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Abstract
In this paper, we introduce a subposetL

�

(G) of a posetN
�

(G) of all non-trivial
nilpotent � -subgroups of a finite groupG. We examine basic properties of sub-
groups inL

�

(G) which contain the notion of both radicalp-subgroups and centric
p-subgroups ofG. It is shown thatL

�

(G) is homotopy equivalent toN
�

(G). As
examples, we investigate in detail the case where symmetricgroups.

1. Introduction

Let G be a finite group, and Sgp(G) the totality of subgroups ofG. We regard
Sgp(G) as a partially ordered set (poset for short) with respect tothe inclusion-relation
�. Then any subsetX � Sgp(G) can be thought of a subposet of (Sgp(G),�) which is
identified with the associated order complex. Letp 2 �(G). Denote bySp(G) the total-
ity of non-trivial p-subgroups ofG. A p-subgroup complexX � Sp(G) itself is stud-
ied well by many authors (see [9] and various references in it). On the other hand, for
distinct p,q 2 �(G), it is also quite important to investigateX � Sp(G) andY � Sq(G)
simultaneously. In order to do so, we focus on nilpotent subgroups, and actually deal
with a posetN

�

(G) of all non-trivial nilpotent�-subgroups ofG where� � �(G). In
particular, we introduce a subposetL

�

(G) of N
�

(G), and show that they are homo-
topy equivalent each other. It is worth mentioning that a subgroup inL

�

(G) contains
the notion of both radicalp-subgroups and centricp-subgroups ofG.

The paper is organized as follows: In Section 2, we establishsome notations, and pre-
pare a number of standard posets of subgroups likeN

�

(G). In Section 3, we introduce a
new posetL

�

(G) consisting of certain nilpotent�-subgroups ofG. We give another de-
scription ofL

�

(G) which is different from the form of the definition. Furthermore some
tools for determiningL

�

(G) are developed. Then by using those results, we classify sub-
groups inL

�

(G) for some groupsG as examples. In Section 4, we provide homotopy
equivalences amongL

�

(G) and the other standard posets of subgroups. Relations with
known p-subgroup posets are examined. In Section 5, we investigatein detail the case
where the symmetric groupSn of degreen. In particular, we give a strategy to deter-
mine L

�

(Sn) which is focused on irreducible subgroups (see Definition 5.5). Then, as
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732 N. IIYORI AND M. SAWABE

examples, we classify subgroups inL
�

(Sn) for n � 6 by using our method.
Finally, this work is derived from a series of our papers [5, 6, 7].

2. Preliminaries

In this section, we establish some notations which will be used in this paper. Let
G be a finite group with the identity elemente. Denote by�(G) the set of all prime
divisors of the order ofG. Let � be a subset of�(G). A subgroupH of G is called a
�-subgroup if�(H ) � � . The notation Sgp(G) stands for the totality of subgroups of
G. Note that Sgp(G) is regarded as a poset together with the usual inclusion-relation
�. We define the following subposets of (Sgp(G), �):

N
�

(G) WD {U 2 Sgp(G) j U is a non-trivial nilpotent�-subgroup ofG},

Ab
�

(G) WD {U 2 Sgp(G) j U is a non-trivial abelian�-subgroup ofG}.

Furthermore letA
�

(G) be a subposet consisting of all non-trivial direct products of
elementary abelianp-subgroups ofG where p runs over primes in� . Then we have
three posetsA

�

(G) � Ab
�

(G) � N
�

(G) on which the groupG acts by conjugation.
The set of all maximal elements in (N

�

(G), �) is denoted byN
�

(G)max. For � D
{p1, : : : , pk} � �(G), we sometimes writeNp1,:::, pk(G) in place ofN

�

(G). The ways
of writing N

�

(G)max and Np1,:::, pk(G) are applied to the other posets. Letp 2 �(G).
Denote bySp(G) the totality of non-trivial p-subgroups ofG. Then we note that
Np(G) D Sp(G).

Denote byZ(G) and O
�

(G) respectively the center ofG, and the largest normal
�-subgroup ofG. For A2Ab

�

(G), suppose thatAD A1�� � ��Ak is the direct product
of Sylow pi -subgroupsAi (1� i � k) of A. Then denote by�1(A) WD �1(A1)� � � � �
�1(Ak) 2 A

�

(G) where�(Ai ) 2 Api (G) is a subgroup generated by all elements in
Ai of order pi . For a subgroupH � G, if O

�

(Z(H )) ¤ {e} then O
�

(Z(H )) 2 Ab
�

(G)
and�1(O

�

(Z(H ))) 2A
�

(G). We express these subgroups asO
�

Z(H ) and�1O
�

Z(H )
for short. In this way, we frequently omit parentheses of thecomposition of group
operators throughout this paper.

Let (P,�) be a poset. Forz2 P, put P
�z WD {x 2 P j x � z}. Similarly, we define

P
<z, P�z, andP

>z.

3. Subposets ofN
�

(G)

Let G be a finite group, and� � �(G). We introduce subposets of (N
�

(G), �)
as follows:

L
�

(G) WD {U 2 N
�

(G) j U � O
�

Z NG(U )},

L�

�

(G) WD {U 2 N
�

(G) j U � �1O
�

Z NG(U )}.

Both families are closed underG-conjugation. In this section, we study basic properties
of L

�

(G) � L�

�

(G), and provide some examples. Note that, for a subgroupU of G,
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U � O
�

Z NG(U ) if and only if Z(U ) � O
�

Z NG(U ).

REMARK 3.1 (p-radicals andp-centrics). Letp 2 �(G).
(1) Denote by Bp(G) the totality of non-trivial p-subgroupsU of G satisfying
OpNG(U )D U . A subgroup inBp(G) is called a radicalp-subgroup (or justp-radical)
of G. The posetBp(G) is a generalized object of the Tits building, and it plays anim-
portant role in the area of group geometry. For ap-radical U 2 Bp(G), we have that
U � Z(U ) D Z OpNG(U ) � OpZ NG(U ). It follows that Bp(G) � Lp(G), and thus,
a subgroup inL

�

(G) contains the notion ofp-radicals. Furthermore, we see later in
Remark 4.9 thatBp(G) is homotopy equivalent toLp(G).
(2) A centric p-subgroup (or justp-centric)U of G is defined as a subgroup inSp(G)
such that anyp-element inCG(U ) is contained inU . This is also important in the area
of group geometry or representation theory. Then it is now easy to check that a con-
dition U � OpZ NG(U ) holds for a p-centric U . ThusLp(G) includes all p-centrics.

Lemma 3.2. Suppose that p2 � . ThenL
�

(G)\Np(G) � Lp(G), and L�

�

(G)\
Np(G) � L�

p(G).

Proof. For anyU 2 L
�

(G)\Np(G), we have thatU � O
�

Z NG(U ). But U is a
p-subgroup, so that,O

�

Z NG(U ) D OpZ NG(U ). Thus U 2 Lp(G). The second asser-
tion similarly holds.

