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Abstract
We will give an explicit description of the center of the De Concini–Kac type

specialization of a quantized enveloping algebra at an evenroot of unity. The case
of an odd root of unity was already dealt with by De Concini–Kac–Procesi. Our
description in the even case is similar to but a little more complicated than the
odd case.

1. Introduction

The representation theory of the De Concini–Kac type specialization of a quan-
tized enveloping algebra at a root of unity was initiated by De Concini–Kac [5]. It is
quite different from and much more complicated than the generic parameter case. A
special feature at a root of unity is that the center of the quantized enveloping alge-
bra becomes much larger than the generic parameter case. An explicit description of
the center of the De Concini–Kac type specialization at a root of unity was given by
De Concini–Kac–Procesi [6] when the order of the root of unity is odd. In this paper
we give a similar description of the center in the even order case. We point out that
there already exists partial results in the even order case in Beck [2].

Let Uq D Uq(1) be the simply-connected quantized enveloping algebra associated
to a finite irreducible root system1 (the Cartan part is isomorphic to the group algebra
of the weight lattice). Forz2 C� we denote byUzD Uz(1) the specialization atq D z
of the De Concini–Procesi form ofUq. Setd D 1 (resp. 2, resp. 3) when1 is of type
A, D, E (resp. B, C, F , resp.G2). We note thatUz coincides with the specialization
of the more standard De Concini–Kac form ifz2d

¤ 1. Let l be a positive integer, and
let � 2 C� be a primitive l -th root of 1. We assume that the order of� 2 is greater
than d.

Assume thatl is odd. If 1 is of type G2, we also assume thatl is prime to 3. In
this case De Concini–Kac–Procesi [6] gave an explicit description of the centerZ(U

�

)
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48 T. TANISAKI

as explained in the following. Denote byZHar(U�

) the subalgebra ofZ(U
�

) consist-
ing of reductions of central elements ofUq contained in the De Concini–Procesi form.
Then we have a Harish-Chandra type isomorphismZHar(U�

)� C[2P]W, whereP is the
weight lattice,W is the Weyl group, and the action ofW on the group algebraC[2P]
is a twisted one. On the other hand we have a Frobenius homomorphism F W U1! U

�

,
which is an injective Hopf algebra homomorphism whose imageis contained inZ(U

�

).
Set ZFr(U�

) D Im(F). Then De Concini–Kac–Procesi proved that the canonical homo-
morphism

ZFr(U�

)
ZFr(U�

)\ZHar(U�

) ZHar(U�

)! Z(U
�

)

is an isomorphism. They have also given the following geometric description ofZ(U
�

)
(see also De Concini–Procesi [8]). Denote byG the connected simply-connected sim-
ple algebraic group overC with root system1. Take Borel subgroupsBC and B� of
G such thatBC

\B� is a maximal torus ofG. We setH D H (1)D BC

\B�. Denote
by N� the unipotent radical ofB�. Define a subgroupK D K (1) of BC

� B� by

K D {(t x, t�1y) 2 BC

� B�

j t 2 H , x 2 NC, y 2 N�}.

Then we have

ZFr(U�

) � U1 � C[K ], ZHar(U�

) � C[H=W],

ZFr(U�

) \ ZHar(U�

) � C[H=W],

and the morphismsK ! H=W, H=W ! H=W corresponding to the embeddings
ZFr(U�

) \ ZHar(U�

) � ZFr(U�

) and ZFr(U�

) \ ZHar(U�

) � ZHar(U�

) are given by
(g1, g2) 7! Ad(G)((g1g�1

2 )s)\ H , and [t ] 7! [t l ], respectively. Here,gs for g 2 G de-
notes the semisimple part ofg in its Jordan decomposition. In conclusion, we obtain

Z(U
�

) � C[K �H=W H=W].

Now assume thatl is even, or1 is of type G2 and l is an odd multiple of 3. We
can similarly defineZHar(U�

(1)) as a subalgebra ofZ(U
�

(1)) isomorphic toC[2P]W
�

C[H (1)=W]. However, it is a more delicate problem to defineZFr(U�

(1)). We have
an injective Hopf algebra homomorphismF W U

"

(10)! U
�

(1), where" 2 {�1}, 10

2

{1,1_} are determined from1 and l . Here,1_ denotes the set of coroots. ThisF is
a dual version of the Frobenius homomorphism for the Lusztigforms defined in [17].
In the case1 is of type G2 and l is an odd multiple of 3 we have" D 1, 10

D 1

_ and
Im(F) � Z(U

�

(1)). In the casel is even and" D 1, U1(10) is commutative, but Im(F)
is not a subalgebra ofZ(U

�

(1)). In the case" D �1 U
�1(10) is non-commutative. We

define ZFr(U�

(1)) to be the intersection Im(F) \ Z(U
�

(1)). Then the conclusion is
similar to the odd order case. Namely, the canonical homomorphism

ZFr(U�

(1))
ZFr(U�

(1))\ZHar(U�

(1)) ZHar(U�

(1))! Z(U
�

(1))
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turns out to be an isomorphism. Moreover, we have

ZFr(U�

(1)) � C[K (10)=0], ZHar(U�

(1)) � C[H (1)=W],

ZFr(U�

(1)) \ ZHar(U�

(1)) � C[H (10)=W],

where,0 is a certain finite group acting on the algebraic varietyK (10), and the mor-
phism K (10)=0 ! H (10)=W is induced byK (10) ! H (10)=W. The definition of
H (1)=W! H (10)=W is more involved and omitted here. In conclusion, we obtain

Z(U
�

(1)) � C[(K (10)=0) �H (10)=W H (1)=W].

The proof is partially similar to that for the odd order case in De Concini–Kac–
Procesi [6]. However, some arguments are simplified using certain bilinear forms aris-
ing from the Drinfeld pairing. We also note that we have avoided the usage of quantum
coadjoint orbits in this paper. We hope to investigate the quantum coadjoint orbits in
the even order case in the near future since they should be indispensable in developing
the representation theory.

In dealing with the case" D �1 we useU
�1(10)0 � U1(10)0. We establish it

using a result of [12] relatingU
�q with Uq. I would like to thank Masaki Kashiwara

for explaining it to me.

2. Quantized enveloping algebras

2.1. Let 1 be a (finite) reduced irreducible root system in a vector space h�
Q

over
Q (we assume thath�

Q

is spanned by the elements of1). We denote byW the Weyl
group. We fix aW-invariant positive definite symmetric bilinear form

(2.1) ( , )W h�
Q

� h�
Q

! Q.

For � 2 1 we set�_ D 2�=(�,�) 2 h�
Q

. Then1_

D {�_ j � 2 1} is also an irreducible
root system in a vector spaceh�

Q

. Set

Q D
X

�21

Z�, Q_

D

X

�21

Z�

_,

P D {� 2 h�
Q

j (�, �_) 2 Z (� 2 1)},

P_

D {� 2 h�
Q

j (�, �) 2 Z (� 2 1)}.

Take a set5 D {�i }i2I of simple roots of1, and denote by1C the corresponding
set of positive roots of1. Then5_

D {�_i }i2I is a set of simple roots of1_, and
1

_C

D {�_ j � 2 1C} is the corresponding set of positive roots of1_. We set

QC

D

X

�21

C

Z

=0�,

PC

D {� 2 h�
Q

j (�, �_) 2 Z
=0 (� 2 1C)}.
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For i 2 I let si 2 W be the corresponding simple reflection. We denote the standard
partial order onW by =. We denote by1short (resp.1long) the set of short (resp. long)
roots. In our convention we have1shortD 1longD 1 if 1 is of type A, D, E. We set

d D
(�, �)

(�, �)
(� 2 1long, � 2 1short),

d
�

D

(�, �)

(�, �)
(� 2 1, � 2 1short), di D d

�i (i 2 I ).

Define � 2 P \ (Q=2) by (�, �_i ) D 1 (i 2 I ). Define Q� 2 Q_

=2 by Q� D
(1=2)

P

�21

C

d
�

�

_. We have� D ((�, �)=2) Q� for � 2 1short.
For n 2 Z

=0 we set

[n]t D
tn
� t�n

t � t�1
2 Z[t, t�1], [n]t ! D [n]t [n]t�1 � � � [1]t 2 Z[t, t�1].

2.2. Let F D Q(q) be the rational function field in the variableq, and set

q
�

D qd
� (� 2 1), qi D q

�i (i 2 I ).

We denote byU D U (1) the corresponding simply-connected quantized enveloping al-
gebra overF , i.e., U is an associative algebra overF generated by the elementsk

�

(� 2 P), ei , fi (i 2 I ) satisfying the fundamental relations

k0 D 1, k
�

k
�

D k
�C�

(�, � 2 P),

k
�

ei k
�1
�

D q
(�,�_i )
i ei (� 2 P, i 2 I ),

k
�

fi k
�1
�

D q
�(�,�_i )
i fi (� 2 P, i 2 I ),

ei f j � f j ei D Æi j (ki � k�1
i )=(qi � q�1

i ) (i , j 2 I ),

1�ai j
X

nD0

(�1)ne
(1�ai j �n)
i ej e

(n)
i D 0 (i , j 2 I , i ¤ j ),

1�ai j
X

nD0

(�1)n f
(1�ai j �n)
i f j f (n)

i D 0 (i , j 2 I , i ¤ j ),

whereki D k
�i (i 2 I ), ai j D (�_i ,� j ) (i , j 2 I ), e(n)

i D en
i =[n]qi !, f (n)

i D f n
i =[n]qi ! (i 2 I ,

n 2 Z
=0). Note that the above definition ofU (1) does not depend on the choice of

the symmetric bilinear form ( , ).
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We regardU as a Hopf algebra by

1(k
�

) D k
�


 k
�

(� 2 P),

1(ei ) D ei 
 1C ki 
 ei , 1( fi ) D fi 
 k�1
i C 1
 fi (i 2 I ),

"(k
�

) D 1 (� 2 P),

"(ei ) D "( fi ) D 0 (i 2 I ),

S(k
�

) D k�1
�

(� 2 P),

S(ei ) D �k�1
i ei , S( fi ) D � fi ki (i 2 I ).

