

Title	ON GENERA OF LEFSCHETZ FIBRATIONS AND FINITELY PRESENTED GROUPS
Author(s)	Kobayashi, Ryoma
Citation	Osaka Journal of Mathematics. 2016, 53(2), p. 351–376
Version Type	VoR
URL	https://doi.org/10.18910/58901
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON GENERA OF LEFSCHETZ FIBRATIONS AND FINITELY PRESENTED GROUPS

RYOMA KOBAYASHI

(Received May 14, 2014, revised January 7, 2015)

Abstract

It is known that every finitely presented group is the fundamental group of the total space of a Lefschetz fibration. In this paper, we give another proof which improves the result of Korkmaz. In addition, Korkmaz defined the genus of a finitely presented group. We also evaluate upper bounds for genera of some finitely presented groups.

1. Introduction

Gompf [5] proved that every finitely presented group is the fundamental group of a closed symplectic 4-manifold. Donaldson [4] proved that every closed symplectic 4-manifold admits a Lefschetz pencil. By blowing up the base locus of a Lefschetz pencil, we obtain a Lefschetz fibration over S^2 . In addition, blowing up does not change the fundamental group of a 4-manifold. Therefore, it immediately follows that every finitely presented group is the fundamental group of the total space of a Lefschetz fibration.

Amoros–Bogomolov–Katzarkov–Pantev [1] and Korkmaz [8] also constructed Lefschetz fibrations whose fundamental groups are a given finitely presented group. In particular, Korkmaz [8] provided explicitly a genus and a monodromy of such a Lefschetz fibration.

Let $F_n = \langle g_1, \dots, g_n \rangle$ be the free group of rank n . For $x \in F_n$, the *syllable length* $l(x)$ of x is defined by

$$l(x) = \min \{s \mid x = g_{i(1)}^{m(1)} \cdots g_{i(s)}^{m(s)}, 1 \leq i(j) \leq n, m(j) \in \mathbb{Z}\}.$$

For a finitely presented group Γ with a presentation $\Gamma = \langle g_1, \dots, g_n \mid r_1, \dots, r_k \rangle$, Korkmaz [8] proved that for any $g \geq 2(n + \sum_{1 \leq i \leq k} l(r_i) - k)$ there exists a genus- g Lefschetz fibration $f: X \rightarrow S^2$ such that the fundamental group $\pi_1(X)$ is isomorphic to Γ , providing explicitly a monodromy.

In this paper, we improve this result.

Theorem 1.1. *Let Γ be a finitely presented group with a presentation $\Gamma = \langle g_1, \dots, g_n \mid r_1, \dots, r_k \rangle$, and let $l = \max_{1 \leq i \leq k} \{l(r_i)\}$. Then for any $g \geq 2n + l - 1$, there*

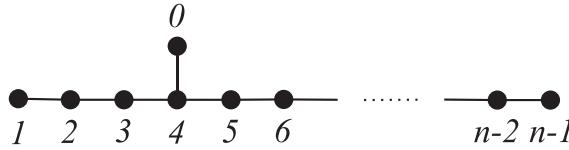


Fig. 1. The Dynkin diagram.

exists a genus- g Lefschetz fibration $f: X \rightarrow S^2$ such that the fundamental group $\pi_1(X)$ is isomorphic to Γ .

In this theorem, if $k = 0$, we suppose $l = 1$. We will prove the theorem by providing an explicit monodromy.

In addition, Korkmaz [8] defined the *genus* $g(\Gamma)$ of a finitely presented group Γ to be the minimal genus of a Lefschetz fibration with sections whose fundamental group is isomorphic to Γ . The Lefschetz fibrations constructed in Theorem 1.1 have sections. Hence the definition of the genus of a finitely presented group is well-defined.

We will also prove the following theorem.

Theorem 1.2. (1) Let B_n denote the n -strands braid group. Then for $n \geq 3$, we have $2 \leq g(B_n) \leq 4$.
 (2) Let \mathcal{H}_g be the hyperelliptic mapping class group of a closed connected orientable surface of genus $g \geq 1$. Then we have $2 \leq g(\mathcal{H}_g) \leq 4$.
 (3) Let $\mathcal{M}_{0,n}$ denote the mapping class group of a sphere with n punctures. Then for $n \geq 3$, we have $2 \leq g(\mathcal{M}_{0,n}) \leq 4$.
 (4) Let S_n denote the n -symmetric group. Then for $n \geq 3$, we have $2 \leq g(S_n) \leq 4$.
 (5) Let \mathcal{A}_n denote the n -Artin group associated to the Dynkin diagram shown in Fig. 1. Then for $n \geq 6$, we have $2 \leq g(\mathcal{A}_n) \leq 5$.
 (6) Let $n, k \geq 0$ be integers with $n + k \geq 3$, and let $m_1, \dots, m_k \geq 2$ be integers. Then we have $(n + k + 1)/2 \leq g(\mathbb{Z}^n \oplus \mathbb{Z}_{m_1} \oplus \dots \oplus \mathbb{Z}_{m_k}) \leq n + k + 1$.

2. A Lefschetz fibration and preliminaries

2.1. A Lefschetz fibration and its monodromy. Here, we review briefly the theory of Lefschetz fibrations.

Let X be a closed connected orientable smooth 4-manifold. A smooth map $f: X \rightarrow S^2$ is a genus- g *Lefschetz fibration* over S^2 if it satisfies following properties:

- All regular fibers are diffeomorphic to a closed connected oriented surface of genus g .
- Each critical point of f has an orientation-preserving chart on which $f(z_1, z_2) = z_1^2 + z_2^2$ relative to a suitable smooth chart on S^2 .
- Each singular fiber contains only one critical point.

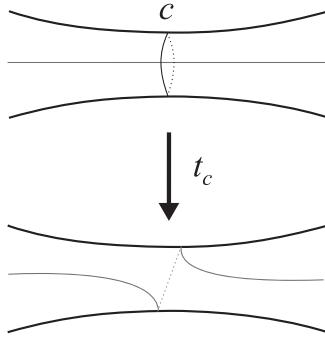
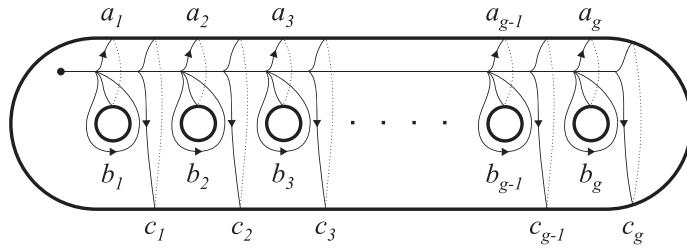
Fig. 2. The right Dehn twist about c .

Fig. 3.

- f is *relatively minimal*, that is, no fiber contains an embedded sphere with the self-intersection number -1 .

Let \mathcal{M}_g be the mapping class group of a closed connected oriented surface Σ_g of genus g , that is, the group of isotopy classes of orientation-preserving diffeomorphisms $\Sigma_g \rightarrow \Sigma_g$. In this paper, for elements x and y of a group, the composition xy means that we first apply x and then y . So for $f, g \in \mathcal{M}_g$, the composition fg means that we first apply f and then g . For a simple closed curve c on Σ_g , let t_c be the isotopy class of the right Dehn twist about c (see Fig. 2). For a genus- g Lefschetz fibration which has n singular fibers, there are simple closed curves c_1, \dots, c_n on Σ_g , each of which is called the *vanishing cycle*, such that each singular fiber F_i is obtained by collapsing c_i to a point to create a transverse self-intersection, and $t_{c_1} \cdots t_{c_n} = 1$. This equation is called the *monodromy* of a Lefschetz fibration. Conversely, if there are simple closed curves c_1, \dots, c_n on Σ_g such that $t_{c_1} \cdots t_{c_n} = 1$, then we can construct a genus- g Lefschetz fibration with the monodromy $t_{c_1} \cdots t_{c_n} = 1$.

For a Lefschetz fibration $f: X \rightarrow S^2$, a smooth map $s: S^2 \rightarrow X$ is a section of f if $f \circ s: S^2 \rightarrow S^2$ is the identity map.

For a closed connected orientable surface Σ_g of genus g , let $a_1, \dots, a_g, b_1, \dots, b_g$ and c_1, \dots, c_g be loops on Σ_g as shown in Fig. 3. Then the fundamental group $\pi_1(\Sigma_g)$

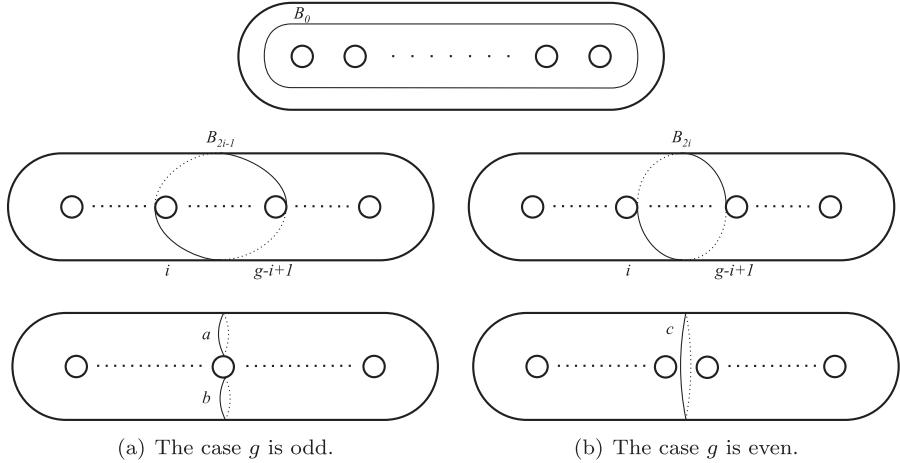


Fig. 4.

of Σ_g has a following presentation

$$\pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid r \rangle,$$

where $r = b_g^{-1} \cdots b_1^{-1} (a_1 b_1 a_1^{-1}) \cdots (a_g b_g a_g^{-1})$.

Let B_0, \dots, B_g and a, b, c be simple closed curves on Σ_g as shown in Fig. 4. In this paper, let W denote the following

$$W = \begin{cases} (t_c t_{B_g} \cdots t_{B_0})^2 & \text{when } g \text{ is even,} \\ (t_a^2 t_b^2 t_{B_g} \cdots t_{B_0})^2 & \text{when } g \text{ is odd.} \end{cases}$$

It was shown in [7] that $W = 1$ in the mapping class group \mathcal{M}_g of Σ_g . In addition, the Lefschetz fibration $f_W: X_W \rightarrow S^2$ with the monodromy $W = 1$ has a section (see [7] and [8]).

2.2. Preliminaries. We now state the way to obtain the presentation of the fundamental group of a Lefschetz fibration with a section. For a group Γ and $\{x_1, \dots, x_n\} \subset \Gamma$, let $\langle x_1, \dots, x_n \rangle$ denote the normal closure of $\{x_1, \dots, x_n\}$ in Γ .

Proposition 2.1 (cf. [6]). *Let $f: X \rightarrow S^2$ be a genus- g Lefschetz fibration with the monodromy $t_{c_1} \cdots t_{c_n} = 1$. Suppose that f has a section. Then we have*

$$\pi_1(X) \cong \pi_1(\Sigma_g) / \langle c_1, \dots, c_n \rangle,$$

where we regard c_1, \dots, c_n as elements in $\pi_1(\Sigma_g)$.

