<table>
<thead>
<tr>
<th>Title</th>
<th>ALMOST RELATIVE INJECTIVE MODULES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Singh, Surjeet</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 53(2) P.425-P.438</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016-04</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/58910</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/58910</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
ALMOST RELATIVE INJECTIVE MODULES

SURJEET SINGH

(Received April 15, 2014, revised March 9, 2015)

Abstract

The concept of a module M being almost N-injective, where N is some module, was introduced by Baba (1989). For a given module M, the class of modules N, for which M is almost N-injective, is not closed under direct sums. Baba gave a necessary and sufficient condition under which a uniform, finite length module U is almost V-injective, where V is a finite direct sum of uniform, finite length modules, in terms of extending properties of simple submodules of V. Let M be a uniform module and V be a finite direct sum of indecomposable modules. Some conditions under which M is almost V-injective are determined, thereby Baba’s result is generalized. A module M that is almost M-injective is called an almost self-injective module. Commutative indecomposable rings and von Neumann regular rings that are almost self-injective are studied. It is proved that any minimal right ideal of a von Neumann regular, almost right self-injective ring, is injective. This result is used to give an example of a von Neumann regular ring that is not almost right self-injective.

Introduction

Let M_R, N_R be two modules. As defined by Baba [4], M is said to be almost N-injective, if for any homomorphism $f: A \to M$, $A \subseteq N$, either f extends to a homomorphism $g: N \to M$ or there exist a decomposition $N = N_1 \oplus N_2$ with $N_1 \neq 0$ and a homomorphism $h: M \to N_1$ such that $hf(x) = \pi(x)$ for any $x \in A$, where $\pi: N \to N_1$ is a projection with kernel N_2. A module M that is almost M-injective, is called an almost self-injective module. For a module M, the class of those modules N for which M is almost N-injective, is not closed under direct sums. Let $\{U_k: 0 \leq k \leq n\}$ be a finite family of uniform modules of finite composition lengths, and $U = \bigoplus \sum_{k=1}^{n} U_k$. Baba [4] has given a characterization for U_0 to be almost U-injective in terms of the property of simple submodules of U being contained in uniform summands of U. Let M be a uniform module and V be a finite direct sum of indecomposable modules. In Section 1, we investigate conditions under which M is almost V-injective. The main result is given in Theorem 1.12 and it generalizes the result by Baba. An alternative short proof of a result by Harada [10] is given in Theorem 1.16. It is well known that a (commutative) integral domain R is almost self-injective if and only if it is a valuation domain. Let R be a commutative ring having no non-trivial idempotent and Q be its classical quotient ring. In Section 2, it is proved that R_Q is almost self-injective.
if and only if for any elements \(a, b \in R \) with \(\text{ann}(a) \subseteq \text{ann}(b) \), either \(bR \subseteq aR \) or \(aR \preceq bR \) with \(a = bc \) for some regular element \(c \), and \(Q_R \) is injective and uniform. It follows that any commutative, indecomposable ring \(R \) that is almost self-injective but not self-injective, is local. In Section 3, von Neumann regular rings \(R \) with \(R_R \) almost self-injective are studied. A characterization of such rings is given in Theorem 3.1. It is proved that any von Neumann regular ring \(R \) that is either commutative or right \(C_S \) is almost right self-injective. In Theorem 3.4, it is proved that any minimal right ideal of a von Neumann regular ring \(R \) that is almost right self-injective, is injective. This result is used to give an example of a von Neumann regular ring that is not almost right self-injective.

Preliminaries

All rings considered here are with unity and all modules are unital right modules unless otherwise stated. Let \(M \) a module. Then \(E(M) \), \(J(M) \) denote its injective hull, radical respectively. The symbols \(N \leq M \), \(N < M \), \(N \subseteq e \) \(M \) denote that \(N \) is a submodule of \(M \), \(N \) is a submodule different from \(M \), \(N \) is an essential submodule of \(M \) respectively. A module \(M \) whose ring of endomorphisms \(\text{End}(M) \) is local, is called a \(LE \) module. A module \(M \) such that its complement submodules are summands of \(M \), is called a \(CS \) module (or a module satisfying condition \((C_1)\)). If a module \(M \) is such that for any two summands \(A, B \) of \(M \) with \(A \cap B = 0 \), \(A + B \) is a summand of \(M \), then it is said to satisfy condition \((C_3)\). A module \(M \) satisfying conditions \((C_1)\), \((C_3)\) is called a quasi-continuous module. The terminology used here is available in standard text books like [3], [6].

1. Direct sums of uniform modules

Definition 1.1. Let \(M_R \) and \(N_R \) be any two modules. Then \(M \) is said to be almost \(N \)-injective, if given any \(R \)-homomorphism \(f: A \to M \), \(A \leq N \) either \(f \) extends to an \(R \)-homomorphism from \(N \) to \(M \) or there exist a decomposition \(N = N_1 \oplus N_2 \) with \(N_1 \neq 0 \), and an \(R \)-homomorphism \(h: M \to N_1 \) such that \(hf(x) = \pi(x) \) for any \(x \in A \), where \(\pi: N \to N_1 \) is a projection with kernel \(N_2 \).

One can easily prove the following two results. (See [2])

Proposition 1.2. (i) A module \(M_R \) is almost \(N_R \)-injective, if and only if for any \(R \)-homomorphism \(f: L \to M \), \(L \preceq N \) which is maximal with respect to the property that it cannot be extended from \(N \) to \(M \), there exist a decomposition \(N = N_1 \oplus N_2 \) with \(N_1 \neq 0 \), and an \(R \)-homomorphism \(h: M \to N_1 \) such that \(hf(x) = \pi(x) \) for any \(x \in L \), where \(\pi: N \to N_1 \) is a projection with kernel \(N_2 \).

(ii) If a module \(M \) is almost \(N \)-injective and \(N \) is indecomposable, then any \(R \)-homomorphism \(f: L \to M \), \(L \subseteq e \) \(N \) with \(\ker f \neq 0 \) extends to an \(R \)-homomorphism from \(N \) to \(M \).
Proposition 1.3. Let A_R, B_R any two modules and $f : L \to B$, $L < A$ be an R-homomorphism that is maximal with respect to the property that it cannot be extended from A to B. If C is a summand of A and $L \cap C < C$, then $f_1 = f \mid L \cap C$ from $L \cap C$ to B is a maximal homomorphism that cannot be extended from C to B.

The following is well known. (See [12])

Proposition 1.4. Let M_R, N_R be any two modules such that M is almost N-injective.
(i) Any summand K of M is almost N-injective.
(ii) If W is a summand of N, then M is almost W-injective.
(iii) If $N = N_1 \oplus N_2$ and M is not N-injective, then M is either not N_1-injective or not N_2-injective.