Define subalgebrasU0, UC, U�, U=0, U50 of U by

U0
D hk

�

j � 2 Pi, UC

D hei j i 2 I i, U�

D h fi j i 2 I i,

U=0
D hk

�

, ei j � 2 P, i 2 I i, U50
D hk

�

, fi j � 2 P, i 2 I i.

We haveU0
D

L

�2P Fk
�

, and the multiplication ofU induces isomorphisms

UC


U0

U�

� U�


U0

UC

� U ,

UC


U0
� U0


UC

� U=0, U�


U0
� U0


U�

� U50

of vector spaces.
We denote byUad the F-subalgebra ofU generated byk

�

(� 2 Q), ei , fi (i 2 I ).
We also set

U0
adD hk� j � 2 Qi,

U=0
ad D hk�, ei j � 2 Q, i 2 I i, U50

ad D hk�, fi j � 2 Q, i 2 I i.

Then we have

UC


U0
ad
U�

� U�


U0
ad
UC

� Uad,

UC


U0
ad� U0

ad
UC

� U=0
ad ,

U�


U0
ad� U0

ad
U�

� U50
ad .

We denote by Mod(Uad) the category of finite-dimensionalUad-modules M with
weight space decompositionM D

L

�2P M
�

, where

M
�

D

{

m 2 M
�

� ki mD q
(�,�_i )
i m (i 2 I )

}

.

2.3. The modified quantized enveloping algebraPU D PU (1) is defined as follows

(see Lusztig [17]). For
 2 Q set Uad,
 D {u 2 Uad j ki uk�1
i D q

(
 ,�_i )
i u (i 2 I )}. For
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�, � 2 P we set

�

NU
�

D Uad

, 

X

i2I

(ki � q
(�,�_i )
i )UadC

X

i2I

Uad(ki � q
(�,�_i )
i )

!

(note
�

NU
�

D 0 unless� � � 2 Q), and let
�

p
�

W Uad! �

NU
�

be the natural map. For
� 2 P set 1

�

D

�

p
�

(1). Set

PU D
M

�,�2P

�

NU
�

.

Then PU is an associative algebra (without 1) by

�

p
�

(x)
�

0 p
�

0 (y) D

�

�

p
�

0 (xy) (� D �0),
0 (� ¤ �0)

for x 2 Uad,���, y 2 Uad,�0��0 . Moreover, PU is a Uad-bimodule by

u �
�

p
�

(x) � u0 D
�C


p
��


0(uxu0) (x 2 Uad,���, u 2 Uad,
 , u0 2 Uad,
 0).

Then we have an isomorphism

M

�2P

(U�


UC) � PU ((u
�


 u0
�

)
�2P $

P

�2P u
�

1
�

u0
�

).

We denote by Mod(PU ) the category of finite-dimensionalPU -modulesM with weight
space decompositionM D

L

�2P 1
�

M. Then anyM 2Mod(Uad) is regarded as an object

of Mod( PU ) via the action of PU on M given by

(u1
�

u0)mD upM
�

(u0m) (u 2 U�, u0 2 UC),

where pM
�

W M ! 1
�

M is the projection with respect to the weight space decomposition
of M. Moreover, this correspondence gives the equivalence of categories Mod(Uad) �
Mod( PU ) (see Lusztig [17]). It follows that for each� 2 PC there exists uniquely (up
to isomorphism) a finite-dimensional irreduciblePU -module L(�) such that

L(�) D
M

�2��QC

1
�

L(�), dim 1
�

L(�) D 1,

and that anyM 2 Mod( PU ) is isomorphic to a direct sum ofL(�)’s for � 2 PC.
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2.4. We denote byV D V(1) the associative algebra overF generated by the
elementst

�

(� 2 P), xi , yi (i 2 I ) satisfying the fundamental relations

t0 D 1, t
�

t
�

D t
�C�

(�, � 2 P),

t
�

xi t
�1
�

D q
(�,�_i )
i xi (� 2 P, i 2 I ),

t
�

yi t
�1
�

D q
(�,�_i )
i yi (� 2 P, i 2 I ),

xi y j � y j xi D 0 (i , j 2 I ),

1�ai j
X

nD0

(�1)nx
(1�ai j �n)
i x j x

(n)
i D 0 (i , j 2 I , i ¤ j ),

1�ai j
X

nD0

(�1)ny
(1�ai j �n)
i y j y

(n)
i D 0 (i , j 2 I , i ¤ j ),

where x(n)
i D xn

i =[n]qi !, y(n)
i D yn

i =[n]qi ! (i 2 I , n 2 Z
=0). We setti D t

�i for i 2 I .
Define subalgebrasV0, VC, V�, V=0, V50 of V by

V0
D ht

�

j � 2 Pi, VC

D hxi j i 2 I i, V�

D hyi j i 2 I i,

V=0
D ht

�

, xi j � 2 P, i 2 I i, V50
D ht

�

, yi j � 2 P, i 2 I i.

We haveV0
D

L

�2P F t
�

, and the multiplication ofV induces isomorphisms

VC


 V0

 V�

� V�


 V0

 VC

� V ,

VC


 V0
� V0


 VC

� V=0, V�


 V0
� V0


 V�

� V50

of vector spaces. Moreover, we have algebra isomorphisms

|

C

W VC

! UC (xi 7! ei ),

|

�

W V�

! U� (yi 7! fi ).

REMARK 2.1. V is a q-analogue of the enveloping algebra of a certain solvable
Lie subalgebra ofg � g, where g is a simple Lie algebra with root system1 (see
Subsection 2.14 below).

2.5. The modified versionPV D PV(1) is defined similarly to PU as follows. Denote
by Vad the F-subalgebra ofV generated byt

�

(� 2 Q), xi , yi (i 2 I ). For 
 2 QC set

Vad,
 D {v 2 Vad j ti vt�1
i D q

(
 ,�_i )
i v (i 2 I )}. For �, � 2 P we set

�

V
�

D Vad=

 

X

i2I

(ti � q
(�,�_i )
i )VadC

X

i2I

Vad(ti � q
(�,�_i )
i )

!
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(note
�

V
�

D 0 unless� � � 2 QC), and let
�

�

�

W Vad! �

V
�

be the natural map. For
� 2 P set 1

�

D

�

�

�

(1). Set

PV D
M

�,�2P

�

V
�

.

Then PV is an associative algebra (without 1) by

�

�

�

(x)
�

0

�

�

0(y) D

�

�

�

�

0(xy) (� D �0),
0 (� ¤ �0)

for x 2 Vad,���, y 2 Vad,�0��0 . Moreover, PV is a Vad-bimodule by

v �

�

�

�

(x) � v0 D
�C


�

��


0(vxv0) (x 2 Vad,���, u 2 Vad,
 , u0 2 Vad,
 0).

Then we have an isomorphism

M

�2P

(V�


 VC) � PV ((v
�


 v

0

�

)
�2P $

P

�2P v�v
0

�

1
�

).

Denote by Mod(PV) (resp. Mod(Vad)) the category of finite-dimensionalPV-module
(resp. Vad-module) with weight space decomposition. Then we have a natural equiva-
lence Mod(PV) � Mod(Vad) of categories.

2.6. We denote by

� W U=0
ad �U50

ad ! F

the Drinfeld pairing. It is a bilinear form uniquely determined by the properties

� (1, 1)D 1,(2.2)

� (x, y1y2) D (� 
 � )(1(x), y1
 y2) (x 2 U=0
ad , y1, y2 2 U50

ad ),(2.3)

� (x1x2, y) D (� 
 � )(x2
 x1, 1(y)) (x1, x2 2 U=0
ad , y 2 U50

ad ),(2.4)

� (ki , k j ) D q
�(�_i ,� j )
i (i , j 2 I ),(2.5)

� (k
�

, fi ) D � (ei , k
�

) D 0 (� 2 Q, i 2 I ),(2.6)

� (ei , f j ) D Æi j =(q
�1
i � qi ) (i , j 2 I ).(2.7)

We define a bilinear form

� W U � PV ! F

by

� (u
C

k
�

(Su
�

), v
�

v

C

1
�

) D � (u
C

, |�(v
�

))Æ
�,�� (|C(v

C

), u
�

)

(u
�

2 U�, v
�

2 V�, �, � 2 P).
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The following result is a consequence of Gavarini [9, Theorem 6.2] (see also [20,
Proposition 3.4]).

Proposition 2.2. We have

� (u, vv0) D (� 
 � )(1(u), v 
 v0) (u 2 U , v, v0 2 PV).

2.7. For a Hopf algebraH we define a left action ofH on H by

ad(h)(h0) D
X

j

h0 j h
0(Sh1 j ) (h, h0 2 H , 1(h) D

P

j h0 j 
 h1 j ).

We define a right action ofUad on PU by

x � ead(u) D
X

j

(Su0 j )xu1 j (x 2 PU , u 2 Uad, 1(u) D
P

j u0 j 
 u1 j ).

We set
eU D

X

�2P

UCk2�(SU�) � U .

