Title	SOME EXOTIC ACTIONS OF FINITE GROUPS ON SMOOTH 4-MANIFOLDS
Author(s)	Sung, Chanyoung
Citation	Osaka Journal of Mathematics. 2016, 53(4), p. 1055-1061
Version Type	VoR
URL	https://doi.org/10.18910/58913
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

SOME EXOTIC ACTIONS OF FINITE GROUPS ON SMOOTH 4-MANIFOLDS

Chanyoung SUNG

(Received January 19, 2015, revised October 20, 2015)

Abstract

Using G-monopole invariants, we produce infinitely many exotic non-free actions of $\mathbb{Z}_{k} \oplus H$ on some connected sums of finite number of $S^{2} \times S^{2}, \mathbb{C} P_{2}, \overline{\mathbb{C}}_{2}$, and $K 3$ surfaces, where $k \geq 2$, and H is any nontrivial finite group acting freely on S^{3}.

1. Introduction

The purpose of this paper is to present exotic, i.e. C^{0}-equivalent but smoothly inequivalent smooth actions of finite groups on some smooth 4-manifolds. We say that two smooth group actions G_{1} and G_{2} on a smooth manifold M is C^{m}-equivalent for $m=0,1, \ldots, \infty$, if there exists a C^{m}-homeomorphism $f: M \rightarrow M$ such that

$$
G_{1}=f \circ G_{2} \circ f^{-1} .
$$

Such exotic smooth actions of finite groups on smooth 4-manifolds have been found abundantly, for e.g., $[7,4,9,2,10,22,8]$. Ue showed that for any nontrivial finite group G there exists a smooth closed 4 -manifold with infinitely many free G-actions which are all C^{0}-equivalent but mutually smoothly inequivalent. And Fintushel, Stern, and Sunukjian constructed infinite families of exotic actions of finite cyclic groups on smooth closed 4-manifolds with nontrivial Seiberg-Witten invariant. All these examples are either free or cyclic actions.

In this article we use G-monopole invariants to detect infinitely many non-free non-cyclic exotic group actions on certain connected sums of 4-manifolds with vanishing Seiberg-Witten invariant. For example, for $k \geq 2$ and any nontrivial finite group H acting freely on S^{3}, there exist infinitely many exotic non-free actions of $\mathbb{Z}_{k} \oplus H$ on some connected sums of finite numbers of $S^{2} \times S^{2}, \mathbb{C} P_{2}, \overline{\mathbb{C}}_{2}$, and $K 3$ surfaces.

2. Preliminaries on \boldsymbol{G}-monopole invariant

Let M be a smooth closed oriented 4-manifold. Suppose that a finite group G acts on M smoothly preserving the orientation, and this action lifts to an action on a Spin ${ }^{c}$ structure \mathfrak{s} of M. For a G-invariant Riemannian metric and G-invariant perturbation ε,
we consider a G-monopole moduli space \mathfrak{X} defined as the set of G-invariant solutions (A, Φ) of (perturbed) Seiberg-Witten equations

$$
D_{A} \Phi=0, \quad F_{A}^{+}=\Phi \otimes \Phi^{*}-\frac{|\Phi|^{2}}{2} \mathrm{Id}+\varepsilon
$$

modulo the group $\mathcal{G}^{G}=\operatorname{Map}\left(M, S^{1}\right)^{G}$ of G-invariant gauge transformations. As shown in $[19,20], \mathfrak{X}$ for a generic ε is a smooth compact orientable finite-dimensional manifold, if the dimension $b_{2}^{+}(M)^{G}$ of the space of G-invariant self-dual harmonic 2-forms on M is bigger than 0 . In fact, it is a subset of the ordinary Seiberg-Witten moduli space.

The intersection theory on \mathfrak{X} using the universal cohomology classes of the ordinary Seiberg-Witten moduli space gives various G-monopole invariants defined first by Y. Ruan [17]. Considering gauge equivalence classes of G-invariant solutions under a based G-invariant gauge transformation group $\mathcal{G}_{o}^{G}=\left\{g \in \mathcal{G}^{G} \mid g(o)=1\right\}$ for a fixed base point $o \in M$, we get a based G-monopole moduli space which is the principal S^{1}-bundle over \mathfrak{X} induced by $\mathcal{G}^{G} / \mathcal{G}_{o}^{G}$ action. Let's denote its first Chern class by μ, which is independent of choice of the base point by the connectedness of M. We define a G-monopole invariant $S W_{M, \mathfrak{s}}^{G}$ as $\left\langle\mu^{(\operatorname{dim} \mathfrak{X}) / 2},[\mathfrak{X}]\right\rangle$. (When $\operatorname{dim} \mathfrak{X}$ is odd, $S W_{M, \mathfrak{s}}^{G}$ is just set to be 0 .)

