [mdz)(ﬂéf)(ha(kH)dlaz) - Totredadz) J) (s () aren)
X (Yole) }(1) "Y dy @j 5Yod2R)
+ [fq(dl 3(r)(h3(k+1)d1d2) - 1O(Yod1d2 }(r+1)(h (k+1)d1d2)]
X (Yod2R) J ‘“Y dlB)j“) 5Yod2R)
+ T )@ de) (vodrr) J1) (lyoair)
Q 3 142 od1 q2 ( 5Yo 1
x (YodzR)cyél)<f%Yod23) ,  (C.1)
where
Yo= 1/ (v2+by) - ¥? =BFy - DE/20 , (C.2)
hi (k) = E%ﬁ \ —k + %l + Yoy? + %gYobﬁ ] R ) (C.BQ)
he ) = e [k g doreng | (c.3b)
ha(k) = g [ -k ¢ 38 Taom ], | (.3¢)
N A
f1(d1,d2,R) = (1+3y,y2%) + 50Y0b2(d2+d2) + 2v3 blz\IR2 ’ (C.4a)
' Yo Yob2
f2(d1,d2,R) = -3yoy? + ‘6‘[
Y3
1Oodzdz - 2Y3b2R? , (C.4b)
Yo b2 '
f(m) = 3 (1 - 5] - gl (v - vert (C.4e)
£.(d) = 1 - Srobd + fgved® . | : (C.4d)
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Appendix D
The reduced quadrupole transition probability'B(E?,;Li > Lf)
is defined with the use of the electric quadrupole transition

operator M(E2) in Eq.(4.18), and its explicit expression is given

by
( P ) | M(z2) | 2, (1)
B(E2;L.>L,) = —— [< 4 M(E2 Y >] , (D.1
1f 2n+1 MMt Prle LiMy
— a2 )
= e (2Lf+1) . g g Wc§di’ni) wcédf,nf)
1093003 Cpolpafyp
% ptAo-Ly
X 52f,21/izxf+1) (-) W(ALLeA L 52, 2) (Aflzlxi)
8 2
X = Nzi(di,df) <unfkf(R)|R [unixi(R)>
.+ Lo
+ alf,Xian,ni/(Zlf+1) (-) W(2 Lot Ly 5A,2) (zflzlzi)
TOMi ) (d;) (d.)
SR | — a d.) a d,) u
2 n.2.' i n.f £ N<
‘(20MN+MA) n,,ne i1 £7f 5

X <unf2f(r)|r2|unigi(r)> , (D.2)

where N< denotes the smaller value of 2ni+2,i and 2nf+2f, and

(Aflzlxi) is V5/(4m) (xfozolxio).
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Table I

Squared overlaps P§8%~of the three-channel coupled wf .
’

) . . (8)
WBSA(LN) (N=I,II,III) with the single-channel wf ¢BSA(Ln)

(n=1,2) (or wf - @ééXB)(Ln) (n=1,2) obtained by the A+8Be(0+) and

A+88e(2+) two-channel coupled problem). The definition is given

in Eq.(2.19).

Three-channel coupled wf’s WBSA(LN)

- ™ ™

| L"=17 L"=17, L"=171;
(E, MeV) (-0.5 MeV) (3.7 MeV) (5.0 MeV)
5{1). SHeuq L =17 0.980 0.003 0.004
BSA® A n ! : ) - )
17 0.001 0.941 0.053
(2), ,.8 + - : .
2{2): 1+8Be(0%) 13 0.387 0.119 0.447
13 0.053 0.008 0.145
(3). ;.8 + -
of2): 1+8Be(2®) 13 0.338 0.000 - 0.341
13 0.029 0.018 0.000
2{243): ni8pe(0*,2") 1% 0.795  0.093 0.012

12 0.014 0.035 : 0.920




Table II

Calculated energy eigenvalues wn(Ea) and the squared
transition matrix elements Nn(Eu) for Py = 790 MeV/c and 6.~ =

0°, where E, corresponds to the energy E in Eq.(R2.24) measured

5

with respect to the AHe+a threshold energy (Ea and Wn in MeV).

Ea v n=1 n=2 n=3
Wn 1.74 - 0.411 5.37 - 1.371 T7.21 - 0,041
2.0 .
Nn 0.01 - 0.001 0.02 - 0.014 0.21 + 0.011i
Wn 2.08 - 0.491 6.60 - 3.031 7.24 - 1.651
6.0 o
: Nn 0.01 - 0.001 0.01 - 0.0141 0.24 - 0.111
W R2.22 - 0.441 7.93 - 3.191i 8.03 - 2.211
10.0 n :
- 0.111

N 0.01 + 0.00i ~0.01 - 0.01i  0.27




Table IIT

Calculated energies ("Full") of the band head states in
which the A particle occupies mainly the (Os)A state. 1In order
to study the effects of channel couplings, the results with only
the main channel ("NO") are presented. The energies are measured

with respect to the A—120(g.s.) threshold.