Lemma 1.5. Let M_R and N_R be any two modules such that M is almost N-injective, and $f : L \to M$, $L < N$ be a maximal homomorphism which cannot be extended from N to M. Let $N = N_1 \oplus N_2$ with $N_1 \neq 0$ and $h : M \to N_1$ be a homomorphisms such that $hf(x) = \pi(x)$ for $x \in L$, where $\pi : N \to N_1$ is a projection with kernel N_2. Then the following hold.
(i) f is monic on $L \cap N_1$ and $f(L \cap N_1)$ is a closed submodule of M.
(ii) $\ker h$ is a complement of $f(N_1 \cap L)$.
(iii) $f(N_2 \cap L) \subseteq \ker h$.
(iv) If M is a CS module, then $f(N_1 \cap L)$ and $\ker h$ are summands of M.

Proof. (i) Now $hf(x) = x$ for any $x \in L \cap N_1$, which gives $f(L \cap N_1) \cap \ker h = 0$. We get a complement H of $\ker h$ containing $f(L \cap N_1)$. Then $h \mid H$ is monic and $N_1 \cap L \subseteq h(H) \subseteq N_1$. Define $\lambda : h(H) \to H$, $\lambda(h(y)) = y$ for any $y \in H$. Then λ extends $f \mid (L \cap N_1)$. By Proposition 1.3, $h(H) = L \cap N_1$. Which proves that $f(N_1 \cap L) = H$. Hence $f(L \cap N_1)$ is a closed submodule of M and is a complement of $\ker h$.
(ii) Let K be a complement of $f(N_1 \cap L)$ containing $\ker h$. Then $\ker h \subseteq K$. Let $x \in K$. Suppose $h(x) \neq 0$. As $h(x) \in N_1$, there exists an $r \in R$ such that $0 \neq h(xr) \in L \cap N_1$. Thus $h(xr) = h(y)$ for some $y \in f(L \cap N_1)$, $xr - y \in \ker h \subseteq K$. Which gives $y \in K \cap f(L \cap N_1) = 0$. Therefore, $h(xr) = h(y) = 0$, which is a contradiction. Hence $K = \ker h$.

The last two parts are obvious.

Theorem 1.6. Let M_R be a quasi-continuous module and N_R any module. Then M is almost N-injective if and only if for any homomorphism $f : L \to M$, $L < N$ which is maximal such that it cannot be extended to a homomorphism from N to M, the following hold.
(i) There exist decompositions $N = N_1 \oplus N_2$, $M = M_1 \oplus M_2$ with $N_1 \neq 0$.
(ii) f is monic on $L \cap N_1$ and $f(N_1 \cap L) = M_1$.

\[\square\]
(iii) \(f(N_2 \cap L) \subseteq M_2 \).
(iv) \(L = (L \cap N_1) \oplus (L \cap N_2) \).

Proof. (i) Let \(M \) be almost \(N \)-injective. By Lemma 1.5, there exist a decomposition \(N = N_1 \oplus N_2 \) and a homomorphism \(h: M \to N_1 \) such that \(N_1 \neq 0 \), \(f \) is monic on \(N_1 \cap L \), \(M_1 = f(N_1 \cap L) \) and \(M_2 = \ker h \) are summands of \(M \), and \(hf(x) = \pi(x) \) for \(x \in L \), where \(\pi: N \to N_1 \) is a projection with kernel \(N_2 \). As \(M_1, M_2 \) are complements of each other and \(M \) satisfies \((C_1)\), we get \(M = M_1 \oplus M_2 \). Thus \(h(M) = h(M_1) \).

(ii) It is proved in Lemma 1.5.

(iii) Let \(z \in L \). Then \(z = x_1 + x_2 \) for some \(x_1 \in N_1, x_2 \in N_2 \). Then \(x_1 = hf(z) \in h(M_1) = hf(N_1 \cap L) = N_1 \cap L \), which also gives \(x_2 \in N_2 \cap L \). Hence \(L = (L \cap N_1) \oplus (L \cap N_2) \).

Conversely, let the above conditions hold. Define \(h: M \to N_1 \) as follows. Let \(y \in M \). Then \(y = y_1 + y_2 \) for some \(y_1 \in M_1, y_2 \in M_2 \). Now \(y_1 = f(x_1) \) for some \(x_1 \in N_1 \cap L \). Set \(h(y) = x_1 \).

Corollary 1.7. Let \(M_R \) be a uniform module and \(N_R \) any module.
(i) \(M \) is almost \(N \)-injective if and only if for any homomorphism \(f: L \to M, L < N \) which is maximal such that it cannot be extended from \(N \) to \(M \), there exists a decomposition \(N = N_1 \oplus N_2 \) such that \(f(N_1 \cap L) = M, N_2 = \ker f \) and \(L = (L \cap N_1) \oplus N_2 \).
(ii) \(M \) is almost \(N \)-injective if and only if for any homomorphism \(f: L \to M, L < N \) which is maximal such that it cannot be extended from \(N \) to \(M \), there exists a decomposition \(N = N_1 \oplus N_2 \) such that \(f \) is monic on \(N_1 \cap L \), \(f(N_1 \cap L) = M \) and \(L = (L \cap N_1) \oplus N_2 \).
(iii) Let \(D \) be an (commutative) integral domain and \(F \) be its quotient field. Then \(D \) is almost \(F_D \)-injective.

Proof. Clearly, \(M \) is quasi-continuous. (i) Suppose \(M \) is almost \(N \)-injective. By Theorem 1.6, \(N = N_1 \oplus N_2 \), \(N_1 \neq 0 \), \(f \) is monic on \(N_1 \cap L \), \(f(N_1 \cap L) = M \), and \(f(N_2 \cap L) = 0 \). As \(f \mid N_2 \cap L = 0 \), it can be extended from \(N_2 \) to \(M \), therefore by Proposition 1.3, \(N_2 = N_2 \cap L \). Hence \(L = (N_1 \cap L) \oplus N_2 \). The converse is immediate from Theorem 1.6.

(ii) Suppose the given condition holds. We get a homomorphism \(\lambda: N_2 \to (N_1 \cap L) \) such that for any \(x \in N_2, \lambda(x) = y \), whenever \(f(x) = f(y) \). Then \(N_2' = \{x - \lambda(x): x \in N_2\} \subseteq \ker f \) and \(N = N_1 \oplus N_2' \). After this (i) proves the result.

