<table>
<thead>
<tr>
<th>Title</th>
<th>PARTIALLY ORDERED SETS OF NON-TRIVIAL NILPOTENT π-SUBGROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Iiyori, Nobuo; Sawabe, Masato</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 53(3) P.731-P.750</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016-07</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/58907</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/58907</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
PARTIALLY ORDERED SETS OF NON-TRIVIAL NILPOTENT π-SUBGROUPS

Nobuo Iiyori and Masato Sawabe

(Received July 3, 2015)

Abstract

In this paper, we introduce a subposet $\mathcal{L}_\pi(G)$ of a poset $\mathcal{N}_\pi(G)$ of all non-trivial nilpotent π-subgroups of a finite group G. We examine basic properties of subgroups in $\mathcal{L}_\pi(G)$ which contain the notion of both radical p-subgroups and centric p-subgroups of G. It is shown that $\mathcal{L}_\pi(G)$ is homotopy equivalent to $\mathcal{N}_\pi(G)$. As examples, we investigate in detail the case where symmetric groups.

1. Introduction

Let G be a finite group, and $\text{Sgp}(G)$ the totality of subgroups of G. We regard $\text{Sgp}(G)$ as a partially ordered set (poset for short) with respect to the inclusion-relation \subseteq. Then any subset $\mathcal{X} \subseteq \text{Sgp}(G)$ can be thought of a subposet of $(\text{Sgp}(G), \subseteq)$ which is identified with the associated order complex. Let $p \in \pi(G)$. Denote by $\mathcal{S}_p(G)$ the totality of non-trivial p-subgroups of G. A p-subgroup complex $\mathcal{X} \subseteq \mathcal{S}_p(G)$ itself is studied well by many authors (see [9] and various references in it). On the other hand, for distinct $p, q \in \pi(G)$, it is also quite important to investigate $\mathcal{X} \subseteq \mathcal{S}_p(G)$ and $\mathcal{Y} \subseteq \mathcal{S}_q(G)$ simultaneously. In order to do so, we focus on nilpotent subgroups, and actually deal with a poset $\mathcal{N}_\pi(G)$ of all non-trivial nilpotent π-subgroups of G where $\pi \subseteq \pi(G)$. In particular, we introduce a subposet $\mathcal{L}_\pi(G)$ of $\mathcal{N}_\pi(G)$, and show that they are homotopy equivalent each other. It is worth mentioning that a subgroup in $\mathcal{L}_\pi(G)$ contains the notion of both radical p-subgroups and centric p-subgroups of G.

The paper is organized as follows: In Section 2, we establish some notations, and prepare a number of standard posets of subgroups like $\mathcal{N}_\pi(G)$. In Section 3, we introduce a new poset $\mathcal{L}_\pi(G)$ consisting of certain nilpotent π-subgroups of G. We give another description of $\mathcal{L}_\pi(G)$ which is different from the form of the definition. Furthermore some tools for determining $\mathcal{L}_\pi(G)$ are developed. Then by using those results, we classify subgroups in $\mathcal{L}_\pi(G)$ for some groups G as examples. In Section 4, we provide homotopy equivalences among $\mathcal{L}_\pi(G)$ and the other standard posets of subgroups. Relations with known p-subgroup posets are examined. In Section 5, we investigate in detail the case where the symmetric group \mathcal{S}_n of degree n. In particular, we give a strategy to determine $\mathcal{L}_\pi(\mathcal{S}_n)$ which is focused on irreducible subgroups (see Definition 5.5). Then, as

2010 Mathematics Subject Classification. Primary 20E15; Secondary 20D15.
examples, we classify subgroups in \(\mathcal{L}_\pi(\mathcal{G}_n) \) for \(n \leq 6 \) by using our method.

Finally, this work is derived from a series of our papers [5, 6, 7].

2. Preliminaries

In this section, we establish some notations which will be used in this paper. Let \(G \) be a finite group with the identity element \(e \). Denote by \(\pi(G) \) the set of all prime divisors of the order of \(G \). Let \(\pi \) be a subset of \(\pi(G) \). A subgroup \(H \) of \(G \) is called a \(\pi \)-subgroup if \(\pi(H) \subseteq \pi \). The notation \(\text{Sgp}(G) \) stands for the totality of subgroups of \(G \). Note that \(\text{Sgp}(G) \) is regarded as a poset together with the usual inclusion-relation \(\leq \). We define the following subposets of \(\text{Sgp}(G), \leq \):

\[
\mathcal{N}_\pi(G) := \{ U \in \text{Sgp}(G) \mid U \text{ is a non-trivial nilpotent } \pi \text{-subgroup of } G \},
\]

\[
\text{Ab}_\pi(G) := \{ U \in \text{Sgp}(G) \mid U \text{ is a non-trivial abelian } \pi \text{-subgroup of } G \}.
\]

Furthermore let \(\mathcal{A}_\pi(G) \) be a subposet consisting of all non-trivial direct products of elementary abelian \(p \)-subgroups of \(G \) where \(p \) runs over primes in \(\pi \). Then we have three posets \(\mathcal{A}_\pi(G) \subseteq \text{Ab}_\pi(G) \subseteq \mathcal{N}_\pi(G) \) on which the group \(G \) acts by conjugation. The set of all maximal elements in \(\mathcal{N}_\pi(G), \leq \) is denoted by \(\mathcal{N}_\pi(G)^\text{max} \). For \(\pi = \{ p_1, \ldots, p_k \} \subseteq \pi(G) \), we sometimes write \(\mathcal{N}_{p_1,\ldots,p_k}(G) \) in place of \(\mathcal{N}_\pi(G) \). The ways of writing \(\mathcal{N}_\pi(G)^\text{max} \) and \(\mathcal{N}_{p_1,\ldots,p_k}(G) \) are applied to the other posets. Let \(p \in \pi(G) \). Denote by \(\mathcal{S}_p(G) \) the totality of non-trivial \(p \)-subgroups of \(G \). Then we note that \(\mathcal{N}_\pi(G) = \mathcal{S}_p(G) \).

Denote by \(Z(G) \) and \(O_{\pi}(G) \) respectively the center of \(G \), and the largest normal \(\pi \)-subgroup of \(G \). For \(A \in \text{Ab}_\pi(G) \), suppose that \(A = A_1 \times \cdots \times A_k \) is the direct product of \(p \)-subgroups \(A_i \) (\(1 \leq i \leq k \)) of \(A \). Then denote by \(\Omega_i(A) := \Omega_i(A_1) \times \cdots \times \Omega_i(A_k) \in \mathcal{A}_\pi(G) \) where \(\Omega_i(A_i) \in \mathcal{A}_p(G) \) is a subgroup generated by all elements in \(A_i \) of order \(p_i \). For a subgroup \(H \leq G \), if \(O_{\pi}(Z(H)) \neq \{ e \} \) then \(O_{\pi}(Z(H)) \in \text{Ab}_\pi(G) \) and \(\Omega_i(O_{\pi}(Z(H))) \in \mathcal{A}_\pi(G) \). We express these subgroups as \(O_{\pi}(Z(H)) \) and \(\Omega_i(O_{\pi}(Z(H))) \) for short. In this way, we frequently omit parentheses of the composition of group operators throughout this paper.

Let \((\mathcal{P}, \leq) \) be a poset. For \(z \in \mathcal{P} \), put \(\mathcal{P}_{<z} := \{ x \in \mathcal{P} \mid x \leq z \} \). Similarly, we define \(\mathcal{P}_{\leq z}, \mathcal{P}_{\geq z}, \) and \(\mathcal{P}_{>z} \).

3. Subposets of \(\mathcal{N}_\pi(G) \)

Let \(G \) be a finite group, and \(\pi \subseteq \pi(G) \). We introduce subposets of \((\mathcal{N}_\pi(G), \leq) \) as follows:

\[
\mathcal{L}_\pi(G) := \{ U \in \mathcal{N}_\pi(G) \mid U \geq O_{\pi}(Z\mathcal{N}_G(U)) \},
\]

\[
\mathcal{L}_\pi^*(G) := \{ U \in \mathcal{N}_\pi(G) \mid U \geq \Omega_0(O_{\pi}(Z\mathcal{N}_G(U))) \}.
\]

Both families are closed under \(G \)-conjugation. In this section, we study basic properties of \(\mathcal{L}_\pi(G) \subseteq \mathcal{L}_\pi^*(G) \), and provide some examples. Note that, for a subgroup \(U \) of \(G \),
\[U \geq O_{\pi}ZN_G(U) \text{ if and only if } Z(U) \geq O_{\pi}ZN_G(U). \]

Remark 3.1 (\(p\)-radicals and \(p\)-centrics). Let \(p \in \pi(G) \).

1. Denote by \(B_p(G) \) the totality of non-trivial \(p\)-subgroups \(U \) of \(G \) satisfying \(O_pN_G(U) = U \). A subgroup in \(B_p(G) \) is called a radical \(p\)-subgroup (or just \(p\)-radical) of \(G \). The poset \(B_p(G) \) is a generalized object of the Tits building, and it plays an important role in the area of group geometry. For a \(p\)-radical \(U \in B_p(G) \), we have that \(U \geq Z(U) = ZO_pN_G(U) \geq O_pZN_G(U) \). It follows that \(B_p(G) \subseteq L_p(G) \), and thus, a subgroup in \(L_\pi(G) \) contains the notion of \(p\)-radicals. Furthermore, we see later in Remark 4.9 that \(B_p(G) \) is homotopy equivalent to \(L_p(G) \).

2. A centric \(p\)-subgroup (or just \(p\)-centric) \(U \) of \(G \) is defined as a subgroup in \(S_p(G) \) such that any \(p\)-element in \(C_G(U) \) is contained in \(U \). This is also important in the area of group geometry or representation theory. Then it is now easy to check that a condition \(U \geq O_pZN_G(U) \) holds for a \(p\)-centric \(U \). Thus \(L_p(G) \) includes all \(p\)-centrics.

Lemma 3.2. Suppose that \(p \in \pi \). Then \(L_\pi(G) \cap N_{\pi}(G) \subseteq L_p(G) \), and \(L_{\pi}^*(G) \cap N_{\pi}(G) \subseteq L_{\pi}^p(G) \).

Proof. For any \(U \in L_\pi(G) \cap N_{\pi}(G) \), we have that \(U \geq O_{\pi}ZN_G(U) \). But \(U \) is a \(p\)-subgroup, so that, \(O_{\pi}ZN_G(U) = O_pZN_G(U) \). Thus \(U \in L_p(G) \). The second assertion similarly holds.

Lemma 3.3. For \(U \in N_{\pi}(G) \), put \(K_U := O_{\pi}ZN_G(U) \). Then the product \(UK_U \) is a member of \(L_\pi(G) \).

