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Abstract
Let M2n denote a closed (n� 1)-connected smoothable topological 2n-manifold.

We show that the groupC(M2n) of concordance classes of smoothings ofM2n is iso-
morphic to the group of smooth homotopy spheresN

22n for n D 4 or 5, the concord-
ance inertia groupIc(M2n) D 0 for n D 3, 4, 5 or 11 and the homotopy inertia group
Ih(M2n) D 0 for n D 4. On the way, following Wall’s approach [16] we present a
new proof of the main result in [9], namely, forn D 4, 8 andHn(M2n

IZ) � Z, the
inertia group I (M2n) � Z2. We also show that, up to orientation-preserving diffeo-
morphism,M8 has at most two distinct smooth structures;M10 has exactly six dis-
tinct smooth structures and then show that ifM14 is a � -manifold, M14 has exactly
two distinct smooth structures.

1. Introduction

We work in the categories of closed, oriented, simply-connected Cat-manifolds M
and N and orientation preserving maps, whereCat D Diff for smooth manifolds or
CatD Top for topological manifolds. LetN2m be the group of smooth homotopy spheres
defined by M. Kervaire and J. Milnor in [6]. Recall that the collection of homotopy
spheres6 which admit a diffeomorphismM ! M #6 form a subgroupI (M) of N2m,
called the inertia group ofM, where we regard the connected sumM #6m as a smooth
manifold with the same underlying topological space asM and with smooth structure
differing from that ofM only on anm-disc. The homotopy inertia groupIh(M) of Mm

is a subset of the inertia group consisting of homotopy spheres6 for which the identity
map idW M ! M #6m is homotopic to a diffeomorphism. Similarly, the concordance
inertia group ofMm, Ic(Mm) � N2m, consists of those homotopy spheres6m such that
M and M #6m are concordant.

The paper is organized as following. LetM2n denote a closed (n � 1)-connected
smoothable topological 2n-manifold. In Section 2, we show that the groupC(M2n) of
concordance classes of smoothings ofM2n is isomorphic to the group of smooth homo-
topy spheresN22n for nD 4 or 5, the concordance inertia groupIc(M2n)D 0 for nD 3,
4, 5 or 11 and the homotopy inertia groupIh(M2n) D 0 for n D 4.

In Section 3, we present a new proof of the following result in[9].

2010 Mathematics Subject Classification. 57R55, 57R60, 57R50, 57R65.
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Theorem 1.1. Let M2n be an (n � 1)-connected closed smooth manifold of di-
mension2n ¤ 4 such that Hn(MI Z) � Z. Then the inertia group I(M2n) � Z2.

In Section 4, we show that, up to orientation-preserving diffeomorphism,M8 has
at most two distinct smooth structures;M10 has exactly six distinct smooth structures
and if M14 is a �-manifold, thenM14 has exactly two distinct smooth structures.

2. Concordance inertia groups of (n� 1)-connected 2n-manifolds

We recall some terminology from [6]:

DEFINITION 2.1. (a) A homotopym-sphere6m is a closed oriented smooth
manifold homotopy equivalent to the standard unit sphereS

m in R

mC1.
(b) A homotopym-sphere6m is said to be exotic if it is not diffeomorphic toSm.

DEFINITION 2.2. Define them-th group of smooth homotopy spheres2m as fol-
lows. Elements are orientedh-cobordism classes [6] of homotopym-spheres6, where
6 and 6

0 are called (oriented)h-cobordant if there is an orientedh-cobordism
(W, �0W, �1W) together with orientation preserving diffeomorphisms6 ! �0W and
(60)� ! �1W. The addition is given by the connected sum. The zero elementis rep-
resented bySm. The inverse of [6] is given by [6�], where6� is obtained from6
by reversing the orientation. M. Kervaire and J. Milnor [6] showed that each2m is a
finite abelian group (m� 1).

