

Title	INERTIA GROUPS AND SMOOTH STRUCTURES OF $(n - 1)$ -CONNECTED $2n$ -MANIFOLDS
Author(s)	Ramesh, Kaslingam
Citation	Osaka Journal of Mathematics. 2016, 53(2), p. 309-319
Version Type	VoR
URL	https://doi.org/10.18910/58912
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

INERTIA GROUPS AND SMOOTH STRUCTURES OF $(n - 1)$ -CONNECTED $2n$ -MANIFOLDS

KASILINGAM RAMESH

(Received July 2, 2014, revised December 22, 2014)

Abstract

Let M^{2n} denote a closed $(n - 1)$ -connected smoothable topological $2n$ -manifold. We show that the group $\mathcal{C}(M^{2n})$ of concordance classes of smoothings of M^{2n} is isomorphic to the group of smooth homotopy spheres $\bar{\Theta}_{2n}$ for $n = 4$ or 5 , the concordance inertia group $I_c(M^{2n}) = 0$ for $n = 3, 4, 5$ or 11 and the homotopy inertia group $I_h(M^{2n}) = 0$ for $n = 4$. On the way, following Wall's approach [16] we present a new proof of the main result in [9], namely, for $n = 4, 8$ and $H^n(M^{2n}; \mathbb{Z}) \cong \mathbb{Z}$, the inertia group $I(M^{2n}) \cong \mathbb{Z}_2$. We also show that, up to orientation-preserving diffeomorphism, M^8 has at most two distinct smooth structures; M^{10} has exactly six distinct smooth structures and then show that if M^{14} is a π -manifold, M^{14} has exactly two distinct smooth structures.

1. Introduction

We work in the categories of closed, oriented, simply-connected *Cat*-manifolds M and N and orientation preserving maps, where $Cat = Diff$ for smooth manifolds or $Cat = Top$ for topological manifolds. Let $\bar{\Theta}_m$ be the group of smooth homotopy spheres defined by M. Kervaire and J. Milnor in [6]. Recall that the collection of homotopy spheres Σ which admit a diffeomorphism $M \rightarrow M \# \Sigma$ form a subgroup $I(M)$ of $\bar{\Theta}_m$, called the inertia group of M , where we regard the connected sum $M \# \Sigma^m$ as a smooth manifold with the same underlying topological space as M and with smooth structure differing from that of M only on an m -disc. The homotopy inertia group $I_h(M)$ of M^m is a subset of the inertia group consisting of homotopy spheres Σ for which the identity map $id: M \rightarrow M \# \Sigma^m$ is homotopic to a diffeomorphism. Similarly, the concordance inertia group of M^m , $I_c(M^m) \subseteq \bar{\Theta}_m$, consists of those homotopy spheres Σ^m such that M and $M \# \Sigma^m$ are concordant.

The paper is organized as following. Let M^{2n} denote a closed $(n - 1)$ -connected smoothable topological $2n$ -manifold. In Section 2, we show that the group $\mathcal{C}(M^{2n})$ of concordance classes of smoothings of M^{2n} is isomorphic to the group of smooth homotopy spheres $\bar{\Theta}_{2n}$ for $n = 4$ or 5 , the concordance inertia group $I_c(M^{2n}) = 0$ for $n = 3, 4, 5$ or 11 and the homotopy inertia group $I_h(M^{2n}) = 0$ for $n = 4$.

In Section 3, we present a new proof of the following result in [9].

Theorem 1.1. *Let M^{2n} be an $(n - 1)$ -connected closed smooth manifold of dimension $2n \neq 4$ such that $H^n(M; \mathbb{Z}) \cong \mathbb{Z}$. Then the inertia group $I(M^{2n}) \cong \mathbb{Z}_2$.*

In Section 4, we show that, up to orientation-preserving diffeomorphism, M^8 has at most two distinct smooth structures; M^{10} has exactly six distinct smooth structures and if M^{14} is a π -manifold, then M^{14} has exactly two distinct smooth structures.

2. Concordance inertia groups of $(n - 1)$ -connected $2n$ -manifolds

We recall some terminology from [6]:

DEFINITION 2.1. (a) A homotopy m -sphere Σ^m is a closed oriented smooth manifold homotopy equivalent to the standard unit sphere \mathbb{S}^m in \mathbb{R}^{m+1} .

(b) A homotopy m -sphere Σ^m is said to be exotic if it is not diffeomorphic to \mathbb{S}^m .

DEFINITION 2.2. Define the m -th group of smooth homotopy spheres Θ_m as follows. Elements are oriented h -cobordism classes $[\Sigma]$ of homotopy m -spheres Σ , where Σ and Σ' are called (oriented) h -cobordant if there is an oriented h -cobordism $(W, \partial_0 W, \partial_1 W)$ together with orientation preserving diffeomorphisms $\Sigma \rightarrow \partial_0 W$ and $(\Sigma')^- \rightarrow \partial_1 W$. The addition is given by the connected sum. The zero element is represented by \mathbb{S}^m . The inverse of $[\Sigma]$ is given by $[\Sigma^-]$, where Σ^- is obtained from Σ by reversing the orientation. M. Kervaire and J. Milnor [6] showed that each Θ_m is a finite abelian group ($m \geq 1$).

