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Abstract
Let k be an algebraic number field of finite degree andk

1

be the maximal cyclo-
tomic extension ofk. Let QLk and Lk be the maximal unramified Galois extension and
the maximal unramified abelian extension ofk

1

respectively. We shall give some
remarks on the Galois groups Gal(QLk=k1), Gal(Lk=k1) and Gal(QLk=k). One of the
remarks is concerned with non-solvable quotients of Gal(QLk=k1) when k is the ra-
tionals, which strengthens our previous result.

Introduction

Let k be an algebraic number field of finite degree in a fixed algebraic closure and
�n denote a primitiven-th root of unity (n � 1). Let k

1

be the maximal cyclotomic
extension ofk, i.e., the field obtained by adjoining tok all �n (n � 1). Let QLk and
Lk be the maximal unramified Galois extension and the maximal unramified abelian
extension ofk

1

respectively. By the maximality,QLk and Lk are both Galois extensions
of k.

According to the analogy between finite algebraic number fields and function fields
of one variable over finite constant fields, adjoining all�n to a finite algebraic number
field is one of the substitutes of extending the finite constant field of the function field
to its algebraic closure. Therefore, the Galois group Gal(QLk=k1) may be regarded as
an analogue of the algebraic fundamental group of a proper smooth geometrically con-
nected curve over the algebraic closure of a finite field.

In this article, we shall give some remarks on the Galois groups Gal(QLk=k1),
Gal(Lk=k1) and Gal(QLk=k).

It is known that the algebraic fundamental group of a smooth geometrically con-
nected curve over an algebraically closed constant field hasthe following property (P)
except for some special cases (cf. e.g. Tamagawa [8]).

Every subgroup with finite index is centerfree.(P)

This is one of the properties of algebraic fundamental groups of “anabelian” alge-
braic varieties (cf. e.g. Ihara–Nakamura [4]). Our first remark is that the Galois group
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Gal(QLk=k1) also has this property. This will be given in §1.
We shall next consider the Galois group0 D Gal(k

1

=k) and X D Gal(Lk=k1).
Then,0 acts naturally onX, i.e., X is a 0-module. As a profinite abelian group,X is
isomorphic to the direct product of countable number of copies of OZ, the profinite com-
pletion of the additive group of rational integersZ. This follows from a more general
result of Uchida [9] that the Galois group of the maximal unramified solvable exten-
sion of k

1

over k
1

is isomorphic to the free prosolvable group on countably infinite
generators. However, the structure ofX as a0-module does not seem to be well in-
vestigated. (Some partial and related results are obtainedin Asada [2].)

Our second remark is thatX is a faithful 0-module. It follows from this and our
first remark that the Galois group Gal(QLk=k) also has the property (P). This has been
pointed out by Akio Tamagawa. The proofs of these will be given in §2.

Our final remark is about the inverse Galois problem on Gal(QLk=k1). As noted
above, the maximal prosolvable quotient of Gal(QLk=k1) is determined by Uchida, but
not too much seems to be known for its non-solvable quotients. In our previous paper
[1], when the ground fieldk is the rationalsQ, we have shown that there exist in-
finitely many unramified Galois extensions ofQ

1

having finite non-solvable group
PSL2(Z=pr

Z)D SL2(Z=pr
Z)={�1} as the Galois group, wherep is any prime greater

than 3 andr is any positive integer. The method is to use thepr -torsion points of
certain elliptic curves overQ. It is not difficult to see that allp-power torsion points
of a single elliptic curve can not be used. Namely, by that method, profinite group
PSL2(Zp), which is not prosolvable, can not be realized as the Galoisgroup of an
unramified extension ofQ

1

(Zp: the ring of p-adic integers). Nevertheless, we can
strengthen the result as the following theorem.

Theorem 0.1. Let p� 5 be a prime. Then there exists an unramified Galois ex-
tension F ofQ

1

such thatGal(F=Q
1

) is isomorphic to
Q

1

ND1 SL2(Zp), the direct
product of countable number of copies ofSL2(Zp).

