

Title	INERTIA GROUPS AND SMOOTH STRUCTURES OF (n - 1)- CONNECTED 2n-MANIFOLDS
Author(s)	Ramesh, Kaslingam
Citation	Osaka Journal of Mathematics. 2016, 53(2), p. 309–319
Version Type	VoR
URL	https://doi.org/10.18910/58912
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

INERTIA GROUPS AND SMOOTH STRUCTURES OF (n - 1)-CONNECTED 2*n*-MANIFOLDS

KASILINGAM RAMESH

(Received July 2, 2014, revised December 22, 2014)

Abstract

Let M^{2n} denote a closed (n-1)-connected smoothable topological 2n-manifold. We show that the group $C(M^{2n})$ of concordance classes of smoothings of M^{2n} is isomorphic to the group of smooth homotopy spheres $\overline{\Theta}_{2n}$ for n = 4 or 5, the concordance inertia group $I_c(M^{2n}) = 0$ for n = 3, 4, 5 or 11 and the homotopy inertia group $I_h(M^{2n}) = 0$ for n = 4. On the way, following Wall's approach [16] we present a new proof of the main result in [9], namely, for n = 4, 8 and $H^n(M^{2n}; \mathbb{Z}) \cong \mathbb{Z}$, the inertia group $I(M^{2n}) \cong \mathbb{Z}_2$. We also show that, up to orientation-preserving diffeomorphism, M^8 has at most two distinct smooth structures; M^{10} has exactly six distinct smooth structures and then show that if M^{14} is a π -manifold, M^{14} has exactly two distinct smooth structures.

1. Introduction

We work in the categories of closed, oriented, simply-connected *Cat*-manifolds Mand N and orientation preserving maps, where Cat = Diff for smooth manifolds or Cat = Top for topological manifolds. Let $\bar{\Theta}_m$ be the group of smooth homotopy spheres defined by M. Kervaire and J. Milnor in [6]. Recall that the collection of homotopy spheres Σ which admit a diffeomorphism $M \to M \# \Sigma$ form a subgroup I(M) of $\bar{\Theta}_m$, called the inertia group of M, where we regard the connected sum $M \# \Sigma^m$ as a smooth manifold with the same underlying topological space as M and with smooth structure differing from that of M only on an m-disc. The homotopy inertia group $I_h(M)$ of M^m is a subset of the inertia group consisting of homotopy spheres Σ for which the identity map id: $M \to M \# \Sigma^m$ is homotopic to a diffeomorphism. Similarly, the concordance inertia group of M^m , $I_c(M^m) \subseteq \bar{\Theta}_m$, consists of those homotopy spheres Σ^m such that M and $M \# \Sigma^m$ are concordant.

The paper is organized as following. Let M^{2n} denote a closed (n-1)-connected smoothable topological 2*n*-manifold. In Section 2, we show that the group $C(M^{2n})$ of concordance classes of smoothings of M^{2n} is isomorphic to the group of smooth homotopy spheres $\overline{\Theta}_{2n}$ for n = 4 or 5, the concordance inertia group $I_c(M^{2n}) = 0$ for n = 3, 4, 5 or 11 and the homotopy inertia group $I_h(M^{2n}) = 0$ for n = 4.

In Section 3, we present a new proof of the following result in [9].

²⁰¹⁰ Mathematics Subject Classification. 57R55, 57R60, 57R50, 57R65.

K. RAMESH

Theorem 1.1. Let M^{2n} be an (n-1)-connected closed smooth manifold of dimension $2n \neq 4$ such that $H^n(M; \mathbb{Z}) \cong \mathbb{Z}$. Then the inertia group $I(M^{2n}) \cong \mathbb{Z}_2$.

In Section 4, we show that, up to orientation-preserving diffeomorphism, M^8 has at most two distinct smooth structures; M^{10} has exactly six distinct smooth structures and if M^{14} is a π -manifold, then M^{14} has exactly two distinct smooth structures.

2. Concordance inertia groups of (n-1)-connected 2*n*-manifolds

We recall some terminology from [6]:

DEFINITION 2.1. (a) A homotopy *m*-sphere Σ^m is a closed oriented smooth manifold homotopy equivalent to the standard unit sphere \mathbb{S}^m in \mathbb{R}^{m+1} .

(b) A homotopy *m*-sphere Σ^m is said to be exotic if it is not diffeomorphic to \mathbb{S}^m .

DEFINITION 2.2. Define the *m*-th group of smooth homotopy spheres Θ_m as follows. Elements are oriented *h*-cobordism classes $[\Sigma]$ of homotopy *m*-spheres Σ , where Σ and Σ' are called (oriented) *h*-cobordant if there is an oriented *h*-cobordism $(W, \partial_0 W, \partial_1 W)$ together with orientation preserving diffeomorphisms $\Sigma \to \partial_0 W$ and $(\Sigma')^- \to \partial_1 W$. The addition is given by the connected sum. The zero element is represented by \mathbb{S}^m . The inverse of $[\Sigma]$ is given by $[\Sigma^-]$, where Σ^- is obtained from Σ by reversing the orientation. M. Kervaire and J. Milnor [6] showed that each Θ_m is a finite abelian group $(m \ge 1)$.