DEFINITION 2.3. Two homotopy m -spheres Σ_1^m and Σ_2^m are said to be equivalent if there exists an orientation preserving diffeomorphism $f: \Sigma_1^m \rightarrow \Sigma_2^m$.

The set of equivalence classes of homotopy m -spheres is denoted by $\bar{\Theta}_m$. The Kervaire–Milnor [6] paper worked rather with the group Θ_m of smooth homotopy spheres up to h -cobordism. This makes a difference only for $m = 4$, since it is known, using the h -cobordism theorem of Smale [12], that $\Theta_m \cong \bar{\Theta}_m$ for $m \neq 4$. However the difference is important in the four dimensional case, since Θ_4 is trivial, while the structure of $\bar{\Theta}_4$ is a great unsolved problem.

DEFINITION 2.4. Let M be a closed topological manifold. Let (N, f) be a pair consisting of a smooth manifold N together with a homeomorphism $f: N \rightarrow M$. Two such pairs (N_1, f_1) and (N_2, f_2) are concordant provided there exists a diffeomorphism $g: N_1 \rightarrow N_2$ such that the composition $f_2 \circ g$ is topologically concordant to f_1 , i.e., there exists a homeomorphism $F: N_1 \times [0, 1] \rightarrow M \times [0, 1]$ such that $F|_{N_1 \times 0} = f_1$ and $F|_{N_1 \times 1} = f_2 \circ g$. The set of all such concordance classes is denoted by $\mathcal{C}(M)$.

We will denote the class in $\mathcal{C}(M)$ of $(M^m \# \Sigma^m, \text{id})$ by $[M^m \# \Sigma^m]$. (Note that $[M^n \# \mathbb{S}^n]$ is the class of (M^n, id) .)

DEFINITION 2.5. Let M^m be a closed smooth m -dimensional manifold. The inertia group $I(M) \subset \bar{\Theta}_m$ is defined as the set of $\Sigma \in \bar{\Theta}_m$ for which there exists a diffeomorphism $\phi: M \rightarrow M \# \Sigma$.

Define the homotopy inertia group $I_h(M)$ to be the set of all $\Sigma \in I(M)$ such that there exists a diffeomorphism $M \rightarrow M \# \Sigma$ which is homotopic to $\text{id}: M \rightarrow M \# \Sigma$.

Define the concordance inertia group $I_c(M)$ to be the set of all $\Sigma \in I_h(M)$ such that $M \# \Sigma$ is concordant to M .

REMARK 2.6. (1) Clearly, $I_c(M) \subseteq I_h(M) \subseteq I(M)$.
(2) For $M = \mathbb{S}^m$, $I_c(M) = I_h(M) = I(M) = 0$.

Now we have the following:

Theorem 2.7. Let M^{2n} be a closed smooth $(n-1)$ -connected $2n$ -manifold with $n \geq 3$.

- (i) If n is any integer such that Θ_{n+1} is trivial, then $I_c(M^{2n}) = 0$.
- (ii) If n is any integer greater than 3 such that Θ_n and Θ_{n+1} are trivial, then

$$\mathcal{C}(M^{2n}) = \{[M^{2n} \# \Sigma] \mid \Sigma \in \bar{\Theta}_{2n}\} \cong \bar{\Theta}_{2n}.$$

- (iii) If $n = 8$ and $H^n(M; \mathbb{Z}) \cong \mathbb{Z}$, then $M^{2n} \# \Sigma^{2n}$ is not concordant to M^{2n} , where $\Sigma^{2n} \in \bar{\Theta}_{2n}$ is the exotic sphere. In particular, $\mathcal{C}(M^{2n})$ has at least two elements.
- (iv) If n is any even integer such that Θ_n and Θ_{n+1} are trivial, then $I_h(M) = 0$.

Proof. Let $\text{Cat} = \text{Top}$ or G , where Top and G are the stable spaces of self homeomorphisms of \mathbb{R}^n and self homotopy equivalences of \mathbb{S}^{n-1} respectively. For any degree one map $f_M: M \rightarrow \mathbb{S}^{2n}$, we have a homomorphism

$$f_M^*: [\mathbb{S}^{2n}, \text{Cat}/O] \rightarrow [M, \text{Cat}/O].$$

By Wall [15], M has the homotopy type of $X = (\bigvee_{i=1}^k \mathbb{S}_i^n) \cup_g \mathbb{D}^{2n}$, where k is the n -th Betti number of M , $\bigvee_{i=1}^k \mathbb{S}_i^n$ is the wedge sum of n -spheres which is the n -skeleton of M and $g: \mathbb{S}^{2n-1} \rightarrow \bigvee_{i=1}^k \mathbb{S}_i^n$ is the attaching map of \mathbb{D}^{2n} . Let $\phi: M \rightarrow X$ be a homotopy equivalence of degree one and $q: X \rightarrow \mathbb{S}^{2n}$ be the collapsing map obtained by identifying \mathbb{S}^{2n} with $X / \bigvee_{i=1}^k \mathbb{S}_i^n$ in an orientation preserving way. Let $f_M = q \circ \phi: M \rightarrow \mathbb{S}^{2n}$ be the degree one map.