As in the ordinary case, $S W_{M, \mathfrak{s}}^{G}$ is independent of the choice of a G-invariant metric and a G-invariant perturbation ε, if $b_{2}^{+}(M)^{G}>1$. Thus we get a (smooth) topological invariant of a G-manifold M generalizing the ordinary Seiberg-Witten invariant $S W_{M, \mathfrak{s}}$, which is now $S W_{M, \mathfrak{s}}^{\{1\}}$ for the trivial group $\{1\}$. Also generalizing the SeibergWitten polynomial $S W_{M}$ of M, the G-monopole polynomial of M is defined as

$$
W_{M}^{G} S W_{M}^{G}:=\sum_{\mathfrak{s}} S W_{M, \mathfrak{s}}^{G} P D\left(c_{1}(\mathfrak{s})\right) \in \mathbb{Z}\left[H_{2}(M ; \mathbb{Z})^{G}\right]
$$

where the summation is over the set of all G-equivariant Spin^{c} structures. Note that G-monopole invariants may change when a homotopically different lift of the G-action to the Spin^{c} structure is chosen. In a previous paper, we computed some examples of G-monopole invariants, which will be used as an essential tool in this paper:

Theorem 2.1 ([20]). Let M and N be smooth closed oriented connected 4manifolds satisfying $b_{2}^{+}(M)>1$ and $b_{2}^{+}(N)=0$, and \bar{M}_{k} for any $k \geq 2$ be the connected sum $M \# \cdots \# M \# N$ where there are k summands of M.

Suppose that a finite group G with $|G|=k$ acts effectively on N in a smooth orientation-preserving way such that it is free or has at least one fixed point, and that N admits a Riemannian metric of positive scalar curvature invariant under the G-action and a G-equivariant Spin^{c} structure \mathfrak{s}_{N} with $c_{1}^{2}\left(\mathfrak{s}_{N}\right)=-b_{2}(N)$.

Define a G-action on \bar{M}_{k} induced from that of N permuting the k summands of M glued along a free orbit in N, and let $\overline{\mathfrak{s}}$ be the Spin^{c} structure on \bar{M}_{k} obtained by
gluing \mathfrak{s}_{N} and a Spin^{c} structure \mathfrak{s} of M.
Then for any G-action on $\overline{\mathfrak{s}}$ covering the above G-action on \bar{M}_{k},

$$
S W_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{G} \equiv S W_{M, \mathfrak{s}} \quad \bmod 2
$$

if the dimension $b_{1}(N)^{G}$ of the vector space consisting of G-invariant elements of $H_{1}(N ; \mathbb{R})$ is zero.

Note that if a smooth closed manifold X has a smooth effective action of a compact Lie group G, then the fixed-point set X^{g} under $g \in G$ is either empty or an embedded submanifold each component of which has positive codimension. Thus N in the above theorem always has a free orbit under G. When $b_{1}(N)^{G} \neq 0$, we also obtained a mod 2 equality relating those two invariants, but we omit it here for simplicity. The examples of such N with $G=\mathbb{Z}_{k}$ regardless of $b_{1}(N)^{\mathbb{Z}_{k}}$ are as follows:

Theorem 2.2 ([20]). Let X be one of

$$
S^{4}, \quad \overline{\mathbb{C}}_{2}, \quad S^{1} \times\left(L_{1} \# \cdots \# L_{n}\right), \quad \text { and } \quad \overline{S^{1} \times L}
$$

where each L_{i} and L are quotients of S^{3} by free actions of finite groups, and $\widehat{S^{1} \times L}$ is the manifold obtained from the surgery on $S^{1} \times L$ along an $S^{1} \times\{p t\}$.

