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Abstract

Let M?" denote a closedn(— 1)-connected smoothable topological-thanifold.
We show that the groug(M?") of concordance classes of smoothings®" is iso-
morphic to the group of smooth homotopy sphefeg for n = 4 or 5, the concord-
ance inertia group(M?") = 0 for n = 3, 4, 5 or 11 and the homotopy inertia group
Ih(M2") = 0 for n = 4. On the way, following Wall’s approach [16] we present a
new proof of the main result in [9], namely, for= 4, 8 andH"(M?"; Z) = Z, the
inertia groupl (M?") = Z,. We also show that, up to orientation-preserving diffeo-
morphism,M®& has at most two distinct smooth structurdé’® has exactly six dis-

tinct smooth structures and then show thaMt* is a =-manifold, M4 has exactly
two distinct smooth structures.

1. Introduction

We work in the categories of closed, oriented, simply-ceaitge:Cat-manifolds M
and N and orientation preserving maps, whetat = Diff for smooth manifolds or
Cat = Top for topological manifolds. Le®,, be the group of smooth homotopy spheres
defined by M. Kervaire and J. Milnor in [6]. Recall that the cotlen of homotopy
spheresy which admit a diffeomorphisnM — M # = form a subgroup (M) of ®p,
called the inertia group oM, where we regard the connected sif¥ =™ as a smooth
manifold with the same underlying topological spaceMisand with smooth structure
differing from that ofM only on anm-disc. The homotopy inertia grouip(M) of M™
is a subset of the inertia group consisting of homotopy s#hErfor which the identity
map id M — M # X™ is homotopic to a diffeomorphism. Similarly, the concordan
inertia group ofM™, 1.(M™) C @, consists of those homotopy sphe®¥ such that
M and M #X™ are concordant.

The paper is organized as following. L&t?" denote a closedn(— 1)-connected
smoothable topologicalrmanifold. In Section 2, we show that the grodpM?") of
concordance classes of smoothingswd” is isomorphic to the group of smooth homo-
topy sphere®,, for n = 4 or 5, the concordance inertia grolg{M?") = 0 for n = 3,

4, 5 or 11 and the homotopy inertia grolig(M?") = 0 for n = 4.
In Section 3, we present a new proof of the following resul{9h
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310 K. RAMESH

Theorem 1.1. Let M® be an(n — 1)-connected closed smooth manifold of di-
mension2n # 4 such that H(M; Z) = Z. Then the inertia group (M?") = Z,.

In Section 4, we show that, up to orientation-preservingedihorphism,M& has
at most two distinct smooth structurelt® has exactly six distinct smooth structures
and if M* is a w-manifold, thenM?* has exactly two distinct smooth structures.

2. Concordance inertia groups of i — 1)-connected 2-manifolds

We recall some terminology from [6]:

DEFINITION 2.1. (a) A homotopym-sphere =™ is a closed oriented smooth
manifold homotopy equivalent to the standard unit spr&fein R™+,
(b) A homotopym-sphereX™ is said to be exotic if it is not diffeomorphic t8™.

DEFINITION 2.2. Define them-th group of smooth homotopy spheres, as fol-
lows. Elements are orientdtcobordism classesH]] of homotopym-spheress, where
¥ and X’ are called (oriented)h-cobordant if there is an orienteti-cobordism
(W, oW, 9;W) together with orientation preserving diffeomorphisris— d,W and
(¥~ — 9;W. The addition is given by the connected sum. The zero elensergp-
resented byS™. The inverse of E] is given by [X~], where £~ is obtained fromZ
by reversing the orientation. M. Kervaire and J. Milnor [6] sledl that eact®, is a
finite abelian grouprq > 1).

DEFINITION 2.3. Two homotopym-spheresE" and X' are said to be equivalent
if there exists an orientation preserving diffeomorphi§mx” — .

The set of equivalence classes of homotapyspheres is denoted b§,,. The
Kervaire—Milnor [6] paper worked rather with the group, of smooth homotopy
spheres up toh-cobordism. This makes a difference only far = 4, since it is
known, using theh-cobordism theorem of Smale [12], th&, = O, for m # 4.
However the difference is important in the four dimensiooase, sinced, is trivial,
while the structure of®, is a great unsolved problem.