(iii) Let \(f: L \to D, L < F_D \) be a homomorphism that cannot be extended from \(F \) to \(D \). Then \(F \neq D \). However \(F_D \) is injective, so \(f \) extends to an automorphism \(g \) of \(F_D \). Let \(K = g^{-1}(D) \). Then \(K = cD \) for some \(c \in F \) such that \(g(c) = 1 \). Clearly, \(L \subseteq K \). \(g(K) = D \). The maximality of \(f \) gives \(L = K \). By (i), \(D \) is almost \(F_D \)-injective.
Lemma 1.8. Let M_R be uniform module and be almost N_R-injective. If N has a uniform summand N_1 such that M is not N_1-injective, then for any uniform submodule V of N, there exists a proper summand K_2 of N such that $K_2 \cap V \neq 0$.

If $N = N_1 \oplus N_2$ with N_2 also uniform, then K_2 is uniform.

Proof. Now M is almost N_1-injective. So there exists a maximal R-monomorphism $\lambda: T \to M$, $T < N_1$, which cannot be extended from N_1 to M. By Corollary 1.7, $\lambda(T) = M$. Now $N = N_1 \oplus N_2$ for some $N_2 < N$. This gives a maximal R-homomorphism $f: L \to M$, $L < N$ which extends λ and $N_2 = \ker f$. We can take $V \subseteq T \oplus N_2$. We need only to discuss the case, when $V \cap N_1 = 0 = V \cap N_2$. We take $V = xR$, $x = x_1 + x_2$ with $x_1 \in T$, $x_2 \in N_2$. We get an isomorphism $g: x_2 R \to x_1 R$, $g(x_2) = x_1$. Define a mapping $\mu: x_1 R \oplus x_2 R \to M$, $\mu(x_1 r_1 + x_2 r_2) = f(x_1 r_1 - g(x_2 r_2)) = f(x_1 (r_1 - r_2))$. It is one-to-one on $x_1 R$ and it equals f on $x_1 R$. So we have a maximal extension $\eta: K \to M$, $K \leq N$, of μ, which also extends $f | T$. As $\lambda = f | T$ has no extension from N_1 to M, $K < N$. By Corollary 1.7, we have $N = K_1 \oplus K_2$ such that with $K_2 = \ker \eta$. As $x_1 + x_2 \in \ker \mu \subseteq \ker \eta$, we get $x_1 + x_2 \in K_2$, which shows that $V \cap K_2 \neq 0$. The last part is obvious. \[\square\]

Remark. In the above proof, K_2 need not be uniform.

Theorem 1.9. Let M_R be uniform, N_R a module that is not indecomposable and M be almost N-injective for any proper summand T of N. Then M is almost N-injective if and only if given any uniform summand K of N and uniform submodule V of N such that M is not K-injective and V embeds in K, there exists a proper summand K' of N such that $K' \cap V \neq 0$.

Proof. If M is almost N-injective, by Lemma 1.8, M satisfies the given condition. Conversely, let the given condition hold. Let $f: L \to M$, $L < N$ be a maximal homomorphism that cannot be extended from N to M. By the hypothesis, there exists a decomposition $N = N_1 \oplus N_2$ with $0 < N_1 < N$. Set $f_1 = f | N_1 \cap L$. Suppose $f_1: N_1 \cap L \to M$ cannot be extended from N_1 to M. As M is almost N_1-injective, $N_1 = N_{11} \oplus N_{12}$, such that f_1 is monic on $N_{11} \cap L$, $f(N_{11} \cap L) = M$ and $N_{12} = \ker f_1$.

Case 1. $N_2 = N_2 \cap L$. We get an R-homomorphism $\lambda: N_2 \to N_{11}$ such that for any $x \in N_2$, $\lambda(x) = y \in (N_{11} \cap L)$ whenever $f(x) = f(y)$, i.e. $f(x - y) = 0$. Set $K_2 = \{x - \lambda(x): x \in N_2\}$. Then $K_2 \subseteq \ker f$, $N = N_{11} \oplus N_{12}$, $N_2 = N_{11} \oplus N_{12} \oplus K_2 = N_{11} \oplus \ker f$. In this case we finish.

Case 2. $N_2 \cap L < N_2$. Then we also have $N_2 = N_{21} \oplus N_{22}$ such that $f_2 = f | N_{21}$ is monic on N_{21}, $f(N_{21} \cap L) = M$ and $N_{22} = \ker f_2$. As $f(N_{11} \cap L) = M = f(N_{21} \cap L)$, we have an isomorphism $\lambda: N_{21} \cap L \to N_{11} \cap L$ such that for any $x \in (N_{21} \cap L)$, $y \in (N_{11} \cap L)$, $\lambda(x) = y$ if and only if $f(x) = f(y)$. Then $V = \{x - \lambda(x): x \in N_{21} \cap L\} \subseteq N_{11} \oplus N_{21}$, V is embeddable in N_{11} and $V \subseteq \ker f$. \[\square\]
Now N_{11}, N_{21} are uniform. If $K = N_{11} \oplus N_{21} < N$, then by the hypothesis, M is almost K-injective. Therefore $K = U_1 \oplus U_2$ such that U_1 is uniform, f is monic on $U_1 \cap L$ and $U_2 \subseteq \ker f$, which gives $N = U_1 \oplus \ker f$, as already seen $N_{12} \oplus N_{22} \subseteq \ker f$.

Now suppose $N = N_{11} \oplus N_{21}$. By the hypothesis, $N = U_1 \oplus U_2$ such that $0 < U_2 < N$ and $V \cap U_2 \neq 0$ for the V defined above. As U_2 is uniform, $\ker f \cap U_2 \neq 0$. Thus $f \mid U_2$ is not monic, it follows from Corollary 1.7 that $f \mid U_2 \cap L$ can be extended from U_2 to M. Therefore $U_2 \subset L$. Which gives $U_1 \cap L < U_1$, f is monic on $U_1 \cap L$ and $f(U_1 \cap L) = M$. We get a homomorphism $\mu: U_2 \to U_1$ such that $\mu(x) = y$ for any $x \in U_2$, $y \in U_1 \cap L$ whenever $f(x) = f(y)$. Then $V_2 = \{x - \mu(x); x \in U_2\} \subseteq \ker f$. We get $N = U_1 \oplus \ker f$.

Hence in any case $N = U \oplus \ker f$ for some uniform submodule U, f is monic on $U \cap L$ and $f(U \cap L) = M$. By Corollary 1.7, M is almost N-injective.

Lemma 1.10. Let $N_R = N_1 \oplus N_2$, where N_i are indecomposable and their rings of endomorphisms are local. Let M_R be uniform and almost N-injective, $f: L \to M$, $L < N$ be a maximal homomorphism that cannot be extended from N to M and $N_1 \cap L < N_1$.