Lemma 3.3. For U 2 N
�

(G), put KU WD O
�

Z NG(U ). Then the product U KU is
a member ofL

�

(G).

Proof. SinceU and KU are nilpotent�-subgroups such that [U, KU ] D {e}, so
is the productU KU . Set H WD Z NG(U KU ). SinceU � NG(U ) � NG(U KU ), we have
that H � CG(U ) � NG(U ). It follows that H is contained inZ NG(U ). Thus O

�

(H ) �
O
�

Z NG(U ) D KU � U KU . This shows thatU KU 2 L
�

(G).

Below is a description ofL
�

(G) by usingU KU .

Proposition 3.4. Under the notation inLemma 3.3,L
�

(G)D {U KU jU 2N�

(G)}.

Proof. By Lemma 3.3, it is enough to show that a mapf W N
�

(G)! L
�

(G) de-
fined by f (U ) WD U KU is surjective. Indeed, for anyX 2 L

�

(G) �N
�

(G), we have that
X � O

�

Z NG(X)DW KX by the definition ofX. ThusX D X KX D f (X) as desired.

From here, we want to develop some tools for determiningL
�

(G).

Lemma 3.5. The followings hold.
(1) N

�

(G)max
� L

�

(G) and A
�

(G)max
� L�

�

(G).
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(2) For U 2 Ab
�

(G)max, N
�

(G)
�U � L

�

(G). In particular, Ab
�

(G)max
� Ab

�

(G) \
L
�

(G).
(3) Ab

�

(G)max
D (Ab

�

(G) \ L
�

(G))max.

Proof. (1) ForU 2N
�

(G)max, put KU WDO
�

Z NG(U ). SinceU �U KU 2N�

(G)
and the maximality ofU , we have thatU KU DU and U � KU . ThusU 2L

�

(G). On
the other hand, forV 2A

�

(G)max, put K �

V WD�1O
�

Z NG(V)2A
�

(G). SinceV�V K�

V 2

A
�

(G), we have the second assertion by the same way.
(2) For U 2 Ab

�

(G)max, take V 2 N
�

(G)
�U . SinceU � V � NG(V), any elem-

ent t 2 KV WD O
�

Z NG(V) commutes withU . Thus U � htiU 2 Ab
�

(G). By the
maximality of U , we have thatt 2 U � V , and soKV � V as desired.

(3) SetLab
�

(G) WD Ab
�

(G) \ L
�

(G). For U 2 Ab
�

(G)max
� Lab

�

(G), there exists
R 2 Lab

�

(G)max
� Ab

�

(G) such thatU � R. Then by the maximality ofU , U D R 2
Lab
�

(G)max. The converse inclusion similarly holds.

Proposition 3.6. For V � U 2 L
�

(G), suppose that Z(U ) � V � U and NG(U ) �
NG(V). Then V2 L

�

(G).

Proof. Take anyx 2 Z NG(V). SinceNG(U ) � NG(V), we have that [x,NG(U )] D
{e}. This yields thatx 2 Z NG(U ) and Z NG(V) � Z NG(U ). Thus O

�

Z NG(V) �
O
�

Z NG(U ) � Z(U ) � V as wanted.

DEFINITION 3.7. For subgroupsA� B � G, A is said to be weakly closed inB
with respect toG if Ag

� B for someg 2 G implies Ag
D A. In particular,NG(B) �

NG(A) holds.

The next result is an immediate consequence of Proposition 3.6

Proposition 3.8. For V � U 2 L
�

(G), suppose that Z(U ) � V � U.
(1) If V is weakly closed in U with respect to G then V2 L

�

(G).
(2) If V is a characteristic subgroup of U then V2 L

�

(G). In particular, Z(U ) 2
L
�

(G), and that O
�

Z NG Z(U ) � Z(U ) holds.

Before giving examples, we recall some notations. For a subgroup H � G, we set
H G
WD {g�1Hg j g 2 G}. For an integern � 2, the symmetric and alternating group

of degreen are denoted bySn and An. The notationCn means the cyclic group of
order n.

EXAMPLE 3.9 (Solvable groupS4). Let G D S4 of order 23 �3, and� WD �(G) D
{2, 3}. We determineL

�

(G). By Lemma 3.5 (1),D8 � U 2 Syl2(G) � N
�

(G)max
�

L
�

(G). Since any subgroupV of U containingZ(U ) is weakly closed inU with respect
to G, we have thatV 2 L

�

(G) by Proposition 3.8 (1). LetW WD h(12)i be a remaining
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2-subgroup ofG. SinceNG(W)D h(12),(34)i, we have thatO
�

Z NG(W)D h(12),(34)i �
W, so that,W � L

�

(G). Finally, by Lemma 3.5 (1), Syl3(G) � N
�

(G)max
� L

�

(G).
Therefore, we get

L�

2,3(G) D L2,3(G) D N2,3(G) n h(12)iG D (S2(G) n h(12)iG) [ Syl3(G).

EXAMPLE 3.10 (Non-solvable groupS5). Let GD S5 of order 23 �3�5, and� WD
{2, 3} � �(G). We determineL

�

(G). By the same way as in Example 3.9, we have
that S2(G) n h(12)iG � L

�

(G). Let W WD h(12)i be a remaining 2-subgroup ofG.
Since NG(W) D h(12)i � L where L is the symmetric group on{3, 4, 5}, we have that
O
�

Z NG(W) D W, so that,W 2 L
�

(G). Let X WD h(123)i 2 Syl3(G) � N
�

(G). Since
NG(X) D h(123), (12), (45)i, we have thatO

�

Z NG(X) D h(45)i � X. Thus X � L
�

(G).
Finally, by Lemma 3.5 (2),C6 � h(123)(45)i 2 Ab

�

(G)max
� L

�

(G). Therefore, we get

L�

2,3(G) D L2,3(G) D N2,3(G) n h(123)iG D S2(G) [ h(123)(45)iG.

EXAMPLE 3.11 (Simple groupJ1). Let G D J1 be the Janko simple group of
order 23 � 3 � 5 � 7 � 11 � 19, and� WD {2, 3, 5} � �(G). We determineL

�

(G) referring
[2, p. 36]. There is a unique class of involutions with a representativez. SetU D hzi.
Since NG(U ) � U � A5, we have thatO

�

Z NG(U ) D U , so that,U 2 L
�

(G). By
Lemma 3.5 (1),C2 � C2 � C2 � V 2 Syl2(G) � N

�

(G)max
� L

�

(G). Since NG(V) �
V Ì (C7 Ì C3), all subgroups of order 22 are G-conjugate each other. Take the four
group C2 � C2 � W < A4 < A5 < U � A5 � NG(U ). Then NG(W) � U � A4 and
O
�

Z NG(W) D U � W. Thus W � L
�

(G). By looking at the normalizers, we see that
Syl3(G) [ Syl5(G) � L

�

(G). Finally, by Lemma 3.5 (2), subgroups isomorphic toC6

or C10 are inAb
�

(G)max
� L

�

(G). Therefore, we get

L�

2,3,5(G) D L2,3,5(G) D N2,3,5(G) nWG

D (S2(G) nWG) [ Syl3(G) [ Syl5(G) [ (C6)G
[ (C10)

G.