Then for any integer $l \geq 0$ and any smooth closed oriented 4 -manifold Z with $b_{2}^{+}(Z)=0$ admitting a metric of positive scalar curvature,

$$
X \# k l Z
$$

satisfies the properties of N in Theorem 2.1 with $G=\mathbb{Z}_{k}$, where the Spin^{c} structure of $X \# k l Z$ is given by gluing any Spin^{c} structure \mathfrak{s}_{X} on X and any Spin c structure \mathfrak{s}_{Z} on Z satisfying $c_{1}^{2}\left(\mathfrak{s}_{X}\right)=-b_{2}(X)$ and $c_{1}^{2}\left(\mathfrak{s}_{Z}\right)=-b_{2}(Z)$ respectively.

3. Exotic group actions

Following [12], we say that a simply connected 4-manifold dissolves if it is diffeomorphic to either

$$
n \mathbb{C} P_{2} \# m \overline{\mathbb{C}}_{2}
$$

or

$$
\pm\left(n\left(S^{2} \times S^{2}\right) \# m K 3\right)
$$

for some $n, m \geq 0$ according to its homeomorphism type. We also use the term mod 2 basic class to mean the first Chern class of a Spin^{c} structure with nonzero mod 2 Seiberg-Witten invariant.

Theorem 3.1. Let M be a smooth closed oriented connected 4 -manifold and $\left\{M_{i} \mid\right.$ $i \in \mathfrak{I}\}$ be a family of smooth 4-manifolds such that every M_{i} is homeomorphic to M and the numbers of mod 2 basic classes of M_{i} 's are all mutually different, but each $M_{i} \# l_{i}\left(S^{2} \times S^{2}\right)$ is diffeomorphic to $M \# l_{i}\left(S^{2} \times S^{2}\right)$ for an integer $l_{i} \geq 1$.

If $l_{\text {max }}:=\sup _{i \in \mathfrak{I}} l_{i}<\infty$, then for any integers $k \geq 2$ and $l \geq l_{\max }+1$,

$$
k l M \#(l-1)\left(S^{2} \times S^{2}\right)
$$

admits an \mathfrak{I}-family of topologically equivalent but smoothly distinct non-free actions of $\mathbb{Z}_{k} \oplus H$ where H is any group of order l acting freely on S^{3}.

Proof. Think of $k l M \#(l-1)\left(S^{2} \times S^{2}\right)$ as

$$
k l M_{i} \#(l-1)\left(S^{2} \times S^{2}\right),
$$

and our H action is defined as the deck transformation map of the l-fold covering map onto

$$
\bar{M}_{i, k}:=k M_{i} \# \widehat{S^{1} \times L}
$$

where $\widehat{S^{1} \times L}$ for $L=S^{3} / H$ is defined as in Theorem 2.2. To define a \mathbb{Z}_{k}-action, note that $\bar{M}_{i, k}$ has a \mathbb{Z}_{k}-action coming from the \mathbb{Z}_{k}-action of $\widehat{S^{1} \times L}$ defined in Theorem 2.2, which is basically a rotation along the S^{1}-direction. This \mathbb{Z}_{k} action is obviously lifted to the above l-fold cover, and it commutes with the above defined H action. Thus we have an \mathfrak{I}-family of $\mathbb{Z}_{k} \oplus H$ actions on $k l M \#(l-1)\left(S^{2} \times S^{2}\right)$, which are all topologically equivalent by using the homeomorphism between each M_{i} and M.

Recall from Theorem 2.2 and its proof in [20] that all the Spin^{c} structures on a spin manifold $\widehat{S^{1} \times L}$ are \mathbb{Z}_{k}-equivariant with $c_{1}^{2}=-b_{2}\left(\widehat{S^{1} \times L}\right)=0$, and hence \mathbb{Z}_{k} equivariant Spin^{c} structures on $\bar{M}_{i, k}$ are parametrized by

$$
H_{2}\left(\bar{M}_{i, k} ; \mathbb{Z}\right)^{\mathbb{Z}_{k}} \cong H_{2}\left(M_{i} ; \mathbb{Z}\right) \oplus H_{2}\left(\widehat{S^{1} \times L} ; \mathbb{Z}\right)
$$