DEFINITION 2.4. LetM be a closed topological manifold. LeN( f) be a pair
consisting of a smooth manifoltll together with a homeomorphisrh: N — M. Two
such pairs Nz, f;) and (N, f;) are concordant provided there exists a diffeomorphism
g: N; — N, such that the compositiorf, o g is topologically concordant td,, i.e.,
there exists a homeomorphisf: Ny x [0, 1] = M x [0, 1] such thatF,.o = f1 and
Finoxa = f20g. The set of all such concordance classes is denoted(bf).

We will denote the class i€(M) of (M™ # X™, id) by [M™ # X™]. (Note that
[M"#8S"] is the class of K", id).)
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DEFINITION 2.5. LetM™ be a closed smootim-dimensional manifold. The in-
ertia groupl (M) C @, is defined as the set & € @, for which there exists a diffeo-
morphism¢: M - M #X.

Define the homotopy inertia groulp(M) to be the set of al2 € | (M) such that
there exists a diffeomorphisivl — M # % which is homotopic to idM — M # X.

Define the concordance inertia grolg(M) to be the set of allx € I,(M) such
that M # X is concordant toM.

REMARK 2.6. (1) Clearly,lc(M) C In(M) C I (M).
(2) ForM =S8™, I(M) = 1,(M) =1(M) =0.

Now we have the following:

Theorem 2.7. Let M?" be a closed smootfn — 1)-connected2n-manifold with
n=>3.
() If nis any integer such tha®,, is trivial, then L(M?") = 0.
(i) If nis any integer greater tha® such that®, and ®,,; are trivial, then

C(M™) = ([M*#3] | £ € O} = Opn.

(iiiy If n =8 and H(M; Z) = Z, then M # £?" is not concordant to M', where
%" € O, is the exotic sphere. In particula€(M?") has at least two elements.
(iv) If n is any even integer such th&, and ®,,; are trivial, then L(M) = 0.

Proof. LetCat= Topor G, whereTopandG are the stable spaces of self homeo-
morphisms ofR" and self homotopy equivalences $f* respectively. For any degree
one mapfy: M — S2", we have a homomorphism

fir: [S?, Cat/O] — [M, Cat/O].

By Wall [15], M has the homotopy type of = (\/!‘=l S') UgD?", wherek is then-th
Betti number ofM, \/!‘=l SP" is the wedge sum ofh-spheres which is tha-skeleton
of M and g: §21 — \/K_, S is the attaching map ob?". Let ¢: M — X be a
homotopy equivalence of degree one andX — S?" be the collapsing map obtained
by identifying " with X/ \/!(=1 S{' in an orientation preserving way. Lefy = qo
¢: M — S be the degree one map.

Consider the following Puppe’s exact sequence for the giciui : \/ik:1 S — X
along Cat/O:

2.1)

k * * Ed k
SN [\/ ssP, Cat/O] B 152 cayo] L [X, cayo] > [\/ sn, Cat/O},
i=1 i=1
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where §(g) is the suspension of the map $2* — \/K_ s
Using the fact that

I

k k
[\/ Ss, Cat/O | = [ [[s*, Cat/O]
i=1 i=1

and

k
[\/ SP, Cat/O
i=1

the above exact sequence (2.1) becomes

k
~ []isp, cay 0],
i=1

K . . Lok
oo [isr, cayo] 22 (s, cayo] L [x, cayo] > []is?, cayol.

i=1 i=1

(): If nis any integer such thab,., is trivial and Cat= Topin the above exact
sequence (2.1), by using the fact that

[S™, Top/O] = O (M # 3, 4)

and %, Top/O] = 0 ([10, pp.200-201]), we havg*: [S*", Top/O] — [X, Top/O] is
injective. Hencefy, = ¢* o q*: @2 — [M, Top/O] is injective. By using the iden-
tifications C(M2") = [M, Top/O] given by [10, pp.194-196]f : @ — C(M?") be-
comes 2] - [M#X2"]. 1(M) is exactly the kernel off%, and sol.(M) = 0. This
proves (i).