4. Homotopy equivalences

Let (P,�) be a poset. Denote byO(P) D O(P,�) the order complex ofP, which
is a simplicial complex defined by all inclusion-chains (x0 < � � � < xk), wherexi 2 P,
as simplices. We identify a posetP with the associated order complexO(P). We
write P ' Q when posetsP and Q (namely, complexesO(P) and O(Q)) are homo-
topy equivalent. Now any subsetX � Sgp(G) is thought of a subposet of (Sgp(G),�).
Thus we can consider homotopy properties ofX . In this section, we give homotopy
equivalences amongL

�

(G) and the other standard posets of subgroups. Relations with
known p-subgroup posets are also investigated. The next lemma is fundamental in the
theory of subgroup complexes.
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Lemma 4.1. Let P and Q be posets. Let' W P ! P and  W P ! Q be
poset maps.
(1) (cf. Lemma 3.3.3in [9]) If there exists x0 2 P such that'(x) � x and '(x) � x0

for any x2 P (that is, P is conically contractible) thenP is contractible.
(2) (cf. Proposition 3.1.12 (2)in [9]) Suppose that'(x) � x for any x2 P. Then for
any subsetIm ' � R � P, we have thatP ' R. (And dually for'(x) � x.)
(3) (Quillen’s fiber theorem; cf. Theorem 4.2.1in [9]) Suppose that �1(Q

�z) is con-
tractible for any z2 Q. ThenP ' Q. (And dually forQ

�z.)
(4) (cf. Theorem 4.3.2in [9]) Suppose thatP is finite. Let

P<

WD {z 2 P j P
<z is not contractible},

P>

WD {z 2 P j P
>z is not contractible}.

Then for any subsetP<

� R � P, we have thatP ' R. (And dually forP>.)

Proposition 4.2. The inclusionsA
�

(G) ,!N
�

(G) andAb
�

(G) ,!N
�

(G) induce
homotopy equivalences.

Proof. Let f W A
�

(G) ,! N
�

(G) be the inclusion map. Then by Lemma 4.1 (3),
it is enough to show thatf �1(N

�

(G)
�U ) D {E 2 A

�

(G) j E � U} D A
�

(U ) is con-
tractible for anyU 2N

�

(G). ExpressU D U1�� � ��Um as the direct product of Sylow
subgroupsUi (1� i �m) of U . Then A WD �1Z(U )D �1Z(U1)�� � ���1Z(Um)¤ {e}
is a member ofA

�

(U ). Let ' W A
�

(U )! A
�

(U ) be a poset map defined by'(E) WD
AE for E 2 A

�

(U ), which satisfies'(E) � E and '(E) � A. This yields thatA
�

(U )
is contractible by Lemma 4.1 (1).

By the same way, we obtainAb
�

(G) ' N
�

(G) although we may replaceA WD
�1Z(U ) with just Z(U ) in the above discussion.

Proposition 4.3. N
�

(G)> � L
�

(G) � L�

�

(G) � N
�

(G) holds. In particular,
N
�

(G), L
�

(G), and L�

�

(G) are homotopy equivalent each other byLemma 4.1 (4).

Proof. It is enough to show thatN
�

(G)> � L
�

(G). For U 2 N
�

(G), we have
that N

�

(G)
>U ' N

�

(NG(U ))
>U . Indeed, for anyV 2 N

�

(G)
>U , NV (U ) > U as V is

nilpotent. Then a poset map

f W N
�

(G)
>U ! N

�

(G)
>U

defined by V 7! NV (U ) � V provides usN
�

(G)
>U ' Im f D N

�

(NG(U ))
>U by

Lemma 4.1 (2).
Set KU WD O

�

Z NG(U ). Since U and KU are normal nilpotent�-subgroups of
NG(U ), we have thatU KU 2 N

�

(NG(U )). Suppose thatU � KU , that is,U � L
�

(G).
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Then U KU 2 N
�

(NG(U ))
>U . Furthermore, forX 2 N

�

(NG(U ))
>U , we have that

[X,KU ] D {e}. This yields thatN
�

(NG(U ))
>U 3 X KU D X(U KU ), and that a poset map

' W N
�

(NG(U ))
>U ! N

�

(NG(U ))
>U

defined byX 7! X(U KU ) induces contractibility ofN
�

(NG(U ))
>U by Lemma 4.1 (1).

It follows that N
�

(G)> � L
�

(G).

REMARK 4.4. The converse inclusionN
�

(G)> � L
�

(G) is not necessarily es-
tablished. For example, letG D M12 be the Mathieu group of degree 12 of order
26
� 33
� 5 � 11, and� WD {2} � �(G). Referring [2, p. 33], there exists a subgroupU �

C4 � C4 of G with NG(U ) � U Ì D12 and O2Z NG(U ) D {e} � U . Thus U 2 L2(G).
However, N2(NG(U ))

>U � N2(D12) D S2(D12) is contractible sinceO2(D12) � C2.
This shows thatU � N2(G)>.

Proposition 4.5. The followings hold.
(1) Ab

�

(G)> � Ab
�

(G) \ L
�

(G) � Ab
�

(G).
(2) A

�

(G)> � A
�

(G) \ L�

�

(G) � A
�

(G).
In particular, we have homotopy equivalencesAb

�

(G) ' Ab
�

(G) \ L
�

(G) and
A
�

(G) ' A
�

(G) \ L�

�

(G) by Lemma 4.1 (4).

Proof. ForU 2 Ab
�

(G), set KU WD O
�

Z NG(U ). Since [U, KU ] D {e}, we have
that U KU 2 Ab

�

(G). Suppose thatU � KU , that is, U � Ab
�

(G) \ L
�

(G). Then
U KU 2 Ab

�

(G)
>U . Furthermore, forX 2 Ab

�

(G)
>U , we have thatX � CG(U ) �

NG(U ), and thus [X, KU ] D {e}. This yields thatAb
�

(G)
>U 3 X KU D X(U KU ), and

that a poset map

' W Ab
�

(G)
>U ! Ab

�

(G)
>U

defined byX 7! X(U KU ) induces contractibility ofAb
�

(G)
>U by Lemma 4.1 (1). It

follows thatAb
�

(G)> � Ab
�

(G) \ L
�

(G).
By the same way, we obtainA

�

(G)> � A
�

(G)\L�

�

(G) � A
�

(G) by usingK �

U WD

�1O
�

Z NG(U ) in place of KU WD O
�

Z NG(U ) in the above discussion.

Summarizing Propositions 4.2, 4.3, and 4.5, we obtain the next.

Proposition 4.6. The following homotopy equivalences hold.
(�) N

�

(G) ' L
�

(G) ' L�

�

(G) ' Ab
�

(G) ' A
�

(G).
(�) Ab

�

(G) ' Ab
�

(G) \ L
�

(G).
(
 ) A

�

(G) ' A
�

(G) \ L�

�

(G).

