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Abstract
We investigate the large-time behavior of the radially symmetric solution for

Burgers equation on the exterior of a small ball in multi-dimensional space, where
the boundary data and the data at the far field are prescribed.In a previous paper
[1], we showed that, for the case in which the boundary data isequal to 0 or nega-
tive, the asymptotic stability is the same as that for the viscous conservation law. In
the present paper, it is proved that if the boundary data is positive, the asymptotic
state is a superposition of the stationary wave and the rarefaction wave, which is a
new wave phenomenon. The proof is given using a standardL2 energy method and
the characteristic curve method.

1. Introduction

We consider Burgers equation for a multi-dimensional space,

�u

�t
C (u � r)u D �1u, (t > 0, x 2 Rn),(1.1)

where� is a positive constant. In the present paper, we investigatea radially sym-
metric solution for (1.1) on the exterior domainjxj > r0 for some positive constantr0,
where the data on the boundary and at the far field are prescribed. For this purpose, we
transform the unknown functionu(t, x) in (1.1) to v(t, r ) by means ofu� (x=r )v(t, r ),
where r is defined byr WD jxj. Then we have the initial boundary value problem for
Burgers equation:

8

�

�

�

<

�

�

�

:

vt C vvr D �

�

vrr C (n� 1)

�

v

r

�

r

�

, r > r0, t > 0,

v(t, r0) D v
�

, lim
r!C1

v(t, r ) D v
C

, t > 0,

v(0, r ) D v0(r ), r > r0,

(1.2)
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where the initial datav0 is assumed to satisfyv0(r0) D v
�

and limr!C1

v0(r ) D v
C

as
the compatibility conditions. We are interested in the large-time behavior of the solu-
tion with conditionv

�

> 0.
For the viscous conservation law, for the case in which the flux is convex and the

corresponding Riemann problem has the rarefaction wave, Liu–Matsumura–Nishihara
[8] showed that, depending on the signs of the boundary condition v

�

, the large-time
behavior of the solution is classified into the three cases:
(a) v

�

< v

C

� 0,
(b) 0D v

�

< v

C

, and
(c) v

�

< 0< v

C

.
More precisely, they showed that in case (a), the solution tends toward the stationary
solution. In case (b), the solution tends toward the rarefaction wave, and in case (c),
the solution tends toward the linear superposition of the stationary solution and the rar-
efaction wave.

In the case of the viscous conservation law on the half-line,Nakamura [13] con-
sidered the case in which 0< v

�

< v

C

and demonstrated that the asymptotic state is a
rarefaction wave, which connectsv

�

and v
C

using the technical energy method. Naka-
mura also derived the decay rate to the rarefaction wave.

Liu and Yu [10], and Liu and Nishihara [9] considered the casewhere the bound-
ary value satisfiesv

�

> v

C

, and showed the asymptotic stability of viscous shock wave
on the half space. Initial boundary value problem for the planer wave of conserva-
tion laws were investigated by Kawashima, Nishibata, and Nishikawa [4] on higher
dimensional space. The problem of system for one-dimensional gas motion has been
investigated by Matsumura and Nishihara [11, 12], Kawashimaand Shizuta [6], and
Kawashima [3]. On the other hand, the analysis of the large time behavior of radially
symmetric solution for viscous conservation laws with Dirichlet boundary condition on
multi-dimensional space had been open. Present research isone of the investigative re-
search for radially symmetric problem of system for compressible viscous gas on multi-
dimensional space.

For radially symmetric solutions for Burgers equation, we showed in [1] that the
asymptotic states are divided into three cases depending onthe signs of the bound-
ary as (a), (b), and (c), and the asymptotic states are the same as those of the results
reported by Liu–Matsumura–Nishihara [8].