Proof. Since \(U \) and \(K_U \) are nilpotent \(\pi\)-subgroups such that \([U, K_U] = \{e\}\), so is the product \(UK_U \). Set \(H := ZN_G(UK_U) \). Since \(U \leq N_G(U) \leq N_G(UK_U) \), we have that \(H \leq C_G(U) \leq N_G(U) \). It follows that \(H \) is contained in \(ZN_G(U) \). Thus \(O_{\pi}(H) \leq O_{\pi}ZN_G(U) = K_U \leq UK_U \). This shows that \(UK_U \in L_\pi(G) \).

Below is a description of \(L_\pi(G) \) by using \(UK_U \).

Proposition 3.4. Under the notation in Lemma 3.3, \(L_\pi(G) = \{UK_U \mid U \in N_{\pi}(G)\} \).

Proof. By Lemma 3.3, it is enough to show that a map \(f : N_{\pi}(G) \rightarrow L_\pi(G) \) defined by \(f(U) := UK_U \) is surjective. Indeed, for any \(X \in L_\pi(G) \subseteq N_{\pi}(G) \), we have that \(X \geq O_{\pi}ZN_G(X) =: K_X \) by the definition of \(X \). Thus \(X = XK_X = f(X) \) as desired.

From here, we want to develop some tools for determining \(L_\pi(G) \).

Lemma 3.5. The followings hold.

1. \(N_{\pi}(G)^{\text{max}} \subseteq L_\pi(G) \) and \(A_{\pi}(G)^{\text{max}} \subseteq L_{\pi}^*(G) \).
(2) For $U \in \text{Ab}_\pi(G)^{\text{max}}$, $N^\pi_U(G) \subseteq \mathcal{L}^\pi(G)$. In particular, $\text{Ab}_\pi(G)^{\text{max}} \subseteq \text{Ab}_\pi(G) \cap \mathcal{L}^\pi(G)$.

(3) $\text{Ab}_\pi(G)^{\text{max}} = (\text{Ab}_\pi(G) \cap \mathcal{L}^\pi(G))^{\text{max}}$.

Proof. (1) For $U \in N^\pi_U(G)^{\text{max}}$, put $K_U := O^\pi_Z N_G(U)$. Since $U \leq U K_U \in N^\pi_U(G)$ and the maximality of U, we have that $U K_U = U$ and $U \geq K_U$. Thus $U \in \mathcal{L}^\pi(G)$. On the other hand, for $V \in \mathcal{A}_\pi(G)^{\text{max}}$, put $K_V^V := \Omega_1 \pi Z N_G(V) \in \mathcal{A}_\pi(G)$. Since $V \leq V K_V^V \in \mathcal{A}_\pi(G)$, we have the second assertion by the same way.

(2) For $U \in \text{Ab}_\pi(G)^{\text{max}}$, take $V \in N^\pi_U(G)^{\geq U}$. Since $U \leq V \leq N_G(V)$, any element $t \in K_V := O^\pi_Z N_G(V)$ commutes with U. Thus $U \leq (t) U \in \text{Ab}_\pi(G)$. By the maximality of U, we have that $t \in U \leq V$, and so $K_V \leq V$ as desired.

(3) Set $\mathcal{L}^{\text{ab}}(G) := \text{Ab}_\pi(G) \cap \mathcal{L}^\pi(G)$. For $U \in \text{Ab}_\pi(G)^{\text{max}} \subseteq \mathcal{L}^{\text{ab}}(G)$, there exists $R \in \mathcal{L}^{\text{ab}}(G)^{\text{max}} \subseteq \text{Ab}_\pi(G)$ such that $U \leq R$. Then by the maximality of U, $U = R \in \mathcal{L}^{\text{ab}}(G)^{\text{max}}$. The converse inclusion similarly holds.

\textbf{Proposition 3.6.} For $V \leq U \in \mathcal{L}^\pi(G)$, suppose that $Z(U) \leq V \leq U$ and $N_G(U) \leq N_G(V)$. Then $V \in \mathcal{L}^\pi(G)$.

Proof. Take any $x \in ZN_G(V)$. Since $N_G(U) \leq N_G(V)$, we have that $[x, N_G(U)] = \{e\}$. This yields that $x \in ZN_G(U)$ and $ZN_G(V) \leq ZN_G(U)$. Thus $O^\pi_Z N_G(V) \leq O^\pi_Z N_G(U) \leq Z(U) \leq V$ as wanted.

\textbf{Definition 3.7.} For subgroups $A \leq B \leq G$, A is said to be weakly closed in B with respect to G if $A^g \leq B$ for some $g \in G$ implies $A^g = A$. In particular, $N_G(B) \leq N_G(A)$ holds.

The next result is an immediate consequence of Proposition 3.6.

\textbf{Proposition 3.8.} For $V \leq U \in \mathcal{L}^\pi(G)$, suppose that $Z(U) \leq V \leq U$.

(1) If V is weakly closed in U with respect to G then $V \in \mathcal{L}^\pi(G)$.

(2) If V is a characteristic subgroup of U then $V \in \mathcal{L}^\pi(G)$. In particular, $Z(U) \in \mathcal{L}^\pi(G)$, and that $O^\pi_Z N_G Z(U) \leq Z(U)$ holds.

Before giving examples, we recall some notations. For a subgroup $H \leq G$, we set $H^G := \{g^{-1} H g \mid g \in G\}$. For an integer $n \geq 2$, the symmetric and alternating group of degree n are denoted by S_n and A_n. The notation C_n means the cyclic group of order n.

\textbf{Example 3.9 (Solvable group S_4).} Let $G = S_4$ of order $2^3 \cdot 3$, and $\pi := \pi(G) = \{2, 3\}$. We determine $\mathcal{L}_\pi(G)$. By Lemma 3.5 (1), $D_8 \simeq U \in \text{Syl}_2(G) \subseteq N^\pi_U(G)^{\text{max}} \subseteq \mathcal{L}^\pi(G)$. Since any subgroup V of U containing $Z(U)$ is weakly closed in U with respect to G, we have that $V \in \mathcal{L}^\pi(G)$ by Proposition 3.8 (1). Let $W := \langle (12) \rangle$ be a remaining
2-subgroup of \(G \). Since \(N_G(W) = \langle (12), (34) \rangle \), we have that \(O_\pi ZN_G(W) = \langle (12), (34) \rangle \not\subseteq W \), so that, \(W \notin \mathcal{L}_\pi(G) \). Finally, by Lemma 3.5 (1), \(\text{Syl}_3(G) \subseteq N_\pi(G)^{\text{max}} \subseteq \mathcal{L}_\pi(G) \). Therefore, we get

\[
\mathcal{L}_{2,3}^\ast(G) = \mathcal{L}_{2,3}(G) = N_{2,3}(G) \setminus \langle (12) \rangle^G = (S_2(G) \setminus \langle (12) \rangle^G) \cup \text{Syl}_3(G).
\]

Example 3.10 (Non-solvable group \(S_3 \)). Let \(G = S_3 \) of order \(2^3 \cdot 3 \cdot 5 \), and \(\pi := \{2, 3\} \subseteq \pi(G) \). We determine \(\mathcal{L}_\pi(G) \). By the same way as in Example 3.9, we have that \(S_2(G) \setminus \langle (12) \rangle^G \subseteq \mathcal{L}_\pi(G) \). Let \(W := \langle (12) \rangle \) be a remaining 2-subgroup of \(G \). Since \(N_G(W) = \langle (12) \rangle \), we have that \(O_\pi ZN_G(W) = \langle (12) \rangle \), so that, \(W \in \mathcal{L}_\pi(G) \). Let \(X := \langle (123) \rangle \in \text{Syl}_3(G) \subseteq N_\pi(G) \). Since \(N_G(X) = \langle (123), (12), (45) \rangle \), we have that \(O_\pi ZN_G(X) = \langle (45) \rangle \not\subseteq X \). Thus \(X \notin \mathcal{L}_\pi(G) \). Finally, by Lemma 3.5 (2), \(C_6 \equiv \langle (123)(45) \rangle \in \text{Ab}_2(G)^{\text{max}} \subseteq \mathcal{L}_\pi(G) \). Therefore, we get

\[
\mathcal{L}_{2,3}^\ast(G) = \mathcal{L}_{2,3}(G) = N_{2,3}(G) \setminus \langle (123) \rangle^G = S_2(G) \cup \langle (123)(45) \rangle^G.
\]

Example 3.11 (Simple group \(J_1 \)). Let \(G = J_1 \) be the Janko simple group of order \(2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \), and \(\pi := \{2, 3, 5\} \subseteq \pi(G) \). We determine \(\mathcal{L}_\pi(G) \) referring [2, p.36]. There is a unique class of involutions with a representative \(z \). Set \(U = \langle z \rangle \). Since \(N_G(U) \cong \langle U \times A_4 \rangle \), we have that \(O_\pi ZN_G(U) = U \), so that, \(U \in \mathcal{L}_\pi(G) \). By Lemma 3.5 (1), \(C_2 \times C_2 \times C_2 \cong V \in \text{Syl}_2(G) \subseteq N_\pi(G)^{\text{max}} \subseteq \mathcal{L}_\pi(G) \). Since \(N_G(V) \cong V \times (C_7 \times C_3) \), all subgroups of order \(2^2 \) are \(G \)-conjugate each other. Take the four group \(C_2 \times C_2 \cong W < A_4 < A_5 < U \times A_5 \cong N_G(U) \). Then \(N_G(W) \cong U \times A_4 \) and \(O_\pi ZN_G(W) = U \not\subseteq W \). Thus \(W \notin \mathcal{L}_\pi(G) \). By looking at the normalizers, we see that \(\text{Syl}_3(G) \cup \text{Syl}_5(G) \subseteq \mathcal{L}_\pi(G) \). Finally, by Lemma 3.5 (2), subgroups isomorphic to \(C_6 \) or \(C_{10} \) are in \(\text{Ab}_2(G)^{\text{max}} \subseteq \mathcal{L}_\pi(G) \). Therefore, we get

\[
\mathcal{L}_{2,3,5}^\ast(G) = \mathcal{L}_{2,3,5}(G) = N_{2,3,5}(G) \setminus W^G
\]

\[= (S_2(G) \setminus W^G) \cup \text{Syl}_3(G) \cup \text{Syl}_5(G) \cup (C_6)^G \cup (C_{10})^G.
\]

4. Homotopy equivalences

Let \((\mathcal{P}, \leq) \) be a poset. Denote by \(O(\mathcal{P}) = O(\mathcal{P}, \leq) \) the order complex of \(\mathcal{P} \), which is a simplicial complex defined by all inclusion-chains \((x_0 < \cdots < x_i) \), where \(x_i \in \mathcal{P} \), as simplices. We identify a poset \(\mathcal{P} \) with the associated order complex \(O(\mathcal{P}) \). We write \(\mathcal{P} \simeq \mathcal{Q} \) when posets \(\mathcal{P} \) and \(\mathcal{Q} \) (namely, complexes \(O(\mathcal{P}) \) and \(O(\mathcal{Q}) \)) are homotopy equivalent. Now any subset \(X \subseteq \text{Sgp}(G) \) is thought of a subposet of \((\text{Sgp}(G), \leq) \). Thus we can consider homotopy properties of \(X \). In this section, we give homotopy equivalences among \(\mathcal{L}_\pi(G) \) and the other standard posets of subgroups. Relations with known \(p \)-subgroup posets are also investigated. The next lemma is fundamental in the theory of subgroup complexes.
Lemma 4.1. Let \mathcal{P} and \mathcal{Q} be posets. Let $\varphi: \mathcal{P} \rightarrow \mathcal{P}$ and $\psi: \mathcal{P} \rightarrow \mathcal{Q}$ be poset maps.

