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Abstract
Using G-monopole invariants, we produce infinitely many exotic non-free actions

of Zk � H on some connected sums of finite number ofS2
� S2, CP2, CP2, and

K3 surfaces, wherek � 2, and H is any nontrivial finite group acting freely onS3.

1. Introduction

The purpose of this paper is to present exotic, i.e.C0-equivalent but smoothly in-
equivalent smooth actions of finite groups on some smooth 4-manifolds. We say that
two smooth group actionsG1 and G2 on a smooth manifoldM is Cm-equivalent for
mD 0, 1, : : : ,1, if there exists aCm-homeomorphismf W M ! M such that

G1 D f Æ G2 Æ f �1.

Such exotic smooth actions of finite groups on smooth 4-manifolds have been found
abundantly, for e.g., [7, 4, 9, 2, 10, 22, 8]. Ue showed that for any nontrivial finite
group G there exists a smooth closed 4-manifold with infinitely manyfree G-actions
which are allC0-equivalent but mutually smoothly inequivalent. And Fintushel, Stern,
and Sunukjian constructed infinite families of exotic actions of finite cyclic groups on
smooth closed 4-manifolds with nontrivial Seiberg–Witteninvariant. All these examples
are either free or cyclic actions.

In this article we useG-monopole invariants to detect infinitely many non-free
non-cyclic exotic group actions on certain connected sums of 4-manifolds with van-
ishing Seiberg–Witten invariant. For example, fork � 2 and any nontrivial finite group
H acting freely onS3, there exist infinitely many exotic non-free actions ofZk � H
on some connected sums of finite numbers ofS2

� S2, CP2, CP2, and K3 surfaces.

2. Preliminaries on G-monopole invariant

Let M be a smooth closed oriented 4-manifold. Suppose that a finitegroup G acts
on M smoothly preserving the orientation, and this action liftsto an action on a Spinc

structures of M. For a G-invariant Riemannian metric andG-invariant perturbation",
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we consider aG-monopole moduli spaceX defined as the set ofG-invariant solutions
(A, 8) of (perturbed) Seiberg–Witten equations

DA8 D 0, FC

A D 8
8
�

�

j8j

2

2
IdC "

modulo the groupGG
D Map(M, S1)G of G-invariant gauge transformations. As shown

in [19, 20], X for a generic" is a smooth compact orientable finite-dimensional mani-
fold, if the dimensionbC2 (M)G of the space ofG-invariant self-dual harmonic 2-forms
on M is bigger than 0. In fact, it is a subset of the ordinary Seiberg–Witten mod-
uli space.

The intersection theory onX using the universal cohomology classes of the ordi-
nary Seiberg–Witten moduli space gives variousG-monopole invariantsdefined first by
Y. Ruan [17]. Considering gauge equivalence classes ofG-invariant solutions under a
basedG-invariant gauge transformation groupGG

o D {g 2 GG
j g(o) D 1} for a fixed

base pointo 2 M, we get a basedG-monopole moduli space which is the principal
S1-bundle overX induced byGG

=GG
o action. Let’s denote its first Chern class by�,

which is independent of choice of the base point by the connectedness ofM. We de-
fine a G-monopole invariantSWG

M,s as h�(dimX)=2, [X]i. (When dimX is odd,SWG
M,s is

just set to be 0.)
As in the ordinary case,SWG

M,s is independent of the choice of aG-invariant met-

ric and a G-invariant perturbation", if bC2 (M)G
> 1. Thus we get a (smooth) topo-

logical invariant of aG-manifold M generalizing the ordinary Seiberg–Witten invariant

SWM,s, which is nowSW{1}

M,s for the trivial group{1}. Also generalizing the Seiberg–
Witten polynomialSWM of M, the G-monopole polynomial ofM is defined as

WG
M SWG

M WD
X

s

SWG
M,s PD(c1(s)) 2 Z[H2(MI Z)G],

where the summation is over the set of allG-equivariant Spinc structures. Note that
G-monopole invariants may change when a homotopically different lift of the G-action
to the Spinc structure is chosen. In a previous paper, we computed some examples of
G-monopole invariants, which will be used as an essential tool in this paper:

Theorem 2.1 ([20]). Let M and N be smooth closed oriented connected4-
manifolds satisfying bC2 (M) > 1 and bC2 (N) D 0, and NMk for any k � 2 be the
connected sum M# � � � # M # N where there are k summands of M.