Consider the following Puppe's exact sequence for the inclusion $i: \bigvee_{i=1}^k \mathbb{S}_i^n \hookrightarrow X$ along Cat/O :

(2.1)

$$\dots \rightarrow \left[\bigvee_{i=1}^k S\mathbb{S}_i^n, \text{Cat}/O \right] \xrightarrow{(S(g))^\ast} [\mathbb{S}^{2n}, \text{Cat}/O] \xrightarrow{q^\ast} [X, \text{Cat}/O] \xrightarrow{i^\ast} \left[\bigvee_{i=1}^k \mathbb{S}_i^n, \text{Cat}/O \right],$$

where $S(g)$ is the suspension of the map $g: \mathbb{S}^{2n-1} \rightarrow \bigvee_{i=1}^k \mathbb{S}_i^n$.

Using the fact that

$$\left[\bigvee_{i=1}^k S\mathbb{S}_i^n, \text{Cat}/O \right] \cong \prod_{i=1}^k [\mathbb{S}_i^{n+1}, \text{Cat}/O]$$

and

$$\left[\bigvee_{i=1}^k \mathbb{S}_i^n, \text{Cat}/O \right] \cong \prod_{i=1}^k [\mathbb{S}_i^n, \text{Cat}/O],$$

the above exact sequence (2.1) becomes

$$\cdots \rightarrow \prod_{i=1}^k [\mathbb{S}_i^{n+1}, \text{Cat}/O] \xrightarrow{(S(g))^*} [\mathbb{S}^{2n}, \text{Cat}/O] \xrightarrow{q^*} [X, \text{Cat}/O] \xrightarrow{i^*} \prod_{i=1}^k [\mathbb{S}_i^n, \text{Cat}/O].$$

(i): If n is any integer such that Θ_{n+1} is trivial and $\text{Cat} = \text{Top}$ in the above exact sequence (2.1), by using the fact that

$$[\mathbb{S}^m, \text{Top}/O] = \bar{\Theta}_m \quad (m \neq 3, 4)$$

and $[\mathbb{S}^4, \text{Top}/O] = 0$ ([10, pp. 200–201]), we have $q^*: [\mathbb{S}^{2n}, \text{Top}/O] \rightarrow [X, \text{Top}/O]$ is injective. Hence $f_M^* = \phi^* \circ q^*: \bar{\Theta}_{2n} \rightarrow [M, \text{Top}/O]$ is injective. By using the identifications $\mathcal{C}(M^{2n}) = [M, \text{Top}/O]$ given by [10, pp. 194–196], $f_M^*: \bar{\Theta}_{2n} \rightarrow \mathcal{C}(M^{2n})$ becomes $[\Sigma^{2n}] \rightarrow [M \# \Sigma^{2n}]$. $I_c(M)$ is exactly the kernel of f_M^* , and so $I_c(M) = 0$. This proves (i).

(ii): If $n > 3$, Θ_n and Θ_{n+1} are trivial, and $\text{Cat} = \text{Top}$ then, from the above exact sequence (2.1) we have $q^*: [\mathbb{S}^{2n}, \text{Top}/O] \rightarrow [X, \text{Top}/O]$ is an isomorphism. This shows that $f_M^* = \phi^* \circ q^*: \bar{\Theta}_{2n} \rightarrow \mathcal{C}(M^{2n})$ is an isomorphism and hence

$$\mathcal{C}(M^{2n}) = \{[M^{2n} \# \Sigma] \mid \Sigma \in \bar{\Theta}_{2n}\}.$$

This proves (ii).

(iii): If $n = 8$ and $H^n(M; \mathbb{Z}) \cong \mathbb{Z}$, then M^{2n} has the homotopy type of $X = \mathbb{S}^n \cup_g \mathbb{D}^{2n}$, where $g: \mathbb{S}^{2n-1} \rightarrow \mathbb{S}^n$ is the attaching map. In order to prove $M^{2n} \# \Sigma^{2n}$ is not concordant to M^{2n} , by the above exact sequence (2.1) for $\text{Cat} = \text{Top}$, it suffices to prove $q^*: [\mathbb{S}^{16}, \text{Top}/O] \rightarrow [X, \text{Top}/O]$ is monic, which is equivalent to saying that $(S(g))^*: [S\mathbb{S}^8, \text{Top}/O] \rightarrow [\mathbb{S}^{16}, \text{Top}/O]$ is the zero homomorphism. For the case $g = p$, where $p: \mathbb{S}^{15} \rightarrow \mathbb{S}^8$ is the Hopf map, $(S(g))^*$ is the zero homomorphism, which was proved in the course of the proof of Lemma 1 in [2, pp. 58–59]. This proof works verbatim for any map $g: \mathbb{S}^{2n-1} \rightarrow \mathbb{S}^n$ as well. This proves (iii).