DEFINITION 2.3. Two homotopym-spheres6m
1 and6m

2 are said to be equivalent
if there exists an orientation preserving diffeomorphismf W 6m

1 ! 6

m
2 .

The set of equivalence classes of homotopym-spheres is denoted byN2m. The
Kervaire–Milnor [6] paper worked rather with the group2m of smooth homotopy
spheres up toh-cobordism. This makes a difference only form D 4, since it is
known, using theh-cobordism theorem of Smale [12], that2m � N2m for m ¤ 4.
However the difference is important in the four dimensionalcase, since24 is trivial,
while the structure ofN24 is a great unsolved problem.

DEFINITION 2.4. Let M be a closed topological manifold. Let (N, f ) be a pair
consisting of a smooth manifoldN together with a homeomorphismf W N ! M. Two
such pairs (N1, f1) and (N2, f2) are concordant provided there exists a diffeomorphism
g W N1 ! N2 such that the compositionf2 Æ g is topologically concordant tof1, i.e.,
there exists a homeomorphismF W N1 � [0, 1]! M � [0, 1] such thatF

jN1�0 D f1 and
F
jN1�1 D f2 Æ g. The set of all such concordance classes is denoted byC(M).

We will denote the class inC(M) of (Mm # 6m, id) by [Mm # 6m]. (Note that
[Mn #Sn] is the class of (Mn, id).)
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DEFINITION 2.5. Let Mm be a closed smoothm-dimensional manifold. The in-
ertia groupI (M) � N2m is defined as the set of6 2 N2m for which there exists a diffeo-
morphism� W M ! M #6.

Define the homotopy inertia groupIh(M) to be the set of all6 2 I (M) such that
there exists a diffeomorphismM ! M #6 which is homotopic to idW M ! M #6.

Define the concordance inertia groupIc(M) to be the set of all6 2 Ih(M) such
that M #6 is concordant toM.

REMARK 2.6. (1) Clearly,Ic(M) � Ih(M) � I (M).
(2) For M D Sm, Ic(M) D Ih(M) D I (M) D 0.

Now we have the following:

Theorem 2.7. Let M2n be a closed smooth(n � 1)-connected2n-manifold with
n � 3.
(i) If n is any integer such that2nC1 is trivial, then Ic(M2n) D 0.
(ii) If n is any integer greater than3 such that2n and2nC1 are trivial, then

C(M2n) D {[M2n #6] j 6 2 N22n} � N22n.

(iii) If n D 8 and Hn(MI Z) � Z, then M2n # 62n is not concordant to M2n, where
6

2n
2

N

22n is the exotic sphere. In particular, C(M2n) has at least two elements.
(iv) If n is any even integer such that2n and2nC1 are trivial, then Ih(M) D 0.

Proof. LetCatD Top or G, whereTop andG are the stable spaces of self homeo-
morphisms ofRn and self homotopy equivalences ofSn�1 respectively. For any degree
one map fM W M ! S

2n, we have a homomorphism

f �M W [S
2n, Cat=O] ! [M, Cat=O].

By Wall [15], M has the homotopy type ofX D
�

Wk
iD1S

n
i

�

[gD
2n, wherek is the n-th

Betti number ofM,
Wk

iD1 S
n
i is the wedge sum ofn-spheres which is then-skeleton

of M and g W S2n�1
!

Wk
iD1 S

n
i is the attaching map ofD2n. Let � W M ! X be a

homotopy equivalence of degree one andq W X ! S

2n be the collapsing map obtained
by identifying S2n with X=

Wk
iD1 S

n
i in an orientation preserving way. LetfM D q Æ

� W M ! S

2n be the degree one map.
Consider the following Puppe’s exact sequence for the inclusion i W

Wk
iD1 S

n
i ,! X

along Cat=O:

� � � !

"

k
_

iD1

SSn
i , Cat=O

#

(S(g))�

����! [S2n, Cat=O]
q�

�! [X, Cat=O]
i �
�!