DEFINITION 2.3. Two homotopy *m*-spheres Σ_1^m and Σ_2^m are said to be equivalent if there exists an orientation preserving diffeomorphism $f: \Sigma_1^m \to \Sigma_2^m$.

The set of equivalence classes of homotopy *m*-spheres is denoted by $\overline{\Theta}_m$. The Kervaire–Milnor [6] paper worked rather with the group Θ_m of smooth homotopy spheres up to *h*-cobordism. This makes a difference only for m = 4, since it is known, using the *h*-cobordism theorem of Smale [12], that $\Theta_m \cong \overline{\Theta}_m$ for $m \neq 4$. However the difference is important in the four dimensional case, since Θ_4 is trivial, while the structure of $\overline{\Theta}_4$ is a great unsolved problem.

DEFINITION 2.4. Let M be a closed topological manifold. Let (N, f) be a pair consisting of a smooth manifold N together with a homeomorphism $f: N \to M$. Two such pairs (N_1, f_1) and (N_2, f_2) are concordant provided there exists a diffeomorphism $g: N_1 \to N_2$ such that the composition $f_2 \circ g$ is topologically concordant to f_1 , i.e., there exists a homeomorphism $F: N_1 \times [0, 1] \to M \times [0, 1]$ such that $F_{|N_1 \times 0} = f_1$ and $F_{|N_1 \times 1} = f_2 \circ g$. The set of all such concordance classes is denoted by C(M).

We will denote the class in $\mathcal{C}(M)$ of $(M^m \# \Sigma^m, \text{ id})$ by $[M^m \# \Sigma^m]$. (Note that $[M^n \# \mathbb{S}^n]$ is the class of $(M^n, \text{ id})$.)

DEFINITION 2.5. Let M^m be a closed smooth *m*-dimensional manifold. The inertia group $I(M) \subset \overline{\Theta}_m$ is defined as the set of $\Sigma \in \overline{\Theta}_m$ for which there exists a diffeomorphism $\phi: M \to M \# \Sigma$.

Define the homotopy inertia group $I_h(M)$ to be the set of all $\Sigma \in I(M)$ such that there exists a diffeomorphism $M \to M \# \Sigma$ which is homotopic to id: $M \to M \# \Sigma$.

Define the concordance inertia group $I_c(M)$ to be the set of all $\Sigma \in I_h(M)$ such that $M \# \Sigma$ is concordant to M.

REMARK 2.6. (1) Clearly, $I_c(M) \subseteq I_h(M) \subseteq I(M)$. (2) For $M = \mathbb{S}^m$, $I_c(M) = I_h(M) = I(M) = 0$.

Now we have the following:

Theorem 2.7. Let M^{2n} be a closed smooth (n - 1)-connected 2*n*-manifold with $n \ge 3$.

(i) If n is any integer such that Θ_{n+1} is trivial, then $I_c(M^{2n}) = 0$.

(ii) If n is any integer greater than 3 such that Θ_n and Θ_{n+1} are trivial, then

$$\mathcal{C}(M^{2n}) = \{ [M^{2n} \# \Sigma] \mid \Sigma \in \bar{\Theta}_{2n} \} \cong \bar{\Theta}_{2n}.$$

(iii) If n = 8 and $H^n(M; \mathbb{Z}) \cong \mathbb{Z}$, then $M^{2n} \# \Sigma^{2n}$ is not concordant to M^{2n} , where $\Sigma^{2n} \in \overline{\Theta}_{2n}$ is the exotic sphere. In particular, $C(M^{2n})$ has at least two elements. (iv) If n is any even integer such that Θ_n and Θ_{n+1} are trivial, then $I_h(M) = 0$.

Proof. Let Cat = Top or G, where Top and G are the stable spaces of self homeomorphisms of \mathbb{R}^n and self homotopy equivalences of \mathbb{S}^{n-1} respectively. For any degree one map $f_M \colon M \to \mathbb{S}^{2n}$, we have a homomorphism

$$f_M^* \colon [\mathbb{S}^{2n}, Cat/O] \to [M, Cat/O].$$

By Wall [15], *M* has the homotopy type of $X = (\bigvee_{i=1}^{k} \mathbb{S}_{i}^{n}) \cup_{g} \mathbb{D}^{2n}$, where *k* is the *n*-th Betti number of M, $\bigvee_{i=1}^{k} \mathbb{S}_{i}^{n}$ is the wedge sum of *n*-spheres which is the *n*-skeleton of *M* and $g: \mathbb{S}^{2n-1} \to \bigvee_{i=1}^{k} \mathbb{S}_{i}^{n}$ is the attaching map of \mathbb{D}^{2n} . Let $\phi: M \to X$ be a homotopy equivalence of degree one and $q: X \to \mathbb{S}^{2n}$ be the collapsing map obtained by identifying \mathbb{S}^{2n} with $X/\bigvee_{i=1}^{k} \mathbb{S}_{i}^{n}$ in an orientation preserving way. Let $f_{M} = q \circ \phi: M \to \mathbb{S}^{2n}$ be the degree one map.