(iv): If n is any even integer such that Θ_n and Θ_{n+1} are trivial, then $\pi_{n+1}(G/O) = 0$. This shows that from the above exact sequence (2.1) for $\text{Cat} = G$, $q^*: [\mathbb{S}^{2n}, G/O] \rightarrow [X, G/O]$ is injective. Then $f_M^* = \phi^* \circ q^*: [\mathbb{S}^{2n}, G/O] \rightarrow [M, G/O]$ is injective. From

the surgery exact sequences of M and \mathbb{S}^{2n} , we get the following commutative diagram ([3, Lemma 3.4]):

$$(2.2) \quad \begin{array}{ccccccc} L_{2n+1}(e) & \longrightarrow & \bar{\Theta}_{2n} & \xrightarrow{\eta_{\mathbb{S}^{2n}}} & \pi_{2n}(G/O) & \longrightarrow & L_{2n}(e) \\ \downarrow = & & \downarrow f_M^\bullet & & \downarrow f_M^* & & \downarrow = \\ L_{2n+1}(e) & \longrightarrow & \mathcal{S}^{Diff}(M) & \xrightarrow{\eta_M} & [M, G/O] & \longrightarrow & L_{2n}(e) \end{array}$$

By using the facts that $L_{2n+1}(e) = 0$, injectivity of $\eta_{\mathbb{S}^{2n}}$ and η_M follow from the diagram, and combine with the injectivity of f_M^* to show that $f_M^\bullet: \bar{\Theta}_{2n} \rightarrow \mathcal{S}^{Diff}(M)$ is injective. $I_h(M)$ is exactly the kernel of f_M^\bullet , and so $I_h(M) = 0$. This proves (iv). \square

REMARK 2.8. (i) By M. Kervaire and J. Milnor [6], $\Theta_m = 0$ for $m = 1, 2, 3, 4, 5, 6$ or 12. If M^{2n} is a closed smooth $(n-1)$ -connected $2n$ -manifold, by Theorem 2.7 (i) and (ii), $I_c(M^{2n}) = 0$ for $n = 3, 4, 5$ or 11 and $\mathcal{C}(M^{2n}) \cong \bar{\Theta}_{2n}$ for $n = 4$ or 5. (ii) If M has the homotopy type of \mathbb{OP}^2 , by Theorem 1.1 and Theorem 2.7 (iii), we have $I_c(M) = 0 \neq I(M)$. (iii) By Theorem 2.7 (iv), if M has the homotopy type of \mathbb{HP}^2 , then $I_h(M) = 0$.

DEFINITION 2.9. Let M and N are smooth manifolds. A smooth map $f: M \rightarrow N$ is called tangential if for some integers k, l , $f^*(T(N)) \oplus \epsilon_M^k \cong T(M) \oplus \epsilon_M^l$.

DEFINITION 2.10. Let M be a topological manifold. Let (N, f) be a pair consisting of a smooth manifold N together with a tangential homotopy equivalence of degree one $f: N \rightarrow M$. Two such pairs (N_1, f_1) and (N_2, f_2) are equivalent provided there exists a diffeomorphism $g: N_1 \rightarrow N_2$ such that $f_2 \circ g$ is homotopic to f_1 . The set of all such equivalence classes is denoted by $\theta(M)$.

For $M = \mathbb{HP}^2$, [5, Theorem 4] shows $\theta(\mathbb{HP}^2)$ contains at most two elements. Now by Remark 2.8 (iii), we have the following:

Corollary 2.11. $\theta(\mathbb{HP}^2)$ contains exactly two elements, with representatives given by $(\mathbb{HP}^2, \text{id})$ and $(\mathbb{HP}^2 \# \Sigma^8, \text{id})$, where Σ^8 is the exotic 8-sphere.

3. Inertia groups of projective plane-like manifolds

In [15], C.T.C. Wall assigned to each closed oriented $(n-1)$ -connected $2n$ -dimensional smooth manifold M^{2n} with $n \geq 3$, a system of invariants as follows:

- (1) $H = H^n(M; \mathbb{Z}) \cong \text{Hom}(H_n(M; \mathbb{Z}), \mathbb{Z}) \cong \bigoplus_{j=1}^k \mathbb{Z}$, the cohomology group of M , with k the n -th Betti number of M ,
- (2) $I: H \times H \rightarrow \mathbb{Z}$, the intersection form of M which is unimodular and n -symmetric, defined by

$$I(x, y) = \langle x \cup y, [M] \rangle,$$

where the homology class $[M]$ is the orientation class of M ,

(3) A map $\alpha: H^n(M; \mathbb{Z}) \rightarrow \pi_{n-1}(SO_n)$ that assigns each element $x \in H^n(M; \mathbb{Z})$ to the characteristic map $\alpha(x)$ for the normal bundle of the embedded n -sphere \mathbb{S}_x^n representing x .

Denote by $\chi = S \circ \alpha: H^n(M; \mathbb{Z}) \rightarrow \pi_{n-1}(SO_{n+1}) \cong \widetilde{KO}(\mathbb{S}^n)$, where $S: \pi_{n-1}(SO_n) \rightarrow \pi_{n-1}(SO_{n+1})$ is the suspension map. Then

$$\chi = S \circ \alpha \in H^n(M; \widetilde{KO}(\mathbb{S}^n)) = \text{Hom}(H^n(M; \mathbb{Z}); \widetilde{KO}(\mathbb{S}^n))$$

can be viewed as an n -dimensional cohomology class of M , with coefficients in $\widetilde{KO}(\mathbb{S}^n)$. The obstruction to triviality of the tangent bundle over the n -skeleton is the element $\chi \in H^n(M; \widetilde{KO}(\mathbb{S}^n))$ [15]. By [15, pp. 179–180], the Pontrjagin class of M^{2n} is given by

$$(3.1) \quad p_m(M^{2n}) = \pm a_m(2m-1)! \chi,$$

where $n = 4m$ and

$$a_m = \begin{cases} 1 & \text{if } 4m \equiv 0 \pmod{8}, \\ 2 & \text{if } 4m \equiv 4 \pmod{8}. \end{cases}$$