@i): If n> 3, ®, and®,, are trivial, andCat = Top then, from the above exact
sequence (2.1) we hagg: [S*, Top/O] — [X, Top/O] is an isomorphism. This shows
that fy = ¢*oq™: O — C(M?") is an isomorphism and hence

C(M?") = {[M*"#3] | ¥ € On).

This proves (ii).

(ii): If n=8 and H"(M;Z) =~ Z, then M® has the homotopy type oK =
S" Ug D™, whereg: $"~1 — S" is the attaching map. In order to prowd®" # 2"
is not concordant taM?", by the above exact sequence (2.1) @at = Top, it suffices
to proveq*: [S'8, Top/O] — [X, Top/O] is monic, which is equivalent to saying that
(S(g))*: [SS8, Top/O] — [S?8, Top/ O] is the zero homomorphism. For the cage- p,
where p: S — S8 is the Hopf map, §g))* is the zero homomorphism, which was
proved in the course of the proof of Lemma 1 in [2, pp.58-59hisTproof works
verbatim for any mapy: S?"1 — S" as well. This proves (iii).

(iv): If nis any even integer such th&t, and®,; are trivial, thenr,1(G/O) =
0. This shows that from the above exact sequence (2.1Gdb= G, g*: [S*",G/0] —
[X, G/O] is injective. Thenf), = ¢*oq*: [S*", G/O] — [M, G/O] is injective. From
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the surgery exact sequencesMfandS?", we get the following commutative diagram
([3, Lemma 3.4]):

Ng2n

Lont1(€) Oz on(G/O) —— Lan(€)

(2.2) - | s -

Lons1(€) —— SPM(M) —> [M, G/O] —— Lan(e)

By using the facts that ,,,1(€) = 0, injectivity of ng= and ny follow from the dia-
gram, and combine with the injectivity ofy; to show thatfy,: ®z — SPM(M) is
injective. 1,(M) is exactly the kernel off®, and sol,(M) = 0. This proves (iv). [

REMARK 2.8. (i) By M. Kervaire and J. Milnor [6]®, =0 form =1, 2, 3, 4,
5,6 or 12. IfM?" is a closed smootm¢1)-connected @-manifold, by Theorem 2.7 (i)
and (i), 1c(M?") =0 forn =3, 4,5 or 11 and’(M?") = ®,, for n = 4 or 5.
(i) If M has the homotopy type ad®dP?, by Theorem 1.1 and Theorem 2.7 (iii), we
have (M) = 0 # | (M).
(iii) By Theorem 2.7 (iv), if M has the homotopy type diIP?, then I,(M) = 0.

DEFINITION 2.9. LetM and N are smooth manifolds. A smooth mdp M —
N is called tangential if for some integeks |, f*(T(N)) @ €k, = T(M) @ €.

DEFINITION 2.10. LetM be a topological manifold. LetN, f) be a pair con-
sisting of a smooth manifoldN together with a tangential homotopy equivalence of
degree onef : N — M. Two such pairs {3, f;) and (N, f;) are equivalent provided
there exists a diffeomorphism: N; — N, such thatf, o g is homotopic tof;. The
set of all such equivalence classes is denoted [@).

For M = HP?, [5, Theorem 4] shows(HP?) contains at most two elements. Now
by Remark 2.8 (iii), we have the following:

Corollary 2.11. 6(HP?) contains exactly two elementsith representatives given
by (HP?, id) and (HP?# 8, id), where =8 is the exotic8-sphere.

3. Inertia groups of projective plane-like manifolds

In [15], C.T.C. Wall assigned to each closed oriented— 1)-connected -
dimensional smooth manifolt1?" with n > 3, a system of invariants as follows:
(1) H=H"(M;Z) ~ Hom(H,(M; Z), Z) =~ @'Jf:lZ, the cohomology group oM,
with k the n-th Betti number ofM,

(2) I: HxH — Z, the intersection form oM which is unimodular aneh-symmetric,
defined by

L(x,y) = (x Uy, [M]),
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where the homology clasdM] is the orientation class oM,

(3) Amapa: HY(M; Z) — m,—1(SQ,) that assigns each elemente H"(M; Z) to the
characteristic map(x) for the normal bundle of the embeddeesphereS} represent-
ing X.