Then eU is a subalgebra ofU satisfying ad(U )(eU ) � eU . Define a bilinear form

! W

eU � PU ! F

by

!(u
C

k2�(Su
�

), w
�

1
�

(Sw
C

)) D � (u
C

, w
�

)Æ
�,��� (w

C

, u
�

)

(u
�

, w
�

2 U�, �, � 2 P).

The following result is a consequence of [19, Proposition 2.2.1].

Proposition 2.3. We have

!(ad(u0)(u), x) D !(u, x � ead(u0)) (u 2 eU , u0 2 U , x 2 PU ).

Set
f U D {u 2 U j dim ad(U )(u) <1}.

Then f U is a subalgebra ofeU and we have

f U D
X

�2PC

ad(U )(k
�2�)

(see [11]).
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2.8. We denote Lusztig’s braid group action onU by Ti (i 2 I ). Namely,Ti W U !
U is the algebra automorphism given by

Ti (k�) D ksi (�) (� 2 P),

Ti (ej ) D

(

� fi ki (i D j ),
P

�ai j

rD0(�1)�ai j �r q�r
i e

(�ai j �r )
i ej e

(r )
i (i ¤ j ),

Ti ( f j ) D

(

�k�1
i ei (i D j ),

P

�ai j

rD0(�1)r q
�ai j �r
i f

(�ai j �r )
i f j f (r )

i (i ¤ j ).

We denote byw0 the longest element ofW. We fix a reduced expressionw0 D

si1 � � �si N (i1, : : : , i N 2 I ) in the following. For j D 1,: : : , N set� j D si1 � � �si j�1(�i j ), and

e
� j D Ti1 � � � Ti j�1(ei j ), f

� j D Ti1 � � � Ti j�1( fi j ),

e(n)
� j
D Ti1 � � � Ti j�1(e

(n)
i j

), f (n)
� j
D Ti1 � � � Ti j�1( f (n)

i j
) (n 2 Z

=0).

Then we have1C

D {� j j j D 1, : : : , N}, ande
�

2 UC, f
�

2 U� (� 2 1C). Moreover,
the set{emN

�N
� � �em1

�1
jm j 2 Z=0} (resp.{ f mN

�N
� � � f m1

�1
jm j 2 Z=0}) is known to be a basis

of UC (resp.U�).

2.9. We setG D G(1) D P=P0, where

P0 D {� 2 P j di (�, �_i ) 2 2Z (i 2 I )}.

Note thatG is a 2-elementary finite group. For� 2 P we denote byÆ
�

2 G the element
represented by�. We define an action ofG on the algebraU by

Æ

�

(k
�

) D k
�

, Æ

�

(ei ) D (�1)di (�,�_i )ei , Æ

�

( fi ) D (�1)di (�,�_i ) fi

for �, � 2 P, i 2 I . We define anF-algebra structure ofQU D QU (1) D U 
 F [G] by

(u
 Æ)(v 
 Æ0) D uÆ(v)
 ÆÆ0 (u, v 2 U , Æ, Æ0 2 G).

We will identify U and F [G] with the subalgebrasU 
 1 and 1
 F [G] of QU respect-
ively. We extend theG-action onU to that on QU by Æ(x) D ÆxÆ�1 (Æ 2 G, x 2 QU ).
Set

UG
D {u 2 U j Æ(u) D u (Æ 2 G)}, QUG

D {x 2 QU j Æ(x) D x (Æ 2 G)}.

Then we see easily thatQUG
D UG

F [G].

2.10. Let � be the automorphism of the fieldF sendingq to �q. For an F-
algebraR we denote by� R the F-algebra obtained by twisting theF-module structure
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of R via � . Namely, � R is isomorphic toR as a ring via the correspondenceR 3 x$
�x 2 � R, and theF-module structure is given byc�x D � (�(c)x) (c 2 F , x 2 R).

Now we are going to define an embedding of�U into QU following [12]. We can
take a subsetJ of I such that fori , j 2 I with i ¤ j we have

di (�
_

i , � j ) 62 2Z H) j{i , j } \ Jj D 1.

For i 2 I set

'i D

�

Æ

�i (i 2 J),
1 (i � J),

 i D (�1)di
'i Æ�i .

For 
 D
P

i2I mi�i 2 Q we further set

'




D

Y

i2I

'

mi
i ,  




D

Y

i2I

 

mi
i .

Proposition 2.4 ([12]). An embedding�U ! QU of F-algebras is given by

�k
�

7! k
�

Æ

�

, �ei 7! ei'i ,
� fi 7! fi i .

REMARK 2.5. In [12] Kashiwara–Kang–Oh established using Proposition 2.4
the equivalence Mod(U ) � Mod(�U ), where Mod(U ) (resp. Mod(�U )) denotes the cat-
egory of U -modules (resp.�U -modules) with weight space decompositions (see also
Andersen [1]).

We will identify �U with a subalgebra ofQU . We can easily check the following.

Lemma 2.6. (i) The multiplication of QU gives an isomorphism�U 
 F [G] � QU
of F-modules.
(ii) For any Æ 2 G and �u 2 �U we haveÆ�uÆ�1

D

� (Æ(u)).

Proposition 2.7. For any � 2 1C we have

�e
�

D �e
�

'

�

, � (S f
�

) D �(S f
�

)'
�

.

Proof. For i 2 I define �Ti W
�U ! �U by �Ti (�u) D � (Ti (u)) (u 2 U ). For 
 2

QC set

UC




D {x 2 UC

j ki xk�1
i D q

(�_i ,
 )
i x (i 2 I )}.

For i 2 I we set

$i D

�

�1 (i 2 J),
1 (i � J).
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In order to show the statement fore
�

, it is sufficient to show that for
 2 QC and
i 2 I there existsci ,
 2 {�1} satisfying

(2.8) �Ti (x'
 ) D ci ,
 Ti (x)'si 
 (x 2 UC




).

We first note that fori , j 2 I we have

(2.9) �Ti (ej' j ) D ci , j Ti (ej )'si � j ,

where

ci j D (�1)di ai j (ai j C1)=2
$

di ai j

i 2 {�1}.

The verification of (2.9) in the casei D j is easy. In the casei ¤ j one needs some
case by case calculation according to the relative positionof �i and � j . Details are
omitted. Now let us show (2.8) using (2.9). Forj1, : : : , jr 2 I with

P

p � j p D 


we have

(ej1' j1) � � � (ejr ' jr ) D Aej1 � � � ejr '


where AD
Qr�1

pD1 $
d j p (�_j p ,� j pC1C���C� jr )

j p
. Hence we have

�Ti ((ej1 � � � ejr )'
 ) D A�Ti ((ej1' j1) � � � (ejr ' jr ))

D A

 

Y

p

ci j p

!

((Ti ej1)'� j1
'

�ai j1
�i ) � � � ((Ti ejr )'� jr

'

�ai jr
�i )

D AA0
 

Y

p

ci j p

!

Ti (ej1 � � � ejr )'si 
 ,

with

A0

D

 

r�1
Y

pD1

$

d j p (�_j p ,si (� j pC1C���C� jr ))

j p

! 

r�1
Y

pD1

$

�di ai j p (�_i ,si (� j pC1C���C� jr ))

i

!

D A

 

r�1
Y

pD1

$

d j p (�_j p ,�i )(�_i ,� j pC1C���C� jr )

j p

! 

r�1
Y

pD1

$

d j p (�_j p ,�i )(�_i ,� j pC1C���C� jr )

i

!

D A
r�1
Y

pD1

($i$ j p)
d j p (�_j p ,�i )(�_i ,� j pC1C���C� jr )

D A
r�1
Y

pD1

(�1)di (�_i ,� j p )(�_i ,� j pC1C���C� jr )

D A
Y

15p<p05r

(�1)di (�_i ,� j p )(�_i ,� j p0
).
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We thus obtain (2.8), where

ci ,
 D

 

Y

p

ci j p

! 

Y

p<p0

(�1)di (�_i ,� j p )(�_i ,� j p0
)

!

.

The proof of the assertion forf
�

is similar.

2.11. SetH DH(1)D Q_

=2Q_. For � 2 Q_ we denote by

�

the element ofH
represented by�. Define an action ofH on theF-algebraU0

D

L

�2P Fk
�

� F [ P] by




�

� k
�

D (�1)(�,�)k
�

(� 2 Q_, � 2 P).

We can extend thisH-action onU0 to that on the algebraU � UC


 SU�


U0 by


 � (ut) D u(
 � t) (
 2 H, u 2 UC(SU�), t 2 U0).

Since this action commutes with that ofG, we get an action ofG �H on U .

2.12. Set A D Q[q�1]. Following De Concini–Procesi [8] we defineU
A

to be
the smallestA-subalgebra ofU that containsk

�

(� 2 P), (qi � q�1
i )ei , (qi � q�1

i ) fi
(i 2 I ) and is stable under the action ofTi (i 2 I ). It is a Hopf algebra overA. Set

U0
A

D U
A

\U0, U�

A

D U
A

\U�, U=0
A

D U
A

\U=0, U50
A

D U
A

\U50.

Then we haveU0
A

D

L

�2P Ak
�

, and the multiplication ofU
A

induces isomorphisms

UC

A


U0
A


U�

A

� U�

A


U0
A


UC

A

� U
A

,

UC

A


U0
A

� U0
A


UC

A

� U=0
A

,

U�

A


U0
A

� U0
A


U�

A

� U50
A

of A-modules. For� 2 1C we definea
�

2 UC

A

, b
�

2 U�

A

by

a
�

D (q
�

� q�1
�

)e
�

, b
�

D (q
�

� q�1
�

) f
�

.