In the present paper, we consider the case in which 0< v

�

< v

C

which is the same
case of the research by Nakamura [13], and we showed that the asymptotic state is a
superposition of the stationary wave� which connects fromv

�

to 0, and the rarefac-
tion wave R, which connects from 0 tov

C

. We emphasize that this asymptotic state
differs from that of the viscous conservation law reported by Nakamura [13], and this
asymptotic state is a new wave phenomena. Here,� is defined through the stationary
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problem corresponding to (1.2), as follows:

8

�

<

�

:

�

1

2
�

2

�

r

D �

�

�rr C (n� 1)

�

�

r

�

r

�

, r > r0,

�(r0) D v
�

, lim
r!C1

�(r ) D 0.
(1.3)

On the other hand, R is defined as R((r � r0)=t) D  R(s) for t > 0, where R(s)
is obtained as follows:

(1.4)  

R(s) D

8

<

:

0, s � 0,
s, 0� s� v

C

,
v

C

, v

C

� s.

We have the following theorem.

Theorem 1.1. Suppose that0 < v

�

< v

C

, n � 3, and v
�

r0 < �=2. Further, as-
sume thatv0� vC 2 H1. Let �(r ) be the stationary wave satisfying problem(1.3), and
let  R((r � r0)=t) be the rarefaction wave defined by(1.4). Then the initial-boundary
value problem(1.2) has a unique solutionv globally in time satisfying

v � v

C

2 C0([0,1)I H1), (v � v
C

)r 2 L2(0, T I H1), T > 0,

and the asymptotic behavior

lim
t!1

sup
r>r0

�

�

�

v(r, t) � �(r ) �  R
�r � r0

t

�

�

�

�

D 0.

Note that the assumptionv
�

r0 < �=2 in Theorem 1.1 is a natural condition, be-
cause we consider the case in which the boundaryr0 is small.

The remainder of the present paper is organized as follows. After presenting the
notation, we reformulate the problem in Section 2. In Section 3, we present an a priori
estimate. Finally, in Section 4, we describe how to predict the asymptotic state.

NOTATION. We denote byL2 the usual Lebesgue space overr > r0 > 0 with the
norm k � kL2 and by H1 the corresponding first-order Sobolev space with normk � kH1.
We also denote byH1

0 D H1
0 ((0, 1)) the space of functionsf 2 H1 with f (r0) D 0.

For an intervalI and a Banach spaceX, Ck(I I X) denotes the space ofk-times
continuously differentiable functions on the intervalI with values in X. Finally, C is
used as a positive generic constant unless different constants need to be distinguished.

2. Reformulation of the problem

In this section, we present the preliminaries for the proof of Theorem 1.1. First,
we consider the properties of the stationary solution�, which is given by the solution
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to the boundary value problem for the ordinary differentialequation (1.3). If we inte-
grate the equation of (1.3) once, it is easy to see that (1.3) is equivalent to the problem

(2.1)

8

<

:

1

2
�

2
D �

�

�r C (n� 1)
�

r

�

, r > r0,

�(r0) D v
�

.

Then we have the following lemma.

Lemma 2.1. Supposev
�

r0 < 2�(n � 2) and n� 3. Then the stationary problem
(1.3) has a unique smooth solution�(r ) satisfying0� �(r ) � v

�

, �r (r ) < 0 and j�j �
C=(r C 1) for r > r0.

Proof. The first equality of (2.1) is rewritten as

(2.2) �r C
n� 1

r
� D

1

2�
�

2,

and we introduce a new unknown function� as � D 1=�. As (2.2) is a Bernoulli-type
differential equation, we can describe� as follows:

(2.3)

� D e
R

(n�1)=r dr

�

�

Z

1

2�
e�

R

(n�1)=r dr dr C K

�

D r n�1

�

�

1

2�

Z

1

r n�1
dr C K

�

,

where K is some constant. Now, we derive the solution of (2.1) for thecase ofn � 3.
Note that whenn D 2, (2.1) has no solution which satisfies the boundary condition.
For the casen � 3, by direct calculation, we derive� as follows:

(2.4) �(r ) D
1

r =(2�(n� 2))C Kr n�1
, where K D �

1

2�(n� 2)r n�2
0

C

1

v

�

r n�1
0

.