For $x, y \in \mathcal{M}_g$, let $x^y = y^{-1}xy$. For example, for simple closed curves c_1, \dots, c_n on Σ_g and $h \in \mathcal{M}_g$, we have $(t_{c_1} \cdots t_{c_n})^h = (h^{-1}t_{c_1}h) \cdots (h^{-1}t_{c_n}h) = t_{(c_1)h} \cdots t_{(c_n)h}$, where $(c_i)h$ means the image of c_i by h .

Proposition 2.2 ([8]). *Let $f: X \rightarrow S^2$ be a genus- g Lefschetz fibration with the monodromy $V = t_{c_1} \cdots t_{c_n} = 1$. Suppose that f has a section. Let d be a simple closed curve on Σ_g which intersects some c_i transversely at only one point. Let $f': X' \rightarrow S^2$ be the genus- g Lefschetz fibration with the monodromy $VV^{t_d} = 1$. Then we have*

$$\pi_1(X') \cong \pi_1(\Sigma_g)/\langle c_1, \dots, c_n, d \rangle,$$

where we regard c_1, \dots, c_n and d as elements in $\pi_1(\Sigma_g)$.

In this paper, we denote the Lefschetz fibration with the monodromy $V = 1$ by $f_V: X_V \rightarrow S^2$. For example, in the above proposition, $f = f_V$, $X = X_V$ and $f' = f_{VV^{t_d}}$, $X' = X_{VV^{t_d}}$.

We next state results of Korkmaz [8].

Theorem 2.3 ([8]). (1) *Let Σ_g be a closed connected orientable surface of genus $g \geq 0$. Then we have $g(\pi_1(\Sigma_g)) = g$.*
 (2) *Let $m(\Gamma)$ denote the minimal number of generators for Γ . Then we have $m(\Gamma)/2 \leq g(\Gamma)$, with the equality if and only if Γ is isomorphic to $\pi_1(\Sigma_g)$.*
 (3) *For the mapping class group \mathcal{M}_1 of Σ_1 , we have $2 \leq g(\mathcal{M}_1) \leq 4$.*
 (4) *Let B_n denote the n -strands braid group. Then for $n \geq 3$, we have $2 \leq g(B_n) \leq 5$.*
 (5) *Let $n, k \geq 0$ be integers with $n + k \geq 3$, and let $m_1, \dots, m_k \geq 2$ be integers. Then we have $(n + k + 1)/2 \leq g(\mathbb{Z}^n \oplus \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_k}) \leq 2(n + k) + 1$.*

Theorem 1.2 improves Theorem 2.3 (4) and (5).

3. Proof of Theorem 1.1

First of all, we show a proposition used in proofs of Theorem 1.1 and 1.2. For elements x and y in a group, let $[x, y] = xyx^{-1}y^{-1}$. For a real number a , $[a]$ is the maximal integer less than or equal to a .

Proposition 3.1. *Let $f_W: X_W \rightarrow S^2$ be the genus- g Lefschetz fibration with the monodromy $W = 1$, where W is as above, and let $a_1, b_1, \dots, a_g, b_g$ be the generators of $\pi_1(\Sigma_g)$ as shown in Fig. 3. Then we have followings:*

(1) (See [8].) Let $U = WW^{t_{b_1}} \cdots W^{t_{b_g}}$, then the fundamental group $\pi_1(X_U)$ of the Lefschetz fibration X_U has the following presentation

$$\pi_1(X_U) = \begin{cases} \left\langle a_1, b_1, \dots, a_g, b_g \mid \begin{array}{l} b_1, \dots, b_g, \\ a_1 a_g, \dots, a_{g/2} a_{(g+2)/2} \end{array} \right\rangle & \text{when } g \text{ is even,} \\ \left\langle a_1, b_1, \dots, a_g, b_g \mid \begin{array}{l} b_1, \dots, b_g, \\ a_1 a_g, \dots, a_{(g-1)/2} a_{(g+3)/2}, \\ a_{(g+1)/2} \end{array} \right\rangle & \text{when } g \text{ is odd,} \end{cases}$$

and, the group $\pi_1(X_U)$ is isomorphic to the free group of rank $[g/2]$.

(2) Let $U' = WW^{t_{b_2}} \cdots W^{t_{b_{g-1}}}$, then the fundamental group $\pi_1(X_{U'})$ of the Lefschetz fibration $X_{U'}$ has the following presentation

$$\pi_1(X_{U'}) = \begin{cases} \left\langle a_1, b_1, \dots, a_g, b_g \mid \begin{array}{l} [a_1, b_1], \\ b_2, \dots, b_{g-1}, \\ b_1 b_g, \\ a_1 a_g, \dots, a_{g/2} a_{(g+2)/2} \end{array} \right\rangle & \text{when } g \text{ is even,} \\ \left\langle a_1, b_1, \dots, a_g, b_g \mid \begin{array}{l} [a_1, b_1], \\ b_2, \dots, b_{g-1}, \\ b_1 b_g, \\ a_1 a_g, \dots, a_{(g-1)/2} a_{(g+3)/2}, \\ a_{(g+1)/2} \end{array} \right\rangle & \text{when } g \text{ is odd,} \end{cases}$$

and, the group $\pi_1(X_{U'})$ is isomorphic to the free product of the free group of rank $([g/2] - 1)$ with $\mathbb{Z} \oplus \mathbb{Z}$.

Proof. Simple closed curves B_0, \dots, B_g and a, b, c as shown in Fig. 4 can be described in $\pi_1(\Sigma_g)$, up to conjugation, as follows

- $B_{2k} = a_k b_{k+1} b_{k+2} \cdots b_{g-k-1} b_{g-k} c_{g-k} a_{g-k+1}$, where $0 \leq k \leq g/2$,
- $B_{2k+1} = a_{k+1} b_{k+1} b_{k+2} \cdots b_{g-k-1} b_{g-k} c_{g-k} a_{g-k}$, where $0 \leq k \leq g/2$,
- $a = a_{(g+1)/2}$, $b = c_{(g-1)/2} a_{(g+1)/2}$ and $c = c_{g/2}$,

where let $a_0 = a_{g+1} = 1$. In addition, note that $c_i = b_i^{-1} \cdots b_1^{-1} (a_1 b_1 a_1^{-1}) \cdots (a_i b_i a_i^{-1})$ up to conjugation, for $1 \leq i \leq g$. Since X_W has a section, by Proposition 2.1, we first

obtain a presentation of $\pi_1(X_W)$ as follows.

$$\pi_1(X_W) = \begin{cases} \left\langle a_1, b_1, \dots, a_g, b_g \mid \begin{array}{l} c_g, c_{g/2}, \\ a_1 a_g, \dots, a_{g/2} a_{(g+2)/2}, \\ b_1 a_g b_g a_g^{-1}, \dots, b_{g/2} a_{(g+2)/2} b_{(g+2)/2} a_{(g+2)/2}^{-1} \end{array} \right\rangle & \text{when } g \text{ is even,} \\ \left\langle a_1, b_1, \dots, a_g, b_g \mid \begin{array}{l} c_g, a_{(g+1)/2}, b_{(g+1)/2}, c_{(g-1)/2}, \\ a_1 a_g, \dots, a_{(g-1)/2} a_{(g+3)/2}, \\ b_1 a_g b_g a_g^{-1}, \dots, b_{(g-1)/2} a_{(g+3)/2} b_{(g+3)/2} a_{(g+3)/2}^{-1} \end{array} \right\rangle & \text{when } g \text{ is odd.} \end{cases}$$

(We have that $\pi_1(X_W)$ is isomorphic to $\pi_1(\Sigma_{[g/2]})$.) Since each b_i intersects some B_j transversely at only one point, by Proposition 2.2, we obtain the claim. \square

REMARK. From Proposition 3.1, we have followings.

- For $n \geq 1$, there are genus- $2n$ and $(2n+1)$ Lefschetz fibrations whose fundamental groups are isomorphic to the free group of rank n .
- For $n \geq 2$, there are genus- $(2n-2)$ and $(2n-1)$ Lefschetz fibrations whose fundamental groups are isomorphic to the free product of the free group of rank $(n-2)$ with $\mathbb{Z} \oplus \mathbb{Z}$.

Let Γ be a finitely presented group with a presentation $\Gamma = \langle g_1, \dots, g_n \mid r_1, \dots, r_k \rangle$ and let $l = \max_{1 \leq i \leq k} \{l(r_i)\}$. For $g \geq n + l - 1$ and r_i , we construct a simple closed curve R_i on Σ_g as below.

At first, we construct a simple closed curve R in the case $n = 4$ and $r = g_2 g_1 g_2^2 g_4^{-1} g_3^{-2}$ as an example. Note that $l(r) = 5$. Let x_1, x_2, x_3, x_4, x_5 be loops on Σ_g which are homotopic to a_2, a_1, a_2, a_4 and a_3 , respectively, as shown in Fig. 5 (a). Let y_1, y_2, y_3, y_4 be loops on Σ_g which are homotopic to a_5, a_6, a_7, a_8 , respectively, and let z_1, z_2, z_3, z_4 be loops on Σ_g which are homotopic to a_5, a_6, a_7, a_8 , respectively, as shown in Fig. 5 (a). First we deform Σ_g around $y_1, z_1, \dots, y_4, z_4$ as shown in Fig. 5 (b). Then let D be a subsurface containing y_t and z_t which is surrounded by a simple closed curve on Σ_g as shown in Fig. 5 (b). Next, for $1 \leq t \leq 4$, we move y_t to the right side of x_t in D , and z_t to the left side of x_{t+1} in D , as shown in Fig. 5 (c). Let \bar{R} be the loop as shown in Fig. 6 (a), and let $R = (\bar{R})t_{x_1}^{-1}t_{x_2}^{-1}t_{x_3}^{-2}t_{x_4}t_{x_5}^2$, as shown in Fig. 6 (b). Finally, we deform the surface so that y_1, \dots, y_4 and z_1, \dots, z_4 go back to their original position as shown in Fig. 6 (c).

In general, a loop R_i is constructed as follows. Let $r_i = g_{j(1)}^{m(1)} \cdots g_{j(l(r_i))}^{m(l(r_i))}$. For $1 \leq t \leq l(r_i)$, let x_t be a loop on Σ_g which is homotopic to $a_{j(t)}$. If $j(s) = j(s')$ for some $s < s'$, we put $x_{s'}$ to the right side of x_s . For $1 \leq t \leq l(r_i) - 1$, let y_t and z_t be loops on Σ_g which are homotopic to a_{n+t} , such that z_t is in the right side of y_t .