1. (cf. Lemma 3.3.3 in [9]) If there exists $x_0 \in \mathcal{P}$ such that $\varphi(x) \geq x$ and $\varphi(x) \geq x_0$ for any $x \in \mathcal{P}$ (that is, \mathcal{P} is conically contractible) then \mathcal{P} is contractible.

2. (cf. Proposition 3.1.12 (2) in [9]) Suppose that $\varphi(x) \leq x$ for any $x \in \mathcal{P}$. Then for any subset $\text{Im} \varphi \subseteq R \subseteq \mathcal{P}$, we have that $\mathcal{P} \simeq R$. (And dually for $\varphi(x) \geq x$.)

3. (Quillen's fiber theorem; cf. Theorem 4.2.1 in [9]) Suppose that $\psi^{-1}(\mathcal{Q}_{\geq z})$ is contractible for any $z \in \mathcal{Q}$. Then $\mathcal{P} \simeq \mathcal{Q}$. (And dually for $\mathcal{Q}_{\geq z}$).

4. (cf. Theorem 4.3.2 in [9]) Suppose that \mathcal{P} is finite. Let

$$\mathcal{P}^< := \{z \in \mathcal{P} \mid \mathcal{P}_{<z} \text{ is not contractible}\},$$

$$\mathcal{P}^> := \{z \in \mathcal{P} \mid \mathcal{P}_{>z} \text{ is not contractible}\}.$$

Then for any subset $\mathcal{P}^< \subseteq R \subseteq \mathcal{P}$, we have that $\mathcal{P} \simeq R$. (And dually for $\mathcal{P}^>$.)

Proposition 4.2. The inclusions $\mathcal{A}_\pi(G) \hookrightarrow \mathcal{N}_\pi(G)$ and $\mathcal{A}_{\nu}(G) \hookrightarrow \mathcal{N}_\pi(G)$ induce homotopy equivalences.

Proof. Let $f: \mathcal{A}_\pi(G) \hookrightarrow \mathcal{N}_\pi(G)$ be the inclusion map. Then by Lemma 4.1 (3), it is enough to show that $f^{-1}(\mathcal{N}_\pi(G)_{\leq U}) = \{E \in \mathcal{A}_\pi(G) \mid E \leq U\} = \mathcal{A}_\pi(U)$ is contractible for any $U \in \mathcal{N}_\pi(G)$. Express $U = U_1 \times \cdots \times U_m$ as the direct product of Sylow subgroups U_i $(1 \leq i \leq m)$ of U. Then $A := \Omega_1 Z(U) = \Omega_1 Z(U_1) \times \cdots \times \Omega_1 Z(U_m) \neq \{e\}$ is a member of $\mathcal{A}_\pi(U)$. Let $\varphi: \mathcal{A}_\pi(U) \rightarrow \mathcal{A}_\pi(U)$ be a poset map defined by $\varphi(E) := AE$ for $E \in \mathcal{A}_\pi(U)$, which satisfies $\varphi(E) \geq E$ and $\varphi(E) \geq A$. This yields that $\mathcal{A}_\pi(U)$ is contractible by Lemma 4.1 (1).

By the same way, we obtain $\mathcal{A}_{\nu}(G) \simeq \mathcal{N}_\pi(G)$ although we may replace $A := \Omega_1 Z(U)$ with just $Z(U)$ in the above discussion. \(\square\)

Proposition 4.3. $\mathcal{N}_\pi^c(G)^c \subseteq \mathcal{L}_\pi(G) \subseteq \mathcal{L}_\pi^c(G) \subseteq \mathcal{N}_\pi(G)$ holds. In particular, $\mathcal{N}_\pi(G)$, $\mathcal{L}_\pi(G)$, and $\mathcal{L}_\pi^c(G)$ are homotopy equivalent each other by Lemma 4.1 (4).

Proof. It is enough to show that $\mathcal{N}_\pi(G)^c \subseteq \mathcal{L}_\pi(G)$.

For $U \in \mathcal{N}_\pi(G)$, we have that $\mathcal{N}_\pi(G)_{>U} \simeq \mathcal{N}_\pi(N_G(U))_{>U}$. Indeed, for any $V \in \mathcal{N}_\pi(G)_{>U}$, $N_V(U) > U$ as V is nilpotent. Then a poset map

$$f: \mathcal{N}_\pi(G)_{>U} \rightarrow \mathcal{N}_\pi(G)_{>U}$$

defined by $V \mapsto N_V(U) \leq V$ provides us $\mathcal{N}_\pi(G)_{>U} \simeq \text{Im} f = \mathcal{N}_\pi(N_G(U))_{>U}$ by Lemma 4.1 (2).

Set $K_U := O_\pi Z N_G(U)$. Since U and K_U are normal nilpotent π-subgroups of $N_G(U)$, we have that $UK_U \in \mathcal{N}_\pi(N_G(U))$. Suppose that $U \not\supseteq K_U$, that is, $U \not\in \mathcal{L}_\pi(G)$.

Then $U K_U \in \mathcal{N}_\pi(N_G(U))_U$. Furthermore, for $X \in \mathcal{N}_\pi(N_G(U))_U$, we have that $[X, K_U] = \{e\}$. This yields that $\mathcal{N}_\pi(N_G(U))_U \ni X K_U = X(U K_U)$, and that a poset map

$$\varphi : \mathcal{N}_\pi(N_G(U))_U \to \mathcal{N}_\pi(N_G(U))_U$$

defined by $X \mapsto X(U K_U)$ induces contractibility of $\mathcal{N}_\pi(N_G(U))_U$ by Lemma 4.1 (1). It follows that $\mathcal{N}_\pi(G)^\triangleright \subseteq \mathcal{L}_\pi(G)$.

Remark 4.4. The converse inclusion $\mathcal{N}_\pi(G)^\triangleright \supseteq \mathcal{L}_\pi(G)$ is not necessarily established. For example, let $G = M_{12}$ be the Mathieu group of degree 12 of order $2^6 \cdot 3^3 \cdot 5 \cdot 11$, and $\pi := \{2\} \subseteq \pi(G)$. Referring to [2, p. 33], there exists a subgroup $U \cong C_4 \times C_4$ of G with $N_G(U) \cong U \rtimes D_{12}$ and $O_2 Z N_G(U) = \{e\} \leq U$. Thus $U \in \mathcal{L}_2(G)$. However, $\mathcal{N}_2(N_G(U))_U \ni \mathcal{N}_2(D_{12}) = S_2(D_{12})$ is contractible since $O_2(D_{12}) \cong C_2$. This shows that $U \notin \mathcal{N}_2(G)^\triangleright$.

Proposition 4.5. The followings hold.

1. $\mathcal{A}_\pi(G)^\triangleright \subseteq \mathcal{A}_\pi(G) \cap \mathcal{L}_\pi(G) \subseteq \mathcal{A}_\pi(G)$.
2. $\mathcal{A}_\pi(G)^\triangleright \subseteq \mathcal{A}_\pi(G) \cap \mathcal{L}_\pi^G(G) \subseteq \mathcal{A}_\pi(G)$.

In particular, we have homotopy equivalences $\mathcal{A}_\pi(G) \simeq \mathcal{A}_\pi(G) \cap \mathcal{L}_\pi(G)$ and $\mathcal{A}_\pi(G) \simeq \mathcal{A}_\pi(G) \cap \mathcal{L}_\pi^G(G)$ by Lemma 4.1 (4).

Proof. For $U \in \mathcal{A}_\pi(G)$, set $K_U := O_\pi Z N_G(U)$. Since $[U, K_U] = \{e\}$, we have that $U K_U \in \mathcal{A}_\pi(G)$. Suppose that $U \notin K_U$, that is, $U \notin \mathcal{A}_\pi(G) \cap \mathcal{L}_\pi(G)$. Then $U K_U \in \mathcal{A}_\pi(G)^\triangleright$. Furthermore, for $X \in \mathcal{A}_\pi(G)^\triangleright$, we have that $X \leq C_G(U) \leq N_G(U)$, and thus $[X, K_U] = \{e\}$. This yields that $\mathcal{A}_\pi(G)^\triangleright \ni X K_U = X(U K_U)$, and that a poset map

$$\varphi : \mathcal{A}_\pi(G)^\triangleright \to \mathcal{A}_\pi(G)^\triangleright$$

defined by $X \mapsto X(U K_U)$ induces contractibility of $\mathcal{A}_\pi(G)^\triangleright$ by Lemma 4.1 (1). It follows that $\mathcal{A}_\pi(G)^\triangleright \subseteq \mathcal{A}_\pi(G) \cap \mathcal{L}_\pi(G)$.

By the same way, we obtain $\mathcal{A}_\pi(G)^\triangleright \subseteq \mathcal{A}_\pi(G) \cap \mathcal{L}_\pi^G(G) \subseteq \mathcal{A}_\pi(G)$ by using $K_U^\triangleright := \Omega_1 O_\pi Z N_G(U)$ in place of $K_U := O_\pi Z N_G(U)$ in the above discussion.

Summarizing Propositions 4.2, 4.3, and 4.5, we obtain the next.

Proposition 4.6. The following homotopy equivalences hold.

1. $\mathcal{N}_\pi(G) \simeq \mathcal{L}_\pi(G) \simeq \mathcal{L}_\pi^G(G) \simeq \mathcal{A}_\pi(G) \simeq \mathcal{A}_\pi(G)$.
2. $\mathcal{A}_\pi(G) \simeq \mathcal{A}_\pi(G) \cap \mathcal{L}_\pi(G)$.
3. $\mathcal{A}_\pi(G) \simeq \mathcal{A}_\pi(G) \cap \mathcal{L}_\pi^G(G)$.