We shall give the proof in §3. The arithmetic point of the proof is that the Galois
group Gal(QLk=k1) is projective, which is also due to Uchida [9]. The group-theoretical
point of the proof is some properties of the group SL2(Zp) due to Serre [6, 7]. Since
our results are based on and related to Uchida’s results, we shall summarize them
in §1.

1. A result of Uchida and its consequence

(1-1) It seems that fundamental results about the Galois group Gal(QLk=k1) ob-
tained so far are the following theorem of Uchida.

Theorem 1.1 ([9]). (i) The cohomological dimension of the Galois group
Gal(QLk=k1) is less than or equal to1.
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(ii) The maximal prosolvable quotient of the Galois groupGal(QLk=k1) is isomorphic
to the free prosolvable group on countably infinite generators.

It is known that the cohomological dimension of a profinite group G is less than or
equal to 1 if and only ifG is projective (cf. e.g. Serre [5, Chapter 1 5.9]). Recall
that a profinite groupG is called projective if for every surjective homomorphism of
profinite groups� W E! H and for every surjective homomorphism' W G! H , there
exists a homomorphism W G! E such that' D � .

Actually, Uchida’s result is more general. For an algebraicnumber fieldK , not
necessarily of finite degree over the rationals, letK ur (resp. K ur

sol) be the maximal un-
ramified Galois extension (resp. the maximal unramified prosolvable extension) ofK .
Uchida has given sufficient conditions on the ground fieldK for the Galois group
Gal(K ur

=K ) to be projective and those for the Galois group Gal(K ur
sol=K ) to be iso-

morphic to the free prosolvable group on countably infinite generators. Since the field
k
1

satisfies both conditions, the above theorem follows.
(1-2) The following is a consequence of Theorem 1.1, combined with a lemma

of Tamagawa [8].

Proposition 1.2. The Galois groupGal(QLk=k1) has the property(P).

Proof. We first show that Gal(QLk=k1) itself is centerfree. By Lemma 1 in [8], it
suffices to show that, for every open subgroup of Gal(QLk=k1), its maximal pro-l quo-
tient is centerfree for every prime numberl . Take an open subgroupU of Gal(QLk=k1).
Let U D Gal(QLk=K ) with a finite extensionK of k

1

. Then it is easy to see that there
exists a finite algebraic number fieldF such thatK D F

1

and that QLk is also the max-
imal unramified Galois extensionQL F of F

1

. By Theorem 1.1 (ii), the maximal pro-l
quotient of U is isomorphic to the free pro-l group on countably infinite generators,
and hence is centerfree. Thus, Gal(QLk=k1) is centerfree.

Now, as stated above, any open subgroup of Gal(QLk=k1) is of the form Gal(QL F=F
1

)
with a finite algebraic number fieldF . Hence, by the above arguments, it is centerfree.

2. The faithfulness of the cyclotomic Galois action

(2-1) The cyclotomic Galois group0 D Gal(k
1

=k) acts naturally onX D
Gal(Lk=k1) and we have a homomorphism

� W 0 ! Aut(X).

Then we have the following

Proposition 2.1. The homomorphism� is injective, i.e., X is a faithful0-module.
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Before giving the proof, we shall verify the following corollary.

Corollary 2.2. The Galois groupGal(QLk=k) has the property(P).

Proof. We first verify that Gal(QLk=k) is centerfree. Let� D Gal(QLk=k), G D
Gal(QLk=k1) and N D Gal(QLk=Lk), the commutator subgroup ofG. We claim that
the centralizerC

�

(G) of G in � is trivial. In fact, let ! be an element ofC
�

(G)
so that we have!g!�1

D g for any elementg of G. Reducing this equation modulo
N, we see that the coset
 D !G, which is an element of�=G D 0, acts trivially on
G=N D X. By Proposition 2.1, we have
 D 1, i.e.,! 2 G. SinceG is centerfree by
Proposition 1.2, we have! D 1, i.e. C

�

(G) D {1}. In particular,� is centerfree.
Now, similar to the case of Gal(QLk=k1), it is easy to see that any open subgroup

of � is of the form Gal(QL F=F) with a finite algebraic number fieldF . Therefore, by
the above arguments, it is centerfree.

(2-2) In the rest of this section, we shall give the proof of Proposition 2.1. First
we shall construct certain unramified abelian extensions ofcyclotomic fields.