As v
�

r0 < 2�(n�2) reduces toK > 0, we have the solution� which connectsv
�

and
0. By direct calculation, we also derive�r > 0.

Next, we generate a smooth approximation of the rarefactionwave R defined by
(1.4). Because non-smoothness of R causes trouble in the process of handling the
second derivative of the solution, we follow the arguments of Kawashima and Tanaka
[7]. We define a smooth approximation (t, r ) of  R((r � r0)=t) by the solution of the
viscous Burgers equation:

(2.5)

8

<

:

 t C   r D  rr , r 2 R, t > �1,

 (r, �1)D

�

�v

C

, r < r0,
v

C

, r > r0.
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Note that the Hopf–Cole transformation gives an explicit formula for (t, r ). We sum-
marize the basic properties of (t, r ) in the next lemma. For its proof, we refer the
reader to [7].

Lemma 2.2. We have the following:
1)  (t, r ) is a smooth solution of(2.5) and verifies (t, r0) D 0 for t � 0.
2) 0<  (t, r ) < v

C

and  r (t, r ) > 0 for r > r0 and t� 0.
3) For 1� p � 1, we have

k r (t)kL p
� C min{v

C

(1C t)�
 , v1=p
C

(1C t)�2
 },

k rr (t)kL p
� C min{v

C

(1C t)�
�1=2, (1C t)�
�1},

where
 D (1=2)(1� 1=p), and C is a constant independent ofv
C

.
4)  (r, t) is an approximation of R(r, t) in the sense that

k( �  R)(t)kL p
� C� (t)(1C t)�
 ,

for 1� p � 1, where
 D (1=2)(1� 1=p), � (t) D log(2C t) for p D 1 and � (t) D 1
for 1< p � 1, and C is a constant independent ofv

C

.

Next, we reformulate the problem. Let� and be the stationary wave satisfying
(2.1) and the smoothed rarefaction wave defined by (2.5), respectively. Now, we define
8(t, r ) as the superposition of the stationary wave and the rarefaction wave as

8(t, r ) WD �(r )C  (t, r ),

which is an approximation of our solution. Using (2.1) and (2.5), we find that8(t, r )
satisfies

8

<

:

8t C

�

1

2
8

2

�

r

D �8rr C NR, r > r0, t > 0,

8(t, r0) D v
�

, t > 0,

where NR is defined by

NR WD �(n� 1)

�

�

r

�

r

C (� )r .

Then we reformulate our problem (1.2) by introducing the perturbationw(t, r ) by

v(t, r ) D 8(t, r )C w(t, r ).
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Now, we rewrite our original problem (1.2) as

8

�

�

<

�

�

:

wt C
1

2
(w2
C 28w)r D �

�

wrr C (n� 1)

�

w C  

r

�

r

�

� (� )r ,

w(t, r0) D 0, t > 0,
w(0, r ) D w0(r ), r > r0.

(2.6)

The theorem for the reformulated problem (2.6) we shall prove is

Theorem 2.3. Suppose that0< v

�

< v

C

, n � 3, and v
�

r0 < �=2 hold. Assume
that w0 2 H1. Then the initial boundary value problem(2.6) has a unique solutionw
globally in time

w 2 C([0,1)I H1), wr 2 L2(0,1I H1),

and the asymptotic behavior

lim
t!1

sup
r>r0

jw(t, r )j D 0.

The main theorem, Theorem 1.1, is a direct consequence of Theorem 2.3. Theorem 2.3
itself is proved by combining the local existence theorem with the a priori estimate as
in the previous papers.