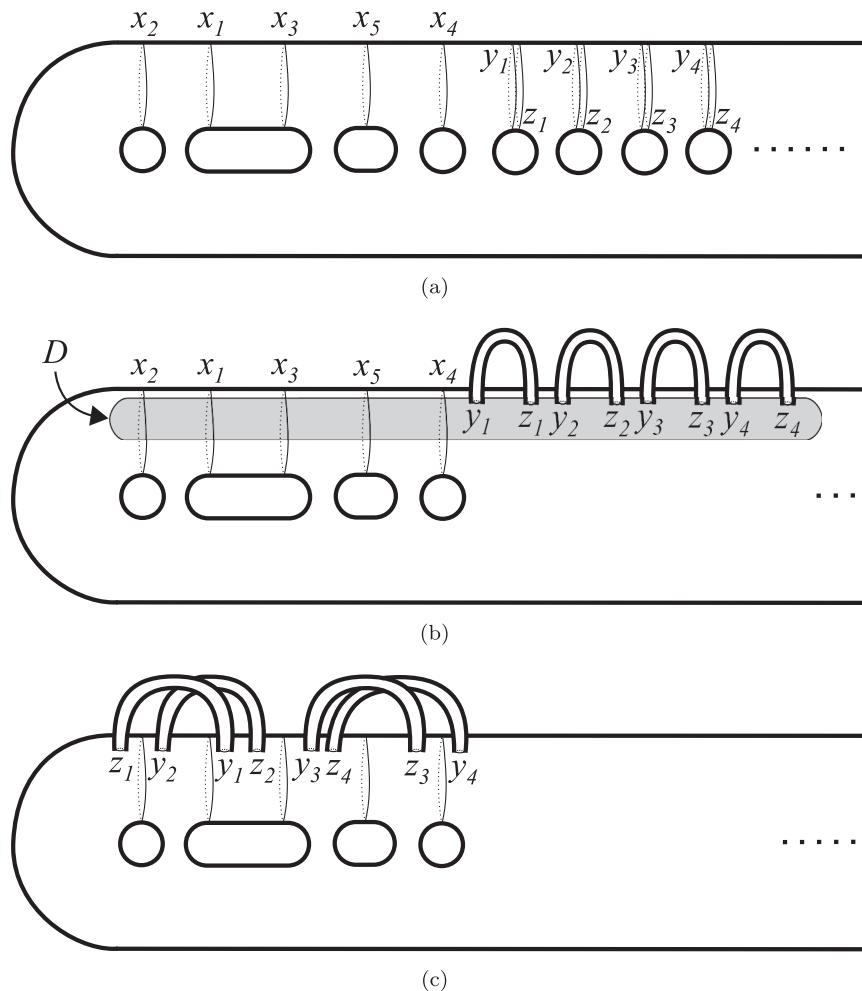


Fig. 5. The loop R in the case $n = 4$, $r = g_2g_1g_2^2g_4^{-1}g_3^{-2}$.

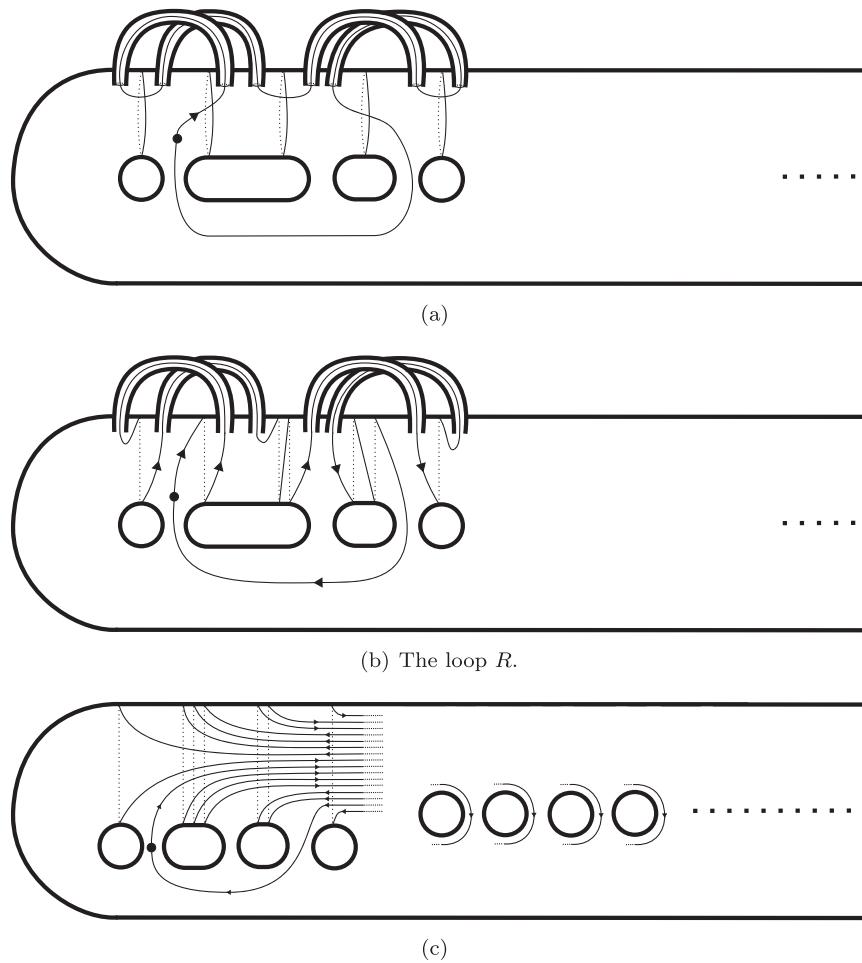
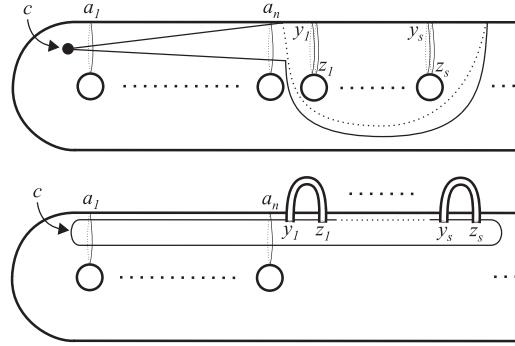


Fig. 6. The loop R in the case $n = 4$, $r = g_2g_1g_2^2g_4^{-1}g_3^{-2}$.

Fig. 7. The loop c where $s = l(r_i) - 1$.

First we deform Σ_g around $y_1, z_1, \dots, y_{l(r_i)-1}, z_{l(r_i)-1}$, similarly to the above example. Let c be a simple closed curve which is described in $\pi_1(\Sigma_g)$ as follows

$$c = (a_{n+1}b_{n+1}a_{n+1}^{-1}) \cdots (a_{n+l(r_i)-1}b_{n+l(r_i)-1}a_{n+l(r_i)-1}^{-1})b_{n+l(r_i)-1}^{-1} \cdots b_{n+1}^{-1},$$

and intersects each of a_1, \dots, a_n at two points, as shown in Fig. 7. Then let D be a subsurface whose boundary is c , and which contains y_t and z_t .

Next we deform D as follows. For $1 \leq t \leq l(r_i) - 1$, we move y_t to just right side of x_t in D , and z_t to just left side of x_{t+1} in D as shown in Fig. 5 (c). We regard that this motion does not affect on loops a_i, b_i and c_i . Hence $x_1, \dots, x_{l(r_i)}$ also do not deform, as shown in Fig. 5 (c).

After that, we define a simple closed curve as shown in Fig. 6 (a). More precisely, we construct arcs L_i and L'_i as follows. The arc L_i is in D . L_i begins from the point at the left side of x_1 on the loop c , crosses $x_1, y_1, z_1, x_2, y_2, z_2, \dots$, in this order, finally crosses $x_{l(r_i)}$, and stops at the right side of $x_{l(r_i)}$ on the loop c . Let L'_i be an arc whose base point is the end point of L_i , end point is the base point of L_i , and which does not intersect the interior of D and loops $a_1, b_1, \dots, a_n, b_n$ and c_n . Note that the surface which is obtained by removing loops $c, a_1, b_1, \dots, a_n, b_n$ and c_n from Σ_g , and which contains L'_i is a disk. Hence the arc L'_i is unique up to homotopy relative to the base point and the end point. Let $L_i \cdot L'_i$ denote the composition of L_i and L'_i .

We now define $R_i = (L_i \cdot L'_i)t_{x_1}^{-m(1)} \cdots t_{x_{l(r_i)}}^{-m(l(r_i))}$. Finally, we deform the surface so that $y_1, z_1, \dots, y_{l(r_i)-1}, z_{l(r_i)-1}$ go back to their original position.

Note that the loop R_i is described in $\pi_1(\Sigma_g)$, up to conjugation, as follows:

$$(*) \quad R_i = \left(\prod_{1 \leq t \leq m(1)} x_{i,1,t} a_{j(1)} \right) \cdots \left(\prod_{1 \leq t \leq m(l(r_i))} x_{i,l(r_i),t} a_{j(l(r_i))} \right) \tilde{L}_i,$$

where $x_{i,s,t}$ is a loop which is some products of $a_{n+1}, b_{n+1}, \dots, a_{l(r_i)-1}, b_{l(r_i)-1}$ and c_{n+1} , and \tilde{L}_i is a loop which is described in $\pi_1(\Sigma_g)$ as follows:

$$\tilde{L}_i = \begin{cases} b_{j(l(r_i))}^{-1} b_{j(l(r_i))-1}^{-1} \cdots b_{j(1)+1}^{-1} b_{j(1)}^{-1} & \text{when } j(1) \leq j(l(r_i)), \\ b_{j(l(r_i))} b_{j(l(r_i))-1} \cdots b_{j(1)} b_{j(1)-1} & \text{when } j(1) > j(l(r_i)). \end{cases}$$

We now prove Theorem 1.1.

Proof of Theorem 1.1. For $g \geq 2n + l - 1$, let V be the following

$$V = UW^{t_{a_{n+1}}} \cdots W^{t_{a_{[g/2]}}},$$

where $U = WW^{t_{b_1}} \cdots W^{t_{b_g}}$. In addition, let V' be the following

$$V' = VV^{t_{R_1}} \cdots V^{t_{R_k}},$$

where R_i is the loop constructed previously. We show that the fundamental group $\pi_1(X_{V'})$ is isomorphic to Γ .

Since each of b_1, \dots, b_g and $a_{n+1}, \dots, a_{[g/2]}$ intersects some B_i transversely at only one point, by Proposition 2.2, we have

$$\begin{aligned} \pi_1(X_V) &= \pi_1(\Sigma_g) / \langle b_1, \dots, b_g, a_{n+1}, \dots, a_{[g/2]} \rangle \\ &= \pi_1(X_U) / \langle a_{n+1}, \dots, a_{[g/2]} \rangle. \end{aligned}$$

In addition, by the presentation of (1) of Proposition 3.1, we have

$$\pi_1(X_U) = \langle a_1, \dots, a_{[g/2]} \rangle.$$

Therefore we have

$$\begin{aligned} \pi_1(X_V) &= \langle a_1, \dots, a_{[g/2]} \mid a_{n+1}, \dots, a_{[g/2]} \rangle \\ &= \langle a_1, \dots, a_n \rangle, \end{aligned}$$

Because of the presentation of $\pi_1(X_U)$ in (1) of Proposition 3.1, we assume $g \geq 2n + l - 1$ in place of $g \geq n + l - 1$.

For any $1 \leq i \leq k$, consider the vanishing cycle $((B_0)t_{a_{n+1}})t_{R_i}$ of $X_{V'}$. Note that $(B_0)t_{a_{n+1}}$ and $(a_{n+1})t_{R_i}$ are described in $\pi_1(\Sigma_g)$, up to conjugation, as follows:

- $(B_0)t_{a_{n+1}} = a_{n+1}(b_1 \cdots b_g)$,
- $(a_{n+1})t_{R_i} = a_{n+1}(zR_iz^{-1})$ for some $z \in \pi_1(\Sigma_g)$.