Consider the following Puppe's exact sequence for the inclusion $i: \bigvee_{i=1}^k \mathbb{S}_i^n \hookrightarrow X$ along *Cat/O*:

$$\cdots \to \left[\bigvee_{i=1}^{k} S\mathbb{S}_{i}^{n}, Cat/O\right] \xrightarrow{(S(g))^{*}} [\mathbb{S}^{2n}, Cat/O] \xrightarrow{q^{*}} [X, Cat/O] \xrightarrow{i^{*}} \left[\bigvee_{i=1}^{k} \mathbb{S}_{i}^{n}, Cat/O\right],$$

where S(g) is the suspension of the map $g: \mathbb{S}^{2n-1} \to \bigvee_{i=1}^{k} \mathbb{S}_{i}^{n}$. Using the fact that

$$\left[\bigvee_{i=1}^{k} S\mathbb{S}_{i}^{n}, Cat/O\right] \cong \prod_{i=1}^{k} [\mathbb{S}_{i}^{n+1}, Cat/O]$$

and

$$\left[\bigvee_{i=1}^{k} \mathbb{S}_{i}^{n}, Cat/O\right] \cong \prod_{i=1}^{k} [\mathbb{S}_{i}^{n}, Cat/O],$$

the above exact sequence (2.1) becomes

$$\cdots \to \prod_{i=1}^{k} [\mathbb{S}_{i}^{n+1}, Cat/O] \xrightarrow{(S(g))^{*}} [\mathbb{S}^{2n}, Cat/O] \xrightarrow{q^{*}} [X, Cat/O] \xrightarrow{i^{*}} \prod_{i=1}^{k} [\mathbb{S}_{i}^{n}, Cat/O].$$

(i): If *n* is any integer such that Θ_{n+1} is trivial and *Cat* = *Top* in the above exact sequence (2.1), by using the fact that

$$[\mathbb{S}^m, Top/O] = \bar{\Theta}_m \quad (m \neq 3, 4)$$

and $[\mathbb{S}^4, Top/O] = 0$ ([10, pp. 200–201]), we have $q^* : [\mathbb{S}^{2n}, Top/O] \to [X, Top/O]$ is injective. Hence $f_M^* = \phi^* \circ q^* : \overline{\Theta}_{2n} \to [M, Top/O]$ is injective. By using the identifications $\mathcal{C}(M^{2n}) = [M, Top/O]$ given by [10, pp. 194–196], $f_M^* : \overline{\Theta}_{2n} \to \mathcal{C}(M^{2n})$ becomes $[\Sigma^{2n}] \to [M \# \Sigma^{2n}]$. $I_c(M)$ is exactly the kernel of f_M^* , and so $I_c(M) = 0$. This proves (i).

(ii): If n > 3, Θ_n and Θ_{n+1} are trivial, and Cat = Top then, from the above exact sequence (2.1) we have $q^* \colon [\mathbb{S}^{2n}, Top/O] \to [X, Top/O]$ is an isomorphism. This shows that $f_M^* = \phi^* \circ q^* \colon \overline{\Theta}_{2n} \to \mathcal{C}(M^{2n})$ is an isomorphism and hence

$$\mathcal{C}(M^{2n}) = \{ [M^{2n} \# \Sigma] \mid \Sigma \in \bar{\Theta}_{2n} \}.$$

This proves (ii).

(iii): If n = 8 and $H^n(M; \mathbb{Z}) \cong \mathbb{Z}$, then M^{2n} has the homotopy type of $X = \mathbb{S}^n \cup_g \mathbb{D}^{2n}$, where $g: \mathbb{S}^{2n-1} \to \mathbb{S}^n$ is the attaching map. In order to prove $M^{2n} \# \Sigma^{2n}$ is not concordant to M^{2n} , by the above exact sequence (2.1) for Cat = Top, it suffices to prove $q^*: [\mathbb{S}^{16}, Top/O] \to [X, Top/O]$ is monic, which is equivalent to saying that $(S(g))^*: [S\mathbb{S}^8, Top/O] \to [\mathbb{S}^{16}, Top/O]$ is the zero homomorphism. For the case g = p, where $p: \mathbb{S}^{15} \to \mathbb{S}^8$ is the Hopf map, $(S(g))^*$ is the zero homomorphism, which was proved in the course of the proof of Lemma 1 in [2, pp.58–59]. This proof works verbatim for any map $g: \mathbb{S}^{2n-1} \to \mathbb{S}^n$ as well. This proves (iii).