Let p be a fixed prime andq be a power ofp: q D pr (r � 1). Let �q be a
primitive q-th root of unity, eD [k(�q) W k], and 0q D Gal(k(�q)=k). Let p1, : : : , pg be
all prime ideals ofk(�q) lying above p. For eachi (1 � i � g), fix a positive integer
si such that every element� of k(�q) satisfying� � 1 modpsi

i is locally a q-th power,
i.e., � is a q-th power in thepi -adic completion ofk(�q).

Let m be an integral ideal ofk(�q) such thatpsi
i dividesm (1� i � g) and thatm

is invariant by the action of0q. By the density theorem, there exists a principal prime
ideal l D (�) of k(�q) which is unramified in the extensionk(�q)=Q, absolute degree
one, and� � 1 modm.

Let l1 (D l), . . . , le be all prime ideals conjugate tol over k. As l is principal, all
li are principal: li D (�i ), �i 2 k(�q), 1� i � e. We may assume that�1, : : : , �e are
all algebraic integers conjugate to�1 over k.

For each�i , 1 � i � e, fix a q-th root �1=q
i of �i . Let E be the field obtained

by adjoining tok(�q) all �1=q
i , 1 � i � e. Then E is a Kummer extension ofk(�q)

with exponentq and is a Galois extension ofk. The extensionE=k(�q) is unramified
outsidep1, : : : , pg, l1, : : : , le.

Lemma 2.3. (i) The prime idealsp1, : : : ,pg split completely in E. In particular,
they are unramified in E.
(ii) Let l D l \ Q and �l be a primitive l-th root of unity. Then the prime ideals of
k(�q, �l ) lying abovel1, : : : , le are unramified in the extension E(�l )=k(�q, �l ).

Proof. (i) Sincel belongs to the principal ray class modulom, so do allli (1�
i � e), becausem is invariant by the action of0q. As p

sj

j divides m, we have�i �
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1 modp
sj

j (1� i � e, 1� j � g). From this it follows thatp1, : : : , pg split completely
in E.

(ii) We first note thatl � 1 modq. Indeed, as the absolute degree ofl is one, so
is that of l \Q(�q), which is a prime ideal ofQ(�q) lying abovel . This shows thatl
splits completely inQ(�q) so thatl � 1 modq.

Now sincel, hence allli , are unramified in the extensionk(�q)=Q, it follows that
Q(�l ) \ k(�q) D Q and everyli is totally ramified ink(�q, �l )=k(�q) with ramification
index l � 1. On the other hand, the ramification index ofli in E=k(�q) is obviouslyq.
Sinceq divides l � 1 as noted above, (ii) follows by Abhyankar’s lemma (cf. e.g.Cor-
nell [3]).

(2-3) We shall next investigate cyclotomic Galois actions on the Galois group of
E over E \ k

1

.
Let us define the element�i (1� i � e) of Gal(E=k(�q)) by

�i (�
1=q
j ) D �q�

1=q
j ( j D i ),

�i (�
1=q
j ) D �1=q

j ( j ¤ i ).

Each �i is of order q and Gal(E=k(�q)) is the direct product of the cyclic subgroup
generated by�i (1� i � e).

For each� 2 0q, we define its extensionQ� 2Gal(E=k) in such a way thatQ� (�1=q
i )D

�

1=q
j if � (�i ) D � j (1� i , j � e). Let

� W 0q ! (Z=qZ)�

denote the cyclotomic character, i.e., if� (�q)D � s
q (� 2 0q, s 2 Z), then�(� )D s mod

q. The following lemma will be easily verified.

Lemma 2.4. Assume that� 2 0q satisfies� (�i ) D � j . Then we haveQ��i Q�
�1
D

�

s
j , where�(� ) D s modq.

Let K D E \ k
1

. As the extensionK=k(�q) is abelian, the commutator ofQ� and
�i belongs to the subgroup Gal(E=K ) of Gal(E=k(�q)). Thus we have the following

Lemma 2.5. Assumptions being as inLemma 2.4, � s
j �

�1
i belongs toGal(E=K ).