Then, we have that $((B_0)t_{a_{n+1}})t_{R_i}$ is described in $\pi_1(\Sigma_g)$ as follows:

$$\begin{aligned} ((B_0)t_{a_{n+1}})t_{R_i} &= (x \cdot a_{n+1}(b_1 \cdots b_n) \cdot x^{-1})t_{R_i} \\ &= (x)t_{R_i}(a_{n+1})t_{R_i}(b_1 \cdots b_n)t_{R_i}(x^{-1})t_{R_i} \\ &= (x)t_{R_i}(y \cdot a_{n+1}(zR_iz^{-1}) \cdot y^{-1})(w \cdot (B_0)t_{R_i} \cdot w^{-1})((x)t_{R_i})^{-1}, \end{aligned}$$

for some elements x, y and w in $\pi_1(\Sigma_g)$. Since $a_{n+1} = (B_0)t_{R_i} = 1$ in $\pi_1(X_V)$, we have $R_i = 1$ from $((B_0)t_{a_{n+1}})t_{R_i} = 1$, in $\pi_1(X_V)$. For a vanishing cycle c of X_V , if R_i intersects c transversely at s points, then the vanishing cycle $(c)t_{R_i}$ of X_V is described in $\pi_1(\Sigma_g)$, up to conjugation, as follows:

$$(c)t_{R_i} = x_1 R_i^{\varepsilon_1} \cdots x_s R_i^{\varepsilon_s} x_{s+1},$$

where $\varepsilon_j = \pm 1$ and x_1, \dots, x_{s+1} are elements in $\pi_1(\Sigma_g)$ such that $c = x_1 \cdots x_{s+1}$. Since $R_i = 1$ and $c = 1$ in $\pi_1(X_V)$, we can delete the relation $(c)t_{R_i} = 1$ of $\pi_1(X_V)$. We now define $\hat{r}_i = a_{j(1)}^{m(1)} \cdots a_{j(l(r_i))}^{m(l(r_i))}$ for $r_i = g_{j(1)}^{m(1)} \cdots g_{j(l(r_i))}^{m(l(r_i))}$. Since $x_{i,s,t}$ and \tilde{L}_i in the description $(*)$ of R_i are 1 in $\pi_1(X_V)$, the natural epimorphism $\pi_1(\Sigma_g) \twoheadrightarrow \pi_1(X_V)$ sends R_i to \hat{r}_i . Note that the vanishing cycles of X_V consist of c and $(c)t_{R_i}$ for all vanishing cycles c of X_V and $1 \leq i \leq k$. Therefore, we have

$$\begin{aligned} \pi_1(X_V) &= \langle a_1, \dots, a_n \mid \hat{r}_1, \dots, \hat{r}_k \rangle \\ &\cong \Gamma. \end{aligned}$$

Thus, the proof of Theorem 1.1 is completed. \square

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

4.1. Proof of (1) of Theorem 1.2. For $n \geq 2$, let B_n denote the n -strands braid group. The group B_n has a presentation with generators $\sigma_1, \dots, \sigma_{n-1}$ and with relations

- $\sigma_i \sigma_j \sigma_i^{-1} \sigma_j^{-1} = 1$, where $1 \leq i < j - 1 \leq n - 2$,
- $\sigma_i \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \sigma_i^{-1} \sigma_{i+1}^{-1} = 1$, where $1 \leq i \leq n - 2$.

Let $x = \sigma_1$ and $y = \sigma_1 \cdots \sigma_{n-1}$. Then B_n can be presented with generators x, y and with relations

- $xy^k xy^{-k} x^{-1} y^k x^{-1} y^{-k} = 1$, where $2 \leq k \leq n - 2$,
- $xyxy^{-1} xyx^{-1} y^{-1} x^{-1} yx^{-1} y^{-1} = 1$,
- $(xy)^{n-1} y^{-n} = 1$.

A correspondence between the first presentation and the second presentation is given by $\sigma_i = y^{i-1} xy^{1-i}$ for $1 \leq i \leq n - 1$. See [8] for this presentation.

We now prove (1) of Theorem 1.2.

Proof of (1) of Theorem 1.2. For $n \geq 3$, since B_n is generated by two generators x, y , we have $g(B_n) \geq 2$ from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove $g(B_n) \leq 4$ for $n \geq 3$.

Let $R_{1,k}, R_2$ and $R_{3,n}$ be simple closed curves on Σ_4 as shown in Fig. 8, where $2 \leq k \leq n - 2$. Note that $R_{1,k}, R_2$ and $R_{3,n}$ intersect B_4 transversely at only one point, for $2 \leq k \leq n - 2$. Loops $R_{1,k}, R_2$ and $R_{3,n}$ can be described in $\pi_1(\Sigma_4)$, up to conjugation, as follows

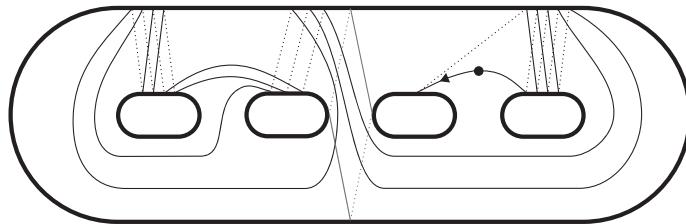
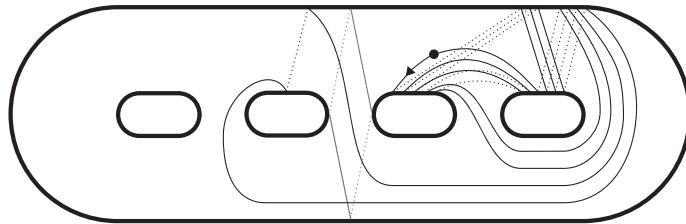
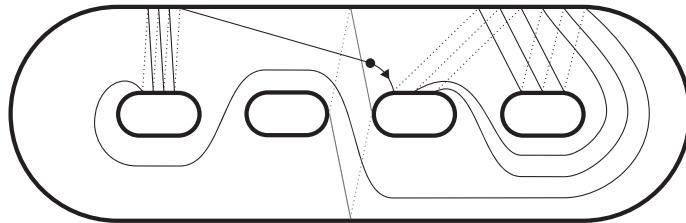
(a) The loop $R_{1,k}$ with $k = 2$.(b) The loop R_2 .(c) The loop $R_{3,n}$ with $n = 4$.

Fig. 8.

- $R_{1,k} = a_3^{-1}a_4^{-k}(b_3b_4)^{-1}a_2a_1^{-k}(b_1)a_2^{-1}(b_1b_2)^{-1}a_1^ka_2^{-1}(b_3b_4)a_4^k$, where $2 \leq k \leq n-2$,
- $R_2 = a_3^{-1}a_4^{-1}(b_4^{-1})a_3^{-1}a_4a_3^{-1}a_4^{-1}(b_2b_3b_4)^{-1}a_2^{-1}(b_3b_4)a_4a_3a_4^{-1}a_3(b_4)a_4$,
- $R_{3,n} = (a_3^{-1}a_4^{-1}(b_4^{-1}))^{n-1}(b_1b_3)^{-1}a_1^{-n}$.

Let V_1 be the following:

$$V_1 = WW^{t_{b_1}}W^{t_{b_2}}W^{t_{b_3}}W^{t_{b_4}}\left(\prod_{2 \leq k \leq n-2} W^{t_{R_{1,k}}}\right)W^{t_{R_2}}W^{t_{R_{3,n}}}.$$

Then, from Proposition 2.2 and (1) of Proposition 3.1, the fundamental group $\pi_1(X_{V_1})$ can be presented with generators a_2, a_1 and with relations

- $a_2a_1^ka_2a_1^{-k}a_2^{-1}a_1^ka_2^{-1}a_1^{-k} = 1$, where $2 \leq k \leq n-2$,
- $a_2a_1a_2a_1^{-1}a_2a_1a_2^{-1}a_1^{-1}a_2^{-1}a_1a_2^{-1}a_1^{-1} = 1$,
- $(a_2a_1)^{n-1}a_1^{-n} = 1$.

Let $a_2 = x$ and $a_1 = y$. Then it follows that $\pi_1(X_{V_1})$ is isomorphic to B_n . Therefore, for $n \geq 3$ we have $g(B_n) \leq 4$.

Thus, the proof of (1) of Theorem 1.2 is completed. \square

4.2. Proof of (2) of Theorem 1.2. For $g \geq 1$, let \mathcal{H}_g be the hyperelliptic mapping class group of Σ_g , that is, a subgroup of the mapping class group \mathcal{M}_g which consists of elements commutative with a hyperelliptic involution. It is well known that there is the natural epimorphism $B_{2g+2} \rightarrow \mathcal{H}_g$. For $g \geq 2$, Birman and Hilden [2] gave a presentation of the group \mathcal{H}_g with generators $\sigma_1, \dots, \sigma_{2g+1}$ and with relations

- $\sigma_i\sigma_j\sigma_i^{-1}\sigma_j^{-1} = 1$, where $1 \leq i < j-1 \leq 2g$,
- $\sigma_i\sigma_{i+1}\sigma_i\sigma_{i+1}^{-1}\sigma_i^{-1}\sigma_{i+1}^{-1} = 1$, where $1 \leq i \leq 2g$,
- $(\sigma_1 \cdots \sigma_{2g+1})^{2g+2} = 1$,
- $(\sigma_1 \cdots \sigma_{2g+1}\sigma_{2g+1} \cdots \sigma_1)^2 = 1$,
- $[\sigma_1 \cdots \sigma_{2g+1}\sigma_{2g+1} \cdots \sigma_1, \sigma_1] = 1$.

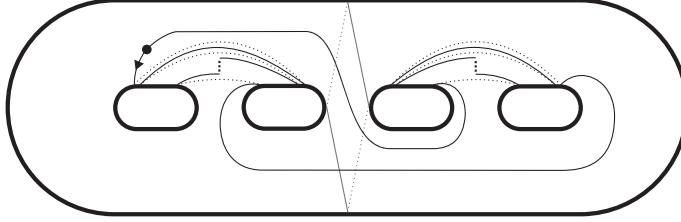
Similarly to Subsection 4.1, let $x = \sigma_1$ and $y = \sigma_1 \cdots \sigma_{2g+1}$. Then, note that $y^{2g+2} = 1$. We calculate

$$\begin{aligned} \sigma_1 \cdots \sigma_{2g+1}\sigma_{2g+1} \cdots \sigma_1 &= y(y^{2g}xy^{-2g}) \cdots (yxy^{-1})x \\ &= y^{2g+1}(xy^{-1})^{2g}x \\ &= y^{-1}(xy^{-1})^{2g}x \\ &= (y^{-1}x)^{2g+1}. \end{aligned}$$

Then we have $(\sigma_1 \cdots \sigma_{2g+1}\sigma_{2g+1} \cdots \sigma_1)^2 = (y^{-1}x)^{4g+2}$. In addition, we have

$$\begin{aligned} [\sigma_1 \cdots \sigma_{2g+1}\sigma_{2g+1} \cdots \sigma_1, \sigma_1] &= (y^{-1}x)^{2g+1}x(x^{-1}y)^{2g+1}x^{-1} \\ &= (y^{-1}x)^{2g+1}(yx^{-1})^{2g+1}. \end{aligned}$$

Therefore, \mathcal{H}_g can be presented with generators x, y and with relations

Fig. 9. The loop R_6 .