Note that equivalences in Proposition 4.6 can be extended to G-homotopy equivalences (see [9, Section 3.5] or [11]).
Remark 4.7 (The whole $\pi(G)$ case). In the case of $\pi = \pi(G)$, our equivalence (α) in Proposition 4.6 gives $N(G) \simeq \text{Ab}(G) \simeq A(G)$ where these three posets are respectively the totality of non-trivial nilpotent subgroups, abelian subgroups, and direct products of elementary abelian subgroups of G. This result coincides with a part of [8, Proposition 1.2].

Like Lemma 4.1, posets $S_p(G)$, $A_p(G)$, and $B_p(G)$ (see Remark 3.1) are also fundamental in the theory of subgroup complexes. In particular, those three posets are homotopy equivalent each other (cf. [9, p. 165]). Below is an immediate consequence of Proposition 4.6 with $\pi = \{p\}$. In particular, equivalences related to $L_p(G)$ should be new.

Corollary 4.8. The following homotopy equivalences hold.

$$S_p(G) = N_p(G) \simeq \text{Ab}_p(G) \simeq A_p(G) \simeq L_p(G) \simeq L_p^*(G),$$

$$\text{Ab}_p(G) \simeq \{U \in \text{Ab}_p(G) \mid U \geq O_pZN_G(U)\},$$

$$A_p(G) \simeq \{U \in A_p(G) \mid U \geq \Omega_1O_pZN_G(U)\}.$$

Remark 4.9. (1) Recall that a poset $Z_p(G) := \{U \in A_p(G) \mid \Omega_1O_pZN_G(U) = U\}$ is introduced by Benson (see [1, p. 226]). It is known that $A_p(G)^* \subseteq Z_p(G)$ (cf. [9, Remark 4.3.5]), so that, $A_p(G) \simeq Z_p(G)$. But this equivalence of $A_p(G)$ is different from $A_p(G) \simeq A_p(G) \cap L_p(G)$ in Corollary 4.8.

(2) As mentioned in Remark 3.1, $B_p(G)$ is included in $L_p(G)$. Thus a relation $B_p(G) = B_p(G) \cap L_p(G)$ holds. Furthermore, we have that $B_p(G) \simeq S_p(G) \simeq L_p(G)$ by Corollary 4.8.

Remark 4.10. We investigated $N_p(G)^*$ in Proposition 4.3, and also $\text{Ab}_p(G)^*$ and $A_p(G)^*$ in Proposition 4.5. On the other hand, it is known (cf. [9, p. 152]) that $S_p(G)^* = A_p(G)$ and $S_p(G)^* \subseteq B_p(G)$ in general. Furthermore the equality $S_p(G)^* = B_p(G)$ holds assuming Quillen conjecture which is saying that if $S_p(G)$ is contractible then $O_p(G)$ is non-trivial. From this viewpoint, a subgroup in $N_p(G)^* \subseteq L_p(G)$ might be a candidate of “π-radicals”. In addition, we already saw in Remark 3.1 that a subgroup in $L_p(G)$ contains the notion of p-radicals.

Remark 4.11. Suppose that $O_p(G) \neq \{e\}$. Then a relation $U \leq U O_p(G) \geq O_p(G)$ for any $U \in S_p(G)$ gives us (conical) contractibility of $S_p(G)$. The converse is Quillen conjecture. How about $N_p(G)$? Let G be the symmetric group S_4 of degree 4, and $\pi := \pi(G) = \{2, 3\}$. Then $N_\pi(G) = S_2(G) \cup S_3(G)$ is disconnected (i.e. non-contractible) even if $O_\pi(G) = G \neq \{e\}$ or $O_\pi F(G) = F(G) \cong C_2 \times C_2 \neq \{e\}$ where $F(G)$ is the Fitting subgroup of G.
5. Investigations on $L_\pi(\mathfrak{S}_n)$

For a positive integer n, denote by $\mathfrak{S}(\Omega) = \mathfrak{S}_n$ the symmetric group on a set $\Omega := \{1, 2, \ldots, n\}$. In this section, we investigate subgroups in $L_\pi(\mathfrak{S}(\Omega))$. It is shown that the determination of $H \in L_\pi(\mathfrak{S}(\Omega))$ can be reduced to the case where H is irreducible (see Definition 5.5) such that there is no fixed point of H on Ω. Then focusing on the irreducibility of subgroups, we provide a strategy to determine $L_\pi(\mathfrak{S}_n)$. As examples, we classify subgroups in $L_\pi(\mathfrak{S}_n)$ for $n \leq 6$ by using our method.

For a family $\mathcal{H} \subseteq \text{Sgp}(\mathfrak{S}_n)$ of subgroups closed under \mathfrak{S}_n-conjugation, denote by $\mathcal{H}/\sim_{\mathfrak{S}_n}$ a set of \mathfrak{S}_n-conjugate representatives of \mathcal{H}.

5.1. The symmetric group. We establish some notations on $\mathfrak{S}(\Omega)$. For $x, y \in \mathfrak{S}(\Omega)$, the composition $xy \in \mathfrak{S}(\Omega)$ is read from left to right, and denote by $\alpha^x \in \Omega$ the image of $\alpha \in \Omega$ under x. Let $e \in \mathfrak{S}(\Omega)$ be the identity element. The notation $E := \{e\}$ stands for the trivial subgroup of $\mathfrak{S}(\Omega)$. For a subgroup $H \leq \mathfrak{S}(\Omega)$, as in [3, p. 19], the set of fixed points and support of H are defined by

$$\text{fix}(H) := \{\alpha \in \Omega \mid \alpha^h = \alpha \text{ for all } h \in H\},$$

$$\text{supp}(H) := \Omega \setminus \text{fix}(H) = \{\alpha \in \Omega \mid \alpha^h \neq \alpha \text{ for some } h \in H\}.$$

It is clear that $H = E$ if and only if $\text{supp}(H) = \emptyset$.

Notation 5.1. For an H-invariant subset $\Gamma \subseteq \Omega$, denote by $H|_\Gamma \leq \mathfrak{S}(\Omega)$ the group of permutations which agree with an element of H on Γ and are the identity on $\Omega \setminus \Gamma$. In other words, for an element $h \in H$, we identify a bijective restriction map $h|_{\Gamma} : \Gamma \to \Gamma$ with a permutation on Ω which is the identity on $\Omega \setminus \Gamma$. Then the group $H|_{\Gamma}$ is defined by $\{h|_{\Gamma} \mid h \in H\} \leq \mathfrak{S}(\Gamma) \leftrightarrow \mathfrak{S}(\Omega)$.

A subset $\text{supp}(H) \subseteq \Omega$ is $N_{\mathfrak{S}(\Omega)}(H)$-invariant, and H is identified with $H|_{\text{supp}(H)} \leq \mathfrak{S}(\text{supp}(H))$. For any H-invariant subset $\Gamma \subseteq \Omega$, it is clear that $\text{supp}(H|_{\Gamma}) = \text{supp}(H) \cap \Gamma$.

5.2. Reduction to the fixed point free case. In this section, we show that the determination of $H \in L_\pi(\mathfrak{S}(\Omega))$ can be reduced to the case where H has no fixed points in Ω. Put

$$L_\pi(\mathfrak{S}(\Omega))^0 := \{H \in L_\pi(\mathfrak{S}(\Omega)) \mid \text{fix}(H) = \emptyset\}.$$

Lemma 5.2. Let $H \leq \mathfrak{S}(\Omega)$ be a non-trivial subgroup.

1. Suppose $2 \notin \pi$. Then $H \in L_\pi(\mathfrak{S}(\Omega))$ if and only if $H \in L_\pi(\mathfrak{S}(\Omega / \text{fix}(H)))^0$.
2. Suppose $2 \in \pi$. Then $H \in L_\pi(\mathfrak{S}(\Omega))$ if and only if $H \in L_\pi(\mathfrak{S}(\Omega / \text{fix}(H)))^0$ and $|\text{fix}(H)| \neq 2$.

Proof. Set $G := \mathcal{G}(\Omega)$, $\Omega_+ := \text{supp}(H)$, and $\Omega_0 := \text{fix}(H)$. Recall that H is identified with $H_+ := H|_{\text{supp}(H)}$. In order to prove this lemma, it is enough to show that $H \in L_\pi(\mathcal{G}(\Omega))$ if and only if $H_+ \in L_\pi(\mathcal{G}(\Omega_+))^0$, and $|\Omega_0| \neq 2$ or $2 \not\in \pi$. Now since $N_G(H)$ acts on both Ω_0 and Ω_+, we have that $N_G(H) \leq \mathcal{G}(\Omega_0) \times \mathcal{G}(\Omega_+)$. Hence

\[N_G(H) = N_{\mathcal{G}(\Omega_0) \times \mathcal{G}(\Omega_+)}(H_+) = \mathcal{G}(\Omega_0) \times N_{\mathcal{G}(\Omega_+)}(H_+), \]

\[O_\pi Z N_G(H) = O_\pi Z(\mathcal{G}(\Omega_0)) \times O_\pi Z(N_{\mathcal{G}(\Omega_+)}(H_+)). \]

Suppose that $H \in L_\pi(G)$, that is, $H_+ = H \geq O_\pi Z N_G(H)$. Then $O_\pi Z(\mathcal{G}(\Omega_0)) = E$ and $H_+ \geq O_\pi Z(N_{\mathcal{G}(\Omega_+)}(H_+))$. Thus $H_+ \in L_\pi(\mathcal{G}(\Omega_+))^0$. Furthermore $Z(\mathcal{G}(\Omega_0))$ is non-trivial if and only if $|\Omega_0| = 2$. This yields that $O_\pi Z(\mathcal{G}(\Omega_0)) = E$ if and only if $|\Omega_0| \neq 2$ or $2 \not\in \pi$. The converse is now clear. The proof is complete. \qed

The following result is a consequence of Lemma 5.2.

Proposition 5.3. For positive integers $n \geq 3$ and $2 \leq k \leq n - 1$, set $[k] := \{1, \ldots, k\} \subseteq \Omega$. Then we have that

\[L_\pi(\mathcal{G}(\Omega))/\sim_{\mathcal{G}(\Omega)} = \begin{cases} \bigcup_{k=2}^{n-1} L_\pi(\mathcal{G}([k])/\sim_{\mathcal{G}([k])}) \cup L_\pi(\mathcal{G}(\Omega))/\sim_{\mathcal{G}(\Omega)} & \text{if } 2 \not\in \pi, \\ \bigcup_{k=2}^{n-1} L_\pi(\mathcal{G}([k])/\sim_{\mathcal{G}([k])}) \cup L_\pi(\mathcal{G}(\Omega))/\sim_{\mathcal{G}(\Omega)} & \text{if } 2 \in \pi. \end{cases} \]

By Proposition 5.3 together with the inductive argument, the determination of $L_\pi(\mathcal{G}(\Omega))$ can be reduced to that of $L_\pi(\mathcal{G}(\Omega))^0$.