LT Main channel Full (MeV) NO (MeV)
0} 1Zc(of)mA -11.31 ~10.11
( 3
2} 120(2‘{)®SA | - 6.87 - 6.12
4 ‘20(41)®SA“ 1,73 2.11
+ (12 + ] ‘
071 \ C(02)®SA J 3.36 4 .85
+ ( ) .
211 | 120(2‘2)@31\ | 8.0/ 8.80
- (12, (o= )
3 c(37)es, 2.76 3.35
1= [ 120017V, | 6.43 7.36
11 | CU11)®s, | . .




Table IV

Estimates of root-mean-square radii of the 30 nuclear paft

(V<r2>sa) and A-3¢ relative coordinate (¢<R2>3a_A) for the

positive and negative parity states in 1%0. The values in the

12

parentheses are for C.
K"  Main configuration L' et>g, (fm) V<R, (fm)
ot 2.39 (2.42) 2.17
0} [ 12c(kﬂzoJ{)@(oS)A ] ot 2.38 (2.38) 2.17
4t 2.30 (2.30) 2.07
of; [ ot=ohe(0s), | 0" sus (s5) s
2t 3.62 (3.91) 3.70
- 12 - -
37 [ C(x"=37)®(0s), ] 3 2.80 (2.77) 2.56
17 [ 120(k"=1{)®(0s)/\ ] ' 3.19 (3.38) 3.16
1” 2. 41 3.34
2 2.38 3.25
17 [ 126(k"=0")®(0p), ] 3" 2.38 3.48
4 2.30 3.21
5 2.31 3.65
oz | TRc™=0") - 66
: =0")®(0p), 1 2. 3.92
3" 2.35 431




1

ITI

[ "Pe"=0})0(0p), |

057
.80
.26

4 .22

4.55

477

071 [ 126 (x"=03)®(0p) ]

.76

4L.53

0

+
IT1

[ 20 (x=0)8(15), ]

.53 (2.42)
.53 (2.38)

4. 46
4 .51




Table V

Harmonic oscillator expansions of the A-particle wave

‘functions in the low-lying states (L=0v2) of 1ZO and L=0 of 2Hee
The h.o. node is denoted by n.
160-1 -
L=0" L=1" L=0} L=2* L=0"
-B -14.83 -2.37 1.85 4.19 -3.12
n=0 0.998 0.953 0.041 0.440 0.973
1 -0.014 -0.194 0.556 -0.371 -0.074
2 0.052 0.182 -0.426 0.404 0.204
3 -0.018 7—0.104 0.421 -0.390 -0.034
A 0.004 0.071 -0.365 0.361 0.059




Table VI

Calculated energies of the positive parity band head states

2}\Ne(L+) and their channel probabilities Wé. The angular

in
momentum channel is denoted by e¢=(%,A). The parity coupling
"FULL" represents the results with both positive and negative
pafity channels of the a-160 states, while "NO" those with only

leading parity channels.

. . 2
Parity -E, W
LY=k" Coupling (MeV) (0, 0) (2, 2) (4, 4) (1, 1) (3, 3)
o; FULL ~17.2 .980 .005 .000 .015 .000
NO -16.9 .996  .004 .000 - -
01 . FULL = -7.6 .807 - .016 .000 .176 .001
NO -5.5 .993 .007 .000 - -
0j;y  FULL 1.1 749 .023 .000 .229 .000
NO 1.8 .985 L014 .000 - -
0Ty FULL -0.1 .323  .059  .006  .589  .023
1; FULL 1.6 - L142 .000 .851 .006
0y FULL 0.7 636 142 .001  .217 .003
NO 0.5 .826 .170 .00} - -
Oy;  FULL 3.3 .285  .697  .007  .010  .002

NO 3.4 .26/ .730 .006 - -




Table VII

Spectroscopic factors S2 of the positive parity states in.