Note that equivalences in Proposition 4.6 can be extended toG-homotopy equiva-
lences (see [9, Section 3.5] or [11]).
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REMARK 4.7 (The whole�(G) case). In the case of� D �(G), our equivalence
(�) in Proposition 4.6 givesN (G) ' Ab(G) ' A(G) where these three posets are re-
spectively the totality of non-trivial nilpotent subgroups, abelian subgroups, and direct
products of elementary abelian subgroups ofG. This result coincides with a part of
[8, Proposition 1.2].

Like Lemma 4.1, posetsSp(G), Ap(G), andBp(G) (see Remark 3.1) are also fun-
damental in the theory of subgroup complexes. In particular, those three posets are
homotopy equivalent each other (cf. [9, p. 165]). Below is animmediate consequence
of Proposition 4.6 with� D {p}. In particular, equivalences related toLp(G) should
be new.

Corollary 4.8. The following homotopy equivalences hold.

Sp(G) D Np(G) ' Abp(G) ' Ap(G) ' Lp(G) ' L�

p(G),

Abp(G) ' {U 2 Abp(G) j U � OpZ NG(U )},

Ap(G) ' {U 2 Ap(G) j U � �1OpZ NG(U )}.

REMARK 4.9. (1) Recall that a posetZp(G) WD {U 2 Ap(G) j �1OpZCG(U ) D
U} is introduced by Benson (see [1, p. 226]). It is known thatAp(G)> � Zp(G) (cf. [9,
Remark 4.3.5]), so that,Ap(G) ' Zp(G). But this equivalence ofAp(G) is different
from Ap(G) ' Ap(G) \ Lp(G) in Corollary 4.8.
(2) As mentioned in Remark 3.1,Bp(G) is included inLp(G). Thus a relationBp(G)D
Bp(G) \ Lp(G) holds. Furthermore, we have thatBp(G) ' Sp(G) ' Lp(G) by Corol-
lary 4.8.

REMARK 4.10. We investigatedN
�

(G)> in Proposition 4.3, and alsoAb
�

(G)>

and A
�

(G)> in Proposition 4.5. On the other hand, it is known (cf. [9, p. 152]) that
Sp(G)< DAp(G) andSp(G)> � Bp(G) in general. Furthermore the equalitySp(G)> D
Bp(G) holds assuming Quillen conjecture which is saying that ifSp(G) is contractible
then Op(G) is non-trivial. From this viewpoint, a subgroup inN

�

(G)> � L
�

(G) might
be a candidate of “�-radicals”. In addition, we already saw in Remark 3.1 that a sub-
group inL

�

(G) contains the notion ofp-radicals.

REMARK 4.11. Suppose thatOp(G) ¤ {e}. Then a relationU � U Op(G) �
Op(G) for any U 2 Sp(G) gives us (conical) contractibility ofSp(G). The converse
is Quillen conjecture. How aboutN

�

(G)? Let G be the symmetric groupS4 of degree
4, and� WD �(G) D {2, 3}. ThenN

�

(G) D S2(G) [ S3(G) is disconnected (i.e. non-
contractible) even ifO

�

(G) D G ¤ {e} or O
�

F(G) D F(G) � C2 � C2 ¤ {e} where
F(G) is the Fitting subgroup ofG.
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5. Investigations onL
�

(Sn)

For a positive integern, denote byS(�)DSn the symmetric group on a set� WD
{1, 2, : : : , n}. In this section, we investigate subgroups inL

�

(S(�)). It is shown that
the determination ofH 2 L

�

(S(�)) can be reduced to the case whereH is irreducible
(see Definition 5.5) such that there is no fixed point ofH on �. Then focusing on the
irreducibility of subgroups, we provide a strategy to determine L

�

(Sn). As examples,
we classify subgroups inL

�

(Sn) for n � 6 by using our method.
For a family H � Sgp(Sn) of subgroups closed underSn-conjugation, denote by

H=�Sn a set ofSn-conjugate representatives ofH.

5.1. The symmetric group. We establish some notations onS(�). For x, y 2
S(�), the compositionxy 2S(�) is read from left to right, and denote by�x

2 � the
image of� 2 � underx. Let e2 S(�) be the identity element. The notationE WD {e}
stands for the trivial subgroup ofS(�). For a subgroupH � S(�), as in [3, p. 19],
the set of fixed points and support ofH are defined by

fix(H ) WD {� 2 � j �h
D � for all h 2 H},

supp(H ) WD � n fix(H ) D {� 2 � j �h
¤ � for someh 2 H}.

It is clear thatH D E if and only if supp(H ) D ;.

NOTATION 5.1. For anH -invariant subset0 � �, denote byH j
0

� S(�) the
group of permutations which agree with an element ofH on 0 and are the identity on
� n 0. In other words, for an elementh 2 H , we identify a bijective restriction map
hj
0

W 0 ! 0 with a permutation on� which is the identity on� n 0. Then the group
H j

0

is defined by{hj
0

j h 2 H} � S(0) ,! S(�).

A subset supp(H ) � � is NS(�)(H )-invariant, andH is identified with H jsupp(H ) �

S(supp(H )). For any H -invariant subset0 � �, it is clear that supp(H j
0

) D
supp(H ) \ 0.

5.2. Reduction to the fixed point free case. In this section, we show that the
determination ofH 2 L

�

(S(�)) can be reduced to the case whereH has no fixed
points in�. Put

L
�

(S(�))0
WD {H 2 L

�

(S(�)) j fix(H ) D ;}.

Lemma 5.2. Let H � S(�) be a non-trivial subgroup.
(1) Suppose2 � � . Then H2 L

�

(S(�)) if and only if H 2 L
�

(S(� n fix(H )))0.
(2) Suppose2 2 � . Then H2 L

�

(S(�)) if and only if H 2 L
�

(S(� n fix(H )))0 and
jfix(H )j ¤ 2.
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Proof. SetG WDS(�), �
C

WD supp(H ), and�0 WD fix(H ). Recall thatH is iden-
tified with H

C

WD H jsupp(H ). In order to prove this lemma, it is enough to show that
H 2 L

�

(S(�)) if and only if H
C

2 L
�

(S(�
C

))0, and j�0j ¤ 2 or 2� � . Now since
NG(H ) acts on both�0 and�

C

, we have thatNG(H ) � S(�0) �S(�
C

). Hence

NG(H ) D NS(�0)�S(�
C

)(HC

) D S(�0) � NS(�
C

)(HC

),

O
�

Z NG(H ) D O
�

Z(S(�0)) � O
�

Z(NS(�
C

)(HC

)).

Suppose thatH 2 L
�

(G), that is, H
C

D H � O
�

Z NG(H ). Then O
�

Z(S(�0)) D
E and H

C

� O
�

Z(NS(�
C

)(HC

)). Thus H
C

2 L
�

(S(�
C

))0. FurthermoreZ(S(�0)) is
non-trivial if and only if j�0j D 2. This yields thatO

�

Z(S(�0)) D E if and only if
j�0j ¤ 2 or 2� � . The converse is now clear. The proof is complete.