The group0q acts naturally on the abelian group Gal(E=k(�q)) and, sinceK is a
Galois extension ofk, on the subgroup Gal(E=K ).

Lemma 2.6. The action of0q on Gal(E=K ) is faithful.
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Proof. First, let us assume thatp > 2. Then the group0q is cyclic. Let � be a
generator of0q and �(� ) D s modq. We may assume, renumbering if necessary, that

� (�1) D �2, � (�2) D �3, : : : , � (�e) D �1.

Assume that�m (m� 1) acts trivially on Gal(E=K ). Since� s
2�

�1
1 belongs to Gal(E=K )

by Lemma 2.5, we have

Q�

m
�

s
2�

�1
1 Q�

�m
D �

s
2�

�1
1 ,

and hence,

( Q�m
�2 Q�

�m)s( Q�m
�1 Q�

�m)�1
D �

s
2�

�1
1 .

By Lemma 2.4, the left hand side is (� smC1

mC2)(��sm

mC1), the index of� being regarded as
the residue class moduloe. Thus we have

�

smC1

mC2�
�sm

mC1 D �
s
2�

�1
1 .

Since Gal(E=k(�q)) is the direct product of the cyclic subgroup generated by�i (1 �
i � e), this holds if and only ifm � 0 mode and sm

� 1 modq. Hence, we have
�

m
D 1.
We shall next assume thatp D 2. In the case that0q is cyclic, the proof in the

case ofp> 2 remains valid. Assume that0q is not cyclic and leteD 2t (t � 2). Then
0q is the direct product of a cyclic subgroupH1 of order 2t�1 and a cyclic subgroup
H2 of order 2. Let�1 and �2 be generators ofH1 and H2 respectively. SinceH1 is
cyclic and is of index 2, we may assume, renumbering if necessary, that

�1(�1) D �2, : : : , �1(� f ) D �1, �1(� fC1) D � fC2, : : : , �1(�e) D � fC1,

where f D 2t�1. Then �2(�1) belongs to the subset{� fC1, : : : , �e}, because0q acts
on the set{�1, : : : , �e} transitively. We may also assume that�2(�1) D � fC1 and then
it is easy to see that

�2(�2) D � fC2, : : : , �2(� f ) D �e.

Now, each element of0q is expressed uniquely as the following form:

�

m
1 �

n
2 (0� m< f , n D 0, 1)

Assume that�m
1 �

n
2 acts trivially on Gal(E=K ). Let �(�1) D s modq. Since� s

2�
�1
1

belongs to Gal(E=K ) by Lemma 2.5, we have

(1) Q�

m
1 Q�

n
2 (� s

2�
�1
1 ) Q��n

2 Q�
�m
1 D �

s
2�

�1
1 .

If n D 0, similarly as in the case thatp > 2, the left hand side of (1) is

�

smC1

mC2�
�sm

mC1,
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the index of� being regarded as the residue class modulof . If n D 1, the left hand
side of (1) is

�

�smC1

fCmC2�
sm

fCmC1,

the index of� belongs to{ f C 1, : : : , 2 f }. Therefore, (1) holds if and only ifn D 0
and m� 0 mod f . Hence we have�m

1 �
n
2 D 1.

(2-4) Now we shall complete the proof of Proposition 2.1.
Let p be a prime andq be a power ofp. Let E be the field defined in (2-2).

By Lemma 2.3,Ek
1

is an unramified abelian extension ofk
1

so thatk
1

� Ek
1

�

Lk. Let XE be the Galois group Gal(Ek
1

=k
1

). Since Ek
1

is a Galois extension of
k, XE is also a0-module, i.e., XE is a quotient of0-module X. By Lemma 2.6,
the kernel of the action of0 on XE is Gal(k

1

=k(�q)). Therefore, Ker� is contained
in Gal(k

1

=k(�q)). Sinceq is an arbitrary power of an arbitrary prime, it follows that
Ker� D {1}, i.e., � is injective.