"

k
_

iD1

S

n
i , Cat=O

#

,

(2.1)
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where S(g) is the suspension of the mapg W S2n�1
!

Wk
iD1 S

n
i .

Using the fact that

"

k
_

iD1

SSn
i , Cat=O

#

�

k
Y

iD1

[SnC1
i , Cat=O]

and
"

k
_

iD1

S

n
i , Cat=O

#

�

k
Y

iD1

[Sn
i , Cat=O],

the above exact sequence (2.1) becomes

� � � !

k
Y

iD1

[SnC1
i , Cat=O]

(S(g))�

����! [S2n, Cat=O]
q�

�! [X, Cat=O]
i �
�!

k
Y

iD1

[Sn
i , Cat=O].

(i): If n is any integer such that2nC1 is trivial andCatD Top in the above exact
sequence (2.1), by using the fact that

[Sm, Top=O] D N2m (m¤ 3, 4)

and [S4, Top=O] D 0 ([10, pp. 200–201]), we haveq� W [S2n, Top=O] ! [X, Top=O] is
injective. Hence f �M D �

�

Æ q� W N22n ! [M, Top=O] is injective. By using the iden-
tifications C(M2n) D [M, Top=O] given by [10, pp. 194–196],f �M W N22n ! C(M2n) be-
comes [62n] ! [M #62n]. Ic(M) is exactly the kernel off �M , and soIc(M) D 0. This
proves (i).

(ii): If n> 3, 2n and2nC1 are trivial, andCatD Top then, from the above exact
sequence (2.1) we haveq�W [S2n,Top=O]! [X,Top=O] is an isomorphism. This shows
that f �M D �

�

Æ q� W N22n ! C(M2n) is an isomorphism and hence

C(M2n) D {[M2n #6] j 6 2 N22n}.

This proves (ii).
(iii): If n D 8 and Hn(MI Z) � Z, then M2n has the homotopy type ofX D

S

n
[g D

2n, where g W S2n�1
! S

n is the attaching map. In order to proveM2n #62n

is not concordant toM2n, by the above exact sequence (2.1) forCatD Top, it suffices
to proveq� W [S16, Top=O] ! [X, Top=O] is monic, which is equivalent to saying that
(S(g))�W [SS8, Top=O]! [S16, Top=O] is the zero homomorphism. For the casegD p,
where p W S15

! S

8 is the Hopf map, (S(g))� is the zero homomorphism, which was
proved in the course of the proof of Lemma 1 in [2, pp. 58–59]. This proof works
verbatim for any mapg W S2n�1

! S

n as well. This proves (iii).
(iv): If n is any even integer such that2n and2nC1 are trivial, then�nC1(G=O)D

0. This shows that from the above exact sequence (2.1) forCatD G, q� W [S2n, G=O]!
[X, G=O] is injective. Then f �M D �

�

Æ q� W [S2n, G=O] ! [M, G=O] is injective. From
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the surgery exact sequences ofM andS2n, we get the following commutative diagram
([3, Lemma 3.4]):

(2.2)

L2nC1(e) N

22n �2n(G=O) L2n(e)

L2nC1(e) SDiff (M) [M, G=O] L2n(e)

 

!

 

!

D

 

!

�

S

2n

 

! f �M

 

!

 

! f �M  

!

D

 

!

 

!

�M
 

!

By using the facts thatL2nC1(e) D 0, injectivity of �
S

2n and �M follow from the dia-
gram, and combine with the injectivity off �M to show that f �M W N22n ! SDiff (M) is
injective. Ih(M) is exactly the kernel off �M , and soIh(M) D 0. This proves (iv).