Then {amN
�N
� � �am1

�1
j m j 2 Z=0} (resp.{bmN

�N
� � �bm1

�1
j m j 2 Z=0}) is a freeA-basis ofUC

A

(resp.U�

A

).
Set

Uad,A D U
A

\Uad, U [

ad,A D U
A

\U [

ad ([ D 0, = 0, 5 0).

Then we haveU0
ad,A D

L

�2Q Ak
�

, and

UC

A


U0
ad,A 
U�

A

� U�

A


U0
ad,A 
UC

A

� Uad,A,

UC

A


U0
ad,A � U0

ad,A 
UC

A

� U=0
ad,A,

U�

A


U0
ad,A � U0

ad,A 
U�

A

� U50
ad,A.
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Denote byU L
ad,A the A-subalgebra ofU generated by the elements{e(n)

i , f (n)
i , k

�

j

i 2 I , n 2 Z
=0, � 2 Q}, and set

U L ,[
ad,A D U L

ad,A \U [

ad ([ D 0, = 0, 5 0),

U L ,�
A

D U L
ad,A \U�.

Then we have

U L ,C
A


U L ,0
ad,A 
U L ,�

A

� U L ,�
A


U L ,0
ad,A 
U L ,C

A

� U L
ad,A,

U L ,C
A


U L ,0
ad,A � U L ,0

ad,A 
U L ,C
A

� U L ,=0
ad,A ,

U L ,�
A


U L ,0
ad,A � U L ,0

ad,A 
U L ,�
A

� U L ,50
ad,A .

Moreover,U L ,0
ad,A is generated by the elements of the formk

�

(� 2 Q),

�

ki

m

�

D

m�1
Y

sD0

q�s
i ki � qs

i k�1
i

qsC1
i � q�s�1

i

(i 2 I , m= 0),

and
{

e(mN )
�N
� � �e(m1)

�1

�

� m j 2 Z=0
}

(resp.
{

f (mN )
�N
� � � f (m1)

�1

�

� m j 2 Z=0
}

) is a freeA-basis of

U L ,C
A

(resp.U L ,�
A

).

We define PU
A

to be theA-subalgebra ofPU consisting of elements of the form

X

�2P

u
�

1
�

u0
�

(u
�

2 U L ,�
A

, u0
�

2 U L ,C
A

).

For � 2 PC we define anA-form L
A

(�) of L(�) by

L
A

(�) D PU
A

v (1
�

L(�) D Fv).

We define PV
A

to be theA-subalgebra ofPV consisting of elements of the form

X

�2P

v

�

v

0

�

1
�

(v
�

2 (|�)�1(U L ,�
A

), v0
�

2 (|C)�1(U L ,C
A

)).

We set
eU

A

D

eU \U
A

, f U
A

D

f U \U
A

.

By [13], [14], [15] we have

� (e(mN )
�N
� � � e(m1)

�1
, bnN

�N
� � � bn1

�1
) D � (amN

�N
� � � am1

�1
, f (nN )

�N
� � � f (n1)

�1
)

D

N
Y

sD1

Æms,ns(�1)msqms(ms�1)=2
�s

,
(2.10)
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and hence� induces bilinear forms

�

;,L
A

W U=0
ad,A �U L ,50

ad,A ! A, �

L ,;
A

W U L ,=0
ad,A �U50

ad,A ! A.

It follows that � and! also induce perfect bilinear forms

�

A

W U
A

�

PV
A

! A, !

A

W

eU
A

�

PU
A

! A.

Set QU
A

D U
A


A[G]. It is anA-subalgebra ofQU . We also have an obviousA-form
�U

A

of �U . By Proposition 2.7 the embedding�U � QU induces�U
A

!

QU
A

.

2.13. Let z 2 C�, and set

(2.11) z
�

D zd
� (� 2 1), zi D z

�i (i 2 I ).

Set

Uz D Uz(1) D C 

A

U
A

,

whereA! C is given byq 7! z. We also set

U [

z D C 
A U [

A

([ D ;, C, �, 0, = 0, 5 0),

U [

ad,z D C 
A U [

ad,A, U L ,[
ad,z D C 
A U [

ad,A ([ D ;, 0, = 0, 5 0),

U L ,�
z D C 


A

U L ,�
A

,

PU z D C 
A PUA

, PV z D C 
A PVA

,
eUz D C 
A

eU
A

, f Uz D C 
A
f U

A

.

Then we have

Uz � U�

z 
U0
z 
UC

z , PU z �
M

�2P

U L ,�
z 1

�

U L ,C
z .

SinceU
A

is a freeA-module, we havef Uz �
eUz � Uz.

We denote by Mod(PU z) the category of finite-dimensionalPU z-modules M with
weight space decompositionM D

L

�2P 1
�

M. For � 2 PC we define Lz(�) 2

Mod( PU z) by

Lz(�) D C 

A

L
A

(�).

Note that� ;,L
A

, � L ,;
A

, �
A

and!
A

induce bilinear forms

�

;,L
z W U=0

ad,z �U L ,50
ad,z ! C, �

L ,;
z W U L ,=0

ad,z �U50
ad,z! C,

�z W Uz � PV z! C, !z W
eUz � PU z! C.
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By (2.10) � ;,L
z jUC

z �U L ,�
z

, � L ,;
z jU L ,C

z �U�

z
, �z, !z are perfect.

Set QUz D C 


A

QU
A

D Uz 
 C[G]. Then we have a natural embeddingUz � QUz,
which is compatible with theG-actions. Note that the embedding�U

A

!

QU
A

also in-
duces an embeddingU

�z � QUz, which is compatible withG-actions. Hence setting

UG
z D {u 2 Uz j Æ(u) D u (Æ 2 G)},

QUG
z D {x 2 QUz j Æ(x) D x (Æ 2 G)},

we obtain embeddings

U
�z � QUz � Uz, UG

�z �
QUG

z � UG
z .

We denote by Q4z W U�z! Uz the restriction of the linear mapQUz! Uz, which sends
uÆ
�

for u 2 Uz, � 2 P to u.

Proposition 2.8. The linear map Q4z induces an isomorphism

(2.12) 4z W U
G
�z! UG

z

of C-algebras, which is compatible with theH-actions.

Proof. Since Q4z is a linear isomorphism compatible withG-actions, it induces a
linear isomorphism4z W UG

�z! UG
z . Note thatUG

�z �
QUG

z D UG
z C[G]. For u, u0 2 UG

z ,
Æ, Æ0 2 G we have

Q

4z((uÆ)(u
0

Æ

0)) D Q4z(uu0ÆÆ0) D uu0 D Q4z(uÆ) Q4z(u
0

Æ

0).

Hence Q4zjUG
z C[G] W UG

z C[G] ! UG
z is an algebra homomorphism. It follows that its

restriction4z W UG
�z! UG

z is also an algebra homomorphism. The remaining statement
about the action ofH is obvious.

2.14. Let GD G(1) be a connected, simply-connected semisimple algebraic group
overC with root system1. Take a maximal torusH D H (1) of G and Borel subgroups
BC, B� of G such thatBC

\ B�

D H . Set N�

D [B�, B�], and define a closed sub-
group K D K (1) of BC

� B� by

K D {(gh, g0h�1) j h 2 H , g 2 NC, g0 2 N�}.

Setting

K 0
D {(h, h�1) j h 2 H} � H ,(2.13)

KC

D {(g, 1) j g 2 NC}, K�

D {(1, g0) j g0 2 N�} � N�,(2.14)
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we obtain an isomorphism

KC

� K 0
� K�

! K ((a, b, c) 7! abc)

of algebraic varieties. Denote byg the Lie algebra ofG. It is generated by the elem-
ents Nhi , Nei , Nfi (i 2 I ) satisfying the fundamental relations

[ Nhi , Nh j ] D 0 (i , j 2 I ),

[ Nhi , Nej ] D ai j Nej , [ Nhi , Nf j ] D �ai j Nf j (i , j 2 I ),

[ Nei , Nf j ] D Æi j Nhi (i , j 2 I ),

ad(Nei )
1�ai j (Nej ) D ad( Nfi )

1�ai j ( Nf j ) D 0 (i , j 2 I , i ¤ j ).

Then the Lie algebrak of K is the subalgebra ofg � g generated by elementsNti D
( Nhi , �Nhi ), Nxi D (Nei , 0), Nyi D (0, fi ) (i 2 I ). Those generators satisfy the fundamental
relations

[ Nti , Nt j ] D 0 (i , j 2 I ),

[ Nti , Nx j ] D ai j Nx j , [Nti , Ny j ] D ai j Ny j (i , j 2 I ),

[ Nxi , Ny j ] D 0 (i , j 2 I ),

ad(Nxi )
1�ai j ( Nx j ) D ad(Nyi )

1�ai j ( Ny j ) D 0 (i , j 2 I , i ¤ j ).

Let U (k) be the enveloping algebra ofk. We can define the modified versionPU (k)
of U (k) similarly to PV as follows. For
 2 QC set U (k)




D {u 2 U (k) j [ Nti , u] D
(
 , �_i )u (i 2 I )}. For �, � 2 P we set

�

NU (k)
�

D U (k)

, 

X

i2I

(Nti � (�, �_i ))U (k)C
X

i2I

U (k)(Nti � (�, �_i ))

!

,

and let
�

�

1
�

W U (k)!
�

NU (k)
�

be the natural map. Set

PU (k) D
M

�,�2P

�

NU (k)
�

.