5.3. Reduction to components. In this section, we introduce the irreducibility of a subgroup of $\mathcal{G}(\Omega)$, and show that any non-trivial subgroup H of $\mathcal{G}(\Omega)$ can be uniquely decomposed into irreducible subgroups of H. Using such a decomposition of H, the notion of components of H comes out. Then we show that the determination of $H \in L_\pi(\mathcal{G}(\Omega))^0$ can be reduced to the case where H itself is a component of H.

Notation 5.4. If a direct product subgroup $H = H_1 \times H_2 \leq \mathcal{G}(\Omega)$ satisfies $\text{supp}(H_1) \cap \text{supp}(H_2) = \emptyset$, then we denote it by $H = H_1 \perp H_2$. In this case, we have a disjoint union $\text{supp}(H) = \text{supp}(H_1) \uplus \text{supp}(H_2)$. Furthermore, we recursively define $H_1 \perp H_2 \perp \cdots \perp H_l$ for any finite number of subgroups $H_l \leq \mathcal{G}(\Omega)$ by $(H_1 \perp \cdots \perp H_{l-1}) \perp H_l$.

Definition 5.5. Let $H \leq \mathcal{G}(\Omega)$ be a subgroup. H is said to be reducible if there exist non-trivial subgroups $H_1, H_2 \leq H$ such that $H = H_1 \perp H_2$. On the other
hand, we call H irreducible if $H \neq E$ and H is not reducible, that is, whenever $H = K \perp L$ for subgroups $K, L \leq H$ then $K = E$ or $L = E$.

Lemma 5.6. (1) For a subgroup $H = H_1 \perp H_2 \leq \mathcal{G}(\Omega)$ and an H-invariant subset $\Gamma \subseteq \Omega$, we have that $H|_{\Gamma} = H_1|_{\Gamma} \perp H_2|_{\Gamma}$.

(2) Suppose that $A \perp B = A \perp C \leq \mathcal{G}(\Omega)$. Then $B = C$.

Proof. (1) Straightforward.

(2) Set $D := A \perp B$. Then $\Gamma_B := \text{supp}(B) = \text{supp}(D) \setminus \text{supp}(A) = \text{supp}(C) = : \Gamma_C$.

For a D-invariant subset $\Gamma_B = \Gamma_C$, we have by (1) that

\[D|_{\Gamma_a} = (A \perp B)|_{\Gamma_a} = A|_{\Gamma_a} \perp B|_{\Gamma_a} = E \perp B = B, \]

\[D|_{\Gamma_c} = (A \perp C)|_{\Gamma_c} = A|_{\Gamma_c} \perp C|_{\Gamma_c} = E \perp C = C. \]

Thus $B = C$ as wanted. \(\square\)

Proposition 5.7. Let $H \leq \mathcal{G}(\Omega)$ be a non-trivial subgroup. Then H is decomposed as

\[H = H_1 \perp \cdots \perp H_l \]

where the $H_i \leq H$ are irreducible and unique up to order.

Proof. We proceed by induction on $|\text{supp}(H)| > 0$. For the existence, we may assume that H is reducible. Then there exist non-trivial subgroups $H_1, H_2 \leq H$ such that $H = H_1 \perp H_2$. Since the supports of H_1 and H_2 are strictly contained in $\text{supp}(H)$, we have that each H_i can be decomposed into irreducible subgroups by induction. This shows the existence of the decomposition.

Suppose next that $H = H_1 \perp \cdots \perp H_l = K_1 \perp \cdots \perp K_m$ for some irreducible subgroups $H_i, K_j \leq \mathcal{G}(\Omega)$. Since $\Gamma := \supp(H_1) \subseteq \supp(H) = \bigcup_{j=1}^{l} \supp(K_j)$, we may assume that $\Gamma \cap \Lambda \neq \emptyset$ for $\Lambda := \supp(K_1)$. Then $\supp(K_1|_{\Gamma}) \subseteq \supp(K_1) \cap \Gamma = \Lambda \cap \Gamma \neq \emptyset$ and $K_1|_{\Gamma} \neq E$. Now

\[H_1 = H|_{\Gamma} = (K_1 \perp \cdots \perp K_m)|_{\Gamma} = K_1|_{\Gamma} \perp \cdots \perp K_m|_{\Gamma}. \]

By the irreducibility of H_1, $H_1 = K_1|_{\Gamma}$ and $\Gamma = \supp(H_1) = \supp(K_1|_{\Gamma}) \subseteq \Lambda$. Exchanging roles of Γ and Λ, we can obtain that $\Lambda \subseteq \Gamma$, so that, $\Gamma = \Lambda$. This yields that $H_1 = K_1|_{\Gamma} = K_1|_{\Lambda} = K_1$. Then by Lemma 5.6, $H' := H_2 \perp \cdots \perp H_l = K_2 \perp \cdots \perp K_m$. Since the support of H' is strictly contained in $\supp(H)$, the uniqueness also holds by induction. \(\square\)

Corollary 5.8. Let $H \leq \mathcal{G}(\Omega)$ be a non-trivial subgroup, and let $H = H_1 \perp \cdots \perp H_l$ be a decomposition of H as in Proposition 5.7. Set $\Gamma_i := \supp(H_i)$ for $1 \leq i \leq l$.

Suppose that $\text{supp}(H) = \Omega$. Then we have that if $H_i \in \mathcal{L}_n(\mathfrak{S}(\Gamma_i))^0$ for all $1 \leq i \leq l$ then $H \in \mathcal{L}_n(\mathfrak{S}(\Omega))^0$.

Proof. Any element $g \in O_\pi \mathcal{Z} N_{\mathfrak{S}(\Omega)}(H)$ commutes with H_i for all $1 \leq i \leq l$. So Γ_i is $\langle g \rangle$-invariant. Since $\text{supp}(H) = \Omega$, we have that $g = \prod_{i=1}^l g|_{\Gamma_i}$ which is contained in $\prod_{i=1}^l O_\pi \mathcal{Z} N_{\mathfrak{S}(\Gamma_i)}(H_i)$. Thus

$$O_\pi \mathcal{Z} N_{\mathfrak{S}(\Omega)}(H) \leq \prod_{i=1}^l O_\pi \mathcal{Z} N_{\mathfrak{S}(\Gamma_i)}(H_i),$$

and this completes the proof. \square

We establish the situation once more here. Set $G := \mathfrak{S}(\Omega)$, and let $H \leq \mathfrak{S}(\Omega)$ be a non-trivial subgroup. Suppose that $H = H_1 \perp \cdots \perp H_t$ be a decomposition of H into irreducible subgroups H_i $(1 \leq i \leq t)$ as in Proposition 5.7. Then a set $\mathcal{X}_H := \{H_1, \ldots, H_t\}$ is uniquely determined by H. Let $\{K_1, \ldots, K_t\} \subseteq \mathcal{X}_H$ be a set of representatives of G-conjugate classes in \mathcal{X}_H. For each K_i, denote by $[K_i] := \{H_j \in \mathcal{X}_H \mid H_j \sim_G K_i\}$ the class containing K_i. We set $[K_i] = \{K_i^{(1)}, K_i^{(2)}, \ldots, K_i^{(m_i)}\}$, and define a subgroup

$$M(K_i) := \langle K \mid K \in [K_i]\rangle = K_i^{(1)} \perp K_i^{(2)} \perp \cdots \perp K_i^{(m_i)} \leq H.$$

Then $H = M(K_1) \perp M(K_2) \perp \cdots \perp M(K_t)$. We call each subgroup $M(K_i)$ a “component” of H. Put

$$X_i := \text{supp}(M(K_i)) = \bigcup_{j=1}^{m_i} \text{supp}(K_i^{(j)}), \quad G_i := \mathfrak{S}(X_i) \leq G.$$

Proposition 5.9. With the above notations, suppose that $\text{supp}(H) = \Omega$. Then we have that

1. $N_G(H) = N_{G_1}(M(K_1)) \perp N_{G_2}(M(K_2)) \perp \cdots \perp N_{G_t}(M(K_t))$.
2. $H \in \mathcal{L}_n(G)^0$ if and only if $M(K_i) \in \mathcal{L}_n(G_i)^0$ for all $1 \leq i \leq t$.

Proof. (1) For any $g \in N_G(H)$, $H = H^g = H_1^g \perp \cdots \perp H_t^g$. Since \mathcal{X}_H is uniquely determined by H by Proposition 5.7, we have that $\langle g \rangle$ acts on \mathcal{X}_H and $[K_i]$ for any $1 \leq i \leq t$. This yields that X_i is $\langle g \rangle$-invariant, and thus $g|_{X_i} \in N_{G_i}(M(K_i))$. Since $\text{supp}(H) = \Omega$, we have that $g = \prod_{i=1}^l g|_{X_i}$ which is contained in $N_{G_1}(M(K_1)) \perp \cdots \perp N_{G_t}(M(K_t))$. The converse inclusion is trivial.

(2) Straightforward from (1). \square

By Proposition 5.9 (2), the determination of $H \in \mathcal{L}_n(\mathfrak{S}(\Omega))^0$ can be reduced to the case where H itself is a component of H, that is, all subgroups in \mathcal{X}_H are $\mathfrak{S}(\Omega)$-conjugate each other.
5.4. Reduction to irreducible subgroups. In this section, we show that the determination of $H \in \mathcal{L}_\pi(\mathcal{S}(\Omega))^0$ can be reduced to the case where H is irreducible.

Set $G := \mathcal{S}(\Omega)$. By reason of Proposition 5.9 (2), we assume the following Hypothesis 5.10.

Hypothesis 5.10. Let $H \leq \mathcal{S}(\Omega)$ be a non-trivial subgroup. Suppose that $H = H_1 \cdot \cdots \cdot H_l$ be a decomposition of H into irreducible subgroups H_i ($1 \leq i \leq l$) as in Proposition 5.7. Then $H_i \sim_G H_j$ for any $1 \leq i, j \leq l$.