(i) If $g: W \to N_1 \cap L$, $W \leq N_2 \cap L$ is a non-zero homomorphism, then either g extends from N_2 to N_1, or g is monic and g^{-1} on $g(W)$ extends from N_1 to N_2.

(ii) If V is a uniform submodule of N such that $V \subseteq (N_1 \cap L) \oplus (N_2 \cap L)$ and it naturally embeds in N_2, then there exists a proper summand U of N containing V.

(iii) For any uniform submodule V_1 of N, there exists a proper summand U of N such that $V_1 \cap U \neq 0$.

Proof. (i) Now $N_1 \cap L < N_1$ and $f \mid (N_1 \cap L)$ cannot be extended from N_1 to M. As M is almost N_1-injective, by Corollary 1.7, f is monic on $N_1 \cap L$ and $f(N_1 \cap L) = M$, which gives that N_1 is uniform. Let $W_1 = (N_1 \cap L) \oplus W$. Define $f': W_1 \to M$, $f'(x + y) = f(x - g(y)), x \in N_1 \cap L, y \in W$. Then $\ker f' = \{x + y; y \in W, x = g(y)\} \neq 0$. We get a maximal homomorphism $f_1: L_1 \to M$, $L_1 \equiv N$ which extends f' and $f \mid N_1 \cap L$. Then $L_1 < N$ and $N = U_1 \oplus U_2$, where U_1 is uniform and $U_2 = \ker f_1$. In particular, $\ker f' \subseteq U_2$. By Krull–Schmidt–Azumaya theorem, we can get $N = N_1 \oplus U_2$ or $N = N_2 \oplus U_2$.

Case 1. $N = N_1 \oplus N_2 = N_1 \oplus U_2$. Let $\pi_1: N \to N_1$ be associated projections. Then $\pi_2(U_2) = N_2$. Let $\lambda = \pi_2 \mid U_2$. We have $\lambda^{-1}: N_2 \to U_2$. Let $y \in W$. By definition $g(y) + y \in (N_1 \cap L) \oplus (N_2 \cap L)$ and $g(y) + y \in \ker f' \subseteq U_2$. Thus $\lambda(g(y) + y) = y$, which gives $\lambda^{-1}(y) = g(y) + y$. Under the projection $\pi_1: N \to N_1$, $\pi_1 \lambda^{-1}(y) = g(y)$. Thus $\pi_1 \lambda^{-1}: N_2 \to N_1$ extends g.

Case 2. $N = N_1 \oplus N_2 = N_2 \oplus U_2$. Then $\pi_1(U_2) = N_1$. Let $\lambda_1 = \pi_1 \mid U_2$. Then $\lambda_1(g(y) + y) = g(y)$, and as λ_1 is monic, $g(y) = 0$ if and only if $y = 0$, i.e. g monic. Now $\lambda_1^{-1}(g(y)) = g(y) + y, \pi_2 \lambda_1^{-1}(g(y)) = y$. Thus $\pi_2 \lambda_1^{-1}: N_1 \to N_2$ extends g^{-1} on $g(W)$.
(ii) Suppose \(V \) is a uniform submodule of \(N \) such that \(V \subseteq (N_1 \cap L) \oplus (N_2 \cap L) \) and \(V \) naturally embeds in \(N_2 \). Let \(W = \pi_2(V) \). We get a homomorphism \(g: W \to N_1 \cap L, \ g(\pi_2(x)) = \pi_1(x), \ x \in V. \) If \(g \) extends to an \(R \)-homomorphism \(g' \) from \(N_2 \) to \(N_1 \), then \(U = \{x + g'(x): x \in N_2\} \) is a summand of \(N \) containing \(V \). If \(g \) does not extend from \(N_2 \) to \(N_1 \), by Case 2, \(g \) is monic and \(g^{-1} \) on \(g(W) \) extends to a homomorphism \(g': N_1 \to N_2 \). In this case \(U' = \{x + g'(x): x \in N_1\} \) contains \(V \) and is a summand of \(N \) isomorphic to \(N_1 \).

Take any uniform submodule \(V_1 \) of \(N \) such that \(V_1 \cap N_1 = 0 \). Then \(V_1 \) embeds in \(N_2 \). As \(L \cap N_2 \subseteq N_2 \), there exists a non-zero \(x = x_1 + x_2 \in V_1 \) with \(x_1 \in N_1 \), \(x_2 \in N_2 \cap L \). Once again as \(N_1 \cap L \subseteq N_1 \), we can choose \(x \) to be also have \(x_1 \in N_1 \cap L \). Then \(V = xR \subseteq (N_1 \cap L) \oplus (N_2 \cap L) \), which, by (ii), is contained in a proper summand \(K \) of \(N \). Clearly, \(V_1 \cap K \neq 0. \)

Theorem 1.11. Let \(N_R = N_1 \oplus N_2 \), where \(N_i \) are indecomposable and their rings of endomorphisms are local. Let \(M_R \) be uniform. Then \(M \) is almost \(N \)-injective if and only if either \(M \) is \(N \)-injective or \(M \) is almost \(N_i \)-injective for \(i = 1, 2 \), but is not \(N_j \)-injective for some \(j \), say for \(j = 1 \), and any uniform submodule \(V \) of \(N \) has non-zero intersection with some indecomposable summand of \(N \).

Proof. In view of Lemma 1.10, we only need to prove the converse. Suppose the given conditions holds. Let \(f: L \to M, \ L < N \) be a maximal \(R \)-homomorphism that cannot be extended from \(N \) to \(M \).

Let \(L \cap N_1 < N_1 \). Then \(f \) is monic on \(L \cap N_1 \), \(f(L \cap N_1) = M \), which gives that \(V = \{x - y: x \in N_1 \cap L, y \in N_2 \cap L \) and \(f(x) = f(y)\} \neq 0, V \subseteq \ker f \) and it embeds in \(N_1 \). Suppose \(f \mid (N_2 \cap L) \) is monic. Then \(V \) naturally embeds in \(N_1 \), therefore \(V \) is uniform. By the hypothesis, \(N = U_1 \oplus U_2 \) with \(V \cap U_2 \neq 0 \). As \(M \) is almost \(U_2 \)-injective and \(\ker f \cap U_2 \neq 0, U_2 \subseteq L \). Then \(L \cap U_1 < U_1 \) and \(f \) is monic on \(U_1 \), \(f(U_1 \cap L) = M \). We get \(K = \{x - y: x \in U_1 \cap L, y \in U_2 \) and \(f(x) = f(y)\} \equiv U_2 \) and \(K \subseteq \ker f \). Trivially, \(N = U_1 \oplus \ker f \). If \(f \mid N_2 \cap L \) is not monic, then \(N_2 \subseteq L \), as above we get \(N = N_1 \oplus \ker f \).