Then PU (k) is an associative algebra (without 1) by

�

�

1
�

(x)
�

0

�

1
�

0

(y) D

�

�

�

1
�

0

(xy) (� D �0),
0 (� ¤ �0)

for x 2 U (k)
���

, y 2 U (k)
�

0

��

0 . It is easily seen that we havePV1 � PU (k).
RegardC[K ] as aU (k)-module by differentiating theK -action

(k f )(k0) D f (k0k) (k, k0 2 C[K ], f 2 C[K ])
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on C[K ]. Since C[K ] is a sum of finite dimensionalU (k)-submodules with weight
space decomposition, we obtain a natural action ofPU (k) on C[K ]. Cosider the bi-
linear form

N� W C[K ] � PU (k)! C ( N� ( f, x) D (x f )(1)),

By Proposition 2.2 andK � KC

� K 0
� K�, we see easily that an isomorphism

(2.15) 7 W U1! C[K ]

of coalgebras is given by

N� (7(u), x) D �1(u, x) (u 2 U1, x 2 PV1 D PU (k)).

SinceU1 andC[K ] are commutative, it is easily seen that (2.15) is an isomorphism of
Hopf algebras (see [8], [9], [20]).

3. Harish-Chandra center

3.1. For a ring R we denote its center byZ(R).
Consider the composite of

Z(U ) ,! U � U�


U0

UC

"
1
"
����! U0

� F [ P],

whereF [ P] D
L

�2PFe(�) is the group algebra ofP, and the isomorphismU0
� F [ P]

is given byk
�

$ e(�). By [5], [11], [19] this linear mapZ(U )! F [ P] is an injective
algebra homomorphism whose image coincides with

F [2P]WÆ

D {x 2 F [2P] j w Æ x D x (w 2 W)},

where the action ofW on F [2P] is given by

w Æ e(2�) D q(w���,2 Q�)e(2w�) (w 2 W, � 2 P).

Hence we have an isomorphism

(3.1) � W Z(U )! F [2P]WÆ.

We recall here a description ofZ(U ) in terms of the characters of finite-dimensional
U -modules. ForM 2 Mod( PU ) we defineQtM 2 PU� by

h

QtM , xi D Tr(xk2� , M) (x 2 PU ).

Then there exists uniquely an elementtM 2
eU satisfying

!(tM , x) D hQtM , xi (x 2 PU ).
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More explicitly, we have

tM D
X

�22P,
PN

jD1(m j�m0

j )� jD0

c
�,{m j }

N
jD1,{m0

j }
N
jD1

am1
�1
� � � amN

�N
k
�

S(b
m0

N
�N
� � � b

m0

1
�1

),

where

c
�,{m j }

N
jD1,{m0

j }
N
jD1

D

N
Y

jD1

(�1)m jCm0

j q
�m j (m j�1)=2�m0

j (m
0

j�1)=2
� j

� Tr
�

�

{

f (m1)
�1
� � � f (mN )

�N
1
��=2S(e

(m0

N )
�N
� � � e

(m0

1)
�1

)k2�
}

, 1
��=2�

P

j m0

j � j M
�

.

We can showtM 2 Z(U ) using k�1
2� uk2� D S2u (u 2 U ), Z(U ) D {v 2 U j

ad(u)(v) D "(u)v (u 2 U )}, and Proposition 2.3 (see [19]). We have

�(tM ) D
X

�2P

(dim 1
�

M)q(�,2 Q�)e(�2�).

Proposition 3.1. (i) Z(U ) � UG .
(ii) We have

Z(�U ) D Z( QU ) D Z(U )

as subalgebras ofQU. Moreover, the composite of

F [2P]WÆ

� Z(U ) D Z(�U ) � � Z(U ) � � (F [2P]WÆ)

is induced by theF-linear isomorphism

F [2P] 3 e(2�) 7! �e(2�) 2 �

F [2P].

Proof. (i) Let Æ 2 G. SinceÆ acts onU as an algebra automorphism, we have
Æ(Z(U )) D Z(U ). It is easily seen from the definition ofÆ that �(Æ(z)) D �(z) for any
z 2 Z(U ). HenceÆ acts as identity onZ(U ).

(ii) By (i) we haveZ(U )� Z( QU ). Let us showZ(U )� Z( QU ). Let zD
P

Æ2G u
Æ

Æ 2

Z( QU ), whereu
Æ

2 U . By uzD zu for u 2 U we haveuu
Æ

D u
Æ

Æ(u). By considering the
corresponding identity in the associated graded algebra GrU introduced in [7] we see
easily thatu

Æ

D 0 for Æ ¤ 1. Hencez 2 Z(U ). The proof ofZ(�U ) D Z( QU ) is similar.
The remaining statement is a consequence of�k2� D k2� for � 2 P.

3.2. By Z(U
A

) D U
A

\ Z(U ), � induces an injective algebra homomorphism

�

A

W Z(U
A

)! A[2P]WÆ.
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Proposition 3.2. �

A

is an isomorphism ofA-algebras.

Proof. For� 2 PC we havetL(�) 2U
A

, andA[2P]WÆ is spanned overA by �(tL(�))
for � 2 PC.

3.3. Let z 2 C�. We denote byZHar(Uz) the image ofZ(U
A

)! Z(Uz), and call
it the Harish-Chandra center ofUz. We can similarly consider the composite of

ZHar(Uz) ,! Uz � U�

z 
U0
z 
UC

z
"
1
"
����! U0

z � C[ P].

We define an actionÆz of W on C[2P] by

w Æz e(2�) D z(w���,2 Q�)e(2w�) (w 2 W, � 2 P).

Proposition 3.3. The above linear map ZHar(Uz)! C[ P] induces an isomorphism

�z W ZHar(Uz)! C[2P]WÆz

of C-algebras.

Proof. By Z(U
A

)D U
A

\ Z(U ) the canonical mapC

A

Z(U
A

)! Uz is injective.
HenceZHar(Uz) � C 
A Z(U

A

) � C[2P]WÆz.

For M 2 Mod( PU z) we can similarly definetM 2
eUz by

!z(tM , x) D Tr(xk2� , M) (x 2 PU z).

By our construction{tLz(�) j � 2 PC} is a basis ofZHar(Uz). Indeed forM 2 Mod( PU z)
we can write

[M] D
X

�2PC

m
�

[Lz(�)] (m
�

2 Z)

in an appropriate Grothendieck group, and in this case we have

tM D
X

�2PC

m
�

tLz(�) 2 ZHar(Uz).

Note that forz 2 C� the two actionsÆz and Æ
�z of W on C[2P] are the same.

By Proposition 3.1 we have the following.

Proposition 3.4. For z 2 C� we have UGz � ZHar(Uz), and the isomorphism
4z W UG

�z! UG
z induces the isomorphism ZHar(U�z) � ZHar(Uz) given by

ZHar(U�z)
�

�z
�! C[2P]WÆ

�z
D C[2P]WÆz

�z
 � ZHar(Uz).
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3.4. We consider the case wherezD 1. Since the actionÆ1 of W on C[2P] is
nothing but the ordinary one, we have

ZHar(U1) � C[2P]W
� C[ P]W

� C[H ]W
� C[H=W].

Here the second isomorphism is induced byC[2P] 3 e(2�)$ e(�) 2 C[ P]. Recall also
that we have an isomorphism

U1 � C[K ].

Hence the inclusionZHar(U1) ! U1 induces a morphismf W K ! H=W of algebraic
varieties. Let us give an explicit description of this morphism. Define a morphism
� W K ! G of algebraic varieties by�((g1, g2) D g1g�1

2 . We also define� W G! H=W
as follows. Letg 2 G. Let gs be the semisimple part ofg with respect to the Jordan
decomposition. Then Ad(G)(gs) \ H consists of a singleW-orbit. We define�(g) to
be this W-orbit.

Proposition 3.5 ([8]). The morphism fW K ! H=W is the composite of� W K !
G and � W G! H=W.

Proof. For the convenience of the readers we give a sketch of the proof using the
bilinear forms!1 ant �1. First note that

ZHar(U1) � f U1 �
eU1 � U1.

Via !1W
eU1� PU1! C we obtain embeddingsf U1 �

eU1 � ( PU1)�. Identifying PU1 with
the modified enveloping algebra of Lie(G) we have f U1� C[G] (see [3]). On the other
hand we see fromPU1 �

L

�2P U L ,�
1 1

�

U L ,C
1 that eU1 is identified withC[N�

� H �
NC]. Consequently we obtain a sequence

C[H=W] ! C[G] ! C[N�

� H � NC] ! C[K ]

of algebra embeddings. We can easily check that the corresponding morphisms of al-
gebraic varieties are given by

K 3 (g
C

g0, g
�

g�1
0 ) 7! (g

�

, g�2
0 , g�1

C

) 2 N�

� H � NC (g
�

2 N�, g0 2 H ),

N�

� H � NC

3 (x
�

, x0, x
C

) 7! x
�

x0x
C

2 G,

G 3 g 7! �(g)�1
2 H=W.

4. Frobenius center

4.1. Fix a positive integerl . If l is odd (resp. even), then we setr D l (resp.r D
l=2). Note thatr is the order of� 2. We assume

(4.1) r > d
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in the following. We take� 2 C to be a primitivel -th root of 1. Define�
�

(� 2 1),
�i (i 2 I ) as in (2.11) forzD � . For � 2 1 we denote the orders of�

�

, � 2
�

by l
�

, r
�

respectively. Fori 2 I we setl i D l
�i , r i D r

�i .