To state the local existence theorem, we define the solution set for any interval
I � R and constantM > 0 by

(2.7) XM (I ) D

�

w 2 C(I I H1
0 )I wr 2 L2(0, T I H1), sup

t2I
kw(t)kH1

� M

�

.

Then we state the local existence theorem.

Proposition 2.4 (local existence). For any positive constant M, there exists a posi-
tive constant t0 D t0(M) such that ifkw0kH1

� M, the initial boundary value problem
(2.6) has a unique solutionw 2 X2M ([0, t0]).

It is noted that the problem (2.6) is reduced to the integral equation

w(t, r ) D
Z

1

r0

G(r, y, t)w0(y) dy

C

Z t

0

Z

1

r0

G(r, yI t � s)

�

�

1

2
(w2
C 28w)r C QR(�,  )

�

(s) dy ds,

where G(r, yI t) is the Green kernel of the Dirichlet zero boundary value problem for
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the linear heat equation on the half line, which is concretely given by

G(r, yI t) D
1

p

4��t
(e�(r�y)2

=(4�t)
� e�(rCy)2

=(4�t)),

and

(2.8) QRD �(n� 1)

�

w C  

r

�

r

� (� )r .

Since we can prove the Proposition 2.4 by a standard iterative method, we omit the
proof of the Proposition 2.4.

3. Proof of the a priori estimate

In this section, we present the a priori estimate ofw(r, t). The outline of the proof
is similar to that of [1], but we also need to consider the boundary effects. First, we
present a key lemma which plays an essential role in our energy method.

Lemma 3.1. Under the condition n� 3 and v
�

r0 < �=2, we have the inequality
Z

1

r0

j�r jw
2 dr < �(n� 1)

Z

1

r0

1

r 2
w

2 dr .(3.1)

Proof. Differentiating (2.4) in terms ofr , we can estimatej�r j from above as

j�r j <
1

2Kr n
C

n� 1

Kr n
<

1

2(Kr n�2
0 )r 2

C

n� 2

(Kr n�2
0 )r 2

< 2v
�

r0(n� 1)
1

r 2
.

If v
�

r0 < �=2, we have the desired inequality (3.1).

Next, let us present the a priori estimate which is essentialto the present study.

Proposition 3.2 (a priori estimate). Suppose that the same assumptions as inThe-
orem 2.3hold. Then, if w 2 X

1

([0, T ]) is the solution of the problem(2.6) for some
T > 0, it holds that

kwk

2
H1 C

Z t

0
k

p

 rw(� )k2L2 C kwr (� )k2H1 C













w(� )

r













2

L2

d� � C(kw0k
2
H1 C 1),(3.2)

for t 2 [0, T ], where C is a positive constant independent of T .

Proof. Multiplying (2.6) byw, we obtain
�

1

2
w

2

�

t

C Fr C
1

2
8rw

2
C �w

2
r C �(n� 1)

w

2

2r 2

D �(n� 1)

�

 rw

r
�

 w

r 2

�

� (� )rw,

(3.3)
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where

F WD
1

3
w

3
C

1

2
8w

2
� �wwr � �(n� 1)

�

w

2

2r

�

.

Integrating (3.3) over [r0,1] in terms of r , we have

(3.4)

�

Z

1

r0

1

2
w

2 dr

�

t

C

1

2

Z

1

r0

 rw
2 dr C �

Z

1

r0

w

2
r dr C

�

2
(n� 1)

Z

1

r0

w

2

r 2
dr

D �

1

2

Z

1

r0

�rw
2 dr C �(n� 1)

Z

1

r0

 rw

r
�

 w

r 2
� (� )rw dr ,

where�r < 0. Now, we estimate the right-hand side of (3.4). Note that the first term
of the right-hand side of (3.4) is absorbed into the last termof the left-hand side of
(3.4) by using Lemma 3.1. By Young’s inequality, the second term of the right-hand
side of (3.4) is estimated as

(3.5)

Z

1

r0

 rw

r
dr � kwkL1

Z

1

r0

 r

r
dr

� �kwr k
2
L2 C C

�

kwk

2=3
L2

�

Z t

r0

 r

r
dr C

Z

1

t

 r

r
dr

�4=3

.