Denote byy = Soa: H'(M; Z) — m,_1(SQy41) = KO(S"), where S: m,_1(SQ,) —

mn-1(SQhy1) is the suspension map. Then

x = Soa € H"(M: KO(S") = Hom(H"(M: Z); KO(S"))

can be viewed as amdimensional cohomology class b, with coefficients inkK O(S").
The obstruction to triviality of the tangent bundle over tiiskeleton is the element €
H"(M; KO(S") [15]. By [15, pp. 179-180], the Pontrjagin classMf" is given by

(3.1) Pm(M?") = £an(2m—1)! x,
wheren = 4m and

)1 if 4m=0 (mod 8),
|2 if 4m=4 (mod 8).

Define ©,(k) to be the subgroup 06, consisting of those homotopg-sphere
=" which are the boundaries &fconnected rf + 1)-dimensional compact manifolds,
1 <k < [n/2]. Thus, ®y(k) is the kernel of the natural maR: ®, — Qn(k), where
Qn(K) is the n-dimensional group irk-connective cobordism theory [13] and sends
X" to its cobordism class. Using surgery, we $eg1) is the usual oriented cobordism
group. S0®, = ©n(1). Similarly, 2,(2) = Q"™ (n > 7); since BSpinis, in fact,
3-connected, fom > 8, 2,(2) = 2,(3) and ®,(2) = ®,(3) = bSpin,. Here bSpin,
consists of homotopy-sphere which bound spin manifolds.

In [16], C.T.C. Wall defined the Grothendieck grogff"*!, a homomorphism
¥: G2 — @y, such thaty (G2"1) = @,n(n — 1) and proved the following theorem:

Theorem 3.1 (Wall). Let M* be a closed smoottn — 1)-connectedn-manifold
and 2" be a homotopy sphere i®,,. Then M# £2" is an orientation-preserving
diffeomorphic to M if and only if
() = =0in Oy or
(i) x #0 (mod 2)and =2 € ¥(G2"*1) = Ox(n—1)

We also need the following result from [1]:

Theorem 3.2 (Anderson, Brown, Petersan)Let n,: ©, — Qﬁpi” be the homo-
morphism such thaf, sendsX" to its spin cobordism class. Them, # 0 if and
only if n=8k+ 1 or 8k + 2.
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Proof of Theorem 1.1. Let be a generator oH"(M?"; Z). Consider the case
n = 4. Then by Itiro Tamura [14] and (3.1), the Pontrjagin clagsvt" is given by

pi(M?) = 2(2h + 1)t = 42y,

whereh € Z. This implies that
x = £(2h + 1).
Likewise, forn = 8, we have

P2(M?") = 6(2k + 1)§ = +6y,
wherek € Z. This implies that
x = £(2k + 1)t.
Therefore in either casg; # 0 (mod 2). Now by Theorem 3.1, it follows that
[(M?") = ©g(n — 1).

Since Oy,(n — 1)_ is the kernel of the natural ma_im,lz O — n(n — 1), where
Qun(n—1) = Q5" for n = 4 and Qu(n — 1) = 1"~ Z ¢ Z for n = 8 [4]. Now
by Theorem 3.2 and using the fact thais =~ Z, [6], we havei,_1 = 0 for n = 4 and

8. This shows that,,(n — 1) = O,. This implies that
(M) = Z,.
This completes the proof of Theorem 1.1. O

4. Smooth structures of (i — 1)-connected A-manifolds

DEeFINITION 4.1 (Cat = Diff or Topstructure sets, [3]). LeM be a closedCat-
manifold. We define the&Cat-structure setS¢3(M) to be the set of equivalence classes
of pairs (N, f) where N is a closedCat-manifold and f: N — M is a homotopy
equivalence. And the equivalence relation is defined as\stl

(Nz, f1) ~ (Ng, fp) if there is aCat-isomorphism¢: N; — N,
such thatf, o h is homotopic tof;.

We will denote the class i82(M) of (N, f) by [(N, f)]. The base point o53{(M)
is the equivalence classN, id)] of id: M — M.