(iv): If *n* is any even integer such that Θ_n and Θ_{n+1} are trivial, then $\pi_{n+1}(G/O) = 0$. This shows that from the above exact sequence (2.1) for Cat = G, $q^* \colon [\mathbb{S}^{2n}, G/O] \to [X, G/O]$ is injective. Then $f_M^* = \phi^* \circ q^* \colon [\mathbb{S}^{2n}, G/O] \to [M, G/O]$ is injective. From

312

the surgery exact sequences of M and \mathbb{S}^{2n} , we get the following commutative diagram ([3, Lemma 3.4]):

By using the facts that $L_{2n+1}(e) = 0$, injectivity of $\eta_{\mathbb{S}^{2n}}$ and η_M follow from the diagram, and combine with the injectivity of f_M^* to show that $f_M^{\bullet} : \overline{\Theta}_{2n} \to \mathcal{S}^{Diff}(M)$ is injective. $I_h(M)$ is exactly the kernel of f_M^{\bullet} , and so $I_h(M) = 0$. This proves (iv).

REMARK 2.8. (i) By M. Kervaire and J. Milnor [6], $\Theta_m = 0$ for m = 1, 2, 3, 4, 5, 6 or 12. If M^{2n} is a closed smooth (n-1)-connected 2n-manifold, by Theorem 2.7 (i) and (ii), $I_c(M^{2n}) = 0$ for n = 3, 4, 5 or 11 and $\mathcal{C}(M^{2n}) \cong \overline{\Theta}_{2n}$ for n = 4 or 5. (ii) If M has the homotopy type of $\mathbb{O}\mathbf{P}^2$, by Theorem 1.1 and Theorem 2.7 (iii), we have $I_c(M) = 0 \neq I(M)$.

(iii) By Theorem 2.7 (iv), if M has the homotopy type of
$$\mathbb{H}\mathbf{P}^2$$
, then $I_h(M) = 0$.

DEFINITION 2.9. Let *M* and *N* are smooth manifolds. A smooth map $f: M \to N$ is called tangential if for some integers $k, l, f^*(T(N)) \oplus \epsilon_M^k \cong T(M) \oplus \epsilon_M^l$.

DEFINITION 2.10. Let M be a topological manifold. Let (N, f) be a pair consisting of a smooth manifold N together with a tangential homotopy equivalence of degree one $f: N \to M$. Two such pairs (N_1, f_1) and (N_2, f_2) are equivalent provided there exists a diffeomorphism $g: N_1 \to N_2$ such that $f_2 \circ g$ is homotopic to f_1 . The set of all such equivalence classes is denoted by $\theta(M)$.

For $M = \mathbb{H}\mathbf{P}^2$, [5, Theorem 4] shows $\theta(\mathbb{H}\mathbf{P}^2)$ contains at most two elements. Now by Remark 2.8 (iii), we have the following:

Corollary 2.11. $\theta(\mathbb{H}\mathbf{P}^2)$ contains exactly two elements, with representatives given by $(\mathbb{H}\mathbf{P}^2, \mathrm{id})$ and $(\mathbb{H}\mathbf{P}^2 \# \Sigma^8, \mathrm{id})$, where Σ^8 is the exotic 8-sphere.

3. Inertia groups of projective plane-like manifolds

In [15], C.T.C. Wall assigned to each closed oriented (n - 1)-connected 2*n*-dimensional smooth manifold M^{2n} with $n \ge 3$, a system of invariants as follows: (1) $H = H^n(M; \mathbb{Z}) \cong \text{Hom}(H_n(M; \mathbb{Z}), \mathbb{Z}) \cong \bigoplus_{j=1}^k \mathbb{Z}$, the cohomology group of M, with k the *n*-th Betti number of M,

(2) $I: H \times H \to \mathbb{Z}$, the intersection form of M which is unimodular and *n*-symmetric, defined by

$$I(x, y) = \langle x \cup y, [M] \rangle,$$

where the homology class [M] is the orientation class of M,

(3) A map $\alpha \colon H^n(M;\mathbb{Z}) \to \pi_{n-1}(SO_n)$ that assigns each element $x \in H^n(M;\mathbb{Z})$ to the characteristic map $\alpha(x)$ for the normal bundle of the embedded *n*-sphere \mathbb{S}_x^n representing *x*.

Denote by $\chi = S \circ \alpha \colon H^n(M; \mathbb{Z}) \to \pi_{n-1}(SO_{n+1}) \cong KO(\mathbb{S}^n)$, where $S \colon \pi_{n-1}(SO_n) \to \pi_{n-1}(SO_{n+1})$ is the suspension map. Then

$$\chi = S \circ \alpha \in H^n(M; \widetilde{KO}(\mathbb{S}^n)) = \operatorname{Hom}(H^n(M; \mathbb{Z}); \widetilde{KO}(\mathbb{S}^n))$$

can be viewed as an *n*-dimensional cohomology class of M, with coefficients in $\widetilde{KO}(\mathbb{S}^n)$. The obstruction to triviality of the tangent bundle over the *n*-skeleton is the element $\chi \in H^n(M; \widetilde{KO}(\mathbb{S}^n))$ [15]. By [15, pp. 179–180], the Pontrjagin class of M^{2n} is given by