4.2. For � 21 set�0 D r
�

� 2 h�
Q

. Then10

D {r
�

� j � 21} is a root system with
{�0i j i 2 I } a set of simple roots. Note that as an abstract root system (disregarding
the inner product) we have10

� 1 or 10

� 1

_. Set

P0

D {� 2 h�
Q

j (�, �_) 2 r
�

Z (8� 2 1)}.

Then P0 is the weight lattice for10, and we haveP0

� P.
Set

(4.2) " D �

r 2
�

�

(� 2 1, �0 2 (10)short).

Then we have" D �1. Furthermore," D �1 if and only if we have either
(a) r is odd andl D 2r ,
or
(b) d D 2, r is even withr =2 odd.
Set

"

�

0

D "

(�0,�0)=(� 0,� 0) (�0 2 10, � 0 2 (10)short).

Then we have

(4.3) "

�

0

D �

r 2
�

�

(� 2 1).

An explicit description of (10, ") in each case is given in Table 1.

4.3. Similarly to the Frobenius homomorphism

(4.4) FrW PU
�

(1)! PU
"

(10)

given in [17, Theorem 35.1.9] we can define an algebra homomorphism

(4.5) � W

PV
�

(1)! PV
"

(10)

such that
• for � � P0 we have� (x(n)

i 1
�

) D � (y(n)
i 1

�

) D 0 (i 2 I , n 2 Z
=0),

• for � 2 P0 we have

� (x(n)
i 1

�

) D

(

x(n=r i )
i 1

�

(r i j n),
0 (otherwise),

� (y(n)
i 1

�

) D

(

y(n=r i )
i 1

�

(r i j n),
0 (otherwise).
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Table 1.

type of1 l r 1

0

"

l 2 2ZC 1 l r1 1
An, Dn, E6, E7, E8 l 2 4Z l=2 r1 1

l 2 4ZC 2 l=2 r1 �1

Bn, Cn, F4

l 2 2ZC 1 l r1 1
l 2 4ZC 2 l=2 r1 �1

l 2 8Z l=2
r

2
(21shortt1long) 1

l 2 8ZC 4 l=2
r

2
(21shortt1long) �1

G2

l 2 6Z� 1 l r1 1

l 2 6ZC 3 l
r

3
(31shortt1long) 1

l 2 12Z l=2
r

3
(31shortt1long) 1

l 2 12Z� 4 l=2 r1 1

l 2 12ZC 6 l=2
r

3
(31shortt1long) �1

l 2 12Z� 2 l=2 r1 �1

The fact that� is well-defined follows easily from the corresponding fact for Fr. More-
over, for � 2 P0 and � 2 1C

� (x(n)
�

1
�

) D

(

x
(n=r

�

)
�

0

1
�

(r
�

j n),
0 (otherwise),

� (y(n)
�

1
�

) D

(

y
(n=r

�

)
�

0

1
�

(r
�

j n),
0 (otherwise)

by [17, 41.1.9].

Proposition 4.1. There exists uniquely an injective homomorphism

t
� W U

"

(10)! U
�

(1)

of coalgebras satisfying

(4.6) �

�

(t
� (u), v) D �

"

(u, � (v)) (u 2 U
"

(10), v 2 PV
�

(1)).
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Moreover, we have

t
� (anN

�

0

N
� � � an1

�

0

1
k
�

S(b
n0N
�

0

N
� � � b

n01
�

0

1
))

D c
n1Cn01
�1

� � � c
nNCn0N
�N

a
r
�N nN

�N
� � � a

r
�1n1

�1
k
�

S(b
r
�N n0N
�N

� � � b
r
�1n01
�1

)

(� 2 P0, n1, : : : , nN , n01, : : : , n0N 2 Z=0),

(4.7)

where

c
�

D (�1)r�C1
�

�r
�

(r
�

�1)=2
�

(� 2 1C).

Proof. It is easily seen from (2.10) that there exists uniquely a linear map
t
� W U

"

(10)! U
�

(1) satisfying (4.6), and it is given by (4.7). Then we concludefrom
Proposition 2.2 thatt� is a homomorphism of coalgebras.

Similarly we have the following.

Proposition 4.2. We havet
� (eU

"

(10)) � eU
�

(1), and

!

�

(t
� (u), x) D !

"

(u, Fr(x)) (u 2 eU
"

(10), x 2 PU
�

(1)).

4.4. For � 2 1 we set�
�

D �

r
�

�

. We have�
�

D �1, and�
�

D �1 if and only l
�

is even.

Proposition 4.3 (De Concini–Kac [5]). For �, � 2 1C, � 2 P, � 2 P0 we have

ar
�

�

a
�

D �

(�_,�)
�

a
�

ar
�

�

, (Sbr
�

�

)(Sb
�

) D �(�_,�)
�

(Sb
�

)(Sbr
�

�

),

ar
�

�

(Sb
�

) D �(�_,�)
�

(Sb
�

)ar
�

�

, (Sbr
�

�

)a
�

D �

(�_,�)
�

a
�

(Sbr
�

�

),

k
�

ar
�

�

D �

(�,�_)
�

ar
�

�

k
�

, k
�

(Sbr
�

�

) D �(�,�_)
�

(Sbr
�

�

)k
�

,

k
�

a
�

D �

(�,�_)=r
�

�

a
�

k
�

, k
�

(Sb
�

) D �(�,�_)=r
�

�

(Sb
�

)k
�

in U
�

(1).

Proposition 4.4. For �0, � 0 2 (10)C, � 2 P0 we have

a
�

0a
�

0

D "

((�0)_,� 0)
�

0

a
�

0a
�

0 , (Sb
�

0 )(Sb
�

0) D "((�0)_,� 0)
�

0

(Sb
�

0 )(Sb
�

0 ),

a
�

0 (Sb
�

0) D "((�0)_,� 0)
�

0

(Sb
�

0)a
�

0 , (Sb
�

0 )a
�

0

D "

((�0)_,� 0)
�

0

a
�

0 (Sb
�

0 ),

k
�

a
�

0

D "

(�,(�0)_)
�

0

a
�

0k
�

, k
�

(Sb
�

0 ) D "(�,(�0)_)
�

0

(Sb
�

0 )k
�

in U
"

(10).
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Proof. Let

( j )0 W h
Q

� h
Q

! Q

be theW-invariant non-degenerate symmetric bilinear form such that (�0 j �0)0 D 2 for

�

0

2 (10)short. Then we have"((�0)_,� 0)
�

0

D "

(�0j� 0)0 for �0, � 0 2 (10)C.
In order to show the first formulaa

�

0a
�

0

D "

(�0j� 0)0a
�

0a
�

0 for �0, � 0 2 (10)C, it is
sufficient to show

�

;,L
�

(a
�

0a
�

0 , y) D "(�0j� 0)0
�

;,L
�

(a
�

0a
�

0 , y)

for any y 2 U L ,�
"

D U L ,�
"

(10), where� ;,L
�

is defined for10. Write

1(y) D
X


 ,Æ2(Q0)C

uy

 ,Æ(k

�1
Æ


 1) (uy

 ,Æ 2 U L ,�

",�
 
U L ,�
",�Æ),

where for
 D
P

i2I mi�
0

i 2 (Q0)C we set

U L ,�
",�
 D

X

P

k j Di n jDmi

C f (n1)
k1
� � � f (ns)

ks
� U L ,�

"

.

Then we have

�

;,L
�

(a
�

0a
�

0 , y) D (� ;,L
�


 �

;,L
�

)(a
�

0


 a
�

0 , 1(y))

D (� ;,L
�


 �

;,L
�

)(a
�

0


 a
�

0 , P(uy
�

0,�0)),

whereP(y1
 y2) D y2
 y1. Similarly, we have

�

;,L
�

(a
�

0a
�

0 , y) D (� ;,L
�


 �

;,L
�

)(a
�

0


 a
�

0 , uy
�

0,� 0).

Hence it is sufficient to show

(4.8) P(uy

 ,Æ) D "

(
 jÆ)0uy
Æ,
 (y 2 U L ,�

"

, 
 , Æ 2 (Q0)C).

We can easily check that if (4.8) holds fory D y1, y2, then it also holds fory D y1y2.
Hence the assertion follows from (4.8) fory D f (n)

i , which is easily checked.
The second formula is equivalent tob

�

0b
�

0

D "

(�0j� 0)0b
�

0b
�

0 for �0, � 0 2 (10)C, and
is proved similarly to the first formula.

Let us show the third and the fourth formula. They are equivalent to a
�

0b
�

0

D

b
�

0a
�

0 for �0, � 0 2 (10)C. Take 15 j , k 5 N such that�0 D � 0j , �
0

D �

0

k. If j D k, then
the assertion is a consequence ofa

�

0

i
b
�

0

i
D b

�

0

i
a
�

0

i
in U

"

(10) for i 2 I . Assume j > k.
Setting

w D si1 � � � sik�1, y D sik � � � si j�1, i j D m, ik D n
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we have

a
�

0

D T
w

Ty(a
�

0

m
), b

�

0

D T
w

(b
�

0

n
),

and hence it is sufficient to show

b
�

0

n
Ty(a

�

0

m
) D Ty(a

�

0

m
)b
�

0

n
.

By sny < y this is equivalent to

T�1
n (b

�

0

n
)Tsn y(a

�

0

m
) D Tsn y(a

�

0

m
)T�1

n (b
�

0

n
).

By T�1
n (b

�

0

n
) D �a

�

0

n
kn this is again equivalent to

a
�

0

n
Tsn y(a

�

0

m
) D "(�0njsn y(�0m))0Tsn y(a

�

0

m
)a
�

0

n
.