REMARK 2.8. (i) By M. Kervaire and J. Milnor [6],2m D 0 for mD 1, 2, 3, 4,
5,6 or 12. If M2n is a closed smooth (n�1)-connected 2n-manifold, by Theorem 2.7 (i)
and (ii), Ic(M2n) D 0 for n D 3, 4, 5 or 11 andC(M2n) � N22n for n D 4 or 5.
(ii) If M has the homotopy type ofOP2, by Theorem 1.1 and Theorem 2.7 (iii), we
have Ic(M) D 0¤ I (M).
(iii) By Theorem 2.7 (iv), if M has the homotopy type ofHP2, then Ih(M) D 0.

DEFINITION 2.9. Let M and N are smooth manifolds. A smooth mapf W M !
N is called tangential if for some integersk, l , f �(T(N))� �k

M � T(M)� �l
M .

DEFINITION 2.10. Let M be a topological manifold. Let (N, f ) be a pair con-
sisting of a smooth manifoldN together with a tangential homotopy equivalence of
degree onef W N ! M. Two such pairs (N1, f1) and (N2, f2) are equivalent provided
there exists a diffeomorphismg W N1 ! N2 such that f2 Æ g is homotopic to f1. The
set of all such equivalence classes is denoted by�(M).

For M DHP2, [5, Theorem 4] shows�(HP2) contains at most two elements. Now
by Remark 2.8 (iii), we have the following:

Corollary 2.11. �(HP2) contains exactly two elements, with representatives given
by (HP2, id) and (HP2 #68, id), where68 is the exotic8-sphere.

3. Inertia groups of projective plane-like manifolds

In [15], C.T.C. Wall assigned to each closed oriented (n � 1)-connected 2n-
dimensional smooth manifoldM2n with n � 3, a system of invariants as follows:
(1) H D Hn(MI Z) � Hom(Hn(MI Z), Z) �

Lk
jD1 Z, the cohomology group ofM,

with k the n-th Betti number ofM,
(2) I W H � H ! Z, the intersection form ofM which is unimodular andn-symmetric,
defined by

I (x, y) D hx [ y, [M]i,
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where the homology class [M] is the orientation class ofM,
(3) A map� W Hn(MIZ)! �n�1(SOn) that assigns each elementx 2 Hn(MIZ) to the
characteristic map�(x) for the normal bundle of the embeddedn-sphereSn

x represent-
ing x.

Denote by� D SÆ � W Hn(MI Z)! �n�1(SOnC1) � eK O(Sn), where SW �n�1(SOn)!
�n�1(SOnC1) is the suspension map. Then

� D SÆ � 2 Hn(MIeK O(Sn)) D Hom(Hn(MI Z)IeK O(Sn))

can be viewed as ann-dimensional cohomology class ofM, with coefficients ineK O(Sn).
The obstruction to triviality of the tangent bundle over then-skeleton is the element� 2

Hn(MIeK O(Sn)) [15]. By [15, pp. 179–180], the Pontrjagin class ofM2n is given by

(3.1) pm(M2n) D �am(2m� 1)! � ,

wheren D 4m and

am D

(

1 if 4m� 0 (mod 8),

2 if 4m� 4 (mod 8).

Define 2n(k) to be the subgroup ofN2n consisting of those homotopyn-sphere
6

n which are the boundaries ofk-connected (n C 1)-dimensional compact manifolds,
1 � k < [n=2]. Thus,2n(k) is the kernel of the natural mapik W N2n ! �n(k), where
�n(k) is the n-dimensional group ink-connective cobordism theory [13] andik sends
6

n to its cobordism class. Using surgery, we see�
�

(1) is the usual oriented cobordism

group. So N2n D 2n(1). Similarly, �n(2) � �

Spin
n (n � 7); since BSpin is, in fact,

3-connected, forn � 8, �n(2) � �n(3) and2n(2) D 2n(3) D bSpinn. Here bSpinn
consists of homotopyn-sphere which bound spin manifolds.