By Theorem 2.1 and the fact that $b_{1}\left(\widehat{S^{1} \times L}\right)=0$, for any Spin ${ }^{c}$ structure \mathfrak{s}_{i} on M_{i},

$$
S W_{\bar{M}_{i, k}, \bar{s}_{i}}^{\mathbb{Z}_{k}} \equiv S W_{M_{i}, \mathfrak{s}_{i}} \quad \bmod 2,
$$

and hence

$$
S W_{\overline{M_{i, k}}}^{\mathbb{Z}_{k}} \equiv S W_{M_{i}} \sum_{[\alpha] \in H_{2}\left(\widehat{\left.S^{1} \times L ; \mathbb{Z}\right)}\right.}[\alpha]
$$

modulo 2. Therefore $S W_{\bar{M}_{i, k}}^{\mathbb{Z}_{k}} \bmod 2$ for all i have mutually different numbers of monomials, and hence the \mathfrak{I}-family of $\mathbb{Z}_{k} \oplus H$ actions on $k l M \#(l-1)\left(S^{2} \times S^{2}\right)$ cannot be smoothly equivalent, completing the proof.

Corollary 3.2. Let H be a finite group of order $l \geq 2$ acting freely on S^{3}. For any $k \geq 2$, there exists an infinite family of topologically equivalent but smoothly distinct non-free actions of $\mathbb{Z}_{k} \oplus H$ on

$$
\begin{aligned}
& (k l m+l-1)\left(S^{2} \times S^{2}\right), \\
& (k l(n-1)+l-1)\left(S^{2} \times S^{2}\right) \# k \ln K 3 \\
& \left(k l\left(2 n^{\prime}-1\right)+l-1\right) \mathbb{C} P_{2} \#\left(k l\left(10 n^{\prime}+m^{\prime}-1\right)+l-1\right) \overline{\mathbb{C}}_{2}
\end{aligned}
$$

for infinitely many m, and any $m^{\prime} \geq 1, n, n^{\prime} \geq 2$.
Proof. By the result of B. Hanke, D. Kotschick, and J. Wehrheim [13], $m\left(S^{2} \times S^{2}\right)$ for infinitely many m has the property of M in the above theorem with each $l_{i}=1$ and $|\Im|=\infty$. The different smooth structures of their examples are constructed by fibersumming a logarithmic transform of $E(2 n)$ and a certain symplectic 4-manifold along a symplectically embedded torus, and different numbers of mod 2 basic classes are due to those different logarithmic transformations. Indeed the Seiberg-Witten polynomial of the multiplicity r logarithmic transform of $E(2 n)$ is given by

$$
\left([T]^{r}-[T]^{-r}\right)^{2 n-2}\left([T]^{r-1}+[T]^{r-3}+\cdots+[T]^{1-r}\right)
$$

whose number of terms with coefficients mod 2 can be made arbitrarily large by taking r sufficiently large, and the fiber sum with the other symplectic 4 -manifold is performed on a fiber in an $N(2)$ disjoint from the Gompf nucleus $N(2 n)$ where the \log transform is performed so that all these mod 2 basic classes survive the fiber-summing by the gluing formula of C. Taubes [21]. Therefore $(k l m+l-1)\left(S^{2} \times S^{2}\right)$ has desired actions by the above theorem.

For the second example, we use a well-known fact that $E(n)$ for $n \geq 2$ also has the above properties of M in the above theorem with each $l_{i}=1$, where its exotica M_{i} 's are $E(n)_{K}$ for a knot $K \subset S^{3}$ by the Fintushel-Stern knot surgery. Recall the theorem by S. Akbulut [1] and D. Auckly [3] which says that for any smooth closed simply-connected X with an embedded torus T such that $T \cdot T=0$ and $\pi_{1}(X-T)=0$, a knot-surgered manifold X_{K} along T via a knot K satisfies

$$
X_{K} \#\left(S^{2} \times S^{2}\right)=X \#\left(S^{2} \times S^{2}\right)
$$

And from the formula

$$
S W_{E(n)_{K}}=\Delta_{K}\left([T]^{2}\right)\left([T]-[T]^{-1}\right)^{n-2}
$$

where Δ_{K} is the symmetrized Alexander polynomial of K, one can easily see that the number of mod 2 basic classes of $E(n)_{K}$ can be made arbitrarily large by choosing K
appropriately. (For example, take K with

$$
\Delta_{K}(t)=1+\sum_{j=1}^{2 d}(-1)^{j}\left(t^{j n}+t^{-j n}\right)
$$

for sufficiently large d.) Therefore

$$
k l E(2 n) \#(l-1)\left(S^{2} \times S^{2}\right)=k \ln K 3 \#(k l(n-1)+l-1) S^{2} \times S^{2}
$$

has desired actions, where we used the fact that $S \#\left(S^{2} \times S^{2}\right)$ dissolves for any smooth closed simply-connected elliptic surface S by the work of R. Mandelbaum [14] and R. Gompf [11].