By sny < snysm we havesny(�0m) 2 (10)C and Tsn y(a
�

0

m
) is a linear combination of the

elements of the formamN

�

0

N
� � �am1

�

0

1
with

P

j m j�
0

j D sny(�0m). Hence the assertion follows

from the first formula. The casej < k can be handled in a similar way.
The remaining formulas are obvious.

We see easily from Proposition 4.3, Proposition 4.4 the following.

Proposition 4.5. t
� is a homomorphism of Hopf algebras.

4.5. We define the Frobenius centerZFr(U�

) of U
�

by ZFr(U�

) D Im(t
� ) \

Z(U
�

). Note

Im(t
� ) �

 

O

�21

C

C[ar
�

�

, Sbr
�

�

]

!


 C[ P0].

Namely, the image oft� consists of the linear combinations of the monomials of
the form

(4.9) zD a
r
�1m

�1
�1

� � � a
r
�N m

�N
�N

k
�

(Sb
r
�1m0

�1
�1

) � � � (Sb
r
�1m0

�N
�N

) (� 2 P0).

If l is odd, then we have�
�

D 1 for any� 2 1C, and henceZFr(U�

) D Im(t
� ) by

Proposition 4.3.
Assumel is even. By Proposition 4.3 we see easily thatZFr(U�

) consists of the
linear combinations of the monomials of the form (4.9) satisfying

X

�21

C

1

(m
�

Cm0

�

)�_ 2 2Q_,(4.10)

(�, 
 _)=r



2 2Z (8
 2 1C

1 ),(4.11)
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where

1

C

1 D {� 2 1C

j �

�

D �1} D

�

1short\1
C (r � 2Z, l D 2r , d D 2),

1

C (otherwise).

Note that (4.11) is equivalent to� 2 P00, where

(4.12) P00

D

�

2P0

0 (r � 2Z, l D 2r , d D 2),
2P0 (otherwise).

Here

P0

0 D {� 2 h�
Q

j d
�

(�, �_) 2 rZ (� 2 1)}.

Define subgroups01 and02 of G(10) andH(10) respectively by

01 D

�

{1} (l � 2Z),
G(10) (l 2 2Z),

02 D

8

<

:

{1} (l � 2Z),
(Q0)_short=2(Q0)_short (l 2 2Z, r � 2Z, d D 2),
H(10) (otherwise),

where

(Q0)_shortD
X

�

0

2(10)short

Z(�0)_.

Set

0 D 01 � 02.

By the above argument we have the following.

Proposition 4.6. Under the identificationIm(t
� ) � U

"

(10) we have

ZFr(U�

(1)) � (UC

"

(10)
 SU�

"

(10))01

 C[ P00]

D (UC

"

(10)
 SU�

"

(10))01

U0

"

(10)02

D U
"

(10)0.

Proposition 4.7. We have an isomorphism

(4.13) ZFr(U�

(1)) � C[K (10)]0 (D C[K (10)=0])

of algebras.
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Proof. Assume" D 1. Then the action of the group0 on the algebraU1(10)
induces the action of0 on the algebraic varietyK (10) via the algebra isomorphism
(2.15) for10, and hence we haveU1(10)0 � C[K (10)]0 � C[K (10)=0]. Assume" D
�1. In this case we haveU

�1(10)0 � U1(10)0 by Proposition 2.8. Hence we have also
U
�1(10)0 � C[K (10)]0 � C[K (10)=0].

By Proposition 4.6 and [10] we obtain the following.

Corollary 4.8. ZFr(U�

) is Cohen–Macaulay.

5. Main result

Since the actionÆ
"

of W on C[2P0] is the ordinary one, we have

(5.1) ZHar(U"

(10)) � C[2P0]W
� C[ P0]W

� C[H (10)=W],

where the second isomorphism is induced byC[ P0] � C[2P0] (e(�) $ e(2�)). Simi-
larly, we have

(5.2) ZHar(U�

(1)) � C[H (1)=W].

Note that the action ofW on H (10) in (5.1) is the ordinary one, while that onH (1)
in (5.2) is the twisted one given by

w W h 7! w(h1h)h�1
1 (w 2 W, h 2 H (1)),

whereh1 2 H (1) is given by�(h1) D � 2(�, Q�) (� 2 P D Hom(H (1), C�)).

Proposition 5.1. We have

ZFr(U�

(1)) \ ZHar(U�

(1)) D t
� (ZHar(U"

(10))),

and hence

(5.3) ZFr(U�

(1)) \ ZHar(U�

(1)) � C[H (10)=W].

Proof. Note thatZHar(U"

(10)) is spanned by{tL
"

(�)}�2(P0)C . By Proposition 4.2 we

have t
� (tL

"

(�)) D tFr� L
"

(�), where Fr� L
"

(�) is the PU
�

(1)-module induced via

FrW PU
�

(1)! PU
"

(10). Hence we have

ZFr(U�

(1)) \ ZHar(U�

(1)) � t
� (ZHar(U"

(10))),

and �
�

(t
� (ZHar(U"

(10)))) D C[2P0]W. On the other hand by Proposition 4.6 we have
�

�

(ZFr(U�

(1)) \ ZHar(U�

(1))) � C[2P]WÆ

�

\ C[ P00] D C[2P0]W.
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By the definition of the Harish-Chandra isomorphism we have the following.

Proposition 5.2. The morphism H(1)=W ! H (10)=W, which is associated to
the inclusion ZFr(U�

(1))\ ZHar(U�

(1)) � ZHar(U�

(1)) together with the isomorphisms
(5.2) and (5.3), is the natural one induced from the canonical morphism H(1) !
H (10) associated to the embedding P0

� P.

Note that we have the following commutative diagram

ZFr(U�

(1)) \ ZHar(U�

(1)) ZFr(U�

(1))

ZHar(U"

(10)) U
"

(10)0

ZHar(U1(10)) U1(10)0 U1(10)

C[H (10)=W] C[K (10)=0] C[K (10)]

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

where horizontal arrows are inclusions, and vertical arrows are isomorphisms. Note also
that the inclusionC[H (10)=W] ! C[K (10)] is induced by� Æ �, where� W K (10)!
G(10) and�W G(10)! H (10)=W are morphisms of algebraic varieties we have already
defined. Hence we have the following.

Proposition 5.3. The morphism K(10)=0 ! H (10)=W, which is associated to
the inclusion ZFr(U�

(1)) \ ZHar(U�

(1)) � ZFr(U�

(1)) together with the isomorphisms
(4.13) and (5.3), is induced by� Æ � W K (10)! H (10)=W.

The main result of this paper is the following.

Theorem 5.4. The natural homomorphism

ZFr(U�

)
ZFr(U�

)\ZHar(U�

) ZHar(U�

)! Z(U
�

)

is an isomorphism. In particular, we have

Z(U
�

) � C[(K (10)=0) �H (10)=W (H (1)=W)].

The rest of the paper is devoted to the proof of Theorem 5.4. The arguments below
mostly follow that in De Concini–Kac–Procesi [6] (see also De Concini–Procesi [8]).



76 T. TANISAKI

We set for simplicity

Z D Z(U
�

),

ZFr D ZFr(U�

) � C[K (10)=0],

ZHarD ZHar(U�

) � C[H (1)=W],

so that

ZFr \ ZHar� C[H (10)=W].

We are going to show that the canonical homomorphism

j W ZFr
ZFr\ZHar ZHar! Z

is an isomorphism.

Proposition 5.5. ZFr
ZFr\ZHar ZHar is a normal domain.

Proof. By Serre’s criterion it is sufficient to show that the scheme
(K (10)=0) �H (10)=W (H (1)=W) is smooth in codimension one and Cohen–Macaulay.

We first show that (K (10)=0) �H (10)=W (H (1)=W) is smooth in codimension one.
Since H (1)=W is smooth andH (1)=W ! H (10)=W is a finite morphism, it is suf-
ficient to show that there exists a subvarietyX of K (10)=0 with codimension greater
than one such that (K (10)=0) n X ! H (10)=W is smooth. Consider firstK (10) !
H (10)=W. Then there exists a subvarietyX1 of K (10) with codimension greater than
one such thatK (10)nX1! H (10)=W is smooth since a similar result is known to hold
for G(10)! H (10)=W and K (10)! G(10) is smooth. Hence it is sufficient to show
that there exists a subvarietyX2 of K (10) with codimension greater than one such that
K (10)n X2! (K (10)=0 is smooth sinceK (10)! (K (10)=0 is a finite morphism. We
may assume0 ¤ {1}. In this case we have

K (10) D Y � SpecC[ P0], K (10)=0 D Y=P0

� SpecC[ P00],

whereY D
Q

�21

C

C

2 and the action ofP0 on Y is given by

� W (x
�

)
�21

C

7! ((�1)d�0 (�,(�0)_)x
�

)
�21

C (� 2 P0, x
�

2 C

2).

Since SpecC[ P0] ! SpecC[ P00] is smooth, it is sufficient to show that there exists
a subvarietyZ of Y with codimension greater than one such thatY n Z ! Y=P0 is
smooth. Note that the obvious action of

Q

�21

C

GL2(C) on Y commutes with the action
of P0. HenceY! Y=P0 is smooth on the open orbitY0 D

Q

�21

C

(C2
n{0}). Our claim

is a consequence of dim(Y n Y0) 5 dim Y � 2.
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Let us show thatZFr(U�

)

C[2P0]W

C[2P]WÆ

� is Cohen–Macaulay. By [18]C[2P0]W

and C[2P]WÆ

� are both isomorphic to the polynomial ring injI j-variables. Hence
we have

ZFr(U�

)

C[2P0]W

C[2P]WÆ

�

� ZFr(U�

)[X1, : : : , X
jI j]=( f1, : : : , f

jI j)

for some f1, : : : , f
jI j 2 ZFr(U�

)[X1, : : : , X
jI j]. Moreover, we have obviously

dim ZFr(U�

) 

C[2P0]W

C[2P]WÆ

�

D dim ZFr(U�

). Hence our claim is a consequence of
Corollary 4.8 and well-known results on Cohen–Macaulay rings.