We examine the structure of $N_G(H)$. Set $\Gamma_i := \text{supp}(H_i)$ and $G_i := \mathcal{S}(\Gamma_i)$ for $1 \leq i \leq l$. By Hypothesis 5.10, for each $2 \leq i \leq l$, there exists $g_i \in G$ such that $H_i = H_1^{g_i} := g_i^{-1}H_1g_i$ which induces a permutation equivalence $(H_1, \Gamma_1) \simeq (H_i, \Gamma_i)$. In other words, there exist bijections $f_i : H_1 \to H_i$ defined by $x \mapsto x^{g_i} := g_i^{-1}xg_i$ for $x \in H_1$, and $\phi_i : \Gamma_1 \to \Gamma_i$ defined by $\alpha \mapsto \alpha^{\phi_i}$ for $\alpha \in \Gamma_1$ satisfying $(\alpha^{\phi_i})^{f_i} = (\alpha^x)^{\phi_i}$ for any $x \in H_1$ and $\alpha \in \Gamma_1$. Now we define an involution

$$\sigma_i := \prod_{\alpha \in \Gamma_1} (\alpha, \alpha^{\phi_i}) \in \mathcal{S}(\Gamma_1 \cup \Gamma_i) \leq \mathcal{S}(\Omega) \quad (2 \leq i \leq l)$$

which acts on $\mathcal{X}_H = \{H_1, \ldots, H_l\}$ as a transposition (H_1, H_i). Then $S := \langle \sigma_2, \ldots, \sigma_l \rangle \cong \mathcal{S}_l$ acts on both \mathcal{X}_H and $\{N_G(H_1, \ldots, N_G(H_l)\}$ as \mathcal{S}_l respectively, and a subgroup $N_G(H_1) \cdot S \cong B \rtimes S \leq N_G(H)$ is defined where $B := N_G(H_1) \times \cdots \times N_G(H_l)$.

Proposition 5.11. Assume Hypothesis 5.10. With the above notations, suppose that $\text{supp}(H) = \Omega$. Then we have that

1. $N_G(H) = B \rtimes S$.
2. $H \in \mathcal{L}_\pi(G)^0$ if and only if $H_i \in \mathcal{L}_\pi(G_i)^0$.

Proof. (1) For any element $g \in N_G(H)$, $\langle g \rangle$ acts on \mathcal{X}_H as in the proof of Proposition 5.9. Then there exists $\sigma \in S$ such that σ is equal to g as elements of $\mathcal{S}(\mathcal{X}_H)$. Thus $g\sigma^{-1}$ fixes H_i for all $1 \leq i \leq l$, so that, $(g^{\sigma^{-1}})|_{\Gamma_i} \in N_G(H_i)$. Since $\text{supp}(H) = \Omega$, we have that $g\sigma^{-1} = \prod_{i=1}^l (g^{\sigma^{-1}})|_{\Gamma_i}$, which is contained in B. So $g \in B\sigma \subseteq B \rtimes S$.

(2) Suppose that $H_i \notin \mathcal{L}_\pi(G_i)^0$, and then we will show that $H \notin \mathcal{L}_\pi(G)^0$. We may assume that $l \geq 2$. Now there exists $z_1 \in O_\pi ZN_G(H_1) \setminus H_1$. For $2 \leq i \leq l$, put

$$z_i := \sigma_i^{-1}z_1\sigma_i \in O_\pi ZN_G(H_i) \setminus H_i, \quad z_0 := \prod_{i=1}^l z_i \in N_G(H) \setminus H.$$

Then $[z_0, B] = E$. Furthermore, for each $\sigma_j \in S$ ($2 \leq j \leq l$), we have that

$$z_0^{\sigma_j} = z_1^{\sigma_j} \cdot \prod_{i=1}^l z_i^{\sigma_j} \neq z_1^{\sigma_j} \cdot \prod_{i=1}^l z_i^{\sigma_j} \times z_1 = z_0.$$
This implies that \([z_0, S] = E\) and \(z_0 \in ZN_G(H)\) by Proposition 5.11 (1). Thus \(z_0\) is in \(O_2 ZN_G(H) \setminus H\), and \(H \notin \mathcal{L}_\pi(G)^0\) as desired. The converse follows from Corollary 5.8.

Summarizing Propositions 5.9 and 5.11, we have the following.

Theorem 5.12. Let \(H \leq \mathfrak{S}(\Omega)\) be a non-trivial subgroup, and let

\[
H = (H_1^{(1)} \perp \cdots \perp H_1^{(m_1)}) \perp (H_2^{(1)} \perp \cdots \perp H_2^{(m_2)}) \perp \cdots \perp (H_t^{(1)} \perp \cdots \perp H_t^{(m_t)})
\]

be a decomposition of \(H\) as in Proposition 5.7 where each \(H_i^{(1)} \perp \cdots \perp H_i^{(m_i)}\) is a component of \(H\). Set \(\Gamma_i := \text{supp}(H_i^{(1)})\) for \(1 \leq i \leq t\). Suppose that \(\text{supp}(H) = \Omega\). Then we have that \(H \in \mathcal{L}_\pi(\mathfrak{S}(\Omega))^0\) if and only if \(H_i^{(1)} \in \mathcal{L}_\pi(\mathfrak{S}(\Gamma_i))^0\) for all \(1 \leq i \leq t\).

By Theorem 5.12, the determination of \(H \in \mathcal{L}_\pi(\mathfrak{S}(\Omega))^0\) can be reduced to the case where \(H\) is irreducible.

5.5. On intransitive subgroups. In this section, we show that intransitive subgroups of \(\mathfrak{S}(\Omega)\) can be described inductively in terms of smaller irreducible subgroups. This idea will be used in Section 5.6. First we recall pullbacks.

Remark 5.13. (1) Let \(G\) and \(H\) be groups, and let \(\theta : G/N \to H/K\) be a group isomorphism between quotient groups. Then the pullback \(G \times^\theta H\) of \(G\) and \(H\) via \(\theta\) is a subgroup \(\{(g, h) \in G \times H \mid (gN)^\theta = hK\}\) of \(G \times H\) (cf. [4, Definition 13.11]). Note that if \(\theta\) is trivial, that is, \(G/N\) is the trivial group, then \(G \times^\theta H = G \times H\).

(2) Let \(G = K \times L\) be a direct product. Then any subgroup \(H\) of \(G\) can be realized as the pullback of certain subgroups in \(K\) and \(L\). More precisely, there exist subgroups \(K \supseteq K_1 \supseteq K_2\) and \(L \supseteq L_1 \supseteq L_2\), and also a group isomorphism \(\theta : K_1/K_2 \to L_1/L_2\) such that \(H = K_1 \times^\theta L_1\) (cf. [10, (4.19)]).

Let \(H \leq \mathfrak{S}(\Omega)\) be a non-trivial subgroup. Suppose that \(\text{supp}(H) = \Omega\), and that \(H\) acts intransitively on \(\Omega\). Let

\[
\Omega = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_{m-1} \cup \mathcal{O}_m \quad (m \geq 2)
\]

be a decomposition of \(\Omega\) into \(H\)-orbits. Set \(\Lambda_1 := \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_{m-1}\) and \(\Lambda_2 := \mathcal{O}_m\). Then a subgroup \(B := H|_{\Lambda_1} \leq \mathfrak{S}(\Lambda_2)\) is transitive on \(\Lambda_2\), that is, irreducible. On the other hand, a subgroup \(H|_{\Lambda_1} \leq \mathfrak{S}(\Lambda_1)\) is decomposed as \(H|_{\Lambda_1} = A_1 \perp \cdots \perp A_l\) into irreducible subgroups \(A_i\) (\(1 \leq i \leq l\)) by Proposition 5.7. It follows that

\[
H \leq H|_{\Lambda_1} \times H|_{\Lambda_2} = (A_1 \perp \cdots \perp A_l) \perp B.
\]
Since the supports of A_i and B are strictly contained in $\text{supp}(H) = \Omega$, we may assume that a list of irreducible subgroups A_i and B is already known by induction. Thus H can be concretely described as the pullback $H_1 \times^\theta H_2$ of certain subgroups $H_1 \leq A_1 \perp \cdots \perp A_l$ and $H_2 \leq B$ where θ is a group isomorphism between quotients (see Remark 5.13). Note that, if H is irreducible then θ must not be trivial. In the next, we give a result on irreducible pullbacks under the above situation.

Proposition 5.14. Let $B \leq \mathcal{G}(\Omega)$ be an irreducible subgroup, and let $A := A_1 \perp \cdots \perp A_l \leq \mathcal{G}(\Omega)$ where A_i is irreducible for all $1 \leq i \leq l$. Suppose that $\text{supp}(A) \cap \text{supp}(B) = \emptyset$ and $\text{supp}(A \perp B) = \Omega$. Suppose further that there exists a group isomorphism $\theta : A/N_1 \to B/N_2$ (for some $N_1 \leq A$ and $N_2 \leq B$ such that $A_i \not\leq N_1$ for all $1 \leq i \leq l$). Then the pullback $P := A \times^\theta B = \{(a, b) \in A \times B \mid (aN_1)\theta = bN_2\}$ is irreducible.

Proof. Set $\Gamma_i := \text{supp}(A_i)$ $(1 \leq i \leq l)$ and $\Gamma := \text{supp}(B)$. Suppose that P is reducible. Then there exist non-trivial subgroups $K, L \leq P$ such that $P = K \perp L$. Let $\pi_A : P \to A$ and $\pi_B : P \to B$ be the projections of P on A and B respectively. Both π_A and π_B are surjective. This implies that $P|_{\Gamma_i} = A_i$ $(1 \leq i \leq l)$ and $P|_{\Gamma} = B$. Since $B = P|_{\Gamma} = K|_{\Gamma} \perp L|_{\Gamma}$ is irreducible, we may assume that

\[
K|_{\Gamma} = B \quad \text{i.e.} \quad \Gamma = \text{supp}(B) \subseteq \text{supp}(K),
\]

\[
L|_{\Gamma} = E \quad \text{i.e.} \quad L \leq A = A_1 \perp \cdots \perp A_l.
\]

Suppose that $\Gamma \subseteq \text{supp}(K) \subseteq \Omega = \Gamma_1 \cup \cdots \cup \Gamma_l \cup \Gamma$. Then we may assume that $\emptyset \neq \text{supp}(K) \cap \Gamma_1 = \text{supp}(K|_{\Gamma_1})$, so that, $K|_{\Gamma_1} \neq E$. Since $A_1 = P|_{\Gamma_1} = K|_{\Gamma_1} \perp L|_{\Gamma_1}$ is irreducible, we have that

\[
K|_{\Gamma_1} = A_1 \quad \text{i.e.} \quad \Gamma_1 = \text{supp}(A_1) \subseteq \text{supp}(K) \quad \text{and} \quad \Gamma \cup \Gamma_1 \subseteq \text{supp}(K),
\]

\[
L|_{\Gamma_1} = E \quad \text{i.e.} \quad L \leq A_2 \perp \cdots \perp A_l.
\]