The forgetful mapsFpir : SP (M) — STP(M) and Feon: C(M) — SPff (M) fit into
a short exact sequence of pointed sets [3]:

i Foi
c(M) £ 5ot () 20 sTop(),
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Theorem 4.2. Let n be any integer greater thaB such that®, and ®,;, are
trivial and M?" be a closed smootfn — 1)-connected2n-manifold. Let £ N — M be
a homeomorphism where N is a closed smooth manifold. Then
() there exists a diffeomorphisgi: N — M # £2", where £2" € @,, such that the
following diagram commutes up to homotopy

N 25 Mz

\ lid
M
(i) If 1n(M) = @y, then f: N - M is homotopic to a diffeomorphism.

Proof. Consider the short exact sequence of pointed sets

Fcon Foif

C(M) =5 SP (M) — STP(M).
By Theorem 2.7 (i), we have
C(M)={[M#X]| T € Oz} = Op.
Since [N, )] € Fg# ([(M, id)]), we obtain
[(N, )] € Im(Fcon) = {IM#X] | £ € Oz}

This implies that there exists a homotopy sph&® e @,, such that N, f) ~ (M #
2" id) in SP(M). This implies that there exists a diffeomorphigh N — M # £

such thatf is homotopic to i ¢. This proves (i).
If 1h(M) = O2n, then ImEFcon) = {[(M,id)]} and hencely, f) ~ (M, id) in SP(M).
This shows thatf: N — M is homotopic to a diffeomorphisiy — M. This proves (ii).
O

Theorem 4.3. Let n be any integer greater thaB such that®, and ©,,1 are
trivial and M?" be a closed smoottn — 1)-connected2n-manifold. Then the number
of distinct smooth structures on Mup to diffeomorphism is less than or equal to the
cardinality of ®,,. In particular, the set of diffeomorphism classes of smooth structures
on M is {(M#X]| = € O}.

Proof. By Theorem 4.2 (i), ifN is a closed smooth manifold homeomorphic to
M, then N is diffeomorphic toM # £2" for some homotopy i2spherex?". This im-
plies that the set of diffeomorphism classes of smooth &iras onM?" is {{M #X] |
¥ € @y). This shows that the number of distinct smooth structuresM#f up to
diffeomorphism is less than or equal to the cardinalityGof,. ]
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REMARK 4.4. (1) By Theorem 4.3, every closed smooth 3-connectec@foid
has at most two distinct smooth structures up to diffeomismh
(2) If M8 is a closed smooth 3-connected 8-manifold such H&¢M; z) = Z, then
by Theorem 1.1] (M) = Z,. Now by Theorem 4.3M has a unique smooth structure
up to diffeomorphism.
(3) If M = S*x 8% then by Theorem 4.35* x S* has at most two distinct smooth
structures up to diffeomorphism, namef§s* xS*],[S*xS*#x%]}, whereX is the exotic
8-sphere. However, by [11, Theorem AJS*x S*) = 0. This implies thatS* x S* has
exactly two distinct smooth structures.

Theorem 4.5. Let M be a closed smootconnected-manifold with stable tan-
gential invarianty = Soa: Hy(M;Z) — n3(SO) = Z. Then M has exactly two distinct
smooth structures up to diffeomorphism if and onlyni{So ) C 2Z.

Proof. Suppos# has exactly two distinct smooth structures up to diffeorhisim.
Then by Theorem 4.3M and M # X are not diffeomorphic, wher& is the exotic 8-
sphere. Sinceég = ©g(3), by Theorem 3.1, the stable tangential invarignts zero
(mod 2) and hence Ingo «) € 2Z. Conversely, suppose 186 «) € 2Z. Now by The-
orem 3.1,M can not be diffeomorphic t&1 # X, whereX is the exotic 8-sphere. Now
by Theorem 4.3M has exactly two distinct smooth structures up to diffeorh@m. [

REMARK 4.6. Ifn=2,3,5,6,7 (mod 8) or the stable tangential invarignt
of M? is zero (mod 2), then by [16, Corollary, p.289] and Theorerh, 3ve have
I (M?2") = 0. So, by Theorem 4.3, we have the following:

Theorem 4.7. Let n be any integer greater thaB such that®, and ®,,; are
trivial and M?" be a closed smoottn — 1)-connected2n-manifold. If n= 2, 3,5, 6, 7
(mod 8) or the stable tangential invariang of M?" is zero(mod 2), then the set of
diffeomorphism classes of smooth structures off' 4 in one-to-one correspondence
with group ©2,.