(3.1)
$$p_m(M^{2n}) = \pm a_m(2m-1)! \chi,$$

where n = 4m and

$$a_m = \begin{cases} 1 & \text{if } 4m \equiv 0 \pmod{8}, \\ 2 & \text{if } 4m \equiv 4 \pmod{8}. \end{cases}$$

Define $\Theta_n(k)$ to be the subgroup of $\overline{\Theta}_n$ consisting of those homotopy *n*-sphere Σ^n which are the boundaries of *k*-connected (n + 1)-dimensional compact manifolds, $1 \le k < [n/2]$. Thus, $\Theta_n(k)$ is the kernel of the natural map $i_k : \overline{\Theta}_n \to \Omega_n(k)$, where $\Omega_n(k)$ is the *n*-dimensional group in *k*-connective cobordism theory [13] and i_k sends Σ^n to its cobordism class. Using surgery, we see $\Omega_*(1)$ is the usual oriented cobordism group. So $\overline{\Theta}_n = \Theta_n(1)$. Similarly, $\Omega_n(2) \cong \Omega_n^{Spin}$ $(n \ge 7)$; since *BSpin* is, in fact, 3-connected, for $n \ge 8$, $\Omega_n(2) \cong \Omega_n(3)$ and $\Theta_n(2) = \Theta_n(3) = bSpin_n$. Here $bSpin_n$ consists of homotopy *n*-sphere which bound spin manifolds.

In [16], C.T.C. Wall defined the Grothendieck group \mathcal{G}_n^{2n+1} , a homomorphism $\vartheta : \mathcal{G}_n^{2n+1} \to \overline{\Theta}_{2n}$ such that $\vartheta(\mathcal{G}_n^{2n+1}) = \Theta_{2n}(n-1)$ and proved the following theorem:

Theorem 3.1 (Wall). Let M^{2n} be a closed smooth (n-1)-connected 2*n*-manifold and Σ^{2n} be a homotopy sphere in $\overline{\Theta}_{2n}$. Then $M \# \Sigma^{2n}$ is an orientation-preserving diffeomorphic to M if and only if (i) $\Sigma^{2n} = 0$ in $\overline{\Theta}_{2n}$ or

(ii) $\chi \not\equiv 0 \pmod{2}$ and $\Sigma^{2n} \in \vartheta(\mathcal{G}_n^{2n+1}) = \Theta_{2n}(n-1)$

We also need the following result from [1]:

Theorem 3.2 (Anderson, Brown, Peterson). Let $\eta_n : \overline{\Theta}_n \to \Omega_n^{Spin}$ be the homomorphism such that η_n sends Σ^n to its spin cobordism class. Then $\eta_n \neq 0$ if and only if n = 8k + 1 or 8k + 2. Proof of Theorem 1.1. Let ξ be a generator of $H^n(M^{2n}; \mathbb{Z})$. Consider the case n = 4. Then by Itiro Tamura [14] and (3.1), the Pontrjagin class of M^{2n} is given by

$$p_1(M^{2n}) = 2(2h+1)\xi = \pm 2\chi,$$

where $h \in \mathbb{Z}$. This implies that

$$\chi = \pm (2h+1)\xi.$$

Likewise, for n = 8, we have

$$p_2(M^{2n}) = 6(2k+1)\xi = \pm 6\chi,$$

where $k \in \mathbb{Z}$. This implies that

$$\chi = \pm (2k+1)\xi.$$

Therefore in either case, $\chi \neq 0 \pmod{2}$. Now by Theorem 3.1, it follows that

$$I(M^{2n}) = \Theta_{2n}(n-1).$$

Since $\Theta_{2n}(n-1)$ is the kernel of the natural map $i_{n-1}: \overline{\Theta}_{2n} \to \Omega_{2n}(n-1)$, where $\Omega_{2n}(n-1) \cong \Omega_8^{Spin}$ for n = 4 and $\Omega_{2n}(n-1) \cong \Omega_{16}^{String} \cong \mathbb{Z} \oplus \mathbb{Z}$ for n = 8 [4]. Now by Theorem 3.2 and using the fact that $\overline{\Theta}_{16} \cong \mathbb{Z}_2$ [6], we have $i_{n-1} = 0$ for n = 4 and 8. This shows that $\Theta_{2n}(n-1) = \overline{\Theta}_{2n}$. This implies that

$$I(M^{2n})\cong\mathbb{Z}_2.$$

This completes the proof of Theorem 1.1.

4. Smooth structures of (n-1)-connected 2*n*-manifolds

DEFINITION 4.1 (*Cat* = *Diff* or *Top*-structure sets, [3]). Let *M* be a closed *Cat*manifold. We define the *Cat*-structure set $S^{Cat}(M)$ to be the set of equivalence classes of pairs (N, f) where *N* is a closed *Cat*-manifold and $f: N \to M$ is a homotopy equivalence. And the equivalence relation is defined as follows:

 $(N_1, f_1) \sim (N_2, f_2)$ if there is a *Cat*-isomorphism $\phi: N_1 \rightarrow N_2$ such that $f_2 \circ h$ is homotopic to f_1 .