We introduce new symbolsI1 and I2 as

I1 WD

Z t

r0

 r

r
dr , I2 WD

Z

1

t

 r

r
dr .

Using the estimate of the rarefaction wave in Lemma 2.2-3), we can estimateI1 as

(3.6) I1 � k r kL1

Z t

r0

1

r
dr � C(1C t)�1 log(2C t).

On the other hand, by using the integration by parts,I2 is estimated as

(3.7) I2 D

Z

1

t

 r

r
dr �

�

 

r

�

1

t

C

Z

1

t

 

r 2
dr � C(v

C

)(1C t)�1.

By virtue of these two estimates, we rewrite the inequality (3.5) as

(3.8)

Z

1

r0

 rw

r
dr � �kwr k

2
L2 C Ckwk2=3L2 (1C t)�4=3 log4=3(2C t).
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Applying the inequality (3.8), the third term of the right-hand side of (3.4) is estimated as

(3.9)

Z

1

r0

 w

r 2
dr � kwkL1

Z

1

r0

 

r 2
dr

� kwkL1

Z

1

r0

�

�

 

r

�

r

C

 r

r
dr

D kwkL1

Z

1

r0

 r

r
dr

� �kwr k
2
L2 C C

�

kwk

2=3
L2 (1C t)�4=3 log4=3(2C t).

Now, we estimate the rightmost term of (3.4).

(3.10)

Z

1

r0

�� rw dr � kwkL1

Z

1

r0

� r dr

D kwkL1

�

Z t

r0

� r dr C
Z

1

t
� r dr

�

.

We define new symbolsI3 and I4 as

I3 WD

Z t

r0

� r dr , I4 WD

Z

1

t
� r dr .

Using the estimate of the stationary wave� derived in Lemma 2.1 and the rarefaction
wave derived in Lemma 2.2-3), we estimateI3 and I4 as

I3 � Ckwk1=2L2 kwr k
1=2
L2 (1C t)�1

Z t

r0

j�j dr

� �kwr k
2
L2 C C

�

kwk

2=3
L2 (1C t)�4=3 log4=3(2C t),

(3.11)

I4 � Ckwk1=2L2 kwr k
1=2
L2 (1C t)�1

Z

1

t
�� r dr

� Ckwk1=2L2 kwr k
1=2
L2 (1C t)�1

Z

1

t
�r dr

� �kwr k
2
L2 C C

�

kwk

2=3
L2 (1C t)�4=3,

(3.12)

where we use Sobolev’s embedding lemma and Young’s inequality. On the other hand,
using integration by parts and noting�r < 0, we estimate

(3.13)
Z

1

r0

��r w dr � kwkL1

Z

1

r0

��r dr D kwkL1

Z

1

r0

� r dr ,

and the rightmost term is the same as (3.10). Then a part of theright-hand side of
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(3.4) is estimated as

(3.14)

�

�

�

�

Z

1

r0

 rw

r
�

 w

r 2
� (� )rw dr

�

�

�

�

� �kwr k
2
L2 C C

�

kwk

2=3
L2 (1C t)�4=3 log4=3(2C t).

Using Lemma 3.1, substituting (3.14) into (3.4) and integrating in terms oft over [0,t ],
and then using Gronwall’s inequality, we have the basic estimate

(3.15) kwk

2
L2 C

Z t

0
k

p

 rw(� )k2L2 C kwr (� )k2L2 C













w(� )

r













2

L2

d� � C(kw0k
2
L2 C 1).