2}\N_e(L+) leading to the three decay channels. For comparision,
calculated S?-factors for the corresponding a+160 decay éf 2ONe
are also given in the right hand side of Table. The SU(3)
shell-model limit values are inserted for typical cases.
K" Lt a+'To(s)  o+'70(p)  SHet 0 20y erat 160
SU(3) 1imit (.205) (.045) o (.23)
K'=0] 0 .255 .051 .056 .39
[of@oéA] 2 .254 .050 .052 .38
4 248 <047 .051 .36
6 .236 | .039 . 049 .33
8 .219 .029 . 046 .27
K“=O;I 0 226 .182 .013 .73
[o§®0sA] 2 .255 214 014 77
4 .278 .237 014 .80
6 .292 .256 014 .82
8 .296 . 281 .013 .86
K"=0F . 0 .105 .084 .007 -
[oi@QsA] 2 .126 106 .007 -




K"=07, O .168 .243 .334 .65
(o7e0p,] 2 229 .212 262 .65
4 .222 176 173 .65
6 .204 .123 A7 .65
K"=1"F 1 - .329 - .65
[oz®0pA] 2 .229 214 .024 -
3 - .312 - .65
4 .036 . 337 .014 -
5 - .231 - .65
SU(3) limit (.069) (.002)

K“=o§ 0 .108 .003 .000 -
: [0T®1SA] 2 .010 .080 .057 -
4 .002 .115 144 -

T4+
K'=0y; O .000 .018 .025 -
[OTQOdAJ 2 .002 124 .008 -
4 .021 .010 .013 -




Table VIII

Partiéle—decay widths of the typical states in 2}\Ne(LTr).
Energetically forbidden channels are_marked byiasterisks. The
values in the parentheses are for the levels which energies are

higher>than the corresponding Coulomb barrier.

K" L a+1KO(s) 2ONe+A : a+1KO(p) iHe+160
K"=0] 8 0.00 (MeV) * * x
T_of | ' % * %
K'=0]7 0 0.69
2 0.69 * * %
4 0.70 x % %
6 0.83 3 * %
8 0.84 0.00 0.00 0.00
T_ot A - % % *
K"=07y 0 (1.42)
2 (1.76) 0.00 * *
A (1.59) 0.01 0.00 0.01
6 (1.21) 0.08 0.01 0.02
K'=1" 1 - - 0.00 x x
2 (0.45) 10.32 0.00 0.02
3 - 10.06 0.01 *
4 (0.50) 0.82 0.26" 0.05




K"=o§- 0 (1.03) 0.65 * 3
2 (0.30) 0.69 * 0.00
4 - (0.00) 0.74 0.00 0.0/
m +
K"=051 0 (0.00) 1.16 0.03 0.12
2 (0.01) 1.87 0.11 0.00
T_0~ 3 * *
K"=07 3 0.00
5 0.05 ¥* * *
7 (0.12) * * 3
9 (0.09) 0.00 0.00 0.00
T-0Z # % *
K"=07; 1 0.61
3 (0.53) * * *
5 (0.39) * *
v (0.19) 0.00 * 0.00
KT=1" 1 (0.00) * * *
(0_14) * * *

S~ W N

n

b3




Table IX

Calculated energies of the negative parity band head states

in 2}\Ne(L_) and their channel probabilities Wé. Comments as for
Table VI.
~ Parity -E, wé
L (K7) Coupling (MeV) (0, 1) (2, 1) (2, 3) (1, 0) (1, 2) (3, 2)
1‘(05) FULL -11.5 .051 .08, .004 .856 .00 .004
NO -10.1 - - - .99,  .003  .003
' 17(0;) FULL -5.0 .487  .395  .009 .097 .001  .002
NO -5.5 486 .499  .008 - - -
17(0777) FULL ~4.3 .078 .12  .001 .775  .010  .012
NO -1.1 - - - .993  .003  .004
17(17)  FULL -3.0 451 .526  .000 .006 .009  .005
NO -2.8 .508  .490  .000 - - -




Table X

Spectroscopic factors S? of the positive parity states in

2J\Ne(L—) leading to the three decay channels. Comments as for
Table VII.
K" L” a+'[0(s) o+ 10(p) 2He+160 20)era+ 160
SU(3) 1limit (.303) (.056) (.34)
K"=07] 1 .295 .182 .025 .65
[o;@oSA] 3 .298 .186 .024 | .65
5 .295 .185 .023 .65
7 .281 .188 .019 .65
9 .181 197 .003 .65
SU(3) limit (.026) (.075)
K"'=0I; 1 143 147 .168 -
[OT®OpA] 3 .135 .150 149 -
5 .132 .190 ) VA -
7 .132 124 .136 -
9 .218 .059 .137 -
K“=O£II 1 141 116 .010 -
(OZ@OSA] 3 .173 | .159 .009 - -
5 .199 .199 .008 -
7 .218 .228 .010 | -
9 .286 242 .011 -




K'=

[OT@OPA]

~N. 0 Ut W

.004

.016

014

.009

-283
.286
.265
<276
cR46
. 257
222

.004

.013

.010

. 005




Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

- Figure Captions

Excitation function of the forward 9Be(K'—,ﬂ—)zBe
reaction for Pg- = 790 MeV/c 7).