The following result is a consequence of Lemma 5.2.

Proposition 5.3. For positive integers n� 3 and 2� k � n�1, set [k] WD {1,: : : ,
k} � �. Then we have that

L
�

(S(�))=�S(�) D

8

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

:

 

n�1
[

kD2

L
�

(S([k]))0
=�S([k])

!

[ L
�

(S(�))0
=�S(�) if 2 � � ,

0

B

�

n�1
[

kD2
k¤n�2

L
�

(S([k]))0
=�S([k])

1

C

A

[ L
�

(S(�))0
=�S(�) if 2 2 � .

By Proposition 5.3 together with the inductive argument, the determination of
L
�

(S(�)) can be reduced to that ofL
�

(S(�))0.

5.3. Reduction to components. In this section, we introduce the irreducibility
of a subgroup ofS(�), and show that any non-trivial subgroupH of S(�) can be
uniquely decomposed into irreducible subgroups ofH . Using such a decomposition of
H , the notion of components ofH comes out. Then we show that the determination
of H 2 L

�

(S(�))0 can be reduced to the case whereH itself is a component ofH .

NOTATION 5.4. If a direct product subgroupH D H1 � H2 � S(�) satisfies
supp(H1) \ supp(H2) D ;, then we denote it byH D H1 ? H2. In this case, we have
a disjoint union supp(H ) D supp(H1) ℄ supp(H2). Furthermore, we recursively define
H1 ? H2 ? � � � ? Hl for any finite number of subgroupsHi � S(�) by (H1 ? � � � ?

Hl�1) ? Hl .

DEFINITION 5.5. Let H � S(�) be a subgroup.H is said to be reducible if
there exist non-trivial subgroupsH1, H2 � H such thatH D H1 ? H2. On the other
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hand, we callH irreducible if H ¤ E and H is not reducible, that is, wheneverH D
K ? L for subgroupsK , L � H then K D E or L D E.

Lemma 5.6. (1) For a subgroup HD H1 ? H2 �S(�) and an H-invariant sub-
set0 � �, we have that Hj

0

D H1j0 ? H2j0.
(2) Suppose that A? B D A ? C � S(�). Then BD C.

Proof. (1) Straightforward.
(2) SetD WD A? B. Then0B WD supp(B)D supp(D)nsupp(A)D supp(C)DW 0C.

For a D-invariant subset0B D 0C, we have by (1) that

Dj
0B D (A ? B)j

0B D Aj
0B ? Bj

0B D E ? B D B,

Dj
0C D (A ? C)j

0C D Aj
0C ? Cj

0C D E ? C D C.

Thus B D C as wanted.

Proposition 5.7. Let H � S(�) be a non-trivial subgroup. Then H is decom-
posed as

H D H1 ? � � � ? Hl

where the Hi � H are irreducible and unique up to order.

Proof. We proceed by induction onjsupp(H )j > 0. For the existence, we may
assume thatH is reducible. Then there exist non-trivial subgroupsH1, H2 � H such
that H D H1 ? H2. Since the supports ofH1 and H2 are strictly contained in supp(H ),
we have that eachHi can be decomposed into irreducible subgroups by induction.This
shows the existence of the decomposition.

Suppose next thatH D H1 ? � � � ? Hl D K1 ? � � � ? Km for some irreducible
subgroupsHi , K j � S(�). Since0 WD supp(H1) � supp(H ) D

Sm
jD1 supp(K j ), we

may assume that0 \3 ¤ ; for 3 WD supp(K1). Then supp(K1j0) D supp(K1) \ 0 D
3 \ 0 ¤ ; and K1j0 ¤ E. Now

H1 D H j
0

D (K1 ? � � � ? Km)j
0

D K1j0 ? � � � ? Kmj0.

By the irreducibility of H1, H1 D K1j0 and 0 D supp(H1) D supp(K1j0) � 3.
Exchanging roles of0 and3, we can obtain that3 � 0, so that,0 D 3. This yields
that H1 D K1j0 D K1j3 D K1. Then by Lemma 5.6,H 0

WD H2 ? � � � ? Hl D K2 ?

� � � ? Km. Since the support ofH 0 is strictly contained in supp(H ), the uniqueness
also holds by induction.

Corollary 5.8. Let H�S(�) be a non-trivial subgroup, and let HD H1 ? � � � ?

Hl be a decomposition of H as inProposition 5.7. Set0i WD supp(Hi ) for 1 � i � l.
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Suppose thatsupp(H ) D �. Then we have that if Hi 2 L
�

(S(0i ))0 for all 1 � i � l
then H2 L

�

(S(�))0.

Proof. Any elementg 2 O
�

Z NS(�)(H ) commutes withHi for all 1 � i � l . So

0i is hgi-invariant. Since supp(H )D �, we have thatgD
Ql

iD1 gj
0i which is contained

in
Ql

iD1 O
�

Z NS(0i )(Hi ). Thus

O
�

Z NS(�)(H ) �
l
Y

iD1

O
�

Z NS(0i )(Hi ),

and this completes the proof.

We establish the situation once more here. SetG WD S(�), and let H � S(�)
be a non-trivial subgroup. Suppose thatH D H1 ? � � � ? Hl be a decomposition of
H into irreducible subgroupsHi (1 � i � l ) as in Proposition 5.7. Then a setXH WD

{H1, : : : , Hl } is uniquely determined byH . Let {K1, : : : , K t } � XH be a set of repre-
sentatives ofG-conjugate classes inXH . For eachK i , denote by [K i ] WD {H j 2 XH j

H j �G K i } the class containingK i . We set [K i ] D {K (1)
i , K (2)

i , : : : , K (mi )
i }, and define

a subgroup

M(K i ) WD hK j K 2 [K i ]i D K (1)
i ? K (2)

i ? � � � ? K (mi )
i � H .

Then H D M(K1) ? M(K2) ? � � � ? M(K t ). We call each subgroupM(K i ) a “compo-
nent” of H . Put

Xi WD supp(M(K i )) D
mi
[

jD1

supp(K ( j )
i ), Gi WD S(Xi ) � G.

Proposition 5.9. With the above notations, suppose thatsupp(H ) D �. Then we
have that
(1) NG(H ) D NG1(M(K1)) ? NG2(M(K2)) ? � � � ? NGt (M(K t )).
(2) H 2 L

�

(G)0 if and only if M(K i ) 2 L
�

(Gi )0 for all 1� i � t .

Proof. (1) For anyg 2 NG(H ), H D H g
D H g

1 ? � � � ? H g
l . Since XH is

uniquely determined byH by Proposition 5.7, we have thathgi acts onXH and [K i ]
for any 1� i � t . This yields thatXi is hgi-invariant, and thusgjXi 2 NGi (M(K i )).
Since supp(H ) D �, we have thatgD

Qt
iD1 gjXi which is contained inNG1(M(K1)) ?

� � � ? NGt (M(K t )). The converse inclusion is trivial.
(2) Straightforward from (1).