Define $\Theta_n(k)$ to be the subgroup of $\bar{\Theta}_n$ consisting of those homotopy n -sphere Σ^n which are the boundaries of k -connected $(n+1)$ -dimensional compact manifolds, $1 \leq k < [n/2]$. Thus, $\Theta_n(k)$ is the kernel of the natural map $i_k: \bar{\Theta}_n \rightarrow \Omega_n(k)$, where $\Omega_n(k)$ is the n -dimensional group in k -connective cobordism theory [13] and i_k sends Σ^n to its cobordism class. Using surgery, we see $\Omega_*(1)$ is the usual oriented cobordism group. So $\bar{\Theta}_n = \Theta_n(1)$. Similarly, $\Omega_n(2) \cong \Omega_n^{\text{Spin}}$ ($n \geq 7$); since $bSpin$ is, in fact, 3-connected, for $n \geq 8$, $\Omega_n(2) \cong \Omega_n(3)$ and $\Theta_n(2) = \Theta_n(3) = bSpin_n$. Here $bSpin_n$ consists of homotopy n -sphere which bound spin manifolds.

In [16], C.T.C. Wall defined the Grothendieck group \mathcal{G}_n^{2n+1} , a homomorphism $\vartheta: \mathcal{G}_n^{2n+1} \rightarrow \bar{\Theta}_{2n}$ such that $\vartheta(\mathcal{G}_n^{2n+1}) = \Theta_{2n}(n-1)$ and proved the following theorem:

Theorem 3.1 (Wall). *Let M^{2n} be a closed smooth $(n-1)$ -connected $2n$ -manifold and Σ^{2n} be a homotopy sphere in $\bar{\Theta}_{2n}$. Then $M \# \Sigma^{2n}$ is an orientation-preserving diffeomorphic to M if and only if*

- (i) $\Sigma^{2n} = 0$ in $\bar{\Theta}_{2n}$ or
- (ii) $\chi \not\equiv 0 \pmod{2}$ and $\Sigma^{2n} \in \vartheta(\mathcal{G}_n^{2n+1}) = \Theta_{2n}(n-1)$

We also need the following result from [1]:

Theorem 3.2 (Anderson, Brown, Peterson). *Let $\eta_n: \bar{\Theta}_n \rightarrow \Omega_n^{\text{Spin}}$ be the homomorphism such that η_n sends Σ^n to its spin cobordism class. Then $\eta_n \neq 0$ if and only if $n = 8k+1$ or $8k+2$.*

Proof of Theorem 1.1. Let ξ be a generator of $H^n(M^{2n}; \mathbb{Z})$. Consider the case $n = 4$. Then by Itiro Tamura [14] and (3.1), the Pontrjagin class of M^{2n} is given by

$$p_1(M^{2n}) = 2(2h + 1)\xi = \pm 2\chi,$$

where $h \in \mathbb{Z}$. This implies that

$$\chi = \pm(2h + 1)\xi.$$

Likewise, for $n = 8$, we have

$$p_2(M^{2n}) = 6(2k + 1)\xi = \pm 6\chi,$$

where $k \in \mathbb{Z}$. This implies that

$$\chi = \pm(2k + 1)\xi.$$

Therefore in either case, $\chi \not\equiv 0 \pmod{2}$. Now by Theorem 3.1, it follows that

$$I(M^{2n}) = \Theta_{2n}(n - 1).$$

Since $\Theta_{2n}(n - 1)$ is the kernel of the natural map $i_{n-1}: \bar{\Theta}_{2n} \rightarrow \Omega_{2n}(n - 1)$, where $\Omega_{2n}(n - 1) \cong \Omega_8^{Spin}$ for $n = 4$ and $\Omega_{2n}(n - 1) \cong \Omega_{16}^{String} \cong \mathbb{Z} \oplus \mathbb{Z}$ for $n = 8$ [4]. Now by Theorem 3.2 and using the fact that $\bar{\Theta}_{16} \cong \mathbb{Z}_2$ [6], we have $i_{n-1} = 0$ for $n = 4$ and 8. This shows that $\Theta_{2n}(n - 1) = \bar{\Theta}_{2n}$. This implies that

$$I(M^{2n}) \cong \mathbb{Z}_2.$$

This completes the proof of Theorem 1.1. \square

4. Smooth structures of $(n - 1)$ -connected $2n$ -manifolds

DEFINITION 4.1 (*Cat* = *Diff* or *Top*-structure sets, [3]). Let M be a closed *Cat*-manifold. We define the *Cat*-structure set $\mathcal{S}^{Cat}(M)$ to be the set of equivalence classes of pairs (N, f) where N is a closed *Cat*-manifold and $f: N \rightarrow M$ is a homotopy equivalence. And the equivalence relation is defined as follows:

$(N_1, f_1) \sim (N_2, f_2)$ if there is a *Cat*-isomorphism $\phi: N_1 \rightarrow N_2$ such that $f_2 \circ h$ is homotopic to f_1 .

We will denote the class in $\mathcal{S}^{Cat}(M)$ of (N, f) by $[(N, f)]$. The base point of $\mathcal{S}^{Cat}(M)$ is the equivalence class $[(M, \text{id})]$ of $\text{id}: M \rightarrow M$.