- $xy^kxy^{-k}x^{-1}y^kx^{-1}y^{-k} = 1$, where $2 \leq k \leq 2g$,
- $xyxy^{-1}xyx^{-1}y^{-1}x^{-1}yx^{-1}y^{-1} = 1$,
- $(xy)^{2g+1}y^{-2g-2} = 1$,
- $y^{2g+2} = 1$,
- $(y^{-1}x)^{4g+2} = 1$,
- $(y^{-1}x)^{2g+1}(yx^{-1})^{2g+1} = 1$.

We now prove (2) of Theorem 1.2.

Proof of (2) of Theorem 1.2. For $g \geq 2$, since \mathcal{H}_g is generated by two generators x, y , we have $g(\mathcal{H}_g) \geq 2$ from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove $g(\mathcal{H}_g) \leq 4$ for $g \geq 2$.

Let R_4 , R_5 and R_6 be simple closed curves on Σ_4 described in $\pi_1(\Sigma_4)$, up to conjugation, as follows

- $R_4 = a_1^{2g+2}(b_1^{-1})$,
- $R_5 = (a_1^{-1}a_2)^{4g+2}(b_1^{-1})$,
- $R_6 = (a_1^{-1}a_2)^{2g+1}(b_2b_3b_4)(a_4^{-1}a_3)^{2g+1}(b_3^{-1})$.

For the loop R_6 , see Fig. 9. Note that R_4 , R_5 and R_6 intersect B_2 , B_1 and B_4 transversely at only one point, respectively. Let V_2 be the following:

$$V_2 = WW^{t_{b_1}}W^{t_{b_2}}W^{t_{b_3}}W^{t_{b_4}} \left(\prod_{2 \leq k \leq 2g} W^{t_{R_{1,k}}} \right) W^{t_{R_2}}W^{t_{R_{3,2g+2}}}W^{t_{R_4}}W^{t_{R_5}}W^{t_{R_6}}.$$

Then, from Proposition 2.2 and (1) of Proposition 3.1, the fundamental group $\pi_1(X_{V_2})$ can be presented with generators a_2, a_1 and with relations

- $a_2a_1^k a_2 a_1^{-k} a_2^{-1} a_1^k a_2^{-1} a_1^{-k} = 1$, where $2 \leq k \leq 2g$,
- $a_2a_1a_2a_1^{-1}a_2a_1a_2^{-1}a_1^{-1}a_2^{-1}a_1a_2^{-1}a_1^{-1} = 1$,
- $(a_2a_1)^{2g+1}a_1^{-2g-2} = 1$,
- $a_1^{2g+2} = 1$,
- $(a_1^{-1}a_2)^{4g+2} = 1$,
- $(a_1^{-1}a_2)^{2g+1}(a_1a_2^{-1})^{2g+1} = 1$.

Let $a_2 = x$ and $a_1 = y$. Then it follows that $\pi_1(X_{V_2})$ is isomorphic to \mathcal{H}_g . Therefore, for $g \geq 2$ we have $g(\mathcal{H}_g) \leq 4$. In particular, since the group \mathcal{H}_1 is isomorphic to \mathcal{M}_1 ,

we have $2 \leq g(\mathcal{H}_1) \leq 4$ from (3) of Theorem 2.3 (cf. [8]).

Thus, the proof of (2) of Theorem 1.2 is completed. \square

4.3. Proof of (3) of Theorem 1.2. For $n \geq 3$, let $\mathcal{M}_{0,n}$ denote the mapping class group of an n -punctured sphere, that is, the group of isotopy classes of orientation-preserving diffeomorphisms $S^2 \setminus \{p_1, \dots, p_n\} \rightarrow S^2 \setminus \{p_1, \dots, p_n\}$. Magnus [9] gave a presentation of the group $\mathcal{M}_{0,n}$ with generators $\sigma_1, \dots, \sigma_{n-1}$ and with relations

- $\sigma_i \sigma_j \sigma_i^{-1} \sigma_j^{-1} = 1$, where $1 \leq i < j - 1 \leq n - 2$,
- $\sigma_i \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \sigma_i^{-1} \sigma_{i+1}^{-1} = 1$, where $1 \leq i \leq n - 2$,
- $(\sigma_1 \cdots \sigma_{n-1})^n = 1$,
- $\sigma_1 \cdots \sigma_{n-1} \sigma_{n-1} \cdots \sigma_1 = 1$.

Similarly to Subsection 4.1 and 4.2, let $x = \sigma_1$ and $y = \sigma_1 \cdots \sigma_{n-1}$. Then $\mathcal{M}_{0,n}$ can be presented with generators x, y and with relations

- $xy^k xy^{-k} x^{-1} y^k x^{-1} y^{-k} = 1$, where $2 \leq k \leq n - 2$,
- $xyxy^{-1} xyx^{-1} y^{-1} x^{-1} yx^{-1} y^{-1} = 1$,
- $(xy)^{n-1} y^{-n} = 1$,
- $y^n = 1$,
- $(y^{-1} x)^{n-1} = 1$.

We now prove (3) of Theorem 1.2.

Proof of (3) of Theorem 1.2. For $n \geq 3$, since $\mathcal{M}_{0,n}$ is generated by two generators x, y , we have $g(\mathcal{M}_{0,n}) \geq 2$ from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove $g(\mathcal{M}_{0,n}) \leq 4$ for $n \geq 3$.

Let R_7 and R_8 be simple closed curves on Σ_4 described in $\pi_1(\Sigma_4)$, up to conjugation, as follows

- $R_7 = a_1^n (b_1^{-1})$,
- $R_8 = (a_1^{-1} a_2)^{n-1} (b_1^{-1})$.

Note that R_7 and R_8 intersect B_2 and B_1 transversely at only one point, respectively. Let V_3 be the following:

$$V_3 = V_1 W^{t_{R_7}} W^{t_{R_8}}.$$

Then, from Proposition 2.2 and (1) of Proposition 3.1, the fundamental group $\pi_1(X_{V_3})$ can be presented with generators a_2, a_1 and with relations

- $a_2 a_1^k a_2 a_1^{-k} a_2^{-1} a_1^k a_2^{-1} a_1^{-k} = 1$, where $2 \leq k \leq n - 2$,
- $a_2 a_1 a_2 a_1^{-1} a_2 a_1 a_2^{-1} a_1^{-1} a_2^{-1} a_1 a_2^{-1} a_1^{-1} = 1$,
- $(a_2 a_1)^{n-1} a_1^{-n} = 1$,
- $a_1^n = 1$,
- $(a_1^{-1} a_2)^{n-1} = 1$.

Let $a_2 = x$ and $a_1 = y$. Then it follows that $\pi_1(X_{V_3})$ is isomorphic to $\mathcal{M}_{0,n}$. Therefore, for $n \geq 3$ we have $g(\mathcal{M}_{0,n}) \leq 4$.

Thus, the proof of (3) of Theorem 1.2 is completed. \square

4.4. Proof of (4) of Theorem 1.2. For $n \geq 3$, let S_n denote the n -symmetric group. It is well known that the group S_n has a presentation with generators $\sigma_1, \dots, \sigma_{n-1}$ and with relations

- $\sigma_i \sigma_j \sigma_i^{-1} \sigma_j^{-1} = 1$, where $1 \leq i < j - 1 \leq n - 2$,
- $\sigma_i \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \sigma_i^{-1} \sigma_{i+1}^{-1} = 1$, where $1 \leq i \leq n - 2$,
- $\sigma_i^2 = 1$, where $1 \leq i \leq n - 1$.

Similarly to Subsection 4.1, let $x = \sigma_1$ and $y = \sigma_1 \cdots \sigma_{n-1}$. Since $\sigma_i = y^{i-1} x y^{1-i}$, $\sigma_i^2 = 1$ if and only if $x^2 = 1$. Therefore S_n can be presented with generators x, y and with relations

- $xy^k xy^{-k} x^{-1} y^k x^{-1} y^{-k} = 1$, where $2 \leq k \leq n - 2$,
- $xyxy^{-1} yxyx^{-1} y^{-1} x^{-1} yx^{-1} y^{-1} = 1$,
- $(xy)^{n-1} y^{-n} = 1$,
- $x^2 = 1$.

We now prove (4) of Theorem 1.2.

Proof of (4) of Theorem 1.2. For $n \geq 3$, since S_n is generated by two generators x, y , we have $g(S_n) \geq 2$ from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove $g(S_n) \leq 4$ for $n \geq 3$.

Let R_9 be the simple closed curve on Σ_4 described in $\pi_1(\Sigma_4)$, up to conjugation, as follows

- $R_9 = a_2^2(b_2^{-1})$.

Note that R_9 intersects B_4 transversely at only one point. Let V_4 be the following:

$$V_4 = V_1 W^{t_{R_9}}.$$

Then, from Proposition 2.2 and (1) of Proposition 3.1, the fundamental group $\pi_1(X_{V_4})$ can be presented with generators a_2, a_1 and with relations

- $a_2 a_1^k a_2 a_1^{-k} a_2^{-1} a_1^k a_2^{-1} a_1^{-k} = 1$, where $2 \leq k \leq n - 2$,
- $a_2 a_1 a_2 a_1^{-1} a_2 a_1 a_2^{-1} a_1^{-1} a_2^{-1} a_1 a_2^{-1} a_1^{-1} = 1$,
- $(a_2 a_1)^{n-1} a_1^{-n} = 1$,
- $a_2^2 = 1$.

Let $a_2 = x$ and $a_1 = y$. Then it follows that $\pi_1(X_{V_4})$ is isomorphic to S_n . Therefore, for $n \geq 3$ we have $g(S_n) \leq 4$.

Thus, the proof of (4) of Theorem 1.2 is completed. □

4.5. Proof of (5) of Theorem 1.2. The Artin group is introduced by [3]. For $n \geq 6$, the n -Artin group \mathcal{A}_n associated to the Dynkin diagram shown in Fig. 1 is defined by a presentation with generators $\sigma_1, \dots, \sigma_{n-1}, \tau$ and with relations

- $\sigma_i \sigma_j \sigma_i^{-1} \sigma_j^{-1} = 1$, where $1 \leq i < j - 1 \leq n - 2$,
- $\sigma_i \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \sigma_i^{-1} \sigma_{i+1}^{-1} = 1$, where $1 \leq i \leq n - 2$,
- $\sigma_4 \tau \sigma_4 \tau^{-1} \sigma_4^{-1} \tau^{-1} = 1$,
- $\tau \sigma_i \tau^{-1} \sigma_i^{-1} = 1$, where $1 \leq i \leq n - 1$ with $i \neq 4$.