3. Proof of Theorem 0.1

(3-1) In this section, we shall give the proof of Theorem 0.1.
We first verify the following

Lemma 3.1. Let p� 5 be a prime and k be an unramified Galois extension of
Q

1

having PSL2(Fp) as the Galois group(Fp: the prime field of characteristic p).
Then the following assertions hold.
(i) There exists an unramified Galois extensionQk ofQ

1

havingSL2(Fp) as the Galois

group such thatQ
1

� k � Qk and that the restrictionGal(Qk=Q
1

) ! Gal(k=Q
1

) cor-
responds to the projectionSL2(Fp)! PSL2(Fp).
(ii) There exists an unramified Galois extension K ofQ

1

havingSL2(Zp) as the Galois

group such thatQ
1

�

Qk � K , Qk being the extension given in(i), and that the restriction
Gal(K=Q

1

)!Gal(Qk=Q
1

) corresponds toSL2(Zp)! SL2(Fp), the reduction modulo p.

Proof. By the assumption, there exists a surjective homomorphism

' W Gal(QL
Q

=Q

1

)! PSL2(Fp)

such that Ker' corresponds tok.
Consider the surjective homomorphism�W SL2(Fp)! PSL2(Fp). Then, by the pro-

jectivity of Gal(QL
Q

=Q

1

) (Theorem 1.1 (i)), there exists a homomorphism

 W Gal(QL
Q

=Q

1

)! SL2(Fp)
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such that' D � . Then is surjective, because no proper subgroup of SL2(Fp) maps

onto PSL2(Fp) (cf. e.g. Serre [6, Chapter IV 3.4 Lemma 2]). Then, the extension Qk of
Q

1

corresponding to Ker satisfies the condition (i).
Consider the surjective homomorphismr W SL2(Zp)! SL2(Fp), the reduction mod-

ulo p. Again, there exists a homomorphism

! W Gal(QL
Q

=Q

1

)! SL2(Zp)

such that D r!. Then! is also surjective, because no proper subgroup of SL2(Zp)
maps onto SL2(Fp) ([6, Chapter IV 3.4 Lemma 3]). Then, the extensionK of Q

1

corresponding to Ker! satisfies the condition (ii).

(3-2) We need some group-theoretical lemmas.

Lemma 3.2. Let G be a non-abelian finite simple group and G1, G2, : : : , Gn

(n � 1) be finite groups all isomorphic to G. Then every normal subgroup of the direct
product G1 � G2 � � � � � Gn is of the form

Gi1 � Gi2 � � � � � Gik (1� i1 < i2 < � � � < ik � n).

The proof of Lemma 3.2 is an exercise of group theory, and hence is omitted.

Lemma 3.3. (i) Let p� 5 be a prime and H be a closed subgroup ofSL2(Zp)n,
the direct product of n copies ofSL2(Zp) (n � 1). Assume that the image of H in
SL2(Fp)n by the reduction modulo p coincides withSL2(Fp)n. Then H coincides with
SL2(Zp)n.
(ii) Let p� 5 be a prime and H be a subgroup ofSL2(Fp)n, the direct product of n
copies ofSL2(Fp) (n � 1). Assume that the image of H inPSL2(Fp)n coincides with
PSL2(Fp)n. Then H coincides withSL2(Fp)n.

Proof. (i) If nD 1, this is one of the lemmas quoted in the proof of Lemma 3.1
([6, Chapter IV 3.4 Lemma 3]). IfnD 2, this lemma follows from Lemma 10 in Serre
[7], where the case ofn D 2 is reduced to the case ofn D 1 by using projections to
each component of SL2(Zp) � SL2(Zp). In this reduction process, the points are that
the kernel of the reduction modulop W SL2(Zp)! SL2(Fp) is a pro-p group and that
SL2(Fp) does not have non-trivial normal subgroups withp-power indices. Ifn � 3,
by decomposing SL2(Zp)n

D SL2(Zp)n�1
� SL2(Zp), SL2(Zp) � SL2(Zp)n�1, the same

method can also be applied and the lemma is proved by induction on n. We omit
the details.

(ii) If n D 1, again this is one of the lemmas quoted in the proof of Lemma 3.1
([6, Chapter IV 3.4 Lemma 2]). Ifn � 2, the proof will be done, in the same way as
that of (i), by induction onn, and hence is omitted. We note that, here, the points are
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that the kernel of the projection SL2(Fp)! PSL2(Fp) is a cyclic group of order 2 and
that PSL2(Fp) does not have normal subgroups with index 2.