The forgetful maps $F_{Diff}: \mathcal{S}^{Diff}(M) \rightarrow \mathcal{S}^{Top}(M)$ and $F_{Con}: \mathcal{C}(M) \rightarrow \mathcal{S}^{Diff}(M)$ fit into a short exact sequence of pointed sets [3]:

$$\mathcal{C}(M) \xrightarrow{F_{Con}} \mathcal{S}^{Diff}(M) \xrightarrow{F_{Diff}} \mathcal{S}^{Top}(M).$$

Theorem 4.2. *Let n be any integer greater than 3 such that Θ_n and Θ_{n+1} are trivial and M^{2n} be a closed smooth $(n-1)$ -connected $2n$ -manifold. Let $f: N \rightarrow M$ be a homeomorphism where N is a closed smooth manifold. Then*

(i) *there exists a diffeomorphism $\phi: N \rightarrow M \# \Sigma^{2n}$, where $\Sigma^{2n} \in \bar{\Theta}_{2n}$ such that the following diagram commutes up to homotopy:*

$$\begin{array}{ccc} N & \xrightarrow{\phi} & M \# \Sigma^{2n} \\ & \searrow f & \downarrow \text{id} \\ & & M \end{array}$$

(ii) *If $I_h(M) = \bar{\Theta}_{2n}$, then $f: N \rightarrow M$ is homotopic to a diffeomorphism.*

Proof. Consider the short exact sequence of pointed sets

$$\mathcal{C}(M) \xrightarrow{F_{Con}} \mathcal{S}^{Diff}(M) \xrightarrow{F_{Diff}} \mathcal{S}^{Top}(M).$$

By Theorem 2.7 (ii), we have

$$\mathcal{C}(M) = \{[M \# \Sigma] \mid \Sigma \in \bar{\Theta}_{2n}\} \cong \bar{\Theta}_{2n}.$$

Since $[(N, f)] \in F_{Diff}^{-1}([(M, \text{id})])$, we obtain

$$[(N, f)] \in \text{Im}(F_{Con}) = \{[M \# \Sigma] \mid \Sigma \in \bar{\Theta}_{2n}\}.$$

This implies that there exists a homotopy sphere $\Sigma^{2n} \in \bar{\Theta}_{2n}$ such that $(N, f) \sim (M \# \Sigma^{2n}, \text{id})$ in $\mathcal{S}^{Diff}(M)$. This implies that there exists a diffeomorphism $\phi: N \rightarrow M \# \Sigma^{2n}$ such that f is homotopic to $\text{id} \circ \phi$. This proves (i).

If $I_h(M) = \bar{\Theta}_{2n}$, then $\text{Im}(F_{Con}) = \{[(M, \text{id})]\}$ and hence $(N, f) \sim (M, \text{id})$ in $\mathcal{S}^{Diff}(M)$. This shows that $f: N \rightarrow M$ is homotopic to a diffeomorphism $N \rightarrow M$. This proves (ii). \square

Theorem 4.3. *Let n be any integer greater than 3 such that Θ_n and Θ_{n+1} are trivial and M^{2n} be a closed smooth $(n-1)$ -connected $2n$ -manifold. Then the number of distinct smooth structures on M^{2n} up to diffeomorphism is less than or equal to the cardinality of $\bar{\Theta}_{2n}$. In particular, the set of diffeomorphism classes of smooth structures on M^{2n} is $\{[M \# \Sigma] \mid \Sigma \in \bar{\Theta}_{2n}\}$.*

Proof. By Theorem 4.2 (i), if N is a closed smooth manifold homeomorphic to M , then N is diffeomorphic to $M \# \Sigma^{2n}$ for some homotopy $2n$ -sphere Σ^{2n} . This implies that the set of diffeomorphism classes of smooth structures on M^{2n} is $\{[M \# \Sigma] \mid \Sigma \in \bar{\Theta}_{2n}\}$. This shows that the number of distinct smooth structures on M^{2n} up to diffeomorphism is less than or equal to the cardinality of $\bar{\Theta}_{2n}$. \square

REMARK 4.4. (1) By Theorem 4.3, every closed smooth 3-connected 8-manifold has at most two distinct smooth structures up to diffeomorphism.

(2) If M^8 is a closed smooth 3-connected 8-manifold such that $H^4(M; \mathbb{Z}) \cong \mathbb{Z}$, then by Theorem 1.1, $I(M) \cong \mathbb{Z}_2$. Now by Theorem 4.3, M has a unique smooth structure up to diffeomorphism.

(3) If $M = \mathbb{S}^4 \times \mathbb{S}^4$, then by Theorem 4.3, $\mathbb{S}^4 \times \mathbb{S}^4$ has at most two distinct smooth structures up to diffeomorphism, namely, $\{[\mathbb{S}^4 \times \mathbb{S}^4], [\mathbb{S}^4 \times \mathbb{S}^4 \# \Sigma]\}$, where Σ is the exotic 8-sphere. However, by [11, Theorem A], $I(\mathbb{S}^4 \times \mathbb{S}^4) = 0$. This implies that $\mathbb{S}^4 \times \mathbb{S}^4$ has exactly two distinct smooth structures.