We will denote the class in $S^{Cat}(M)$ of (N, f) by [(N, f)]. The base point of $S^{Cat}(M)$ is the equivalence class [(M, id)] of id: $M \to M$.

The forgetful maps $F_{Diff}: S^{Diff}(M) \to S^{Top}(M)$ and $F_{Con}: C(M) \to S^{Diff}(M)$ fit into a short exact sequence of pointed sets [3]:

$$\mathcal{C}(M) \xrightarrow{F_{Con}} \mathcal{S}^{Diff}(M) \xrightarrow{F_{Diff}} \mathcal{S}^{Top}(M).$$

K. RAMESH

Theorem 4.2. Let *n* be any integer greater than 3 such that Θ_n and Θ_{n+1} are trivial and M^{2n} be a closed smooth (n-1)-connected 2*n*-manifold. Let $f: N \to M$ be a homeomorphism where N is a closed smooth manifold. Then

(i) there exists a diffeomorphism $\phi: N \to M \# \Sigma^{2n}$, where $\Sigma^{2n} \in \overline{\Theta}_{2n}$ such that the following diagram commutes up to homotopy:

(ii) If $I_h(M) = \overline{\Theta}_{2n}$, then $f: N \to M$ is homotopic to a diffeomorphism.

Proof. Consider the short exact sequence of pointed sets

$$\mathcal{C}(M) \xrightarrow{F_{Con}} \mathcal{S}^{Diff}(M) \xrightarrow{F_{Diff}} \mathcal{S}^{Top}(M)$$

By Theorem 2.7 (ii), we have

$$\mathcal{C}(M) = \{ [M \# \Sigma] \mid \Sigma \in \bar{\Theta}_{2n} \} \cong \bar{\Theta}_{2n}.$$

Since $[(N, f)] \in F_{Diff}^{-1}([(M, id)])$, we obtain

$$[(N, f)] \in \operatorname{Im}(F_{Con}) = \{[M \# \Sigma] \mid \Sigma \in \overline{\Theta}_{2n}\}.$$

This implies that there exists a homotopy sphere $\Sigma^{2n} \in \overline{\Theta}_{2n}$ such that $(N, f) \sim (M \# \Sigma^{2n}, id)$ in $\mathcal{S}^{Diff}(M)$. This implies that there exists a diffeomorphism $\phi \colon N \to M \# \Sigma^{2n}$ such that f is homotopic to $id \circ \phi$. This proves (i).

If $I_h(M) = \overline{\Theta}_{2n}$, then $\operatorname{Im}(F_{Con}) = \{[(M, \operatorname{id})]\}$ and hence $(N, f) \sim (M, \operatorname{id})$ in $\mathcal{S}^{Diff}(M)$. This shows that $f: N \to M$ is homotopic to a diffeomorphism $N \to M$. This proves (ii).

Theorem 4.3. Let *n* be any integer greater than 3 such that Θ_n and Θ_{n+1} are trivial and M^{2n} be a closed smooth (n-1)-connected 2*n*-manifold. Then the number of distinct smooth structures on M^{2n} up to diffeomorphism is less than or equal to the cardinality of $\overline{\Theta}_{2n}$. In particular, the set of diffeomorphism classes of smooth structures on M^{2n} is $\{[M \# \Sigma] \mid \Sigma \in \overline{\Theta}_{2n}\}$.

Proof. By Theorem 4.2 (i), if N is a closed smooth manifold homeomorphic to M, then N is diffeomorphic to $M \# \Sigma^{2n}$ for some homotopy 2n-sphere Σ^{2n} . This implies that the set of diffeomorphism classes of smooth structures on M^{2n} is $\{[M \# \Sigma] \mid \Sigma \in \overline{\Theta}_{2n}\}$. This shows that the number of distinct smooth structures on M^{2n} up to diffeomorphism is less than or equal to the cardinality of $\overline{\Theta}_{2n}$.

REMARK 4.4. (1) By Theorem 4.3, every closed smooth 3-connected 8-manifold has at most two distinct smooth structures up to diffeomorphism.

(2) If M^8 is a closed smooth 3-connected 8-manifold such that $H^4(M; \mathbb{Z}) \cong \mathbb{Z}$, then by Theorem 1.1, $I(M) \cong \mathbb{Z}_2$. Now by Theorem 4.3, M has a unique smooth structure up to diffeomorphism.

(3) If $M = \mathbb{S}^4 \times \mathbb{S}^4$, then by Theorem 4.3, $\mathbb{S}^4 \times \mathbb{S}^4$ has at most two distinct smooth structures up to diffeomorphism, namely, $\{[\mathbb{S}^4 \times \mathbb{S}^4], [\mathbb{S}^4 \times \mathbb{S}^4 \# \Sigma]\}$, where Σ is the exotic 8-sphere. However, by [11, Theorem A], $I(\mathbb{S}^4 \times \mathbb{S}^4) = 0$. This implies that $\mathbb{S}^4 \times \mathbb{S}^4$ has exactly two distinct smooth structures.