REMARK 4.8. (1) By Theorem 4.7, every closed smooth 4-connectethdi®ifold
has exactly six distinct smooth structures, namgly) # 2] | £ € O19 = Zg).
(2) If M2 is n-parallelisable, almost parallelisable mskmanifold, then the stable tan-
gential invarianty of M is zero [15]. Then by Theorem 4.7, we have the following:

Corollary 4.9. Letn be any integer greater thahsuch that®,, and ®,, 1 are triv-
ial and M?" be a closed smootfm—1)-connecte®n-manifold. If M" is n-parallelisable
almost parallelisable orr-manifold then the set of diffeomorphism classes of smooth
structures on M" is in one-to-one correspondence with gro@g,.

DEFINITION 4.10 ([8]). The normalk-type of a closed smooth manifolt¥ is
the fibre homotopy type of a fibratiop: B — BO such that the fibre of the map



318 K. RAMESH

is connected and its homotopy groups vanish in dimengidH 1, admitting a lift of
the normal Gauss mapy: M — BO to a mapvy: M — B such thatvy: M — B
is a k + 1)-equivalence, i.e., the induced homomorphigg: =; (M) — 7;(B) is an
isomorphism fori < k and surjective fori = k + 1. We call such a lift a normal
k-smoothing.

Theorem 4.11. Letn=5,7and let My and M, be closed smootfn—1)-connected
2n-manifolds with the same Euler characteristic. Then
() There is a homotopy spheB?" € ®,, such that M and M, # 2" are diffeo-
morphic.
(i) Let M2 be a closed smoottn — 1)-connected2n-manifold such thafjM] = 0 ¢
Qgrﬁ"”g and let = be any exotic2n-sphere in®,,. Then M and M¢ X are not diffeo-
morphic.

Proof. (i) Mg and M; are f— 1)-connected, and is 5 or 7; thereforep;/2
and the Stiefel-Whitney classes, vanish. So,Mg and M; are BStringmanifolds.
Let by, : M; — BString be a lift of the normal Gauss mapy,: M; — BO in the
fibration p: BString= BO(8) — BO, where j = 0 and 1. SinceBString is 7-
connected,px: 7 (BString — 7; (BO) is an isomorphism for ali > 8. This shows
that vw;: M; — BStringis an n-equivalence and hence the normak{1)-type of Mo
and M; is p: BString— BO. We know thatQ3"" =~ @,,, where the group structure
is given by connected sum [4]. This implies that there alwaysts 22" € ©,, such
that Mg and My # ¥ are BStringbordant. SinceMg and M; # ¥2" have the same
Euler characteristic, by [8, Corollary 4M, and M1 # %" are diffeomorphic.

(ii): Since the image of the standard sphere under the ispiigm @, =~ Q5"
represents the trivial element iR5""%, we have M2"] # [M # x] in 3" This
implies thatM and M # ¥ are notBStringbordant. By obstruction theoryl>" has a
unique string structure. This implies th&t and M # X are not diffeomorphic. [

Theorem 4.12. Let M be a closed smooticonnected.4-dimensionalr -manifold
and X is the exoticl4-sphere. Then M¢ X is not diffeomorphic to M. Thud (M) = 0.
Moreoverif N is a closed smooth manifold homeomorphic totien N is diffeomorphic
to either M or M# X.

Proof. It follows from results of Anderson, Brown and Peteron spin cobor-
dism [1] that the image of the natural homomorphigff™*’ — Q5™ is 0 andQ3; ™ ~
Q3P ~ 7, [4]. This shows thatf1] = 0 € 257", Now by Theorem 4.11 (i)M #3 is
not diffeomorphic toM. If N is a closed smooth manifold homeomorphicMg thenN
andM have the same Euler characteristic. Then by Theorem 4.18 (8 diffeomorphic
to eitherM or M #X. O
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REMARK 4.13. By the above Theorem 4.12, the set of diffeomorphisasses

of smooth structures on a closed smooth 6-connected 14adiomal 7z-manifold M is

{IM], [M#X]} = Z,,

where T is the exotic 14-sphere. So, the number of distinct smoaticttres onM

is 2.
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