Let \(L \cap N_1 = N_1 \). Then \(L \cap N_2 < N_2 \) and once again, we continue as before. Hence \(M \) is almost \(N \)-injective.

Theorem 1.12. Let \(M_R \) be a uniform module and \(N_R = N_1 \oplus N_2 \oplus \cdots \oplus N_k \) a finite direct sum of modules whose rings of endomorphisms are local. Then \(M \) is almost \(N \)-injective if and only if \(M \) is almost \(N_i \)-injective for every \(i \), and if for some \(i, M \) is not \(N_j \)-injective, then for every \(j \neq i \), \(N_i \oplus N_j \) has the property that for any uniform submodule \(V \) of \(N_i \oplus N_j \), there exists a proper summand \(U \) of \(N_i \oplus N_j \) such that \(U \cap V \neq 0 \).

Proof. In view of Theorem 1.11, we only need to prove the converse. Let \(f: L \to M, \ L < N \) be a maximal homomorphism that cannot be extended from \(N \) to \(M \). Then
for some i, say for $i = 1$, $f_1 = f | (N_1 \cap L)$: \((N_1 \cap L) \to M\) cannot be extended from N_1 to M. As M is almost N_1-injective, f_1 is monic and $f(N_1 \cap L) = M$. Consider any $j \neq 1$ and $f_j = f | (N_j \cap L)$. By Theorem 1.11, M is $N_1 \oplus N_j$-injective. By Corollary 1.7, $N_1 \oplus N_j = U_1 \oplus U_2$ for some uniform submodules U_1 and $U_2 \subseteq \ker f$. Thus $U_2 \subseteq L$ and $L \cap U_1 < U_1$. This proves that in the decomposition $N_R = N_1 \oplus N_2 \oplus \cdots \oplus N_k$, we can replace $N_1 \oplus N_j$ by a $U_1 \oplus U_2$ with $U_2 \subseteq \ker f$. This proves that $N = V \oplus \ker f$ for some uniform submodule V. By Corollary 1.7, M is almost N-injective.

The above theorem generalizes the following result by Baba [4].

Theorem 1.13. Let U_k be a uniform module of finite composition length for $k = 0, 1, \ldots, n$. Then the following two conditions are equivalent.

1. U_0 is almost $\bigoplus \sum_{k=1}^n U_k$-injective.
2. U_0 is almost U_k-injective for $k = 1, 2, \ldots, n$ and if $\soc(U_0) \cong \soc(U_k) \cong \soc(U_l)$ for some $k, l \in \{1, 2, \ldots, n\}$ with $k \neq l$, then
 (i) U_0 is U_k and U_l-injective or
 (ii) $U_k \oplus U_l$ is extending for simple modules, in the sense that any simple submodule of $U_k \oplus U_l$ is contained in a uniform summand of $U_k \oplus U_l$.

The following is known.

Lemma 1.14. Let $\{N, V_i\}$ be a family of modules over a ring R. Then $M = \bigoplus \sum_{i=1}^n V_i$ is almost N-injective if and only if every V_i is almost N-injective.

Lemma 1.15. Let U_1, U_2 be two uniform modules such that U_2 is almost U_1-injective. Let V be a uniform submodule of $N = U_1 \oplus U_2$ such that $V \cap U_2 = 0$. Then there exists a uniform summand K of N isomorphic to U_1 or U_2, which contains V. Any uniform submodule of N has non-zero intersection with some uniform summand of N.

Proof. Let $\pi_i : N \to U_i$ be associated projections. The hypothesis gives a homomorphism $\sigma : \pi_1(V) \to \pi_2(V)$, $\sigma(\pi_1(x)) = \pi_2(x)$ for any $x \in V$. We get a maximal homomorphism $\eta : L \to U_2$, $L \leq U_1$ extending σ. Then either $L = U_1$, or η is monic and $\eta(L) = U_2$. In the former case, take $K = \{y + \eta(y) : y \in U_1\}$ and in the later case, take $K = \{y + \eta(y) : y \in L\}$. The second part is immediate.

We get an alternative proof of the following result by Harada [10].

Theorem 1.16. Let $M = M_1 \oplus M_2 \oplus \cdots \oplus M_k$, where each M_i has its ring of endomorphisms local. Then the following are equivalent.

(i) M is almost self-injective.
(ii) For any i, j, M_i is almost M_j-injective.
Proof. Suppose M is almost self-injective. Then each M_i is almost self-injective. Therefore each M_i is uniform. As M_i is almost M-injective, by Lemma 1.14, condition (ii) holds. Fix an i, $1 \leq i \leq k$. Consider any $1 \leq r, s \leq k$. By the hypothesis, M_s is almost M_r-injective. By Lemma 1.15, given any uniform submodule V of $W = M_r \oplus M_s$, there exists a uniform summand K of W such that $V \cap K \neq \emptyset$. By Theorem 1.12, M_i is almost M-injective. As M is a direct sum of M_i’s, it follows from Lemma 1.14 that M is almost self-injective.

2. Commutative rings

Proposition 2.1. Let R be any commutative indecomposable ring and Q be its quotient ring. If R is almost self-injective. Then the following hold.

(i) If $a, b \in R$ and $\text{ann}(a) \subseteq \text{ann}(b)$, then $bR \subseteq aR$, or $aR < bR$ and $a = bc$ for some regular element $c \in R$.

(ii) If $a, b \in R$ are regular, then either $aR \subseteq bR$ or $bR \subseteq aR$.

(iii) Q_R is injective and uniform.

Conversely, if R satisfies conditions (i) and (iii), then R is almost self-injective.

Proof. Let a, b be two elements of R such that $\text{ann}(a) \subseteq \text{ann}(b)$. We have a homomorphism $\sigma : aR \to bR$, $\sigma(a) = b$. If σ extends to an endomorphism η of R_R, then $b = ac$, where $c = \eta(1)$, which gives $bR \subseteq aR$. Suppose σ does not extend to an endomorphism of R_R. Then $b \notin aR$. As R_R is uniform, by Corollary 1.7, there exists a maximal extension $\eta : L \to R$. $L < R$ of σ such that it is monic and $\eta(L) = R$. Thus $L = cR$ where c is such that $\eta(c) = 1$. This c is regular, non-unit and $a = bc$. This proves (i). Now (ii) is immediate from (i).