Lemma 5.6. ZFr
ZFr\ZHar ZHar is a free ZFr-module of rank P=P0.

Proof. It is sufficient to show thatZHar is a freeZFr\ZHar-module of rankP=P0.
Namely, we have only to show thatC[2P]WÆ

� is a freeC[2P0]W-module of rankP=P0.
We may replaceC[2P]WÆ

� with C[2P]W by applying an automorphism ofC[ P] which
sendsC[2P]WÆ

� and C[2P0]W to C[2P]W and C[2P0]W respectively. By Steinberg
[18] C[2P] (resp.C[2P0]) is a freeC[2P]W-module (resp.C[2P0]W-module) of rank
jWj. SinceC[2P] is a freeC[2P0]-module of rankjP=P0

j, C[2P] is a freeC[2P0]W-
module of rankjWj � jP=P0

j. Note thatC[2P]W is a direct summand of the free
C[2P]W-moduleC[2P] by [18]. HenceC[2P]W is also a direct summand of the free
C[2P0]W-moduleC[2P]. It follows that C[2P]W is a projectiveC[2P0]W-module of
rank jP=P0

j. SinceC[2P0]W is isomorphic to a polynomial ring by [18], we conclude
from the Serre conjecture thatC[2P]W is a freeC[2P0]W-module of rankP=P0.

Set

(5.4) mD

8

<

:

1 (l � 2Z),
2j1short\5j (l 2 2Z, r � 2Z, d D 2),
2j5j (otherwise).

For a commutative domainS we denote byQ(S) the quotient field.

Lemma 5.7. U
�

is a finitely generated ZFr-module, and we have

dimQ(ZFr) Q(ZFr)
ZFr U
�

D

 

m
Y

�21

C

r
�

!2

� jP=P0

j.

Proof. Denote byC the image oft� W U
"

(10)! U
�

(1). Then we have

ZFr � C � U
�

.

SinceU
�

is a freeC-module of rank
�

Q

�21

C

r
�

�2
�jP=P0

j, it is sufficient to show that
C is a finitely generatedZFr-module and

dimQ(ZFr) Q(ZFr)
ZFr C D m2.
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If l is odd, we haveC D ZFr, and hence we may assume thatl is even. By the explicit
description ofZFr given by (4.10), (4.11) we have

C � C[ P0] 
 C[(Z2
=0)1

C

], ZFr � C[ P00] 
 C[L],

where

L D

8

<

:

(m
�

, m0

�

)
�21

C

2 (Z2
=0)1

C

X

�21

C

1

(m
�

Cm0

�

)�_ 2 2Q_

9

=

;

,

andC[(Z2
=0)1

C

] andC[L] are the semigroup algebras of the semigroups (Z

2
=0)1

C

and L

respectively. Note thatC[ P0] is a freeC[ P00]-module of rankjP0

=P00

j. SinceC[(Z2
=0)1

C

]

is a finitely generatedC[2(Z2
=0)1

C

]-module, it is also a finitely generatedC[L]-module

by 2(Z2
=0)1

C

� L. HenceC is a finitely generatedZFr-module.
Set

QL D {(m
�

, m0

�

)
�21

C

2 (Z2)1
C

j

X

�21

C

1

(m
�

Cm0

�

)�_ 2 2Q_}.

Then we have (Z2)1
C

=

QL � Q_

1 =(Q
_

1 \ 2Q_), where Q_

1 D
P

�21

C

1
Z�

_. Hence

C[(Z2)1
C

] is a freeC[ QL]-module of rank jQ_

1 =(Q
_

1 \ 2Q_)j. SinceC[(Z2)1
C

] and

C[ QL] are localizations ofC[(Z2
=0)1

C

] and C[L] respectively with respect to the multi-

plicative setSD 2(Z2
=0)1

C

of C[L], we obtain thatS�1C is a freeS�1ZFr-module of
rank jP0

=P00

j� jQ_

1 =(Q
_

1 \2Q_)j. Therefore,Q(ZFr)
ZFr C is a freeQ(ZFr)-module of
rank jP0

=P00

j�jQ_

1 =(Q
_

1 \2Q_)j. It remains to showm2
D jP0

=P00

j�jQ_

1 =(Q
_

1 \2Q_)j.
In the case1C

1 D 1
C we haveP00

D 2P0, Q_

1 D Q_, and hence the assertion is obvi-
ous. In the case1C

1 D 1
C

\1short we haveP0

D r P , P00

D r (P \ 2P1), where

P1 D {� 2 h�
Q

j (�, �_) 2 Z (� 2 1short)},

and henceP0

=P00

� P=(P \ 2P1). On the other hand we have

Q_

1 =(Q
_

1 \ 2Q_) � (Q_

1 C 2Q_)=2Q_

�

�

1

2
Q_

1 C Q_

��

Q_.

Since P and P\ 2P1 are lattices inh�
Q

dual to Q_ and (1=2)Q_

1 C Q respectively, we
obtain jP0

=P00

j D jQ_

1 =(Q
_

1 \2Q_)j. It remains to checkmD j(Q_

1 C2Q_)=2Q_

j. For
that it is sufficient to show

Q_

1 C 2Q_

D

X

�21short\5

Z�

_

C 2Q_.

In order to prove this we have only to show that the right-handside is stable under the
action of the Weyl group. Hence it is sufficient to showsj (�_i ) 2

P

�21short\5
Z�

_

C
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2Q_ for any i , j 2 I satisfying�i 2 1short. This is obvious if� j 2 1short. In the case
where � j 2 1long we havesj (�_i ) D �

_

i � (�_i , � j )�_j with (�_i , � j ) 2 {0, �2}. We
are done.

In general letR be aC-algebra. Assume thatR is prime (i.e.x, y 2 R, x RyD {0}

implies x D 0 or y D 0), and is finitely generated as aZ(R)-module. Then
Q(Z(R))
Z(R) R is a finite-dimensional central simple algebra over the fieldQ(Z(R)).
Hence Q(Z(R)) 
Z(R) R is isomorphic to the matrix algebraMn(Q(Z(R))) for some
n, whereQ(Z(R)) denotes the algebraic closure ofQ(Z(R)). Then thisn is called the
degree ofR. Namely, the degreen of R is given by

dimQ(Z(R)) Q(Z(R))
Z(R) RD n2.

Note that U
�

is a finitely generatedZ(U
�

)-module by Lemma 5.7. In [5]
De Concini–Kac have shown thatU

�

has no zero divisors using a certain degenera-
tion GrU

�

of U
�

. In particular, it is a prime algebra. Hence we have the notion of
the degree ofU

�

. In [7] De Concini–Kac–Procesi proved that the degree ofU
�

is less
than or equal to that of GrU

�

. They have also shown that the degree of GrU
�

can be
computed from the elementary divisors of a certain matrix with integral coefficients.
The actual computation of the elementary divisors was done in [7] when l is odd, and
in Beck [2] in the remaining cases. From these results we havethe following.

Proposition 5.8. We have

dimQ(Z) Q(Z)
Z U
�

5

 

m
Y

�21

C

r
�

!2

.

Let us show thatj is injective. By Proposition 5.5ZFr
ZFr\ZHar ZHar is a domain.
Note also thatZ is a domain sinceU

�

has no zero divisors. Hence we have only to
show that

j � W SpecZ ! SpecZFr
ZFr\ZHar ZHar

has a dense image. Consider the embeddingj 0 W ZFr ! Z. Since j 0 is injective,
( j 0)� W SpecZ ! SpecZFr has a dense image. Note that (j 0)� is the composite ofj �

with the natural morphism

' W SpecZFr
ZFr\ZHar ZHar! SpecZFr.

Since SpecZFr
ZFr\ZHar ZHar is irreducible and' is a finite morphism by Lemma 5.6,
we conclude thatj � must have a dense image. The injectivity ofj is verified.

Set for simplicity

Z0

D ZFr
ZFr\ZHar ZHar.
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Then we have

ZFr � Z0

� Z � U
�

.

We need to showZ0

D Z.
Assume that

(5.5) Q(Z) D Q(Z0)

holds. SinceU
�

is a finitely generatedZFr-module,Z is a finitely generatedZ0-module.
It follows that Z D Z0 by Proposition 5.5. Hence it is sufficient to show (5.5).

SinceZ0 is a freeZFr-module of rankjP=P0

j, we have [Q(Z0) W Q(ZFr )] = jP=P0

j.
Hence it is sufficient to show

(5.6) [Q(Z) W Q(ZFr )] 5 jP=P0

j.

Note that we haveQ(ZFr) 
ZFr Z � Q(Z) since Z is a finitely generatedZFr-
module. Hence

Q(ZFr )
ZFr U
�

� Q(ZFr )
ZFr Z 
Z U
�

� Q(Z)
Z U
�

.

Hence we obtain (5.6) by Lemma 5.7, Proposition 5.8. The proof of Theorem 5.4
is complete.

Corollary 5.9. The degree of U
�

is equal to m
Q

�21

C

r
�

, where m is as in(5.4).

REMARK 5.10. Corollary 5.9 was proved by De Concini–Kac–Procesi [7] in the
casel is odd and by Beck [2] in the casel is divided by 4d.
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