Theorem 4.5. Let M be a closed smooth 3-connected 8-manifold with stable tangential invariant $\chi = S \circ \alpha$: $H_4(M; \mathbb{Z}) \rightarrow \pi_3(SO) = \mathbb{Z}$. Then M has exactly two distinct smooth structures up to diffeomorphism if and only if $\text{Im}(S \circ \alpha) \subseteq 2\mathbb{Z}$.

Proof. Suppose *M* has exactly two distinct smooth structures up to diffeomorphism. Then by Theorem 4.3, *M* and *M* # Σ are not diffeomorphic, where Σ is the exotic 8-sphere. Since $\overline{\Theta}_8 = \Theta_8(3)$, by Theorem 3.1, the stable tangential invariant χ is zero (mod 2) and hence Im($S \circ \alpha$) $\subseteq 2\mathbb{Z}$. Conversely, suppose Im($S \circ \alpha$) $\subseteq 2\mathbb{Z}$. Now by Theorem 3.1, *M* can not be diffeomorphic to *M* # Σ , where Σ is the exotic 8-sphere. Now by Theorem 4.3, *M* has exactly two distinct smooth structures up to diffeomorphism. \Box

REMARK 4.6. If $n = 2, 3, 5, 6, 7 \pmod{8}$ or the stable tangential invariant χ of M^{2n} is zero (mod 2), then by [16, Corollary, p. 289] and Theorem 3.1, we have $I(M^{2n}) = 0$. So, by Theorem 4.3, we have the following:

Theorem 4.7. Let *n* be any integer greater than 3 such that Θ_n and Θ_{n+1} are trivial and M^{2n} be a closed smooth (n-1)-connected 2*n*-manifold. If $n = 2, 3, 5, 6, 7 \pmod{8}$ or the stable tangential invariant χ of M^{2n} is zero (mod 2), then the set of diffeomorphism classes of smooth structures on M^{2n} is in one-to-one correspondence with group $\overline{\Theta}_{2n}$.

REMARK 4.8. (1) By Theorem 4.7, every closed smooth 4-connected 10-manifold has exactly six distinct smooth structures, namely, $\{[M \# \Sigma] \mid \Sigma \in \overline{\Theta}_{10} \cong \mathbb{Z}_6\}$. (2) If M^{2n} is *n*-parallelisable, almost parallelisable or π -manifold, then the stable tangential invariant χ of M is zero [15]. Then by Theorem 4.7, we have the following:

Corollary 4.9. Let *n* be any integer greater than 3 such that Θ_n and Θ_{n+1} are trivial and M^{2n} be a closed smooth (n-1)-connected 2*n*-manifold. If M^{2n} is *n*-parallelisable, almost parallelisable or π -manifold, then the set of diffeomorphism classes of smooth structures on M^{2n} is in one-to-one correspondence with group $\overline{\Theta}_{2n}$.

DEFINITION 4.10 ([8]). The normal k-type of a closed smooth manifold M is the fibre homotopy type of a fibration $p: B \to BO$ such that the fibre of the map p is connected and its homotopy groups vanish in dimension $\geq k + 1$, admitting a lift of the normal Gauss map $v_M \colon M \to BO$ to a map $\bar{v}_M \colon M \to B$ such that $\bar{v}_M \colon M \to B$ is a (k + 1)-equivalence, i.e., the induced homomorphism $\bar{v}_M \colon \pi_i(M) \to \pi_i(B)$ is an isomorphism for $i \leq k$ and surjective for i = k + 1. We call such a lift a normal *k*-smoothing.

Theorem 4.11. Let n = 5,7 and let M_0 and M_1 be closed smooth (n-1)-connected 2*n*-manifolds with the same Euler characteristic. Then

(i) There is a homotopy sphere $\Sigma^{2n} \in \overline{\Theta}_{2n}$ such that M_0 and $M_1 \# \Sigma^{2n}$ are diffeomorphic.

(ii) Let M^{2n} be a closed smooth (n-1)-connected 2n-manifold such that $[M] = 0 \in \Omega_{2n}^{String}$ and let Σ be any exotic 2n-sphere in $\overline{\Theta}_{2n}$. Then M and $M \# \Sigma$ are not diffeomorphic.

Proof. (i): M_0 and M_1 are (n-1)-connected, and n is 5 or 7; therefore, $p_1/2$ and the Stiefel–Whitney classes ω_2 vanish. So, M_0 and M_1 are *BString*-manifolds. Let $\bar{\nu}_{M_j}: M_j \to BString$ be a lift of the normal Gauss map $\nu_{M_j}: M_j \to BO$ in the fibration $p: BString = BO\langle 8 \rangle \to BO$, where j = 0 and 1. Since *BString* is 7connected, $p_{\#}: \pi_i(BString) \to \pi_i(BO)$ is an isomorphism for all $i \ge 8$. This shows that $\bar{\nu}_{M_j}: M_j \to BString$ is an *n*-equivalence and hence the normal (n-1)-type of M_0 and M_1 is $p: BString \to BO$. We know that $\Omega_{2n}^{String} \cong \bar{\Theta}_{2n}$, where the group structure is given by connected sum [4]. This implies that there always exists $\Sigma^{2n} \in \bar{\Theta}_{2n}$ such that M_0 and $M_1 \# \Sigma^{2n}$ are *BString*-bordant. Since M_0 and $M_1 \# \Sigma^{2n}$ have the same Euler characteristic, by [8, Corollary 4], M_0 and $M_1 \# \Sigma^{2n}$ are diffeomorphic.