In [16], C.T.C. Wall defined the Grothendieck groupG2nC1
n , a homomorphism

# W G2nC1
n !

N

22n such that#(G2nC1
n ) D 22n(n� 1) and proved the following theorem:

Theorem 3.1 (Wall). Let M2n be a closed smooth(n�1)-connected2n-manifold
and 62n be a homotopy sphere inN22n. Then M# 62n is an orientation-preserving
diffeomorphic to M if and only if
(i) 6

2n
D 0 in N22n or

(ii) � ¥ 0 (mod 2)and 62n
2 #(G2nC1

n ) D 22n(n� 1)

We also need the following result from [1]:

Theorem 3.2 (Anderson, Brown, Peterson). Let �n W N2n ! �

Spin
n be the homo-

morphism such that�n sends6n to its spin cobordism class. Then�n ¤ 0 if and
only if nD 8kC 1 or 8kC 2.
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Proof of Theorem 1.1. Let� be a generator ofHn(M2n
I Z). Consider the case

n D 4. Then by Itiro Tamura [14] and (3.1), the Pontrjagin class of M2n is given by

p1(M2n) D 2(2hC 1)� D �2� ,

whereh 2 Z. This implies that

� D �(2hC 1)� .

Likewise, for n D 8, we have

p2(M2n) D 6(2kC 1)� D �6� ,

wherek 2 Z. This implies that

� D �(2kC 1)� .

Therefore in either case,� ¥ 0 (mod 2). Now by Theorem 3.1, it follows that

I (M2n) D 22n(n� 1).

Since22n(n � 1) is the kernel of the natural mapin�1 W N22n ! �2n(n � 1), where

�2n(n � 1)� �Spin
8 for n D 4 and�2n(n � 1)� �String

16 � Z� Z for n D 8 [4]. Now
by Theorem 3.2 and using the fact thatN216� Z2 [6], we havein�1 D 0 for nD 4 and
8. This shows that22n(n� 1)D N22n. This implies that

I (M2n) � Z2.

This completes the proof of Theorem 1.1.

4. Smooth structures of (n� 1)-connected 2n-manifolds

DEFINITION 4.1 (CatD Diff or Top-structure sets, [3]). LetM be a closedCat-
manifold. We define theCat-structure setSCat(M) to be the set of equivalence classes
of pairs (N, f ) where N is a closedCat-manifold and f W N ! M is a homotopy
equivalence. And the equivalence relation is defined as follows:

(N1, f1) � (N2, f2) if there is aCat-isomorphism� W N1! N2

such that f2 Æ h is homotopic to f1.

We will denote the class inSCat(M) of (N, f ) by [(N, f )]. The base point ofSCat(M)
is the equivalence class [(M, id)] of id W M ! M.

The forgetful mapsFDiff W S
Diff (M)! STop(M) and FConW C(M)! SDiff (M) fit into

a short exact sequence of pointed sets [3]:

C(M)
FCon
��! SDiff (M)

FDiff

��! STop(M).
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Theorem 4.2. Let n be any integer greater than3 such that2n and 2nC1 are
trivial and M2n be a closed smooth(n� 1)-connected2n-manifold. Let fW N ! M be
a homeomorphism where N is a closed smooth manifold. Then
(i) there exists a diffeomorphism� W N ! M #62n, where62n

2

N

22n such that the
following diagram commutes up to homotopy:

N M #62n

M

 

!

�

 

!

f
 

! id

(ii) If I h(M) D N22n, then f W N ! M is homotopic to a diffeomorphism.

Proof. Consider the short exact sequence of pointed sets

C(M)
FCon
��! SDiff (M)

FDiff

��! STop(M).

By Theorem 2.7 (ii), we have

C(M) D {[M #6] j 6 2 N22n} � N22n.

Since [(N, f )] 2 F�1
Diff ([(M, id)]), we obtain

[(N, f )] 2 Im(FCon) D {[M #6] j 6 2 N22n}.