By Proposition 5.9 (2), the determination ofH 2 L
�

(S(�))0 can be reduced to the
case whereH itself is a component ofH , that is, all subgroups inXH areS(�)-conjugate
each other.
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5.4. Reduction to irreducible subgroups. In this section, we show that the de-
termination of H 2 L

�

(S(�))0 can be reduced to the case whereH is irreducible.
Set G WD S(�). By reason of Proposition 5.9 (2), we assume the following Hypoth-
esis 5.10

HYPOTHESIS 5.10. Let H � S(�) be a non-trivial subgroup. Suppose thatH D
H1 ? � � � ? Hl be a decomposition ofH into irreducible subgroupsHi (1 � i � l ) as
in Proposition 5.7. ThenHi �G H j for any 1� i , j � l .

We examine the structure ofNG(H ). Set 0i WD supp(Hi ) and Gi WD S(0i ) for
1 � i � l . By Hypothesis 5.10, for each 2� i � l , there existsgi 2 G such that
Hi D H gi

1 WD g�1
i H1gi which induces a permutation equivalence (H1, 01) ' (Hi , 0i ).

In other words, there exist bijectionsfi W H1 ! Hi defined byx 7! xgi
WD g�1

i xgi for

x 2 H1, and 'i W 01 ! 0i defined by� 7! �

gi for � 2 01 satisfying (�'i )x fi
D (�x)'i

for any x 2 H1 and � 2 01. Now we define an involution

�i WD
Y

�201

(�, �'i ) 2 S(01 [ 0i ) � S(�) (2� i � l )

which acts onXH D {H1, : : : , Hl } as a transposition (H1, Hi ). Then S WD h�2, : : : ,�l i �

Sl acts on bothXH and {NG1(H1), : : : , NGl (Hl )} as Sl respectively, and a subgroup
NG1(H1) o S� B Ì S� NG(H ) is defined whereB WD NG1(H1) � � � � � NGl (Hl ).

Proposition 5.11. AssumeHypothesis 5.10. With the above notations, suppose
that supp(H ) D �. Then we have that
(1) NG(H ) D B Ì S.
(2) H 2 L

�

(G)0 if and only if H1 2 L
�

(G1)0.

Proof. (1) For any elementg 2 NG(H ), hgi acts onXH as in the proof of Prop-
osition 5.9. Then there exists� 2 S such that� is equal tog as elements ofS(XH ).
Thus g��1 fixes Hi for all 1� i � l , so that, (g��1)j

0i 2 NGi (Hi ). Since supp(H )D�,

we have thatg��1
D

Ql
iD1(g��1)j

0i which is contained inB. So g 2 B� � B Ì S.
(2) Suppose thatH1 � L

�

(G1)0, and then we will show thatH � L
�

(G)0. We
may assume thatl � 2. Now there existsz1 2 O

�

Z NG1(H1) n H1. For 2� i � l , put

zi WD �
�1
i z1�i 2 O

�

Z NGi (Hi ) n Hi , z0 WD

l
Y

iD1

zi 2 NG(H ) n H .

Then [z0, B] D E. Furthermore, for each� j 2 S (2� j � l ), we have that

z
� j

0 D z
� j

1 �

l
Y

iD2
i¤ j

z
�i � j

1 � z
� j � j

1 D z
� j

1 �

l
Y

iD2
i¤ j

z�i
1 � z1 D z0.
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This implies that [z0, S] D E and z0 2 Z NG(H ) by Proposition 5.11 (1). Thusz0 is in
O
�

Z NG(H )nH , and H � L
�

(G)0 as desired. The converse follows from Corollary 5.8.

Summarizing Propositions 5.9 and 5.11, we have the following.

Theorem 5.12. Let H � S(�) be a non-trivial subgroup, and let

H D (H (1)
1 ? � � � ? H (m1)

1 ) ? (H (1)
2 ? � � � ? H (m2)

2 ) ? � � � ? (H (1)
t ? � � � ? H (mt )

t )

be a decomposition of H as inProposition 5.7where each H(1)
i ? � � � ? H (mi )

i is a

component of H. Set0i WD supp(H (1)
i ) for 1 � i � t . Suppose thatsupp(H ) D �.

Then we have that H2 L
�

(S(�))0 if and only if H(1)
i 2 L

�

(S(0i ))0 for all 1� i � t .

By Theorem 5.12, the determination ofH 2 L
�

(S(�))0 can be reduced to the case
where H is irreducible.

5.5. On intransitive subgroups. In this section, we show that intransitive sub-
groups ofS(�) can be described inductively in terms of smaller irreducible subgroups.
This idea will be used in Section 5.6. First we recall pullbacks.

REMARK 5.13. (1) Let G and H be groups, and let� W G=N ! H=K be a
group isomorphism between quotient groups. Then the pullback G �� H of G and H
via � is a subgroup{(g,h) 2 G�H j (gN)� D hK} of G�H (cf. [4, Definition 13.11]]).
Note that if � is trivial, that is, G=N is the trivial group, thenG �� H D G � H .
(2) Let G D K � L be a direct product. Then any subgroupH of G can be realized
as the pullback of certain subgroups inK and L. More precisely, there exist subgroups
K � K1 D K2 and L � L1 D L2, and also a group isomorphism� W K1=K2! L1=L2

such thatH D K1 �
� L1 (cf. [10, (4.19)]).

Let H � S(�) be a non-trivial subgroup. Suppose that supp(H ) D �, and thatH
acts intransitively on�. Let

� D O1 [ � � � [Om�1 [Om (m� 2)

be a decomposition of� into H -orbits. Set31 WD O1 [ � � � [ Om�1 and32 WD Om.
Then a subgroupB WD H j

32 � S(32) is transitive on32, that is, irreducible. On the
other hand, a subgroupH j

31 � S(31) is decomposed asH j
31 D A1 ? � � � ? Al into

irreducible subgroupsAi (1� i � l ) by Proposition 5.7. It follows that

H � H j
31 � H j

32 D (A1 ? � � � ? Al ) ? B.
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Since the supports ofAi and B are strictly contained in supp(H ) D �, we may
assume that a list of irreducible subgroupsAi and B is already known by induction.
Thus H can be concretely described as the pullbackH1 �

� H2 of certain subgroups
H1 � A1 ? � � � ? Al and H2 � B where � is a group isomorphism between quotients
(see Remark 5.13). Note that, ifH is irreducible then� must not be trivial. In the
next, we give a result on irreducible pullbacks under the above situation.

Proposition 5.14. Let B� S(�) be an irreducible subgroup, and let AWD A1 ?

� � � ? Al � S(�) where Ai is irreducible for all 1 � i � l. Suppose thatsupp(A) \
supp(B) D ; and supp(A ? B) D �. Suppose further that there exists a group iso-
morphism� W A=N1! B=N2 (¤ NE) for some N1 E A and N2 E B such that Ai � N1

for all 1 � i � l. Then the pullback PWD A�� B D {(a, b) 2 A� B j (aN1)� D bN2}

is irreducible.