Repeating this process, we may assume that there exists $t < l$ such that

\[
\text{supp}(K) = \Gamma \cup \Gamma_1 \cup \cdots \cup \Gamma_t,
\]

\[
L \leq A_{t+1} \perp \cdots \perp A_l. \quad (\star)
\]

Note that if $t = l$ then $L = E$, a contradiction. Now $\pi_A : P = K \perp L \to A$ is surjective. Thus for any $a \in A_l$, there exist $(a_K, b_K) \in K \leq A \times B$ and $(a_L, e) \in L \leq A$ such that

\[
a = \pi_A((a_K, b_K) \times (a_L, e)) = a_K a_L.
\]

But by the above condition (\star), $a_K \in A_1 \perp \cdots \perp A_t$ and $a_L \in A_{t+1} \perp \cdots \perp A_l$. Thus $a_K = e$ and $a = a_L \in L \leq P$. This implies $(a, e) \in P$ and $(aN_i)\theta = eN_2 = N_2$ by
the definition of P. Therefore $A_i \leq N_1$ which contradicts our assumption. The proof is complete. \qed

5.6. A strategy to determine $\mathcal{L}_\pi(\mathfrak{S}_n)^0$. In this section, we provide a method of determining $\mathcal{L}_\pi(\mathfrak{S}_n)^0$ which is focused on irreducible subgroups. So we introduce the notations

$$\text{IRR}(n)^0 := \{ E \neq H \leq \mathfrak{S}(\Omega) \mid H \text{ is irreducible such that } \text{fix}(H) = \emptyset \},$$

$$\mathcal{T}(n) := \{ E \neq H \leq \mathfrak{S}(\Omega) \mid H \text{ is transitive on } \Omega \} \subseteq \text{IRR}(n)^0.$$

Then, as in the following, we divide our work of determining $H \in \mathcal{L}_\pi(\mathfrak{S}_n)^0$ into two cases where H is irreducible or not.

A: Determine $H \in \mathcal{L}_\pi(\mathfrak{S}_n)^0$ such that H is not irreducible (see Theorem 5.12).

(Step A1) Give a non-trivial partition $n = (n_1 + \cdots + n_t) + \cdots + (n_s + \cdots + n_l)$ of n such that $n_i \geq 2$ and $n_i > n_{i+1}$.

(Step B2) H is \mathfrak{S}_n-conjugate to one of subgroups of the form $(H_1 \perp \cdots \perp H_t) \perp \cdots \perp (H_t \perp \cdots \perp H_l)$ where $H_i \in \mathcal{L}_\pi(\mathfrak{S}_n)^0$ for $1 \leq i \leq t$.

B: Determine $H \in \mathcal{L}_\pi(\mathfrak{S}_n)^0$ such that H is irreducible.

(Step B1) Make a list of \mathfrak{S}_n-conjugate classes in $\mathcal{T}(n)$.

(Step B2) Describe subgroups in $\text{IRR}(n)^0 \setminus \mathcal{T}(n)$, namely intransitive irreducible subgroups H having no fixed points (see Section 5.5). Indeed, we first give a non-trivial partition $n = n_1 + \cdots + n_{r-1} + n_r$ of n such that $n_i \geq 2$. Let $A \leq \mathfrak{S}_{n-n_r}$ and $B \in \mathcal{T}(n_r)$ such that A has $r-1$ orbits of lengths n_i for $1 \leq i \leq r-1$. Calculate an irreducible pullback $H = A_1 \times^\theta B_1$ via a group isomorphism $\theta: A_1/A_2 \to B_1/B_2$ ($\neq \hat{E}$) where $A \cong A_1 > A_2$ and $B \geq B_1 \geq B_2$.

(Step B3) By the previous two Steps B1–B2, the set $\text{IRR}(n)^0$ is complete. Then, from $\text{IRR}(n)^0$, pick up subgroups belonging to $\mathcal{L}_\pi(\mathfrak{S}_n)$.

5.7. Examples $\mathcal{L}_\pi(\mathfrak{S}_n)^0$ ($n \leq 6$). According to a strategy introduced in Section 5.6, we determine $\mathcal{L}_\pi(\mathfrak{S}_n)$ for $4 \leq n \leq 6$. Let $\mathfrak{A}(\Omega) = \mathfrak{A}_n$ be the alternating group on $\Omega = \{1, \ldots, n\}$. For a prime number p and a positive integer m, denote by p^m, C_m, D_{2m} respectively the elementary abelian p-group of order p^m, cyclic group of order m, dihedral group of order $2m$. Set $\pi := \pi(\mathfrak{S}_n)$.

The cases of \mathfrak{S}_2 and \mathfrak{S}_3 are trivial as follows:

- $\text{IRR}(2)^0 = \mathcal{T}(2) = \mathcal{L}_\pi(\mathfrak{S}_2)^0 = \{ \mathfrak{S}_2 \cong C_2 \}$,
- $\text{IRR}(3)^0 = \mathcal{T}(3) = \{ \mathfrak{A}_3, \mathfrak{A}_3 \}$, and $\mathcal{L}_\pi(\mathfrak{S}_3)^0 = \{ \mathfrak{A}_3 \cong C_3 \}$.

The case of \mathfrak{S}_4:

(Steps A1–A2) A non-trivial partition of 4 not containing 1 as summands is only $4 = 2 + 2$. Then any non-irreducible subgroup H in $\mathcal{L}_\pi(\mathfrak{S}_4)^0$ is conjugate to $H_1 \perp H_2$ where $H_i \in \mathcal{L}_\pi(\mathfrak{S}_4)^0$. Thus $H \sim \mathfrak{S}_4 \langle (1, 2) \rangle \perp \langle (3, 4) \rangle$.

(Step B1) It is easy to see that $T(4)/\sim_{\mathfrak{S}_4} = \{ \mathfrak{S}_4, \mathfrak{A}_4, \langle (1, 2, 3, 4), (2, 4) \rangle \cong D_8, V, \langle (1, 2, 3, 4) \rangle \cong C_4 \}$ where $V := \langle (1, 2)(3, 4), (1, 3)(2, 4) \rangle$ is the four group. In particular, $T(4)/\sim_{\mathfrak{S}_4} \cap \mathcal{L}_\pi(\mathfrak{S}_4) = \{ D_8, V, C_4 \}$.
(Step B2) A non-trivial partition of 4 not containing 1 as summands is $4 = 2 + 2$. There is the unique transitive subgroup $B := \langle (3, 4) \rangle \in T(2)$ on $\{3, 4\}$. Then we choose a transitive subgroup $A \in T(2)$ on $\{1, 2\}$ having a quotient A/N of order 2, namely $(A, N) = \langle (1, 2) \rangle$. Define a group isomorphism $\theta: A/N \to B$. The pullback $A \times B = \langle (1, 2)(3, 4) \rangle \cong C_2$ is irreducible.

(Step B3) By Steps B1–B2, we have that

$$\text{IRR}(4)^0/\sim_{\mathfrak{S}_4} = T(4)/\sim_{\mathfrak{S}_4} \cup \{(1, 2)(3, 4)\}.$$

Then $L_\pi(\mathfrak{S}_4)^0$ consists of 5-classes whose representatives are as follows:

<table>
<thead>
<tr>
<th>$H \in L_\pi(\mathfrak{S}4)^0/\sim{\mathfrak{S}_4}$</th>
<th>\cong</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle (1, 2) \rangle \perp \langle (3, 4) \rangle$</td>
<td>2^4 non-irreducible</td>
</tr>
<tr>
<td>$\langle (1, 2, 3), (2, 4) \rangle$</td>
<td>D_8 irreducible and transitive</td>
</tr>
<tr>
<td>$\langle (1, 2, 3, 4) \rangle$</td>
<td>2^2</td>
</tr>
<tr>
<td>$\langle (1, 2)(3, 4) \rangle$</td>
<td>C_4 irreducible and intransitive</td>
</tr>
</tbody>
</table>

The case of \mathfrak{S}_5:

(Steps A1–A2) A non-trivial partition of 5 not containing 1 as summands is only $5 = 3 + 2$. Then any non-irreducible subgroup H in $L_\pi(\mathfrak{S}_5)^0$ is conjugate to $H_1 \perp H_2$ where $H_1 \in L_\pi(\mathfrak{S}_3)^0$ and $H_2 \in L_\pi(\mathfrak{S}_2)^0$. Thus $H \sim_{\mathfrak{S}_5} \langle (1, 2, 3) \rangle \perp \langle (4, 5) \rangle$.

(Step B1) Since the order of a transitive group of degree 5 is divisible by 5, it is easy to see that $T(5)/\sim_{\mathfrak{S}_5} = \{\mathfrak{S}_5, \mathfrak{A}_5, C_5 \rtimes C_4, C_5 \rtimes C_2, C_5\}$. In particular, $T(5)/\sim_{\mathfrak{S}_5} \cap L_\pi(\mathfrak{S}_5) = \{\langle (1, 2, 3, 4, 5) \rangle \cong C_5\}$.

(Step B2) A non-trivial partition of 5 not containing 1 as summands is $5 = 3 + 2$. There is the unique transitive subgroup $B := \langle (4, 5) \rangle \in T(2)$ on $\{4, 5\}$. Then we choose a transitive subgroup $A \in T(3)$ on $\{1, 2, 3\}$ having a quotient A/N of order 2, namely $(A, N) = (\mathfrak{A}_3, \mathfrak{S}_3)$. Define a group isomorphism $\theta: A/N \to B$. The pullback $A \times B = \langle (1, 2, 3), (1, 2)(4, 5) \rangle \cong \mathfrak{S}_5$ is irreducible.