This implies that there exists a homotopy sphere62n
2

N

22n such that (N, f ) � (M #
6

2n, id) in SDiff (M). This implies that there exists a diffeomorphism� W N ! M #62n

such that f is homotopic to idÆ �. This proves (i).
If Ih(M)D N22n, then Im(FCon)D {[(M, id)]} and hence (N, f )� (M, id) in SDiff (M).

This shows thatf W N! M is homotopic to a diffeomorphismN! M. This proves (ii).

Theorem 4.3. Let n be any integer greater than3 such that2n and 2nC1 are
trivial and M2n be a closed smooth(n � 1)-connected2n-manifold. Then the number
of distinct smooth structures on M2n up to diffeomorphism is less than or equal to the
cardinality of N22n. In particular, the set of diffeomorphism classes of smooth structures
on M2n is {[M #6] j 6 2 N22n}.

Proof. By Theorem 4.2 (i), ifN is a closed smooth manifold homeomorphic to
M, then N is diffeomorphic toM #62n for some homotopy 2n-sphere62n. This im-
plies that the set of diffeomorphism classes of smooth structures onM2n is {[M #6] j
6 2

N

22n}. This shows that the number of distinct smooth structures onM2n up to
diffeomorphism is less than or equal to the cardinality ofN22n.
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REMARK 4.4. (1) By Theorem 4.3, every closed smooth 3-connected 8-manifold
has at most two distinct smooth structures up to diffeomorphism.
(2) If M8 is a closed smooth 3-connected 8-manifold such thatH4(MI Z) � Z, then
by Theorem 1.1,I (M) � Z2. Now by Theorem 4.3,M has a unique smooth structure
up to diffeomorphism.
(3) If M D S

4
� S

4, then by Theorem 4.3,S4
� S

4 has at most two distinct smooth
structures up to diffeomorphism, namely,{[S4

�S

4],[S4
�S

4#6]}, where6 is the exotic
8-sphere. However, by [11, Theorem A],I (S4

�S

4) D 0. This implies thatS4
�S

4 has
exactly two distinct smooth structures.

Theorem 4.5. Let M be a closed smooth3-connected8-manifold with stable tan-
gential invariant� D SÆ�W H4(MIZ)! �3(SO)D Z. Then M has exactly two distinct
smooth structures up to diffeomorphism if and only ifIm(SÆ �) � 2Z.

Proof. SupposeM has exactly two distinct smooth structures up to diffeomorphism.
Then by Theorem 4.3,M and M # 6 are not diffeomorphic, where6 is the exotic 8-
sphere. SinceN28 D 28(3), by Theorem 3.1, the stable tangential invariant� is zero
(mod 2) and hence Im(SÆ �) � 2Z. Conversely, suppose Im(SÆ �) � 2Z. Now by The-
orem 3.1,M can not be diffeomorphic toM #6, where6 is the exotic 8-sphere. Now
by Theorem 4.3,M has exactly two distinct smooth structures up to diffeomorphism.

REMARK 4.6. If n D 2, 3, 5, 6, 7 (mod 8) or the stable tangential invariant�

of M2n is zero (mod 2), then by [16, Corollary, p. 289] and Theorem 3.1, we have
I (M2n) D 0. So, by Theorem 4.3, we have the following:

Theorem 4.7. Let n be any integer greater than3 such that2n and 2nC1 are
trivial and M2n be a closed smooth(n� 1)-connected2n-manifold. If nD 2, 3, 5, 6, 7
(mod 8) or the stable tangential invariant� of M2n is zero (mod 2), then the set of
diffeomorphism classes of smooth structures on M2n is in one-to-one correspondence
with group N22n.

REMARK 4.8. (1) By Theorem 4.7, every closed smooth 4-connected 10-manifold
has exactly six distinct smooth structures, namely,{[M #6] j 6 2 N210� Z6}.
(2) If M2n is n-parallelisable, almost parallelisable or�-manifold, then the stable tan-
gential invariant� of M is zero [15]. Then by Theorem 4.7, we have the following:

Corollary 4.9. Let n be any integer greater than3 such that2n and2nC1 are triv-
ial and M2n be a closed smooth(n�1)-connected2n-manifold. If M2n is n-parallelisable,
almost parallelisable or�-manifold, then the set of diffeomorphism classes of smooth
structures on M2n is in one-to-one correspondence with groupN22n.

