<table>
<thead>
<tr>
<th>Title</th>
<th>ERRATUM TO THE ARTICLE “ZERO MEAN CURVATURE SURFACES IN LORENTZ–MINKOWKI 3-SPACE WHICH CHANGE TYPE ACROSS A LIGHT-LIKE LINE” OSAKA J. MATH. 52 (2015), 285-297</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fujimori, S.; Kim, Y.W; Rossman, W; Shin, H; Umehara, M; Yamada, K; Koh, S-E.; Yang, S-D</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 53(1) P.289-P.292</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016-01</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/58902</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/58902</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/
ERRATUM TO THE ARTICLE
“ZERO MEAN CURVATURE SURFACES IN
LORENTZ–MINKOWKI 3-SPACE WHICH
CHANGE TYPE ACROSS A LIGHT-LIKE LINE”

S. FUJIMORI, Y.W. KIM, S.-E. KOH, W. ROSSMAN, H. SHIN, M. UMEHARA,
K. YAMADA and S.-D. YANG

(Received April 25, 2015, revised June 8, 2015)

In the paper [1] whose title is included in the above title, an error in one estimate was found, although the main results still remain valid. In fact, line 6 of p. 292 is incorrect, and the corrected line should read

$\frac{c^2 M^{k-3}}{A_0^4} \sum_{m=3}^{k-4} \sum_{n=3}^{k-m-1} \frac{k|3n - k + m - 1|}{mn(m-1)(n-1)(k - m - n + 1)^2}.$

As a consequence, we have that

$$|k Q_k| \leq c M^{k-3} |y|^k \frac{432 c^2}{M^4} \sum_{m=3}^{k-4} \sum_{n=3}^{k-m-1} \frac{k|3n - k + m - 1|}{(m-1)^2(n-1)^2(k - m - n + 1)^2}.$$

Theorem 1.1 and Corollary 1.2 of [1] remain true under this correction. To confirm this, it is sufficient to show the inequality at the bottom of [1, p. 292]:

$$|k Q_k| \leq \frac{c}{18 \tau} M^{k-3} |y|^k \times 6 \tau \leq \frac{c}{3} M^{k-3} |y|^k.$$

In fact, changing the original inequality in [1, line 6 of p. 292] to (1) affects only the proof of (2).

From here on out, we prove (2) assuming (1).
Lemma 1. For \(k \geq 7 \), the following inequality holds:

\[
\max_{3 \leq m \leq k-4, \ 3 \leq n \leq k-m-1} \ (k|3n - k + m - 1|) < 2(k - 1)^2.
\]

Proof. In fact, we have

\[
\max_{3 \leq m \leq k-4, \ 3 \leq n \leq k-m-1} \ (k|3n - k + m - 1|) = \max_{(m,n)=(3,3),(3,k-4),(k-4,3)} |3n - k + m - 1|
\]

\[
= \max\{|-k + 11|, 4, |2k - 10|\} \leq 2(k - 5).
\]

In particular, we have

\[
\max_{3 \leq m \leq k-4, \ 3 \leq n \leq k-m-1} \ (k|3n - k + m - 1|) \leq 2k(k - 5) < 2(k - 1)^2,
\]

proving the assertion.

We set \(p := m - 1 \), \(q := n - 1 \) and \(l := k - 1 \). Using (1), Lemma 1 and \(432c^2/M^4 \leq 1/(36\tau) \) (cf. [1, (1.14)]), we have that

\[
|kQ_k| \leq \frac{c}{36\tau} M^{k-3} |y|^k \sum_{m=3}^{k-4} \sum_{n=3}^{k-m-1} \frac{2(k - 1)^2}{(m - 1)^2(n - 1)^2(k - m - n + 1)^2}
\]

\[
= \frac{c}{18\tau} M^{k-3} |y|^k \sum_{p=2}^{l-4} \sum_{q=2}^{l-p-2} \frac{l^2}{p^2q^2(l - p - q)^2}
\]

\[
\leq \frac{c}{18\tau} M^{k-3} |y|^k \sum_{p=2}^{l-2} \sum_{q=2}^{l-p-2} \frac{l^2}{p^2q^2(l - p - q)^2}.
\]

Thus, for \(k \geq 7 \), it holds that

\[
|kQ_k| \leq \frac{c}{18\tau} M^{k-3} |y|^k \sum_{p=2}^{l-2} \sum_{q=2}^{l-p-2} \frac{l^2}{p^2q^2(l - p - q)^2}.
\]

To get (2), we need the following assertion, which is a refinement of [1, Lemma A.2]:

Lemma 2. For any integer \(k \geq 4 \), the following inequalities hold:

\[
\sum_{p=2}^{k-2} \sum_{q=2}^{k-p-2} \frac{k^2}{p^2q^2(k - p - q)^2} \leq 6 \int_{1/k}^{1-1/k} \frac{du}{u^2(1-u)^2} \leq 6\tau,
\]

where \(\tau \) is a positive constant satisfying [1, (A.3)].
Proof. The proof of [1, Lemma A.2] becomes a proof of the inequality (4) simply by replacing the upper limit “$k - 5$” of the sum with “$k - 2$”.

By (3) and (4), we have the desired inequality (2).

Finally we note the following typographical errors:

- In line 6 of p. 293, “=” should be replaced by “≤”.
- In the third line from the bottom of p. 294,

\[\int_{1/k}^{a-1/k} \frac{du}{u^2(a - u)^2} \]

should be

\[\int_{1/k}^{a-1/k} \frac{a^3 du}{u^2(a - u)^2}. \]

ACKNOWLEDGEMENT. The authors are grateful to Shintaro Akamine for pointing out the error.

References

Shoichi Fujimori
Department of Mathematics, Faculty of Science
Okayama University
Okayama 700-8530
Japan
e-mail: fujimori@math.okayama-u.ac.jp

Young Wook Kim
Department of Mathematics
Korea University
Seoul 136-701
Korea
e-mail: ywkim@korea.ac.kr

Sung-Eun Koh
Department of Mathematics
Konkuk University
Seoul 143-701
Korea
e-mail: sekoh@konkuk.ac.kr

Wayne Rossman
Department of Mathematics, Faculty of Science
Kobe University
Kobe 657-8501
Japan
e-mail: wayne@math.kobe-u.ac.jp

Heayong Shin
Department of Mathematics
Chung-Ang University
Seoul 156-756
Korea
e-mail: hshin@cau.ac.kr

Masaaki Umehara
Department of Mathematical and Computing Sciences
Tokyo Institute of Technology
Tokyo 152-8552
Japan
e-mail: umehara@is.titech.ac.jp

Kotaro Yamada
Department of Mathematics
Tokyo Institute of Technology
Tokyo 152-8551
Japan
e-mail: kotaro@math.titech.ac.jp

Seong-Deog Yang
Department of Mathematics
Korea University
Seoul 136-701
Korea
e-mail: sdyang@korea.ac.kr