Energy spectra of zBe calculated by the microscopic
a+a+h cluster model under the bound state épproximation
(BSA)37)’38)’40). Three.particle—decay thresholds are
indicated by the arrows.

(a) The basic coordinate system adopted to describe the

iHe+a channel. The other coordinate systems, (b) and
(c), are also used to represent the A+8Be(0+) and

8Be(2+) channels, respectively.

A+
Calculated phase shifts for the 1T=1" partial waves of
three independent [He+a, A+°Be(0%) and 1+8Be(2%)
channels without channel couplings.

Folding potentials for the A—SBe(O+) (dotted line) and
A+8Be(2+) (solid line) channels. .

2He+a
(Fig.6(a)) and A+°Be(0%) (Fig.6(b)) channels with

Calculated cross sections for the incident

respect to the a-particle energy (Ea) and A-particle

energy (E,) (E,; E, = E, + 2.5 MeV) in the CM frame.

o
The channels 1, 2 and 3 represent the 2He+a, A+8Be(0+)
and A+8Be(2+), respectively.

Calculated absolute values of the S-matrix elements for
the incident ;Hete (Fig.7(a)) and A+CBe(0%) (Fig.7(b))

channels. Comments as for Fig.b6.

Energy dependence of the eigenvalues wn(Ea) =



Fig. 9

Fig.

Fig.

Fig.

Fig.

Fig.

10

11

12

13

14

'sn(Ea) - Fn(Ea)/z (See Eq.(2.31)), where Ea corresponds

to thé energy E in Eq.(2.24) measured with respect to
the iHe+a threshold energy.

Calculated strengﬁh function S(E) for the 9Be(K_,ﬂ—)iBe
reaction with pKé = 790 MeV/c. Three cases of the m~
direction Bﬂ = 0°, 5° and 10° are plotted against the
hyﬁernuclear'energy E (Ea and EA ﬁeasured from the
iHe+a and the A+8Be(0+) thresholds, respectively).
Experimental energy spectra of 120 and the calculated
one by the microscopic 3a RGM51)’52). The level
energies are measured with respect to the 8Be(0+)+a
threshold.

Calculated energy spectra and B(E2) values (in e?fm"*)

of 12

C by the miproscopic.Bd RGM51)’52). The solid
lines correspond to the observed levels shown in

Fig.10.

Density distributions for the 2"=0%,2%,4%,0%,2% 17 ana
371 states of 120 calculated by the microscopic 3a RGM64)
and the corresponding s-wave folding potentials for
A—TZC(Qﬂ). The energies of each eigenstates are also
shown. _

Calculated energy spectra and B(E2) values (in e2fm")

of 1%0. The level energies are measured with respect

to the A+120 threshold. For comparision the energy
spectra of 120 are displayed.

Diagonal (solid lines) and non-diagonal (dotted lines)

folding potentials between 126 and A for the (iQ,A)Lﬂ»=



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

15

16

17

18

19

20

(1T,SA)1f, (Ot,pA)i— and (ZT,pA)1- channels.

Diagonal and non-diagonal folding potentials between

12

C and A for the (il,A)Lﬂ = (Og,pA)1— and (2:,pA)1—

channels.

20

Summary of the rotational bands in Ne. The left

three of the six observed bands are concerned with the

a+160 di-cluster model which produces the three bands

in the right side. The energies are measured with

16

respect to the a+'~0 threshold.

(a) The basic coordinate system adopted to describe the

three-cluster wave function fér 2}\Ne. The other two
coordinate, (b) and (c), are also used in tréating the
a+1KO and iHe+16O decay channels.

Calculated energy spectra and B(E2) values (in e2fm")
of the positive parity states in *!Ne. The level
energies are measured with respect to the 20Ne+A

threshold. For comparision the calculated ground band

16,

of 2ONe is inserted with the a+'~0 threshold referring

1
A

Estimates of the root-mean-square radius /<r2> between

160 clusters within each K" band of 2ANe. Those

for the Kﬂ=OT, O: and 0 band members of 2ONe are shown

to the a+1ZO threshold of 2 Ne.

o and

for comparision.
Calculated reduced width amblitudes (RWA) of the band

head 0" states in 2;\Ne,leading to the a+1ZO(s) and
5

AHe+a channels. For comparision the RWA's of 2”=OT and

20

+ . . '
O, states in Ne are also shown.



Fig. 21 Calculated energy spectra and B(E2) values of the

negative parity states in 2}\Ne. Comments as for Fig.18.

Fig. 22 Same as Fig.20 except for the negative parity states in

2}\Ne and 2ONe.
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