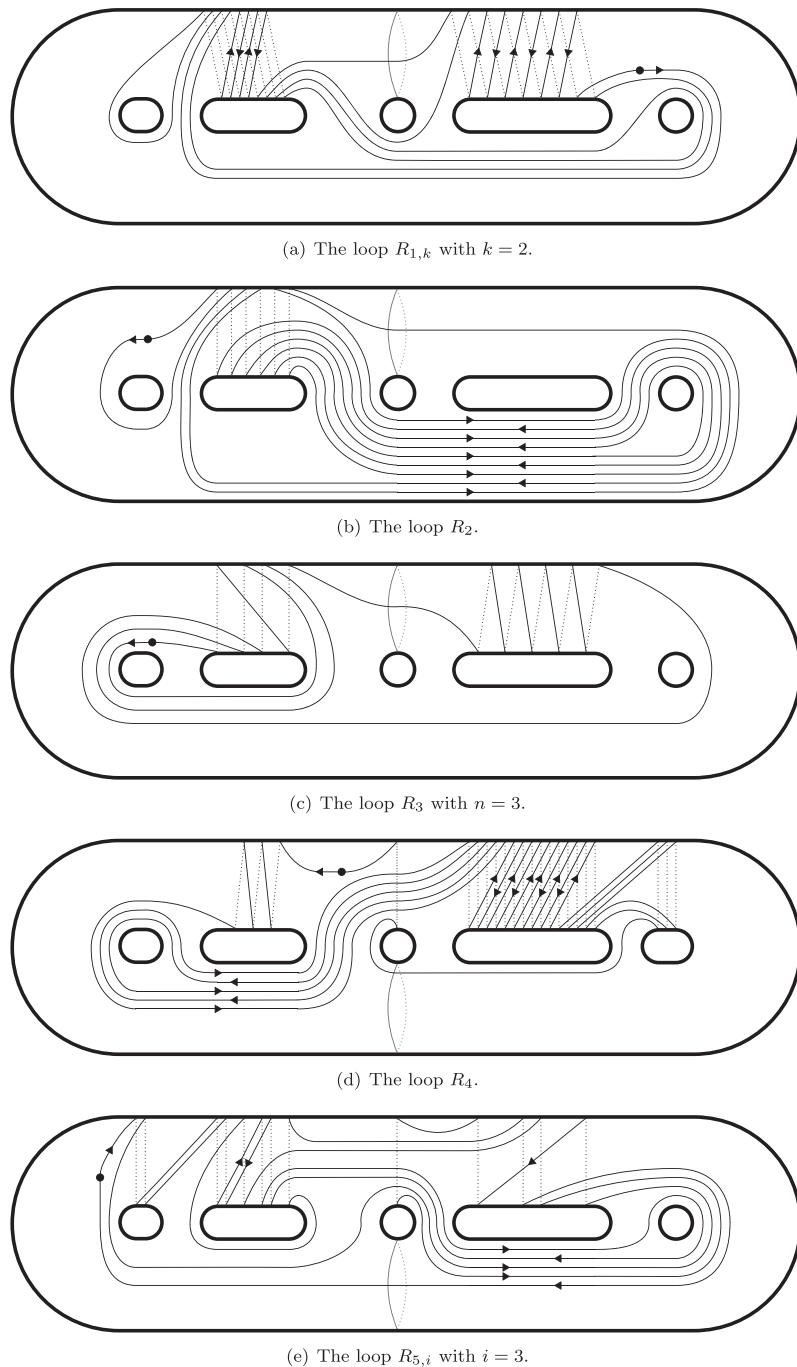


Fig. 10.

It is known that there is the natural epimorphism $\mathcal{A}_{2g+1} \twoheadrightarrow \mathcal{M}_g$. Similarly to Subsection 4.1, let $x = \sigma_1$ and $y = \sigma_1 \cdots \sigma_{n-1}$. In addition, let $z = \tau$. Then the group \mathcal{A}_n can be presented with generators x, y, z and with relations

- $xy^kxy^{-k}x^{-1}y^kx^{-1}y^{-k} = 1$, where $2 \leq k \leq n-2$,
- $xyxy^{-1}xyx^{-1}y^{-1}x^{-1}yx^{-1}y^{-1} = 1$,
- $(xy)^{n-1}y^{-n} = 1$,
- $(y^3xy^{-3})z(y^3xy^{-3})z^{-1}(y^3x^{-1}y^{-3})z^{-1} = 1$,
- $z(y^{i-1}xy^{1-i})z^{-1}(y^{i-1}x^{-1}y^{1-i}) = 1$, where $1 \leq i \leq n-1$ with $i \neq 4$.

We now prove (5) of Theorem 1.2.

Proof of (5) of Theorem 1.2. Since \mathcal{A}_n is generated by three generators x, y and z , we have $g(\mathcal{A}_n) \geq 2$ from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove $g(\mathcal{A}_n) \leq 5$.

Let $R_{1,k}, R_2, R_3, R_4$ and $R_{5,i}$ be simple closed curves on Σ_5 as shown in Fig. 10, where $2 \leq k \leq n-2$ and $2 \leq i \leq n-1$ with $i \neq 4$. Note that we can not consider the loop $R_{5,1}$. Note that $R_{1,k}, R_2$ and R_3 intersect a transversely at only one point, for $2 \leq k \leq n-2$, and that R_4 and $R_{5,i}$ intersect b transversely at only one point, for $2 \leq i \leq n-1$ with $i \neq 4$. Loops $R_{1,k}, R_2, R_3, R_4$ and $R_{5,i}$ can be described in $\pi_1(\Sigma_5)$, up to conjugation, as follows

- $R_{1,k} = b_5^{-1}(b_2b_3b_4)^{-1}a_2^k(b_3b_4)b_5^{-1}(b_3b_4)^{-1}a_2^{-k}(b_2b_3b_4)b_5a_4^{-2k}(b_3^{-1})a_2^{-k}b_1^{-1}a_2^k a_4^{2k}$, where $2 \leq k \leq n-2$,
- $R_2 = b_1a_2(b_3b_4)b_5^{-1}(b_3b_4)^{-1}a_2^{-1}(b_3b_4)b_5^{-1}(b_2b_3b_4)^{-1}a_2(b_3b_4)b_5(b_3b_4)^{-1}a_2^{-1}(b_2b_3b_4) \times b_5a_2(b_3b_4)b_5(b_3b_4)^{-1}a_2^{-1}$,
- $R_3 = (b_1(b_2)a_2)^{n-1}(b_1(b_2b_3b_4)b_5)a_4^{n+2}a_2^2$,
- $R_4 = a_2^3b_1(b_2)a_3^3a_5^{-1}a_4^{-3}(b_2^{-1})b_1(b_2)a_3^3a_5a_4^{-3}(b_2^{-1})b_1^{-1}(b_2)a_4^3a_5(a_3b_3b_4)^{-1}$,
- $R_{5,i} = a_1a_2^{i-1}(b_4)b_5^{-1}(b_4)a_2^{1-i}a_1^{-1}(b_1(b_2b_4)b_5)a_4^{1-i}(a_3b_4)b_5(a_4^{2-i}a_2^{2-i}(b_2))a_2^{-1}a_4^{i-2} \times (b_1(b_2b_3b_4)b_5)^{-1}$, where $2 \leq i \leq n-1$ with $i \neq 4$.

Let V_5 be the following:

$$V_5 = WW^{t_{b_2}}W^{t_{b_3}}W^{t_{b_4}}\left(\prod_{2 \leq k \leq n-2} W^{t_{R_{1,k}}}\right)W^{t_{R_2}}W^{t_{R_3}}W^{t_{R_4}}\left(\prod_{2 \leq i \leq n-1, i \neq 4} W^{t_{R_{5,i}}}\right).$$

Then, from Proposition 2.2 and (2) of Proposition 3.1, the fundamental group $\pi_1(X_{V_5})$ can be presented with generators b_1, a_2, a_1 and with relations

- $b_1a_2^k b_1 a_2^{-k} b_1^{-1} a_2^k b_1^{-1} a_2^{-k} = 1$, where $2 \leq k \leq n-2$,
- $b_1a_2b_1a_2^{-1}b_1a_2b_1^{-1}a_2^{-1}b_1^{-1}a_2b_1^{-1}a_2^{-1} = 1$,
- $(b_1a_2)^{n-1}a_2^{-n} = 1$,
- $(a_2^3b_1a_2^{-3})a_1(a_2^3b_1a_2^{-3})a_1^{-1}(a_2^3b_1^{-1}a_2^{-3})a_1^{-1} = 1$,
- $a_1(a_2^{i-1}b_1a_2^{1-i})a_1^{-1}(a_2^{i-1}b_1^{-1}a_2^{1-i}) = 1$, where $2 \leq i \leq n-1$ with $i \neq 4$,
- $a_1b_1a_1^{-1}b_1^{-1}$.

Let $b_1 = x, a_2 = y$ and $a_1 = z$. Then $\pi_1(X_{V_5})$ is isomorphic to \mathcal{A}_n . Therefore, for $n \geq 6$ we have $g(\mathcal{A}_n) \leq 5$.

Thus, the proof of (5) of Theorem 1.2 is completed. \square

4.6. Proof of (6) of Theorem 1.2.

Proof of (6) of Theorem 1.2. Let $n, k \geq 0$ be integers with $n + k \geq 3$.

At first, we consider the case $n + k$ is even. We put $n + k = 2r$. Let $A_{i,j}$ and $B_{i,j}$ be simple closed curves on Σ_{n+k+1} as shown in (a) and (b) of Fig. 11, respectively, where $1 \leq i < j \leq r$, and let $C_{i,j}$ be the simple closed curve on Σ_{n+k+1} as shown in (c), (d) and (e) of Fig. 11, where $1 \leq i, j \leq r$. Note that each of $A_{i,j}$, $B_{i,j}$ and $C_{i,j}$ intersects a_{r+1} transversely at only one point. Loops $A_{i,j}$, $B_{i,j}$ and $C_{i,j}$ can be described in $\pi_1(\Sigma_{n+k+1})$, up to conjugation, as follows

- $A_{i,j} = a_i a_j^{-1} a_{2r-i+2} a_{2r-j+2}^{-1} (c_{r+1}^{-1} b_{r+1}^{-1})$, where $1 \leq i < j \leq r$,
- $B_{i,j} = b_i b_j b_i^{-1} a_{2r-j+2} b_{2r-j+2} a_{2r-j+2}^{-1} (b_{r+1}^{-1} c_r)$, where $1 \leq i < j \leq r$,
- $C_{i,j} = a_i b_j^{-1} a_i^{-1} a_{2r-j+2} b_{2r-j+2}^{-1} a_{2r-j+2}^{-1} (a_{r+1} b_{r+1}^{-1})$, where $1 \leq i, j \leq r$ and $i \neq j$,
- $C_{i,i} = b_i^{-1} a_i b_i a_i^{-1} (b_{r+1}^{-1})$, where $1 \leq i \leq r$.