(iii) Let $\sigma : A \to Q_R$, $A < R_R$ be a homomorphism. Suppose $\sigma(A) \subseteq R$. If it extends to an $\eta \in \text{End}(R_R)$ and $\eta(1) = c$, then multiplication by c gives an endomorphism of Q_R extending σ. Otherwise for some regular element $c \in R$ we have an $\eta; cR \to R$ with $\eta(c) = 1$, which extends σ. Then $c^{-1} \in Q$ and multiplication by c^{-1} gives an R-endomorphism of Q_R extending σ. This proves that if $\sigma(A) \subseteq R$, then σ extends to an endomorphism of Q_R.

Suppose $\sigma(A) \not\subseteq R$. Let S be the set of regular elements of R. Then $Q = R_S$. Set $B = \sigma(A)$. Let $B' = B \cap R$. Then $B \subseteq B'$.

Let $A' = \sigma^{-1}(B')$ and $\sigma_1 = \sigma | A'$. Then $\sigma_1(A') = B' \subseteq R$. Therefore σ_1 extends to an endomorphism η of Q_R. Let $x \in A$. Then $\sigma(x) = y\sigma^{-1}$ for some regular element $c \in R$, $y \in B'$. Which gives $\sigma(xc) = y$, $xc \in A'$, $\eta(xc) = y$, If $\eta(x) = z$, then $y = zc$, $\sigma(x) = z$. Hence η extends σ. This proves that Q_R is injective. It also gives that $Q_R = E(R_R)$. As R is uniform, Q_R is uniform.

Conversely, let R satisfy the given conditions. Let $f : A \to R_R$, $A < R$ be a homomorphism that cannot be extended in $\text{End}(R_R)$. By (iii), σ extends to an R-endomorphism η of Q. It follows from (ii) that if an $x \in Q$ is regular, then $x \in R$ or $x^{-1} \in R$. Now $\eta(1) = ac^{-1}$ for some $a, c \in R$ with c regular.

Case 1. a is regular. It follows from (ii) that $\eta(1) \in R$ or $\eta(1)^{-1} \in R$. In the former case, $\eta | R$ is an extension in $\text{End}(R_R)$ of σ. Suppose $\eta(1)^{-1} \in R$, but $\eta(1) \notin R$.

Then for any \(x \in A \), \(\sigma(x) = \eta(1)x \), gives \(x = \sigma(x)\eta(1)^{-1} \). So that \(A \subseteq \eta(1)^{-1}R < R \). We have an isomorphism \(\lambda : \eta(1)^{-1}R \rightarrow R \) with \(\lambda(\eta(1)^{-1}) = 1 \). Then \(\lambda \) extends \(\sigma \).

Case 2. \(a \) is not regular. By (i), \(a = cr \) for some \(r \in R \), therefore \(\eta(1) = ac^{-1} = r \) and \(\eta \mid R \) is an extension in \(\text{End}(R_R) \) of \(\sigma \). Hence \(R \) is almost self-injective. \(\square \)

Theorem 2.2. Let \(R \) be a commutative, indecomposable, almost self-injective ring. Let \(Q \) be the quotient ring of \(R \).

(i) Either \(Q = R \) or there exists a prime ideal \(P \) in \(R \) such that \(Q = R_P \).

(ii) \(R \) is a local ring.

Proof. Suppose \(Q \neq R \). Then \(R \) has a regular element that is not a unit. Let \(a \in R \) be regular but not a unit. We claim that \(A = \bigcup_{k=1}^{\infty} a^kR \) is the unique maximal prime ideal such that \(a \notin A \). And we also prove that any element in \(R \setminus A \) is regular. Let \(b \in R \setminus A \). Then for some \(k, b \notin a^kR \). It follows from Proposition 2.1 that \(b \) is regular and \(a^kR < bR \). Thus \(A \) is a prime ideal of \(R \). As \(a^kR < aR, a \notin A \). Let \(P' \) be a maximal prime ideal in \(R \) such that \(a \notin P' \). Then there exists a \(b \in P' \) such that \(b \notin A \). Then, as seen above, \(a^k \in bR \subseteq P' \) for some \(k \geq 1 \), which gives \(a \in P' \), which is a contradiction. Hence \(A = P' \). Thus to each regular non-unit \(a \in R \), is associated a unique maximal prime ideal \(P_a = \bigcap_{k=1}^{\infty} a^kR \) such that \(a \notin P_a \).

Every element of \(R \setminus P_a \) is regular. It follows from Proposition 2.1 (ii) that the family of \(P_a \) is linearly ordered. Let \(P \) be the intersection of these \(P_a \)’s. Then \(R \setminus P \) is the set of all regular elements in \(R \). Hence \(Q = R_P \).

Let \(P' \) be a prime ideal of \(R \) other than \(P \). Suppose \(P' \not\subseteq P \). As \(R \setminus P \) consists of regular elements, there exists a regular element \(a \in P' \). Then \(P_a \subseteq P' \), so \(P \subseteq P_a \subseteq P' \).

Let \(P_1, P_2 \) be two prime ideals not contained in \(P \). Suppose \(P_1 \not\subseteq P_2 \). Then there exists an \(a \in P_1 \setminus P_2 \). As \(a \notin P \), it is regular. Let \(b \in P_2 \). By Proposition 2.1 (i), \(b \in a^kR \) for any \(k \geq 1 \). It follows that \(P_2 \subseteq P_a \). Trivially, \(P_a \subseteq P_1 \). Hence \(P_2 \subseteq P_1 \). It follows that the family \(F \) of those prime ideals of \(R \) that are not contained in \(P \) is linearly ordered and each member of \(F \) contains \(P \). Hence \(R \) is local. \(\square \)

An indecomposable, commutative, almost self-injective ring need not be a valuation ring.