Theorem 4.5. *Let M be a closed smooth 3-connected 8-manifold with stable tangential invariant $\chi = S \circ \alpha: H_4(M; \mathbb{Z}) \rightarrow \pi_3(SO) = \mathbb{Z}$. Then M has exactly two distinct smooth structures up to diffeomorphism if and only if $\text{Im}(S \circ \alpha) \subseteq 2\mathbb{Z}$.*

Proof. Suppose M has exactly two distinct smooth structures up to diffeomorphism. Then by Theorem 4.3, M and $M \# \Sigma$ are not diffeomorphic, where Σ is the exotic 8-sphere. Since $\bar{\Theta}_8 = \Theta_8(3)$, by Theorem 3.1, the stable tangential invariant χ is zero $(\text{mod } 2)$ and hence $\text{Im}(S \circ \alpha) \subseteq 2\mathbb{Z}$. Conversely, suppose $\text{Im}(S \circ \alpha) \subseteq 2\mathbb{Z}$. Now by Theorem 3.1, M can not be diffeomorphic to $M \# \Sigma$, where Σ is the exotic 8-sphere. Now by Theorem 4.3, M has exactly two distinct smooth structures up to diffeomorphism. \square

REMARK 4.6. If $n = 2, 3, 5, 6, 7 \pmod{8}$ or the stable tangential invariant χ of M^{2n} is zero $(\text{mod } 2)$, then by [16, Corollary, p. 289] and Theorem 3.1, we have $I(M^{2n}) = 0$. So, by Theorem 4.3, we have the following:

Theorem 4.7. *Let n be any integer greater than 3 such that Θ_n and Θ_{n+1} are trivial and M^{2n} be a closed smooth $(n-1)$ -connected $2n$ -manifold. If $n = 2, 3, 5, 6, 7 \pmod{8}$ or the stable tangential invariant χ of M^{2n} is zero $(\text{mod } 2)$, then the set of diffeomorphism classes of smooth structures on M^{2n} is in one-to-one correspondence with group $\bar{\Theta}_{2n}$.*

REMARK 4.8. (1) By Theorem 4.7, every closed smooth 4-connected 10-manifold has exactly six distinct smooth structures, namely, $\{[M \# \Sigma] \mid \Sigma \in \bar{\Theta}_{10} \cong \mathbb{Z}_6\}$.

(2) If M^{2n} is n -parallelisable, almost parallelisable or π -manifold, then the stable tangential invariant χ of M is zero [15]. Then by Theorem 4.7, we have the following:

Corollary 4.9. *Let n be any integer greater than 3 such that Θ_n and Θ_{n+1} are trivial and M^{2n} be a closed smooth $(n-1)$ -connected $2n$ -manifold. If M^{2n} is n -parallelisable, almost parallelisable or π -manifold, then the set of diffeomorphism classes of smooth structures on M^{2n} is in one-to-one correspondence with group $\bar{\Theta}_{2n}$.*

DEFINITION 4.10 ([8]). The normal k -type of a closed smooth manifold M is the fibre homotopy type of a fibration $p: B \rightarrow BO$ such that the fibre of the map p

is connected and its homotopy groups vanish in dimension $\geq k+1$, admitting a lift of the normal Gauss map $\nu_M: M \rightarrow BO$ to a map $\bar{\nu}_M: M \rightarrow B$ such that $\bar{\nu}_M: M \rightarrow B$ is a $(k+1)$ -equivalence, i.e., the induced homomorphism $\bar{\nu}_M: \pi_i(M) \rightarrow \pi_i(B)$ is an isomorphism for $i \leq k$ and surjective for $i = k+1$. We call such a lift a normal k -smoothing.

Theorem 4.11. *Let $n = 5, 7$ and let M_0 and M_1 be closed smooth $(n-1)$ -connected $2n$ -manifolds with the same Euler characteristic. Then*

- (i) *There is a homotopy sphere $\Sigma^{2n} \in \bar{\Theta}_{2n}$ such that M_0 and $M_1 \# \Sigma^{2n}$ are diffeomorphic.*
- (ii) *Let M^{2n} be a closed smooth $(n-1)$ -connected $2n$ -manifold such that $[M] = 0 \in \Omega_{2n}^{\text{String}}$ and let Σ be any exotic $2n$ -sphere in $\bar{\Theta}_{2n}$. Then M and $M \# \Sigma$ are not diffeomorphic.*

Proof. (i): M_0 and M_1 are $(n-1)$ -connected, and n is 5 or 7; therefore, $p_1/2$ and the Stiefel–Whitney classes ω_2 vanish. So, M_0 and M_1 are $B\text{String}$ -manifolds. Let $\bar{\nu}_{M_j}: M_j \rightarrow B\text{String}$ be a lift of the normal Gauss map $\nu_{M_j}: M_j \rightarrow BO$ in the fibration $p: B\text{String} = BO\langle 8 \rangle \rightarrow BO$, where $j = 0$ and 1. Since $B\text{String}$ is 7-connected, $p_*: \pi_i(B\text{String}) \rightarrow \pi_i(BO)$ is an isomorphism for all $i \geq 8$. This shows that $\bar{\nu}_{M_j}: M_j \rightarrow B\text{String}$ is an n -equivalence and hence the normal $(n-1)$ -type of M_0 and M_1 is $p: B\text{String} \rightarrow BO$. We know that $\Omega_{2n}^{\text{String}} \cong \bar{\Theta}_{2n}$, where the group structure is given by connected sum [4]. This implies that there always exists $\Sigma^{2n} \in \bar{\Theta}_{2n}$ such that M_0 and $M_1 \# \Sigma^{2n}$ are $B\text{String}$ -bordant. Since M_0 and $M_1 \# \Sigma^{2n}$ have the same Euler characteristic, by [8, Corollary 4], M_0 and $M_1 \# \Sigma^{2n}$ are diffeomorphic.