Let V_6 be the following:

$$V_6 = W \left(\prod_{1 \leq i < j \leq r} W^{t_{A_{i,j}}} \right) \left(\prod_{1 \leq i < j \leq r} W^{t_{B_{i,j}}} \right) \left(\prod_{1 \leq i, j \leq r} W^{t_{C_{i,j}}} \right).$$

Note that we have relations $a_{r+1} = 1$, $b_{r+1} = 1$, $c_r = 1$ and $c_{r+1} = 1$ in $\pi_1(X_W)$. In addition, we have the relation $a_{2r-j+2} b_{2r-j+2} a_{2r-j+2}^{-1} = b_j^{-1}$ in $\pi_1(X_W)$ (see the presentation of $\pi_1(X_W)$ in the proof of Proposition 3.1). Then, from Proposition 2.2, the fundamental group $\pi_1(X_{V_6})$ can be presented with generators $a_1, b_1, \dots, a_r, b_r$ and with relations

- $a_i a_j^{-1} a_i^{-1} a_j$, where $1 \leq i < j \leq r$,
- $b_i b_j b_i^{-1} b_j^{-1}$, where $1 \leq i < j \leq r$,
- $a_i b_j^{-1} a_i^{-1} b_j$, where $1 \leq i, j \leq r$ and $i \neq j$,
- $b_i^{-1} a_i b_i a_i^{-1}$, where $1 \leq i \leq r$.

Namely, $\pi_1(X_{V_6})$ is isomorphic to \mathbb{Z}^{2r} . We next consider the simple closed curve $R_i^{m_i}$ on Σ_{n+k+1} as shown in Fig. 12, where $1 \leq i \leq 2r$ and $m_i \geq 2$. Note that $R_i^{m_i}$ intersects a_{r+1} transversely at only one point. Loops $R_i^{m_i}$ can be described in $\pi_1(\Sigma_{n+k+1})$, up to conjugation, as follows

- $R_i^{m_i} = a_i^{m_i} (a_{2r-i+2} b_{2r-i+2}^{-1} a_{2r-i+2}^{-1} a_{r+1} b_{r+1}^{-1} b_i^{-1})$, where $1 \leq i \leq r$,
- $R_{r+i}^{m_{r+i}} = b_i^{m_{r+i}} (a_i^{-1} a_{2r-i+2}^{-1} a_{r+1} b_{r+1}^{-1})$, where $1 \leq i \leq r$.

Let V_7 be the following:

$$V_7 = V_6 \left(\prod_{1 \leq i \leq k} W^{t_{R_i^{m_i}}} \right).$$

Then, from Proposition 2.2, the fundamental group $\pi_1(X_{V_7})$ is isomorphic to $\mathbb{Z}^n \oplus \mathbb{Z}_{m_1} \oplus \dots \oplus \mathbb{Z}_{m_k}$. Therefore, if $n + k$ is even, we have $g(\mathbb{Z}^n \oplus \mathbb{Z}_{m_1} \oplus \dots \oplus \mathbb{Z}_{m_k}) \leq n + k + 1$.

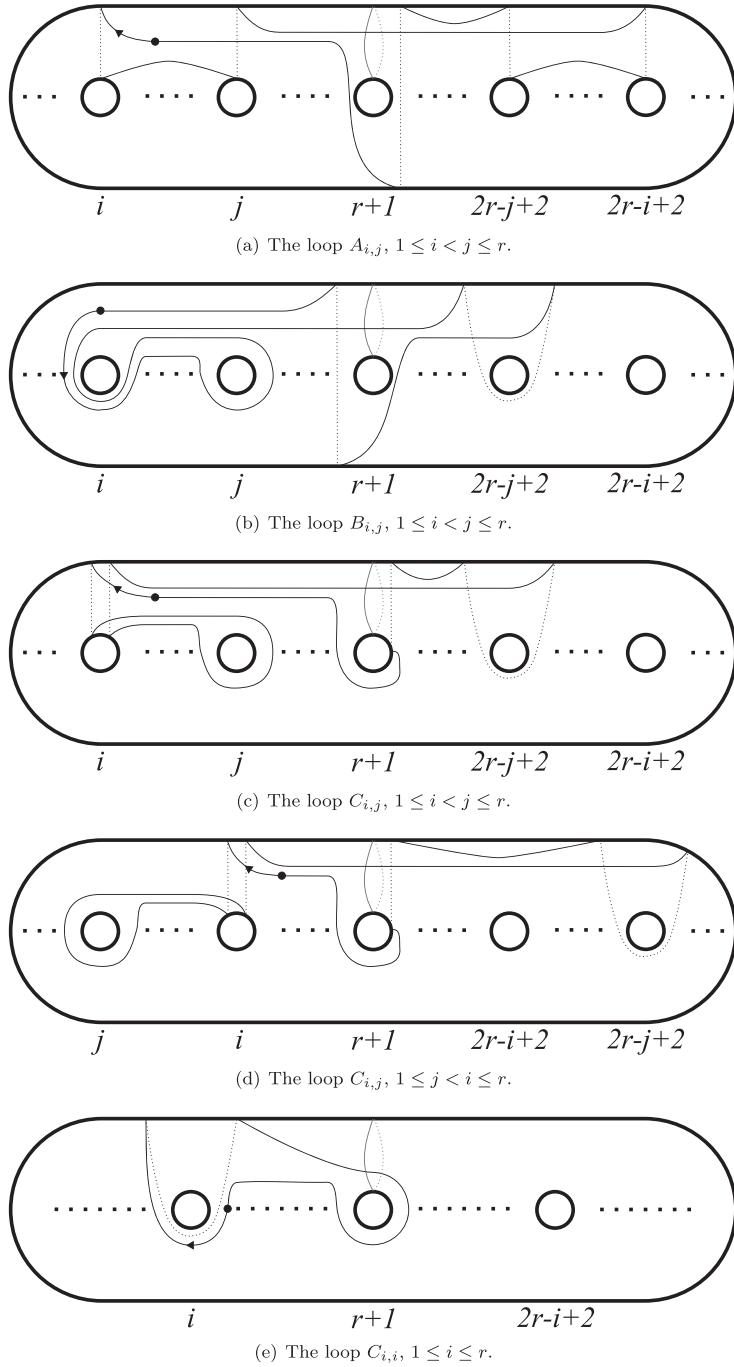


Fig. 11.

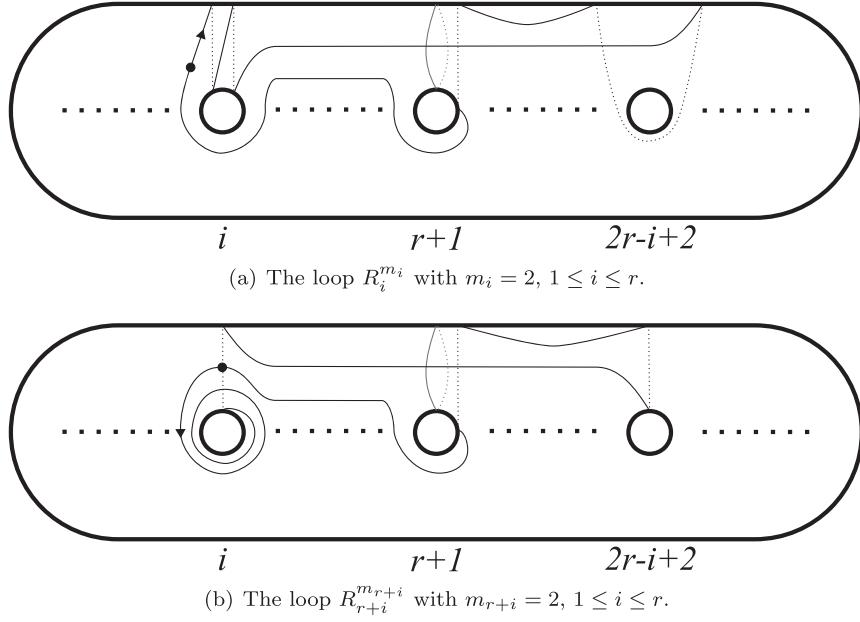


Fig. 12.

Next, we consider the case $n+k$ is odd. We put $n+k = 2r+1$. Let $A_{i,j}$ and $B_{i,j}$ be simple closed curves on Σ_{n+k+1} as shown in (a) and (b) of Fig. 13, respectively, where $1 \leq i < j \leq r$, and let $C_{i,j}$ be the simple closed curve on Σ_{n+k+1} as shown in (c), (d) and (e) of Fig. 13, where $1 \leq i, j \leq r$. In addition, let $A_{i,r+1}$ and $C_{r+1,i}$ be simple closed curves on Σ_{n+k+1} as shown in (a) and (b) of Fig. 14, where $1 \leq i \leq r$. Note that each of $A_{i,j}$, $B_{i,j}$ and $C_{i,j}$ intersects B_{2r+2} transversely at only one point. Loops $A_{i,j}$, $B_{i,j}$ and $C_{i,j}$ can be described in $\pi_1(\Sigma_{n+k+1})$, up to conjugation, as follows

- $A_{i,j} = a_i a_j^{-1} a_{2r-i+3} a_{2r-j+3}^{-1} (c_{r+1}^{-1} b_{r+1}^{-1})$, where $1 \leq i < j \leq r$,
- $A_{i,r+1} = a_i a_{r+1}^{-1} (b_{r+2}) a_{2r-i+3} (c_{r+2}) a_{r+1}$, where $1 \leq i \leq r$,
- $B_{i,j} = b_i b_j b_i^{-1} (b_{r+2}) a_{2r-j+3} b_{2r-j+3} a_{2r-j+3}^{-1} (b_{r+2}^{-1} b_{r+1} c_{r+1})$, where $1 \leq i < j \leq r$,
- $C_{i,j} = a_i b_j a_i^{-1} (b_{r+2}) a_{2r-j+3} b_{2r-j+3} a_{2r-j+3}^{-1} (b_{r+2}^{-1} b_{r+1} c_{r+1})$, where $1 \leq i, j \leq r$ and $i \neq j$,
- $C_{i,i} = b_i^{-1} a_i b_i a_i^{-1} (b_{r+1}^{-1})$, where $1 \leq i \leq r$,
- $C_{r+1,i} = a_{r+1} b_i a_{r+1}^{-1} (b_{r+2}) a_{2r-i+3} b_{2r-i+3} a_{2r-i+3}^{-1} (c_{r+2})$, where $1 \leq i \leq r$.