(Step B3) By Steps B1–B2, we have that

$$\text{IRR}(5)^0/\sim_{\mathfrak{S}_5} = T(5)/\sim_{\mathfrak{S}_5} \cup \{(1, 2, 3), (1, 2)(4, 5)\}.$$

Then $L_\pi(\mathfrak{S}_5)^0$ consists of 2-classes whose representatives are as follows:

<table>
<thead>
<tr>
<th>$H \in L_\pi(\mathfrak{S}5)^0/\sim{\mathfrak{S}_5}$</th>
<th>\cong</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle (1, 2, 3) \rangle \perp \langle (4, 5) \rangle$</td>
<td>$C_2 \times C_2$ non-irreducible</td>
</tr>
<tr>
<td>$\langle (1, 2, 3, 4, 5) \rangle$</td>
<td>C_5 irreducible and transitive</td>
</tr>
</tbody>
</table>
The case of \mathfrak{S}_6:

(Steps A1–A2) Non-irreducible subgroups H in $L_\pi(\mathfrak{S}_6)$ correspond to non-trivial partitions of 6 not containing 1 as summands. Thus those subgroups are determined as follows:

(i) $6 = 4 + 2$: $H \sim_{\mathfrak{S}_6} H_1 \perp H_2$ where $H_1 \in L_\pi(\mathfrak{S}_4)$ and $H_2 \in L_\pi(\mathfrak{S}_2)$, and thus

\[H \sim_{\mathfrak{S}_6} D_8 \perp \langle (5, 6) \rangle, \quad V \perp \langle (5, 6) \rangle, \quad C_4 \perp \langle (5, 6) \rangle, \quad \langle (1, 2)(3, 4) \rangle \perp \langle (5, 6) \rangle. \]

(ii) $6 = 3 + 3$: $H \sim_{\mathfrak{S}_6} H_1 \perp H_2$ where $H_1 \in L_\pi(\mathfrak{S}_3)$, and thus

\[H \sim_{\mathfrak{S}_6} \langle (1, 2, 3) \rangle \perp \langle (4, 5, 6) \rangle. \]

(iii) $6 = 2 + 2 + 2$: $H \sim_{\mathfrak{S}_6} H_1 \perp H_2 \perp H_3$ where $H_i \in L_\pi(\mathfrak{S}_2)$, and thus

\[H \sim_{\mathfrak{S}_6} \langle (1, 2) \rangle \perp \langle (3, 4) \rangle \perp \langle (5, 6) \rangle. \]

(Step B1) We can find that there are 16-classes of transitive subgroups of \mathfrak{S}_6, and representatives are as follows:

\begin{align*}
T(6)/\sim_{\mathfrak{S}_6} = \{ & \mathfrak{S}_6, \mathfrak{A}_6, PGL(2, 5) \cong \mathfrak{S}_5, \mathfrak{A}_5, \mathfrak{S}_4, \\
& \mathfrak{S}_3 \rtimes \mathfrak{S}_2 \cong 3^2 \rtimes D_8, 3^2 \rtimes C_4, 3^2 \rtimes 2^2 \rtimes C_2, C_3 \times C_2, D_{12}, \mathfrak{S}_3, \\
& \mathfrak{S}_2 \rtimes \mathfrak{S}_3 \cong 2^3 \rtimes S_3, 2^3 \times C_3, 2^2 \times C_3, \mathfrak{S}_4 \}.
\end{align*}

In particular, $T(6)/\sim_{\mathfrak{S}_6} \cap L_\pi(\mathfrak{S}_6) = \{ \langle (1, 2, 3, 4, 5, 6) \rangle \cong C_6 \}$.

(Step B2) In order to examine intransitive subgroups H in $\text{IRR}(6)^0$, we consider pullbacks associated to non-trivial partitions of 6 not containing 1 as summands as follows:

(i) $6 = 4 + 2$: There is the unique transitive subgroup $B := \langle (5, 6) \rangle \in T(2)$ on $\{5, 6\}$. Then we choose a transitive subgroup $A \in T(4)$ on $\{1, 2, 3, 4\}$ having a quotient A/N of order 2, so that, a group isomorphism $\theta : A/N \to B$ is defined.

<table>
<thead>
<tr>
<th>$\theta : A/N \to B$</th>
<th>$H = A \times^\theta B$</th>
<th>nilp.</th>
<th>$N_{\mathfrak{S}_6}(H)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathfrak{S}_3/\mathfrak{A}_4 \to B$</td>
<td>$\langle \mathfrak{A}_4, (1, 2)(5, 6) \rangle \cong \mathfrak{S}_4$</td>
<td>no</td>
<td>$D^{(1)} \times \langle (5, 6) \rangle$</td>
</tr>
<tr>
<td>$D_8/C_4 \to B$</td>
<td>$\langle (1, 2, 3, 4), (2, 4)(5, 6) \rangle \cong D_8$</td>
<td>yes</td>
<td>$D^{(1)} \times \langle (5, 6) \rangle$</td>
</tr>
<tr>
<td>$D_8/V \to B$</td>
<td>$\langle (1, 2)(3, 4), (1, 3)(2, 4), (2, 4)(5, 6) \rangle$</td>
<td>yes</td>
<td>$D^{(1)} \times \langle (5, 6) \rangle$</td>
</tr>
<tr>
<td>$D_8/\langle (1, 3), (2, 4) \rangle \to B$</td>
<td>$\langle (1, 3), (2, 4), (1, 2)(3, 4)(5, 6) \rangle$</td>
<td>yes</td>
<td>$D^{(1)} \times \langle (5, 6) \rangle$</td>
</tr>
<tr>
<td>$V/\langle (1, 2)(3, 4) \rangle \to B$</td>
<td>$\langle (1, 2)(3, 4), (1, 3)(2, 4)(5, 6) \rangle \cong 2^4$</td>
<td>yes</td>
<td>$D^{(2)} \times \langle (5, 6) \rangle$</td>
</tr>
<tr>
<td>$C_4/C_2 \to B$</td>
<td>$\langle (1, 3)(2, 4), (1, 2, 3, 4)(5, 6) \rangle \cong C_4$</td>
<td>yes</td>
<td>$D^{(1)} \times \langle (5, 6) \rangle$</td>
</tr>
</tbody>
</table>

where $D^{(1)} := \langle (1, 2, 3, 4), (2, 4) \rangle$ and $D^{(2)} := \langle (1, 3, 2, 4), (1, 2) \rangle$.
(ii) $6 = 3 + 3$: There are three non-trivial quotients A/N of transitive subgroups $A \in T(3)$, namely $(A, N) = (\mathfrak{S}_3, \mathfrak{A}_3), (\mathfrak{S}_3, E)$, and (\mathfrak{A}_3, E).

\[
\begin{array}{|c|c|c|}
\hline
\theta: A/N \to A/N & H = A \times^n A & \text{nilp. } N_{\mathfrak{S}_6}(H) \\
\hline
\mathfrak{S}_3/\mathfrak{A}_3 \to \mathfrak{S}_3/\mathfrak{A}_3 & \langle(1, 2, 3), (4, 5, 6), (1, 2)(4, 5)\rangle \cong 3^2 \times C_2 & \text{no} \\
\mathfrak{S}_3/E \to \mathfrak{S}_3/E & \langle(1, 2, 3)(4, 5, 6), (1, 2)(4, 5)\rangle \cong \mathfrak{S}_3 & \text{no} \\
\mathfrak{A}_3/E \to \mathfrak{A}_3/E & \langle(1, 2, 3)(4, 5, 6)\rangle \cong C_3 & \text{yes } 3^2 \times C_2 \times C_2 \\
\hline
\end{array}
\]

(iii) $6 = (2 + 2) + 2$: There is the unique transitive subgroup $B := \langle(5, 6)\rangle \in T(2)$ on $\{5, 6\}$. Then we choose an intransitive subgroup $A \leq \mathfrak{S}_4$ on $\{1, 2, 3, 4\}$ which has two orbits of length 2. Namely A is an irreducible subgroup $A_1 = \langle(1, 2)(3, 4)\rangle$ or non-irreducible subgroup $A_2 = \langle(1, 2)\rangle \perp \langle(3, 4)\rangle$. Each A_i has a quotient of order 2.

\[
\begin{array}{|c|c|c|}
\hline
\theta: A/N \to B & H = A \times^n B & \text{nilp. } N_{\mathfrak{S}_6}(H) \\
\hline
A_1/E \to B & \langle(1, 2)(3, 4)(5, 6)\rangle \cong C_2 & \text{yes } \mathfrak{S}_2 \times \mathfrak{S}_3 \\
A_2/\langle(1, 2)(3, 4)\rangle \to B & \langle(1, 2, 3)(4, 5, 6)\rangle \cong 2^2 & \text{yes } \mathfrak{S}_2 \times \mathfrak{S}_3 \\
A_2/\langle(1, 2)\rangle \to B & \langle(1, 2)\rangle \perp \langle(3, 4)(5, 6)\rangle \cong 2^2 & \text{yes} \\
\hline
\end{array}
\]

Note that the last $\langle(1, 2)\rangle \perp \langle(3, 4)(5, 6)\rangle$ is the only non-irreducible subgroup among the above twelve subgroups in Step B2 (compare with Proposition 5.14). Thus there are 11-classes of intransitive subgroups in $\text{IRR}(6)^0$.

(Step B3) By Steps B1–B2, there are $(16 + 11)$-classes of subgroups in $\text{IRR}(6)^0$, and then $L_\pi(\mathfrak{S}_6)^0$ consists of 9-classes whose representatives are as follows:

\[
\begin{array}{|c|c|c|}
\hline
H \in L_\pi(\mathfrak{S}_6)^0/\sim_{\mathfrak{S}_6} & \cong & \\
\langle(1, 2, 3, 4), (2, 4)\rangle \perp \langle(5, 6)\rangle & D_8 \times C_2 & \text{non-irreducible} \\
V \perp \langle(5, 6)\rangle & 2^3 & \\
\langle(1, 2, 3, 4)\rangle \perp \langle(5, 6)\rangle & C_4 \times C_2 & \\
\langle(1, 2)(3, 4)\rangle \perp \langle(5, 6)\rangle & 2^2 & \\
\langle(1, 2, 3)\rangle \perp \langle(4, 5, 6)\rangle & 3^2 & \\
\langle(1, 2)\rangle \perp \langle(3, 4)\rangle \perp \langle(5, 6)\rangle & 2^3 & \\
\langle(1, 2, 3, 4, 5, 6)\rangle & C_2 \times C_3 & \text{irreducible and transitive} \\
\langle(1, 2, 3)(4, 5, 6)\rangle & C_3 & \\
\langle(1, 2)(3, 4)(5, 6)\rangle & C_2 & \text{irreducible and intransitive} \\
\hline
\end{array}
\]

Furthermore, Proposition 5.3 tells us that, since $2 \notin \pi$, the whole $L_\pi(\mathfrak{S}_6)$ is constructed by four parts $L_\pi(\mathfrak{S}_2)^0, L_\pi(\mathfrak{S}_3)^0, L_\pi(\mathfrak{S}_5)^0$, and $L_\pi(\mathfrak{S}_6)^0$. Therefore there are $(1 + 1 + 2 + 9)$-classes of subgroups in $L_\pi(\mathfrak{S}_6)$.
ACKNOWLEDGMENTS. The second author was supported by JSPS KAKENHI Grant Number 25400006.

References

Nobuo Iiyori
Department of Mathematics
Faculty of Education
Yamaguchi University
Yamaguchi 753-8511
Japan
e-mail: iiyori@yamaguchi-u.ac.jp

Masato Sawabe
Department of Mathematics
Faculty of Education
Chiba University
Inage-ku Yayoi-cho 1-33, Chiba 263-8522
Japan
e-mail: sawabe@faculty.chiba-u.jp