Proof. Set0i WD supp(Ai ) (1 � i � l ) and 0 WD supp(B). Suppose thatP is re-
ducible. Then there exist non-trivial subgroupsK , L � P such thatP D K ? L. Let
�A W P ! A and �B W P ! B be the projections ofP on A and B respectively. Both
�A and�B are surjective. This implies thatPj

0i D Ai (1� i � l ) and Pj
0

D B. Since
B D Pj

0

D K j
0

? Lj
0

is irreducible, we may assume that

K j
0

D B i.e. 0 D supp(B) � supp(K ),

Lj
0

D E i.e. L � AD A1 ? � � � ? Al .

Suppose that0 � supp(K ) � � D 01 [ � � � [ 0l [ 0. Then we may assume that
; ¤ supp(K ) \ 01 D supp(K j

01), so that,K j
01 ¤ E. Since A1 D Pj

01 D K j
01 ? Lj

01

is irreducible, we have that

K j
01 D A1 i.e. 01 D supp(A1) � supp(K ) and 0 [ 01 � supp(K ),

Lj
01 D E i.e. L � A2 ? � � � ? Al .

Repeating this process, we may assume that there existst < l such that

(�)
supp(K ) D 0 [ 01 [ � � � [ 0t ,

L � AtC1 ? � � � ? Al .

Note that if t D l then L D E, a contradiction. Now�A W P D K ? L ! A is
surjective. Thus for anya 2 Al , there exist (aK , bK ) 2 K � A� B and (aL , e) 2 L � A
such that

a D �A((aK , bK ) � (aL , e)) D aK aL .

But by the above condition (�), aK 2 A1 ? � � � ? At and aL 2 AtC1 ? � � � ? Al . Thus
aK D e and a D aL 2 L � P. This implies (a, e) 2 P and (aN1)� D eN2 D N2 by
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the definition of P. ThereforeAl � N1 which contradicts our assumption. The proof
is complete.

5.6. A strategy to determineL
�

(Sn)0. In this section, we provide a method
of determiningL

�

(Sn)0 which is focused on irreducible subgroups. So we introduce
the notations

IRR(n)0
WD {E ¤ H � S(�) j H is irreducible such that fix(H ) D ;},

T(n) WD {E ¤ H � S(�) j H is transitive on�} � IRR(n)0.

Then, as in the following, we divide our work of determiningH 2 L
�

(Sn)0 into two
cases whereH is irreducible or not.
A: DetermineH 2 L

�

(Sn)0 such thatH is not irreducible (see Theorem 5.12).
(Step A1) Give a non-trivial partitionn D (n1 C � � � C n1)C � � � C (nt C � � � C nt )
of n such thatni � 2 andni > niC1.
(Step B2) H is Sn-conjugate to one of subgroups of the form (H1 ? � � � ? H1) ?
� � � ? (Ht ? � � � ? Ht ) where Hi 2 L

�

(Sni )
0 for 1� i � t .

B: DetermineH 2 L
�

(Sn)0 such thatH is irreducible.
(Step B1) Make a list ofSn-conjugate classes inT(n).
(Step B2) Describe subgroups inIRR(n)0

nT(n), namely intransitive irreducible sub-
groupsH having no fixed points (see Section 5.5). Indeed, we first givea non-trivial
partition n D n1 C � � � C nr�1 C nr of n such thatni � 2. Let A � Sn�nr and
B 2 T(nr ) such thatA hasr � 1 orbits of lengthsni for 1� i � r � 1. Calculate an
irreducible pullbackH D A1 �

� B1 via a group isomorphism� W A1=A2 ! B1=B2

(¤ NE) where A � A1 D A2 and B � B1 D B2.
(Step B3) By the previous two Steps B1–B2, the setIRR(n)0 is complete. Then,
from IRR(n)0, pick up subgroups belonging toL

�

(Sn).

5.7. ExamplesL
�

(Sn)0 (n � 6). According to a strategy introduced in Sec-
tion 5.6, we determineL

�

(Sn) for 4� n � 6. Let A(�) D An be the alternating group
on � D {1,: : : ,n}. For a prime numberp and a positive integerm, denote bypm, Cm,
D2m respectively the elementary abelianp-group of orderpm, cyclic group of orderm,
dihedral group of order 2m. Set� WD �(Sn).

The cases ofS2 andS3 are trivial as follows:
• IRR(2)0 D T(2)D L

�

(S2)0
D {S2 � C2},

• IRR(3)0 D T(3)D {S3, A3}, andL
�

(S3)0
D {A3 � C3}.

The case ofS4:
(Steps A1–A2) A non-trivial partition of 4 not containing 1 as summands is only

4D 2C 2. Then any non-irreducible subgroupH in L
�

(S4)0 is conjugate toH1 ? H2

where Hi 2 L
�

(S2)0. Thus H �S2 h(1, 2)i ? h(3, 4)i.
(Step B1) It is easy to see thatT(4)=�S4 D {S4,A4, h(1, 2, 3, 4), (2, 4)i � D8, V,

h(1, 2, 3, 4)i � C4} whereV WD h(1, 2)(3, 4), (1, 3)(2, 4)i is the four group. In particular,
T(4)=�S4 \ L

�

(S4) D {D8, V, C4}.
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(Step B2) A non-trivial partition of 4 not containing 1 as summands is 4D 2C2.
There is the unique transitive subgroupB WD h(3, 4)i 2 T(2) on {3, 4}. Then we choose
a transitive subgroupA 2 T(2) on {1, 2} having a quotientA=N of order 2, namely
(A, N) D (h(1, 2)i, E). Define a group isomorphism� W A=N ! B. The pullbackA��

B D h(1, 2)(3, 4)i � C2 is irreducible.
(Step B3) By Steps B1–B2, we have that

IRR(4)0=�S4 D T(4)=�S4 [ {h(1, 2)(3, 4)i}.

ThenL
�

(S4)0 consists of 5-classes whose representatives are as follows:

H 2 L
�

(S4)0
=�S4 �

h(1, 2)i ? h(3, 4)i 22 non-irreducible
h(1, 2, 3, 4), (2, 4)i D8 irreducible and transitive

V 22

h(1, 2, 3, 4)i C4

h(1, 2)(3, 4)i 2 irreducible and intransitive

The case ofS5:
(Steps A1–A2) A non-trivial partition of 5 not containing 1 as summands is only

5D 3C 2. Then any non-irreducible subgroupH in L
�

(S5)0 is conjugate toH1 ? H2

where H1 2 L
�

(S3)0 and H2 2 L
�

(S2)0. Thus H �S5 h(1, 2, 3)i ? h(4, 5)i.
(Step B1) Since the order of a transitive group of degree 5 is divisible by 5, it is

easy to see thatT(5)=�S5 D {S5, A5, C5ÌC4, C5ÌC2, C5}. In particular,T(5)=�S5 \

L
�

(S5) D {h(1, 2, 3, 4, 5)i � C5}.
(Step B2) A non-trivial partition of 5 not containing 1 as summands is 5D 3C2.