Suppose that a finite group G withjGj D k acts effectively on N in a smooth
orientation-preserving way such that it is free or has at least one fixed point, and
that N admits a Riemannian metric of positive scalar curvature invariant under the
G-action and a G-equivariantSpinc structuresN with c2

1(sN) D �b2(N).
Define a G-action on NMk induced from that of N permuting the k summands of

M glued along a free orbit in N, and let Ns be theSpinc structure on NMk obtained by
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gluing sN and a Spinc structures of M.
Then for any G-action onNs covering the above G-action onNMk,

SWG
NMk, Ns
� SWM,s mod 2,

if the dimension b1(N)G of the vector space consisting of G-invariant elements of
H1(NI R) is zero.

Note that if a smooth closed manifoldX has a smooth effective action of a com-
pact Lie groupG, then the fixed-point setXg under g 2 G is either empty or an em-
bedded submanifold each component of which has positive codimension. ThusN in
the above theorem always has a free orbit underG. When b1(N)G

¤ 0, we also ob-
tained a mod 2 equality relating those two invariants, but weomit it here for simplicity.
The examples of suchN with G D Zk regardless ofb1(N)Zk are as follows:

Theorem 2.2 ([20]). Let X be one of

S4, CP2, S1
� (L1 # � � � # Ln), and 2S1

� L

where each Li and L are quotients of S3 by free actions of finite groups, and2S1
� L

is the manifold obtained from the surgery on S1
� L along an S1 � {pt}.

Then for any integer l� 0 and any smooth closed oriented4-manifold Z with
bC2 (Z) D 0 admitting a metric of positive scalar curvature,

X # kl Z

satisfies the properties of N inTheorem 2.1with G D Zk, where theSpinc structure
of X #kl Z is given by gluing anySpinc structuresX on X and anySpinc structuresZ

on Z satisfying c21(sX) D �b2(X) and c21(sZ) D �b2(Z) respectively.

3. Exotic group actions

Following [12], we say that a simply connected 4-manifolddissolvesif it is diffeo-
morphic to either

nCP2 # mCP2

or

�(n(S2
� S2) # mK3)

for somen, m� 0 according to its homeomorphism type. We also use the term mod 2
basic classto mean the first Chern class of a Spinc structure with nonzero mod 2
Seiberg–Witten invariant.
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Theorem 3.1. Let M be a smooth closed oriented connected4-manifold and{Mi j

i 2 I} be a family of smooth4-manifolds such that every Mi is homeomorphic to M
and the numbers ofmod 2 basic classes of Mi ’s are all mutually different, but each
Mi # l i (S2

� S2) is diffeomorphic to M# l i (S2
� S2) for an integer li � 1.

If l max WD supi2I l i <1, then for any integers k� 2 and l � lmaxC 1,

kl M # (l � 1)(S2
� S2)

admits anI-family of topologically equivalent but smoothly distinctnon-free actions of
Zk � H where H is any group of order l acting freely on S3.

Proof. Think of kl M # (l � 1)(S2
� S2) as

kl Mi # (l � 1)(S2
� S2),

and our H action is defined as the deck transformation map of thel -fold covering
map onto

NMi ,k WD kMi #2S1
� L

where2S1
� L for L D S3

=H is defined as in Theorem 2.2. To define aZk-action, note

that NMi ,k has aZk-action coming from theZk-action of2S1
� L defined in Theorem 2.2,

which is basically a rotation along theS1-direction. ThisZk action is obviously lifted
to the abovel -fold cover, and it commutes with the above definedH action. Thus we
have anI-family of Zk�H actions onkl M #(l�1)(S2

�S2), which are all topologically
equivalent by using the homeomorphism between eachMi and M.

Recall from Theorem 2.2 and its proof in [20] that all the Spinc structures on a

spin manifold2S1
� L are Zk-equivariant withc2

1 D �b2(2S1
� L) D 0, and henceZk-

equivariant Spinc structures on NMi ,k are parametrized by

H2( NMi ,kI Z)Zk
� H2(Mi I Z)� H2(2S1

� LI Z).