Example 1. Let \(F \) be a field and \(Q = F[x, y] \) with \(x^2 = 0 = y^2 \). Then \(Q = F + Fx + Fy + Fxy \) is a local, self-injective ring. Choose \(F \) to be the quotient field of a valuation domain \(T \neq F \). Set \(R = T + Fx + Fy + Fxy \subset Q \). Any \(0 \neq a \in F \) is such that either \(a \in T \) or \(a^{-1} \in T \), \(J(Q) = Fx + Fy + Fxy \subset R \) and is nilpotent. Any element of \(R \) not in \(J(Q) \) is regular and is of the form \(au \) with \(a \in T \) and \(u \) a unit in \(R \). By using this it follows that \(Q \) is the classical quotient ring of \(R \). Let \(A \) be a non-zero ideal of \(R \). Then \(\{a \in F : axy \in A\} \) is a non-zero \(T \)-submodule of \(F \), which shows that \(R_R \) is uniform. The ideals \(Fx + Fxy, Fy + Fxy \) in \(R \) are not comparable. Therefore \(R_R \) is not uniserial. If \(A \not\subset J(Q) \), then some \(au \in A \) with \(0 \neq a \in F, u \) a unit in \(R \), so \(a \in A \); which gives \(J(Q) = aJ(Q) \subset A \).
Let $\sigma : A \to R$, $A < R_R$ be an R-homomorphism. Now $A' = \{ \alpha v : \alpha \in F, v \in A \}$ is an ideal of Q containing A, $\eta : A' \to Q$, such that for any $c \in F$, $v \in A$, $\eta(cv) = c\sigma(v)$ is a Q-homomorphism. As Q is self-injective, there exists an $\omega \in Q$ such that $\eta(cv) = \omega cv$ for any $cv \in A'$. If $\omega \in R$, obviously σ extends to an endomorphism of R_R. Suppose $\omega \notin R$. Then $\omega = c^{-1}u$ for some non-zero $c \in T$ which is not a unit in T, and u is a unit in R. Thus $g = cu^{-1} \in R$. For any $v \in A$, $\sigma(v) = g^{-1}v \in R$, $v = g\sigma(v) \in gR$. Thus $A < gR$ and $\lambda : gR \to R$, $\lambda(g) = 1$, extends σ. Hence R is a local ring that is almost self-injective and R_R is not uniserial.

Lemma 2.3. Let A, B be two rings such that A is local and M be an (A,B)-bimodule. Let $R = \begin{bmatrix} A & M \\ 0 & B \end{bmatrix}$. Then $e_{11}R$ is uniform if and only if M_B is uniform and A_M is faithful.

Proof. Let $e_{11}R$ be uniform. Let $x = a_{11}e_{11} + a_{12}e_{12}$, $y = b_{11}e_{11} + b_{12}e_{22}$ be two non-zero elements in $e_{11}R$. Then for some $r = r_{11}e_{11} + r_{12}e_{12} + r_{22}e_{22}$, $s = s_{11}e_{11} + s_{12}e_{12} + s_{22}e_{22} \in R$, $xr = ys \neq 0$. Which gives $a_{11}r_{11} = b_{11}s_{11}$, $a_{11}r_{12} + a_{12}r_{22} = b_{11}s_{12} + b_{12}s_{22}$.

Case 1. $a_{11} = 0$ and $b_{11} = 0$. Then $a_{12}r_{22} = b_{12}s_{22} \neq 0$, which gives that M_B is uniform.

Case 2. $a_{11} \neq 0$, $b_{11} = 0$, $a_{12} = 0$, $b_{12} \neq 0$. Then $a_{11}r_{12} = b_{12}s_{22} \neq 0$. Therefore $a_{11}M \neq 0$. Hence A_M is faithful.

Conversely, let M_B be uniform and A_M be faithful. Then $e_{12}M$ is a uniform right ideal of R, and for any $x \neq 0$ in $e_{11}R$, $xR \cap e_{12}M \neq 0$. Hence $e_{11}R$ is uniform. \[\square\]

The above lemma helps to get examples of non-commutative, almost self-injective rings.

Example 2. Let A be a valuation domain and K be its quotient field. Let $R = \begin{bmatrix} A & K \\ 0 & B \end{bmatrix}$, where B is a valuation ring contained in K such that K is a quotient field of B. By Lemma 2.3, $e_{11}R$ is uniform. Let $f : L \to e_{11}R$, $L < e_{11}R$ be a maximal homomorphism that cannot be extended to an endomorphism of $e_{11}R$. Now $e_{12}K$ is a quasi-injective R-module and $f(L \cap e_{12}K) \subseteq e_{12}K$. Therefore $f \mid (L \cap e_{12}K)$ can be extended to an R-endomorphism g of $e_{12}K$. As f is monic on $L \cap e_{12}K$, f is monic. Then $f' : L + e_{12}K \to e_{11}R$, $f'(x + y) = f(x) + g(y)$ for any $x \in L$, $y \in e_{12}K$ extends f. Which gives $e_{12}K \subseteq L$, $L = (e_{11}A \cap L) \oplus (e_{12}K)$ as an abelian group. Now $f(e_{12}) = e_{12}b$ for some $b \in K$. Then $f(e_{12}c) = e_{12}cb$ for every $c \in K$. Let $x = a_{11}e_{11} + a_{12}e_{12} \in L$ with $a_{11} \neq 0$. Then $e_{11}a_{11} \in L$ and $f(e_{11}a_{11}) = e_{11}a_{11}u$ for some $u \in K$. We get $f(e_{12}a_{11}) = f(e_{11}a_{11})e_{12} = e_{12}u$. On the other hand, $f(e_{12}a_{11}) = e_{12}a_{11}b$. Hence $u = a_{11}b$. Thus $f(x) = xb = (e_{11}b)x$ for every $x \in L$. If $b \in A$, f can be extended to an R-endomorphism of $e_{11}R$ given by left multiplication by $e_{11}b$. Suppose $b \notin A$. Then $b^{-1} \in A$. Then the R-endomorphism h of $e_{11}R$ given by left
multiplication by $e_{11}b^{-1}$ is such that $hf(z) = z$ for every $z \in L$. Hence $e_{11}R$ is almost self-injective.

Any R-homomorphism $\lambda : L \to e_{11}R$, $L < e_{22}R$ is such that $f(L) \subseteq e_{11}K$. As $e_{22}R = e_{22}B$, λ can be extended from $e_{22}R$ to $e_{11}R$. It follows that $e_{11}R$ is e_{22}-injective. Let $f : L \to e_{22}R$, $L < e_{11}R$ be a non-zero homomorphism. Now $L \cap e_{12}K \neq 0$. As $e_{22}R = e_{22}B$ it follows that for some $b \in K$, $g = f | L \cap e_{12}K$ is such that $g(e_{12}x) = e_{22}xb$ for any $e_{12}x \in L \cap e_{12}K$, therefore f is monic. If an $x = a_{11}e_{11} \in L$, then $f(x) = 0$. This proves that $L \subseteq e_{12}K$. Then $h : e_{22}R \to e_{11}R$, $h(e_{11}x) = e_{12}xb^{-1}$, $x \in B$ is such that $hf(u) = u$ for every $u \in L$. Hence $e_{22}R$ is almost e_{11}-injective. By Theorem 1.16, R is almost self-injective.

By using Theorem 1.16, one can easily prove that the ring $T_p(D)$ of upper triangular matrices over a division ring D is almost right self-injective.