Next, we proceed to the higher-order estimate. Multiplying (2.6) by�wrr and integrat-
ing, we obtain

(3.16)

�

Z

1

r0

1

2
w

2
r dr

�

t

C �

Z

1

r0

w

2
rr dr

D

Z

1

r0

�

�

1

2
(w2
C 28w)r � ( �)r C �(n� 1)

�

w C  

r

�

r

�

(�wrr ) dr .

We estimate the first term of the right-hand side of (3.16) as

(3.17)

Z

1

r0

1

2

�

w

2
C 28w

�

rwrr dr

� �kwrr k
2
L2 C C

�

(kwr k
2
L2 C k

p

 rwk
2
L2 C k

p

j�r jwk
2
L2)

� �kwrr k
2
L2 C C

�

�

kwr k
2
L2 C k

p

 rwk
2
L2 C










w

r










2

L2

�

,

where we use Lemma 2.1 and the maximum principle, that is, supr0<r jw(t, r )j < C,
(0< t < T) as in the previous research [1]. Using decay property of stationary solution
� in Lemma 2.1 and rarefaction wave in Lemma 2.2, we estimate the second term
of the right-hand side of (3.16) as

(3.18)

Z

1

r0

( �)rwrr dr � �kwrr k
2
L2 C C

�

Z

1

r0

(�r )2
C (� r )

2 dr

� �kwrr k
2
L2 C C

�

(1C t)�2,
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where we use the estimate

(3.19)

Z

1

r0

(�r )2 dr � C
Z

1

r0

 

2

(1C r )4
dr

D C

�

�

1

3

�

 

2

(1C r )3

�

1

r0

C

2

3

Z

1

r0

  r

(1C r )3
dr

�

� Ck r kL1

Z

1

r0

 

(1C r )3
dr

D Ck r kL1

�

�

1

2

�

 

2

(1C r )2

�

1

r0

C

Z

1

r0

 r

2(1C r )2
dr

�

� Ck r k
2
L1

Z

1

r0

1

(1C r )2
dr , and

Z

1

r0

(� r )
2 dr � C

Z

1

r0

 

2
r

(1C r )2
dr .

Applying the same strategy as (3.19), we can estimate the third term of the right-hand
side of (3.16) as

Z

1

r0

�

w C  

r

�

r

wrr dr � �kwrr k
2
L2 C C

�

Z

1

r0

��

w C  

r

�

r

�2

dr

� �kwrr k
2
L2 C C

�

�

kwr k
2
L2 C













w

r













2

L2

C (1C t)�2

�

.

(3.20)

Integrating (3.16) over [0,t ], substituting (3.17) through (3.20) into the resultant equal-
ity, and using the basic estimate (3.15), we obtain

kwr k
2
L2 C �

Z t

0
kwrr (� )k2L2 d� � C(kw0k

2
H1 C 1).(3.21)

Combining (3.15) and (3.21), we have the desired estimate (3.2).

4. Concluding remarks

In this section, we explain how to predict the asymptotic state. We take a part of
term from the problem (1.2), and make equality as

vt C vvr D ��(n� 1)
v

r 2
.(4.1)

We consider the characteristic equation of (4.1):

dt

ds
D 1,

dr

ds
D v,

dv

ds
D ��(n� 1)

v

r 2
.(4.2)
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Let Nr WD r (0) and defineA WD v0(Nr )��(n�1)=Nr ; then we can solve (4.2) explicitly
and find the relation betweent and r as

t D
r � Nr

A
�

�(n� 1)

A2
log

�

�

�

�

�(n� 1)C Ar

�(n� 1)C ANr

�

�

�

�

, for A¤ 0,

t D
1

2�(n� 1)
(r � Nr )2, for AD 0.

By direct calculation, we find that ifv
�

> 0, there exists a monotonically decreas-
ing stationary wave around the boundary. On the other hand, if v

�

D 0, there exists
no stationary wave around the boundary. From this observation, we anticipate that the
asymptotic state of the solution is the superposition of rarefaction wave which connects
0 to v

C

, and stationary wave which connectsv
�

to 0.
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