DEFINITION 4.10 ([8]). The normalk-type of a closed smooth manifoldM is
the fibre homotopy type of a fibrationp W B ! BO such that the fibre of the mapp
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is connected and its homotopy groups vanish in dimension� kC 1, admitting a lift of
the normal Gauss map�M W M ! BO to a map N�M W M ! B such thatN�M W M ! B
is a (k C 1)-equivalence, i.e., the induced homomorphismN�M W �i (M) ! �i (B) is an
isomorphism fori � k and surjective fori D k C 1. We call such a lift a normal
k-smoothing.

Theorem 4.11. Let nD 5,7and let M0 and M1 be closed smooth(n�1)-connected
2n-manifolds with the same Euler characteristic. Then
(i) There is a homotopy sphere62n

2

N

22n such that M0 and M1 # 62n are diffeo-
morphic.
(ii) Let M2n be a closed smooth(n � 1)-connected2n-manifold such that[M] D 0 2

�

String
2n and let6 be any exotic2n-sphere in N22n. Then M and M#6 are not diffeo-

morphic.

Proof. (i): M0 and M1 are (n� 1)-connected, andn is 5 or 7; therefore,p1=2
and the Stiefel–Whitney classes!2 vanish. So,M0 and M1 are BString-manifolds.
Let N�M j W M j ! BString be a lift of the normal Gauss map�M j W M j ! BO in the
fibration p W BStringD BOh8i ! BO, where j D 0 and 1. SinceBString is 7-
connected,p# W �i (BString) ! �i (BO) is an isomorphism for alli � 8. This shows
that N�M j W M j ! BString is an n-equivalence and hence the normal (n�1)-type of M0

and M1 is pW BString! BO. We know that�String
2n �

N

22n, where the group structure
is given by connected sum [4]. This implies that there alwaysexists62n

2

N

22n such
that M0 and M1 #62n are BString-bordant. SinceM0 and M1 #62n have the same
Euler characteristic, by [8, Corollary 4],M0 and M1 #62n are diffeomorphic.

(ii): Since the image of the standard sphere under the isomorphism N22n � �
String
2n

represents the trivial element in�String
2n , we have [M2n] ¤ [M # 6] in �

String
2n . This

implies thatM and M #6 are not BString-bordant. By obstruction theory,M2n has a
unique string structure. This implies thatM and M #6 are not diffeomorphic.

Theorem 4.12. Let M be a closed smooth6-connected14-dimensional�-manifold
and6 is the exotic14-sphere. Then M#6 is not diffeomorphic to M. Thus, I (M) D 0.
Moreover, if N is a closed smooth manifold homeomorphic to M, then N is diffeomorphic
to either M or M#6.

Proof. It follows from results of Anderson, Brown and Peterson on spin cobor-

dism [1] that the image of the natural homomorphism�framed
14 ! �

Spin
14 is 0 and�String

14 �

�

Spin
14 � Z2 [4]. This shows that [M] D 0 2 �String

14 . Now by Theorem 4.11 (ii),M #6 is
not diffeomorphic toM. If N is a closed smooth manifold homeomorphic toM, thenN
andM have the same Euler characteristic. Then by Theorem 4.11 (i), N is diffeomorphic
to either M or M #6.
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REMARK 4.13. By the above Theorem 4.12, the set of diffeomorphism classes
of smooth structures on a closed smooth 6-connected 14-dimensional�-manifold M is

{[M], [ M #6]} � Z2,

where6 is the exotic 14-sphere. So, the number of distinct smooth structures onM
is 2.
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