3. Von Neumann regular rings

Theorem 3.1. Let R be a von Neumann regular ring. Then R is almost right self-injective if and only if for any maximal homomorphism $\sigma : A \to R$, $A < R$ which cannot be extended to an R-endomorphism of R, there exist non-zero idempotents $e, f \in R$, such that $eR \subseteq A$, $\sigma | eR$ is a monomorphism, $\sigma(eR) = fR$, $\sigma(A \cap (1 - e)R) \subseteq (1 - f)R$.

Proof. Let R be almost right self-injective, Let $\sigma : L \to R$ be a maximal R-homomorphism that cannot be extended to an endomorphism of R. By definition, $R = eR \oplus (1 - e)R$ and there exists an R-homomorphism $h : R \to eR$ such that $hf(x) = ex$ for every $x \in L$. There exists $u^2 = u \neq 0$ in $L \cap eR$ such that $eR = uR \oplus (e - u)R$, and $e - u$ is an idempotent orthogonal to u. Let $u : eR \to uR$ be a projection with kernel $(e - u)R$. Then $\pi h(x) = ux$. So we take $e = u$ and $h = \pi h$. As $h(R) = eR$, $R = gR \oplus (1 - g)R$ for some idempotent $g \in R$ such that $\ker h = (1 - g)R$. Now $h(R) = eR = h\sigma(eR)$, we get $R = \sigma(eR) \oplus \ker h$. Thus, there exists an idempotent $f \in R$, such that $R = fR \oplus (1 - f)R$, $\sigma(eR) = fR$, $\ker h = (1 - f)R$ and $h | fR$ is the inverse of $\sigma | eR$. Clearly, for any $x \in (1 - e)R \cap A$, $h\sigma(x) = 0$ gives $\sigma(x) \in (1 - f)R$.

Conversely, let R satisfy the given conditions. Let $\sigma : L \to R$ be a maximal homomorphism that cannot be extended to an endomorphism of R. Then there exist non-zero idempotents $e, f \in R$ such that $L = eR \oplus (L \cap (1 - e)R)$, σ is monic on eR, $\sigma(eR) = fR, \sigma((1 - e)R \cap L) \subseteq (1 - f)R$. We define $h : R \to eR$ as follows. Let $y \in R$. Then $y = f(y) + (1 - f)y$. Now $f(y) = \sigma(ex)$ for some uniquely determined $ex \in eR$. Set $h(y) = ex$. If follows that for any $x \in L$, $h\sigma(x) = ex$. Hence R is almost right self-injective. ☐

Corollary 3.2. Any von Neumann regular ring R that is right CS, is almost right self-injective.
Proof. Let \(\sigma : A \to R, A < R \) be a non-zero \(R \)-homomorphism. As \(\ker \sigma \) is not large in \(A \), there exists a non-zero idempotent \(e \in A \) such that \(eR \cap \ker \sigma = 0 \). Then \(\sigma(eR) = fR \) for some idempotent \(f \in R \). Let \(B \) be a complement of \(eR \) in \(R \).

Remark. Any von Neumann regular ring that is right \(CS \) is right continuous. In [7], examples of continuous commutative von Neumann regular rings that are not self-injective are given. Hence a von Neumann regular almost right self-injective need not be right self-injective.

Proposition 3.3. Any von Neumann regular ring in which all idempotents are central, is almost self-injective.

Proof. Let \(\sigma : A \to R, A < R \) be a non-zero homomorphism. We get a non-zero idempotent \(e \in A \) such that \(f \mid eR \) is monic. Let \(\sigma(e) = x \), then \(x = xe = ex \) gives \(\sigma(eR) \subseteq eR \). Suppose \(\eta = \sigma \mid eR \). Now \(\sigma(eR) = xR = fR \) for some idempotent \(f \in eR \). Therefore \(x = xf \), \(\eta(e - f) = xf(e - f) = 0 \), \(e = f \). Hence \(\sigma(eR) = eR \).

It also follows that \(\sigma(A \cap (1-e)R) \subseteq A \cap (1-e)R \). Hence \(R \) is almost right self-injective.

The following result determines a class of von Neumann regular rings that are not almost right-injective.

Theorem 3.4. Let \(R \) be an almost right self-injective, von Neumann regular ring.

(i) Any complement of a minimal right ideal of \(R \) is principal

(ii) Any minimal right ideal of \(R \) is injective.

Proof. Let \(A \) be a minimal right ideal of \(R \). Then \(A = eR \) for some indecomposable idempotent \(e \in R \). Let \(C \) be a complement of \(eR \). We get a maximal homomorphism \(\sigma : L \to R, L \leq R \) such that \(eR \oplus C \subseteq L \). \(\sigma \) is identity on \(eR \), and is zero on \(C \).

Case 1. \(L = R \). Then \(R = fR \oplus \ker \sigma \), hence minimal. As \(e \notin \ker \sigma \), we get \(R = eR \oplus \ker \sigma \). We get \(C = \ker \sigma \), a principal right ideal.

Case 2. \(L < R \). By Theorem 3.1, there exist non-zero idempotents \(f \in L, g \in R \) such that \(\sigma(f) = gR \). \(\sigma(L \cap (1-f)R) \subseteq (1-g)R \). Now \(C \subseteq \ker \sigma \subseteq (1-f)R \). Thus \(fR \) is simple, as in Case 1. \(L = eR \oplus ((1-f)R \cap L) \) and \(eR \nsubseteq (1-f)R \). As \(C \subseteq (1-f)R \), we get \(C = (1-f)R \).
Suppose A is not injective. Let $E = E(A)$. We get $x \in E \setminus A$. Then $A < xR$. Let $C = \text{ann}_R(x)$. As xR is non-singular, C is a closed right ideal of R and its complement in R_R is uniform. If C were principal, we would get $R = B \oplus C$ with B simple, which is not possible, as xR is not simple. Hence C is not principal. Let H be a complement of C. As H is uniform, it is simple. This contradicts (i), Hence A is injective.

Example 3. Let F be any field and R be the ring of column finite matrices over F, indexed by the set \mathbb{N} of positive integers. This ring is right self-injective. Let S be subring of R consisting of matrices that are also row finite. Then R is a maximal right quotient ring of S. Consider the matrix unit e_{11}. Then $e_{11}S$ is a minimal right ideal of S. However $e_{11}S < e_{11}R$ and $e_{11}R$, as a right S-module is injective hull of $e_{11}S$. Hence S is not almost right self-injective.

Acknowledgement. The author is extremely thankful to the referee for his valuable suggestions that have helped in improving the paper.

References

House No. 424, Sector 35 A
Chandigarh-160036
India
e-mail: ossinghpal@yahoo.co.in