There is the unique transitive subgroupB WD h(4, 5)i 2 T(2) on {4, 5}. Then we choose
a transitive subgroupA 2 T(3) on {1, 2, 3} having a quotientA=N of order 2, namely
(A, N) D (S3,A3). Define a group isomorphism� W A=N ! B. The pullbackA�� B D
h(1, 2, 3), (1, 2)(4, 5)i � S3 is irreducible.

(Step B3) By Steps B1–B2, we have that

IRR(5)0=�S5 D T(5)=�S5 [ {h(1, 2, 3), (1, 2)(4, 5)i}.

ThenL
�

(S5)0 consists of 2-classes whose representatives are as follows:

H 2 L
�

(S5)0
=�S5 �

h(1, 2, 3)i ? h(4, 5)i C3 � C2 non-irreducible
h(1, 2, 3, 4, 5)i C5 irreducible and transitive
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The case ofS6:

(Steps A1–A2) Non-irreducible subgroupsH in L
�

(S6)0 correspond to non-trivial
partitions of 6 not containing 1 as summands. Thus those subgroups are determined
as follows:
(i) 6 D 4C 2: H �S6 H1 ? H2 where H1 2 L

�

(S4)0 and H2 2 L
�

(S2)0, and thus

H �S6 D8 ? h(5, 6)i, V ? h(5, 6)i, C4 ? h(5, 6)i, h(1, 2)(3, 4)i ? h(5, 6)i.

(ii) 6 D 3C 3: H �S6 H1 ? H2 where Hi 2 L
�

(S3)0, and thus

H �S6 h(1, 2, 3)i ? h(4, 5, 6)i.

(iii) 6 D 2C 2C 2: H �S6 H1 ? H2 ? H3 where Hi 2 L
�

(S2)0, and thus

H �S6 h(1, 2)i ? h(3, 4)i ? h(5, 6)i.

(Step B1) We can find that there are 16-classes of transitive subgroups ofS6,
and representatives are as follows:

T(6)=�S6 D {S6, A6, PGL(2, 5)� S5, A5, S4,

S3 oS2 � 32
Ì D8, 32

Ì C4, 32
Ì 22, 32

Ì C2, C3 � C2, D12, S3,

S2 oS3 � 23
Ì S3, 23

Ì C3, 22
Ì C3, S4}.

In particular,T(6)=�S6 \ L
�

(S6) D {h(1, 2, 3, 4, 5, 6)i � C6}.
(Step B2) In order to examine intransitive subgroupsH in IRR(6)0, we consider

pullbacks associated to non-trivial partitions of 6 not containing 1 as summands as
follows:
(i) 6 D 4C 2: There is the unique transitive subgroupB WD h(5, 6)i 2 T(2) on {5, 6}.
Then we choose a transitive subgroupA 2 T(4) on {1, 2, 3, 4} having a quotientA=N
of order 2, so that, a group isomorphism� W A=N ! B is defined.

� W A=N ! B H D A�� B nilp. NS6(H )

S4=A4! B hA4, (1, 2)(5, 6)i � S4 no
D8=C4! B h(1, 2, 3, 4), (2, 4)(5, 6)i � D8 yes D(1)

� h(5, 6)i

D8=V ! B
h(1, 2)(3, 4), (1, 3)(2, 4), (2, 4)(5, 6)i
D h(1, 2, 3, 4)(5, 6), (2, 4)(5, 6)i � D8

yes D(1)
� h(5, 6)i

D8=h(1, 3), (2, 4)i ! B
h(1, 3), (2, 4), (1, 2)(3, 4)(5, 6)i
D h(1, 2, 3, 4)(5, 6), (2, 4)i � D8

yes D(1)
� h(5, 6)i

V=h(1, 2)(3, 4)i ! B h(1, 2)(3, 4), (1, 3)(2, 4)(5, 6)i � 22 yes D(2)
� h(5, 6)i

C4=C2! B h(1, 3)(2, 4), (1, 2, 3, 4)(5, 6)i � C4 yes D(1)
� h(5, 6)i

where D(1)
WD h(1, 2, 3, 4), (2, 4)i and D(2)

WD h(1, 3, 2, 4), (1, 2)i.
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(ii) 6 D 3C 3: There are three non-trivial quotientsA=N of transitive subgroupsA 2
T(3), namely (A, N) D (S3, A3), (S3, E), and (A3, E).

� W A=N ! A=N H D A�� A nilp. NS6(H )

S3=A3! S3=A3 h(1, 2, 3), (4, 5, 6), (1, 2)(4, 5)i � 32
Ì C2 no

S3=E! S3=E h(1, 2, 3)(4, 5, 6), (1, 2)(4, 5)i � S3 no
A3=E! A3=E h(1, 2, 3)(4, 5, 6)i � C3 yes 32

Ì C2 Ì C2

(iii) 6 D (2C 2)C 2: There is the unique transitive subgroupB WD h(5, 6)i 2 T(2) on
{5, 6}. Then we choose an intransitive subgroupA � S4 on {1, 2, 3, 4} which has
two orbits of length 2. NamelyA is an irreducible subgroupA1 D h(1, 2)(3, 4)i or
non-irreducible subgroupA2 D h(1, 2)i ? h(3, 4)i. Each Ai has a quotient of order 2.

� W A=N ! B H D A�� B nilp. NS6(H )

A1=E! B h(1, 2)(3, 4)(5, 6)i � C2 yes S2 oS3

A2=h(1, 2)(3, 4)i ! B h(1, 2)(3, 4), (1, 2)(5, 6)i � 22 yes S2 oS3

A2=h(1, 2)i ! B h(1, 2)i ? h(3, 4)(5, 6)i � 22 yes

Note that the lasth(1, 2)i ? h(3, 4)(5, 6)i is the only non-irreducible subgroup among
the above twelve subgroups in Step B2 (compare with Proposition 5.14). Thus there
are 11-classes of intransitive subgroups inIRR(6)0.

(Step B3) By Steps B1–B2, there are (16C 11)-classes of subgroups inIRR(6)0,
and thenL

�

(S6)0 consists of 9-classes whose representatives are as follows:

H 2 L
�

(S6)0
=�S6 �

h(1, 2, 3, 4), (2, 4)i ? h(5, 6)i D8 � C2 non-irreducible
V ? h(5, 6)i 23

h(1, 2, 3, 4)i ? h(5, 6)i C4 � C2

h(1, 2)(3, 4)i ? h(5, 6)i 22

h(1, 2, 3)i ? h(4, 5, 6)i 32

h(1, 2)i ? h(3, 4)i ? h(5, 6)i 23

h(1, 2, 3, 4, 5, 6)i C2 � C3 irreducible and transitive
h(1, 2, 3)(4, 5, 6)i C3 irreducible and intransitive
h(1, 2)(3, 4)(5, 6)i C2

Furthermore, Proposition 5.3 tells us that, since 22 � , the wholeL
�

(S6) is con-
structed by four partsL

�

(S2)0, L
�

(S3)0, L
�

(S5)0, andL
�

(S6)0. Therefore there are
(1C 1C 2C 9)-classes of subgroups inL

�

(S6).
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