(3-3) Now we shall prove Theorem 0.1. By the result of [1], there exist un-
ramified Galois extensionskn (n � 1) of Q

1

such that Gal(kn=Q1

) is isomorphic to
PSL2(Fp) and thatkn ¤ km for n ¤ m. Applying Lemma 3.1 tok D kn, we obtain

unramified Galois extensionsQkn and Kn of Q
1

satisfying the following conditions:
(a) Q

1

� kn � Qkn � Kn.
(b) Gal(Kn=Q1

) is isomorphic to SL2(Zp), Qkn and kn corresponding to the kernels of
homomorphisms SL2(Zp)! SL2(Fp) and SL2(Zp)! PSL2(Fp) respectively.

Let F be the composite field of allKn (n � 1). Then F is an unramified Galois
extension ofQ

1

. We shall show that Gal(F=Q
1

) is isomorphic to
Q

1

ND1SL2(Zp). For
that purpose, it suffices to show that

Gal(K1 � � � Kn=Q1

) is isomorphic to Gal(K1=Q1

) � � � � �Gal(Kn=Q1

)
for all n � 1.

(�)

We first verify that

Gal(k1 � � � kn=Q1

) is isomorphic to Gal(k1=Q1

) � � � � � Gal(kn=Q1

)
for all n � 1.

(�)k

This will be proved by induction onn. For n D 1, this holds trivially. Assume that
this holds for n D m, so that Gal(k1 � � � km=Q1

) is isomorphic to PSL2(Fp)m. As
Gal(kmC1=Q1

) is simple, we havek1 � � � km \ kmC1 D Q

1

or kmC1. But Lemma 3.2
shows, in particular, that a Galois subextension ofk1 � � � km=Q1

having PSL2(Fp) as
the Galois group is one ofki (i D 1, 2, : : : , m). Hence the latter cannot occur and it
follows that (�)k holds for n D mC 1.

Now let H D Gal(K1 � � � Kn=Q1

) and consider the commutative diagram

H Gal(K1=Q1

) � � � � �Gal(Kn=Q1

) D SL2(Zp)n

Gal(k1 � � � kn=Q1

) Gal(k1=Q1

) � � � � �Gal(kn=Q1

) D PSL2(Fp)n

 

!

r1

 

!

 

!

 

!

r2

where r1 and r2 are restrictions and vertical homomorphisms are projections.
Then, by (�)k, r2 is an isomorphism so that the image ofH in PSL2(Fp)n coincides

with PSL2(Fp)n. Hence, by Lemma 3.3 (i) and (ii),r1 is surjective, i.e., (�) holds.

REMARK . In our previous paper [1], we have considered certain subextensionM0

of QL
Q

=Q

1

and have shown that the unramified Galois extensionknM0=M0 (n � 1) has
also PSL2(Fp) as the Galois group and that they are mutually distinct. Here, M0 is the

composite ofQ
1

and the maximal tamely ramified subextensionM t of QL
Q

=Q. The
above arguments for determining the Galois groupH can be also applied to the Galois
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group Gal(K1 � � �KnM0=M0). Hence we have that the extensionF M0=M0 is unramified
and that it has

Q

1

ND1 SL2(Zp) as the Galois group.

Further, let
 be an element of Gal(M0=M t ) and Q
 2 Gal(QL
Q

=M t ) be any exten-
sion of 
 . Then, forn � 1, Q
 transforms the fieldKnM0 to the subextensionQ
 (KnM0)
of QL

Q

=M t , which also has SL2(Zp) as the Galois group. This may be different from
KnM0 becauseKnM0 is not necessarily Galois overM t . However, Q
 (KnM0) does not
coincide with KmM0 for any m¤ n.

To see this, first note that the subextensionknM0 of KnM0=M0 is Galois over
M t (in fact Galois overQ) so that Q
 (knM0) D knM0. Then, sinceknM0 \ kmM0 D

M0 for m¤ n, by the same arguments for determining the Galois groupH , we have
Q
 (KnM0) \ KmM0 D M0. In particular, Q
 (KnM0) ¤ KmM0.
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