(ii): Since the image of the standard sphere under the isomorphism $\overline{\Theta}_{2n} \cong \Omega_{2n}^{String}$ represents the trivial element in Ω_{2n}^{String} , we have $[M^{2n}] \neq [M \# \Sigma]$ in Ω_{2n}^{String} . This implies that M and $M \# \Sigma$ are not *BString*-bordant. By obstruction theory, M^{2n} has a unique string structure. This implies that M and $M \# \Sigma$ are not diffeomorphic.

Theorem 4.12. Let M be a closed smooth 6-connected 14-dimensional π -manifold and Σ is the exotic 14-sphere. Then $M \# \Sigma$ is not diffeomorphic to M. Thus, I(M) = 0. Moreover, if N is a closed smooth manifold homeomorphic to M, then N is diffeomorphic to either M or $M \# \Sigma$.

Proof. It follows from results of Anderson, Brown and Peterson on spin cobordism [1] that the image of the natural homomorphism $\Omega_{14}^{framed} \to \Omega_{14}^{Spin}$ is 0 and $\Omega_{14}^{String} \cong \Omega_{14}^{Spin} \cong \mathbb{Z}_2$ [4]. This shows that $[M] = 0 \in \Omega_{14}^{String}$. Now by Theorem 4.11 (ii), $M \# \Sigma$ is not diffeomorphic to M. If N is a closed smooth manifold homeomorphic to M, then Nand M have the same Euler characteristic. Then by Theorem 4.11 (i), N is diffeomorphic to either M or $M \# \Sigma$. REMARK 4.13. By the above Theorem 4.12, the set of diffeomorphism classes of smooth structures on a closed smooth 6-connected 14-dimensional π -manifold M is

$$\{[M], [M \# \Sigma]\} \cong \mathbb{Z}_2,$$

where Σ is the exotic 14-sphere. So, the number of distinct smooth structures on *M* is 2.

ACKNOWLEDGMENTS. The author would like to thank his advisor, Prof. A.R. Shastri for several helpful suggestions and questions.

References

- D.W. Anderson, E.H. Brown, Jr. and F.P. Peterson: *The structure of the Spin cobordism ring*, Ann. of Math. (2) 86 (1967), 271–298.
- [2] C.S. Aravinda and F.T. Farrell: Exotic negatively curved structures on Cayley hyperbolic manifolds, J. Differential Geom. 63 (2003), 41–62.
- [3] D. Crowley: The smooth structure set of $S^p \times S^q$, Geom. Dedicata 148 (2010), 15–33.
- [4] V. Giambalvo: On (8)-cobordism, Illinois J. Math. 15 (1971), 533-541.
- [5] D.N. Hertz: Ambient surgery and tangential homotopy quaternionic projective spaces, Trans. Amer. Math. Soc. 145 (1969), 517–545.
- [6] M.A. Kervaire and J.W. Milnor: Groups of homotopy spheres, I, Ann. of Math. (2) 77 (1963), 504–537.
- [7] A. Kosinski: On the inertia group of π -manifolds, Amer. J. Math. **89** (1967), 227–248.
- [8] M. Kreck: Surgery and duality, Ann. of Math. (2) 149 (1999), 707–754.
- [9] L. Kramer and S. Stolz: A diffeomorphism classification of manifolds which are like projective planes, J. Differential Geom. **77** (2007), 177–188.
- [10] R.C. Kirby and L.C. Siebenmann: Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Ann. of Math. Studies 88, Princeton Univ. Press, Princeton, NJ, 1977.
- [11] R. Schultz: On the inertia group of a product of spheres, Trans. Amer. Math. Soc. 156 (1971), 137–153.
- [12] S. Smale: On the structure of manifolds, Amer. J. Math. 84 (1962), 387–399.
- [13] R.E. Stong: Notes on Cobordism Theory, Princeton Univ. Press, Princeton, NJ, 1968.
 [14] I. Tamura: 8-manifolds admitting no differentiable structure, J. Math. Soc. Japan 13 (1961),
- 377–382.
- [15] C.T.C. Wall: Classification of (n 1)-connected 2n-manifolds, Ann. of Math. (2) **75** (1962), 163–189.
- [16] C.T.C. Wall: Classification problems in differential topology. VI. Classification of (s 1)-connected (2s + 1)-manifolds, Topology **6** (1967), 273–296.

Department of Mathematics Indian Institute of Technology, Bombay Mumbai-76 India e-mail: rameshk@math.iitb.ac.in e-mail: mathsramesh1984@gmail.com