(ii): Since the image of the standard sphere under the isomorphism $\bar{\Theta}_{2n} \cong \Omega_{2n}^{\text{String}}$ represents the trivial element in $\Omega_{2n}^{\text{String}}$, we have $[M^{2n}] \neq [M \# \Sigma]$ in $\Omega_{2n}^{\text{String}}$. This implies that M and $M \# \Sigma$ are not $B\text{String}$ -bordant. By obstruction theory, M^{2n} has a unique string structure. This implies that M and $M \# \Sigma$ are not diffeomorphic. \square

Theorem 4.12. *Let M be a closed smooth 6-connected 14-dimensional π -manifold and Σ is the exotic 14-sphere. Then $M \# \Sigma$ is not diffeomorphic to M . Thus, $I(M) = 0$. Moreover, if N is a closed smooth manifold homeomorphic to M , then N is diffeomorphic to either M or $M \# \Sigma$.*

Proof. It follows from results of Anderson, Brown and Peterson on spin cobordism [1] that the image of the natural homomorphism $\Omega_{14}^{\text{framed}} \rightarrow \Omega_{14}^{\text{Spin}}$ is 0 and $\Omega_{14}^{\text{String}} \cong \Omega_{14}^{\text{Spin}} \cong \mathbb{Z}_2$ [4]. This shows that $[M] = 0 \in \Omega_{14}^{\text{String}}$. Now by Theorem 4.11 (ii), $M \# \Sigma$ is not diffeomorphic to M . If N is a closed smooth manifold homeomorphic to M , then N and M have the same Euler characteristic. Then by Theorem 4.11 (i), N is diffeomorphic to either M or $M \# \Sigma$. \square

REMARK 4.13. By the above Theorem 4.12, the set of diffeomorphism classes of smooth structures on a closed smooth 6-connected 14-dimensional π -manifold M is

$$\{[M], [M \# \Sigma]\} \cong \mathbb{Z}_2,$$

where Σ is the exotic 14-sphere. So, the number of distinct smooth structures on M is 2.

ACKNOWLEDGMENTS. The author would like to thank his advisor, Prof. A.R. Shastri for several helpful suggestions and questions.

References

- [1] D.W. Anderson, E.H. Brown, Jr. and F.P. Peterson: *The structure of the Spin cobordism ring*, Ann. of Math. (2) **86** (1967), 271–298.
- [2] C.S. Aravinda and F.T. Farrell: *Exotic negatively curved structures on Cayley hyperbolic manifolds*, J. Differential Geom. **63** (2003), 41–62.
- [3] D. Crowley: *The smooth structure set of $S^p \times S^q$* , Geom. Dedicata **148** (2010), 15–33.
- [4] V. Giambalvo: *On $\{8\}$ -cobordism*, Illinois J. Math. **15** (1971), 533–541.
- [5] D.N. Hertz: *Ambient surgery and tangential homotopy quaternionic projective spaces*, Trans. Amer. Math. Soc. **145** (1969), 517–545.
- [6] M.A. Kervaire and J.W. Milnor: *Groups of homotopy spheres*, I, Ann. of Math. (2) **77** (1963), 504–537.
- [7] A. Kosinski: *On the inertia group of π -manifolds*, Amer. J. Math. **89** (1967), 227–248.
- [8] M. Kreck: *Surgery and duality*, Ann. of Math. (2) **149** (1999), 707–754.
- [9] L. Kramer and S. Stolz: *A diffeomorphism classification of manifolds which are like projective planes*, J. Differential Geom. **77** (2007), 177–188.
- [10] R.C. Kirby and L.C. Siebenmann: *Foundational Essays on Topological Manifolds, Smoothings, and Triangulations*, Ann. of Math. Studies **88**, Princeton Univ. Press, Princeton, NJ, 1977.
- [11] R. Schultz: *On the inertia group of a product of spheres*, Trans. Amer. Math. Soc. **156** (1971), 137–153.
- [12] S. Smale: *On the structure of manifolds*, Amer. J. Math. **84** (1962), 387–399.
- [13] R.E. Stong: *Notes on Cobordism Theory*, Princeton Univ. Press, Princeton, NJ, 1968.
- [14] I. Tamura: *8-manifolds admitting no differentiable structure*, J. Math. Soc. Japan **13** (1961), 377–382.
- [15] C.T.C. Wall: *Classification of $(n-1)$ -connected $2n$ -manifolds*, Ann. of Math. (2) **75** (1962), 163–189.
- [16] C.T.C. Wall: *Classification problems in differential topology. VI. Classification of $(s-1)$ -connected $(2s+1)$ -manifolds*, Topology **6** (1967), 273–296.

Department of Mathematics
 Indian Institute of Technology, Bombay
 Mumbai-76
 India
 e-mail: rameshk@math.iitb.ac.in
 e-mail: mathsramesh1984@gmail.com