Let V_8 be the following:

$$V_8 = WW^{t_{b_{r+1}}}\left(\prod_{1 \leq i < j \leq r+1} W^{t_{A_{i,j}}}\right)\left(\prod_{1 \leq i < j \leq r} W^{t_{B_{i,j}}}\right)\left(\prod_{1 \leq i \leq r+1, 1 \leq j \leq r} W^{t_{C_{i,j}}}\right).$$

Since b_{r+1} intersects B_{2r+2} transversely at only one point, we have the relation $b_{r+1} = 1$

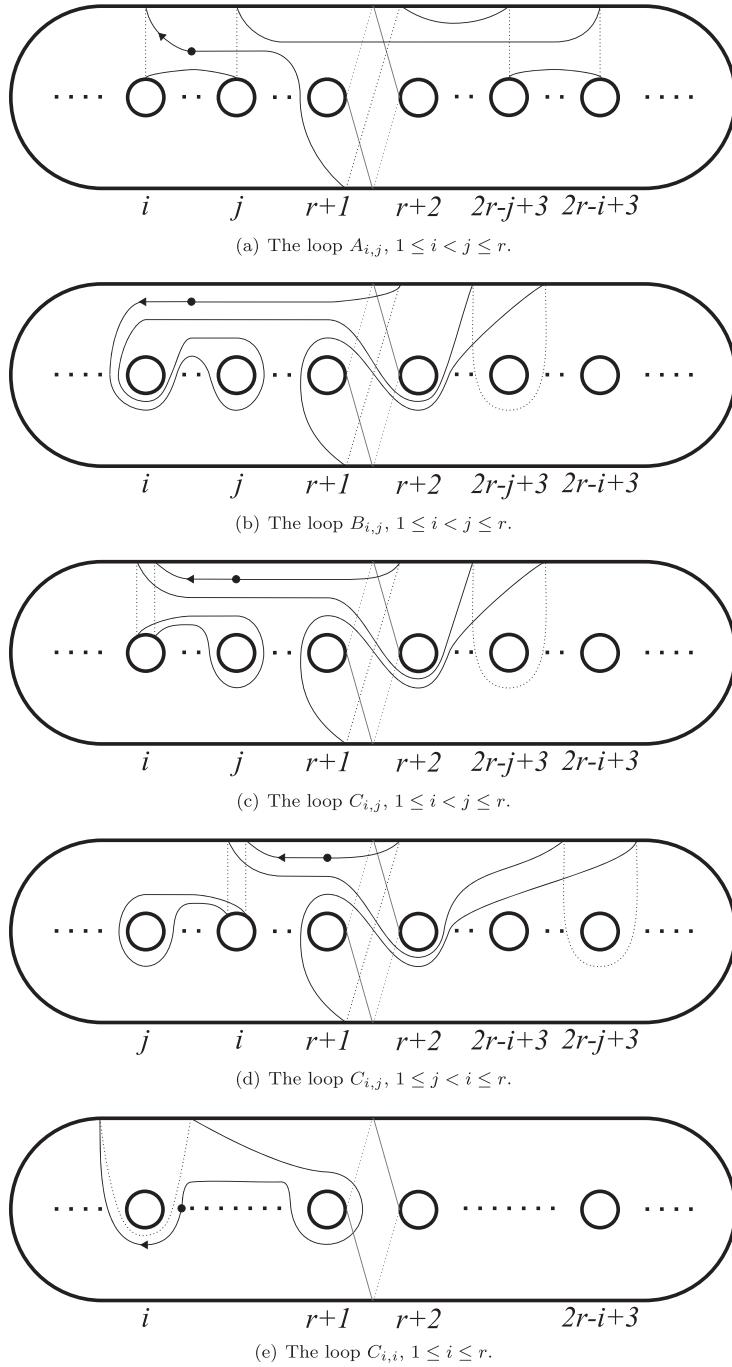


Fig. 13.

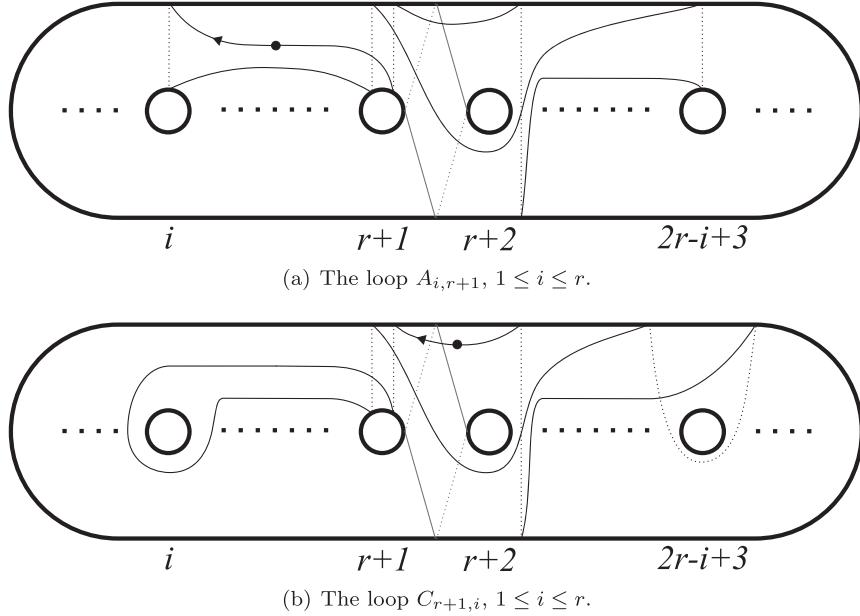


Fig. 14.

in $\pi_1(X_{WW^{b_{r+1}}})$ from Proposition 2.2. Hence we have relations $b_{r+2} = 1$ and $c_{r+2} = 1$ in $\pi_1(X_{WW^{b_{r+1}}})$. Then, from Proposition 2.2 and the presentation of $\pi_1(X_W)$ in the proof of Proposition 3.1, the fundamental group $\pi_1(X_{V_8})$ is isomorphic to an abelian generated by $a_1, b_1, \dots, a_r, b_r$ and a_{r+1} . We next consider the simple closed curve $R_i^{m_i}$ on Σ_{n+k+1} as shown in Fig. 15, where $1 \leq i \leq 2r+1$ and $m_i \geq 2$. Note that $R_i^{m_i}$ intersects B_{2r+2} transversely at only one point. Loops $R_i^{m_i}$ can be described in $\pi_1(\Sigma_{n+k+1})$, up to conjugation, as follows

- $R_i^{m_i} = a_i^{m_i} (a_{2r-i+3} b_{2r-i+3}^{-1} a_{2r-i+3}^{-1} c_{r+1}^{-1} b_{r+1}^{-1} b_i^{-1})$, where $1 \leq i \leq r$,
- $R_{r+i}^{m_{r+i}} = b_i^{m_{r+i}} (a_i^{-1} a_{2r-i+3}^{-1} c_{r+1}^{-1} b_{r+1}^{-1})$, where $1 \leq i \leq r$,
- $R_{2r+1}^{m_{2r+1}} = a_{r+1}^{m_{2r+1}} (b_{r+1}^{-1})$.

Let V_9 be the following:

$$V_9 = V_8 \left(\prod_{1 \leq i \leq k} W^{t_{R_i^{m_i}}} \right).$$

Then, from Proposition 2.2, the fundamental group $\pi_1(X_{V_9})$ is isomorphic to $\mathbb{Z}^n \oplus \mathbb{Z}_{m_1} \oplus \dots \oplus \mathbb{Z}_{m_k}$. Therefore, if $n+k$ is odd, we have $g(\mathbb{Z}^n \oplus \mathbb{Z}_{m_1} \oplus \dots \oplus \mathbb{Z}_{m_k}) \leq n+k+1$.

Moreover, it is immediately follows from Theorem 2.3 (2) or (5) (cf. [8]) that $g(\mathbb{Z}^n \oplus \mathbb{Z}_{m_1} \oplus \dots \oplus \mathbb{Z}_{m_k}) \geq (n+k+1)/2$. Thus, the proof of (6) of Theorem 1.2 is completed. \square

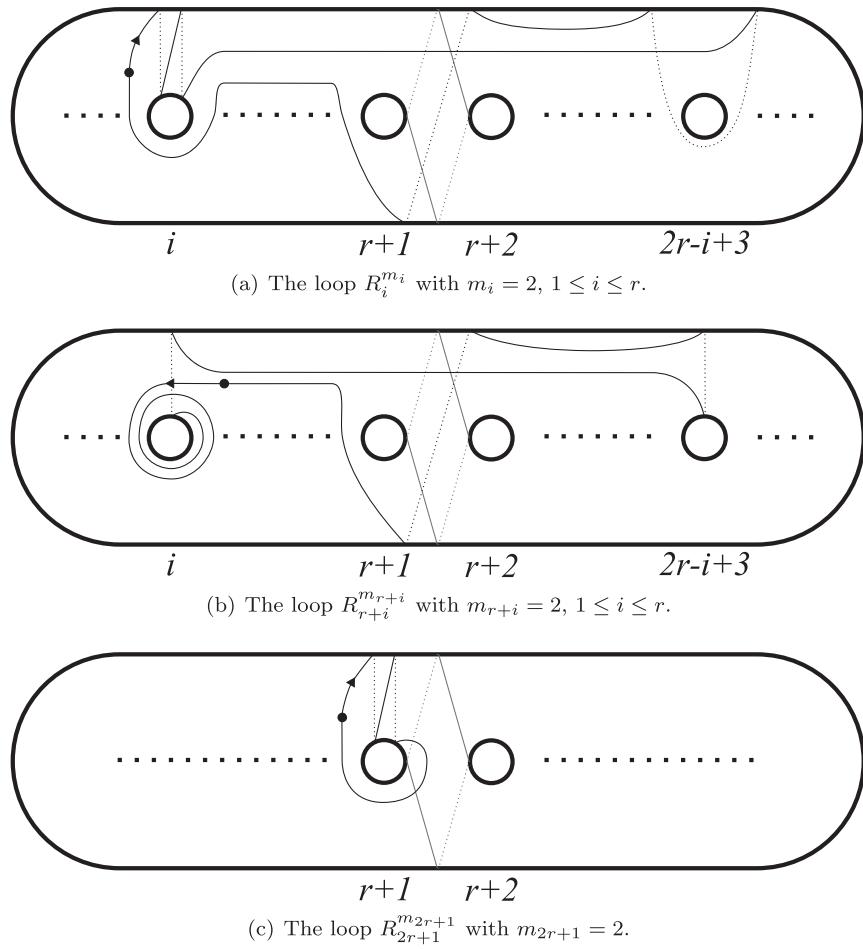


Fig. 15.

ACKNOWLEDGEMENT. The author would like to express thanks to Susumu Hirose and Naoyuki Monden for their valuable suggestions and useful comments.

References

- [1] J. Amorós, F. Bogomolov, L. Katzarkov, T. Pantev: *Symplectic Lefschetz fibrations with arbitrary fundamental groups*, J. Differential Geom. **54** (2000), 489–545.
- [2] J.S. Birman and H.M. Hilden: *On the mapping class groups of closed surfaces as covering spaces*; in Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of Math. Studies **66**, Princeton Univ. Press, Princeton, NJ, 1971, 81–115.
- [3] E. Brieskorn: *Die Fundamentalgruppe des Raumes der regulären Orbiten einer endlichen komplexen Spiegelungsgruppe*, Invent. Math. **12** (1971), 57–61.
- [4] S.K. Donaldson: *Lefschetz fibrations in symplectic geometry*, Doc. Math. **1998**, 309–314.
- [5] R.E. Gompf: *A new construction of symplectic manifolds*, Ann. of Math. (2) **142** (1995), 527–595.
- [6] R.E. Gompf and A.I. Stipsicz: 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics **20**, Amer. Math. Soc., Providence, RI, 1999.
- [7] M. Korkmaz: *Noncomplex smooth 4-manifolds with Lefschetz fibrations*, Internat. Math. Res. Notices (2001), 115–128.
- [8] M. Korkmaz: *Lefschetz fibrations and an invariant of finitely presented groups*, Internat. Math. Res. Notices (2009), 1547–1572.
- [9] W. Magnus: *Über Automorphismen von Fundamentalgruppen berandeter Flächen*, Math. Ann. **109** (1934), 617–646.

Department of Mathematics
 Faculty of Science and Technology
 Tokyo University of Science
 2641 Yamazaki, Noda
 Chiba 278-8510
 Japan

Current address:
 General Education
 Ishikawa National College of Technology
 Tsubata, Ishikawa, 929-0392
 Japan
 e-mail: kobayashi_ryoma@ishikawa-nct.ac.jp