By Theorem 2.1 and the fact thatb1(2S1
� L) D 0, for any Spinc structuresi on Mi ,

SWZk
NMi ,k, Nsi

� SWMi ,si mod 2,

and hence

SWZk
NMi ,k
� SWMi

X

[�]2H2(bS1
�LIZ)

[�]

modulo 2. ThereforeSWZk
NMi ,k

mod 2 for all i have mutually different numbers of mono-

mials, and hence theI-family of Zk � H actions onkl M # (l � 1)(S2
� S2) cannot be

smoothly equivalent, completing the proof.
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Corollary 3.2. Let H be a finite group of order l� 2 acting freely on S3. For
any k� 2, there exists an infinite family of topologically equivalentbut smoothly dis-
tinct non-free actions ofZk � H on

(klmC l � 1)(S2
� S2),

(kl(n� 1)C l � 1)(S2
� S2) # klnK3,

(kl(2n0 � 1)C l � 1)CP2 # (kl(10n0 Cm0

� 1)C l � 1)CP2

for infinitely many m, and any m0 � 1, n, n0 � 2.

Proof. By the result of B. Hanke, D. Kotschick, and J. Wehrheim [13], m(S2
�S2)

for infinitely manym has the property ofM in the above theorem with eachl i D 1 and
jIj D 1. The different smooth structures of their examples are constructed by fiber-
summing a logarithmic transform ofE(2n) and a certain symplectic 4-manifold along a
symplectically embedded torus, and different numbers of mod 2 basic classes are due
to those different logarithmic transformations. Indeed the Seiberg–Witten polynomial
of the multiplicity r logarithmic transform ofE(2n) is given by

([T ]r
� [T ]�r )2n�2([T ]r�1

C [T ]r�3
C � � � C [T ]1�r )

whose number of terms with coefficients mod 2 can be made arbitrarily large by tak-
ing r sufficiently large, and the fiber sum with the other symplectic 4-manifold is per-
formed on a fiber in anN(2) disjoint from the Gompf nucleusN(2n) where the log
transform is performed so that all these mod 2 basic classes survive the fiber-summing
by the gluing formula of C. Taubes [21]. Therefore (klmC l � 1)(S2

� S2) has desired
actions by the above theorem.

For the second example, we use a well-known fact thatE(n) for n � 2 also has
the above properties ofM in the above theorem with eachl i D 1, where its exotica
Mi ’s are E(n)K for a knot K � S3 by the Fintushel–Stern knot surgery. Recall the
theorem by S. Akbulut [1] and D. Auckly [3] which says that forany smooth closed
simply-connectedX with an embedded torusT such thatT �T D 0 and�1(X�T)D 0,
a knot-surgered manifoldXK along T via a knot K satisfies

XK # (S2
� S2) D X # (S2

� S2).

And from the formula

SWE(n)K D 1K ([T ]2)([T ] � [T ]�1)n�2

where1K is the symmetrized Alexander polynomial ofK , one can easily see that the
number of mod 2 basic classes ofE(n)K can be made arbitrarily large by choosingK
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appropriately. (For example, takeK with

1K (t) D 1C
2d
X

jD1

(�1) j (t jn
C t� jn)

for sufficiently larged.) Therefore

kl E(2n) # (l � 1)(S2
� S2) D klnK3 # (kl(n� 1)C l � 1)S2

� S2

has desired actions, where we used the fact thatS# (S2
� S2) dissolves for any smooth

closed simply-connected elliptic surfaceS by the work of R. Mandelbaum [14] and
R. Gompf [11].

For the third example, one can takeM to be E(n0) # m0

CP2 for n0 � 2, m0

� 1,
where its exoticaMi ’s are E(n0)K # m0

CP2 for a knot K � S3, because

SWE(n0)K #m0

CP2
D SW(E(n0)#m0

CP2)K

D 1K ([T ]2)([T ] � [T ]�1)n0�2
m0

Y

iD1

([Ei ] C [Ei ]
�1),

whereEi ’s denote the exceptional divisors, and we used the fact thatE(n0) is of simple
type. SinceE(n0) #CP2 for any n0 is non-spin,

kl(E(n0) # m0

CP2) # (l � 1)(S2
� S2) D kl(E(n0) # m0

CP2) # (l � 1)(CP2 #CP2),

and it dissolves into the connected sum ofCP2’s andCP2’s, using the dissolution ([14,
11]) of E(n0) #CP2 into 2n0CP2 # (10n0 � 1)CP2.

REMARK . For other combinations ofK3 surfaces and (S2
� S2)’s in the above

corollary, one can use B. Hanke, D. Kotschick, and J. Wehrheim’s other examples in
[13]. One can also construct many other such examples ofM with infinitely many
exotica which become diffeomorphic after one stabilization by using the knot surgery.

Any finite group acting freely onS3 is in fact a subgroup ofSO(4) by the well-
known result of G. Perelman ([15, 16]), and Theorem 3.1 and Corollary 3.2 can be
generalized a little further. (See [18].)
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