For the third example, one can take M to be $E\left(n^{\prime}\right) \# m^{\prime} \overline{\mathbb{C}}_{2}$ for $n^{\prime} \geq 2, m^{\prime} \geq 1$, where its exotica M_{i} 's are $E\left(n^{\prime}\right)_{K} \# m^{\prime} \overline{\mathbb{C}}_{2}$ for a knot $K \subset S^{3}$, because

$$
\begin{aligned}
S W_{E\left(n^{\prime}\right) K} \not m^{\prime} \overline{\mathbf{C} P_{2}} & =S W_{\left(E\left(n^{\prime}\right) \nexists m^{\prime}, \overline{\mathbf{C P}}_{2}\right)_{K}} \\
& =\Delta_{K}\left([T]^{2}\right)\left([T]-[T]^{-1}\right)^{n^{\prime}-2} \prod_{i=1}^{m^{\prime}}\left(\left[E_{i}\right]+\left[E_{i}\right]^{-1}\right),
\end{aligned}
$$

where E_{i} 's denote the exceptional divisors, and we used the fact that $E\left(n^{\prime}\right)$ is of simple type. Since $E\left(n^{\prime}\right) \# \overline{\mathbb{C}}_{2}$ for any n^{\prime} is non-spin,

$$
k l\left(E\left(n^{\prime}\right) \# m^{\prime} \overline{\mathbb{C}}_{2}\right) \#(l-1)\left(S^{2} \times S^{2}\right)=k l\left(E\left(n^{\prime}\right) \# m^{\prime} \overline{\mathbb{C}}_{2}\right) \#(l-1)\left(\mathbb{C} P_{2} \# \overline{\mathbb{C}}_{2}\right)
$$

and it dissolves into the connected sum of $\mathbb{C} P_{2}$'s and $\overline{\mathbb{C} P}{ }_{2}$'s, using the dissolution ([14, 11]) of $E\left(n^{\prime}\right) \# \mathbb{C} P_{2}$ into $2 n^{\prime} \mathbb{C} P_{2} \#\left(10 n^{\prime}-1\right){\overline{\mathbb{C}} P_{2}}_{2}$.

REmARK. For other combinations of $K 3$ surfaces and ($S^{2} \times S^{2}$)'s in the above corollary, one can use B. Hanke, D. Kotschick, and J. Wehrheim's other examples in [13]. One can also construct many other such examples of M with infinitely many exotica which become diffeomorphic after one stabilization by using the knot surgery.

Any finite group acting freely on S^{3} is in fact a subgroup of $S O(4)$ by the wellknown result of G. Perelman ($[15,16]$), and Theorem 3.1 and Corollary 3.2 can be generalized a little further. (See [18].)

Acknowledgement. The author would like to express sincere thanks to Prof. Ki-Heon Yun for helpful discussions and supports.

References

[1] S. Akbulut: Variations on Fintushel-Stern knot surgery on 4-manifolds, Turkish J. Math. 26 (2002), 81-92.
[2] S. Akbulut: Cappell-Shaneson homotopy spheres are standard, Ann. of Math. (2) 171 (2010), 2171-2175.
[3] D. Auckly: Families of four-dimensional manifolds that become mutually diffeomorphic after one stabilization, Topology Appl. 127 (2003), 277-298.
[4] S.E. Cappell and J.L. Shaneson: Some new four-manifolds, Ann. of Math. (2) 104 (1976), 61-72.
[5] W. Chen: Pseudoholomorphic curves in four-orbifolds and some applications; in Geometry and Topology of Manifolds, Fields Inst. Commun. 47, Amer. Math. Soc., Providence, RI, 11-37, 2005.
[6] W. Chen: Smooth s-cobordisms of elliptic 3-manifolds, J. Differential Geom. 73 (2006), 413-490.
[7] R. Fintushel and R.J. Stern: An exotic free involution on S^{4}, Ann. of Math. (2) $\mathbf{1 1 3}$ (1981), no. 2, 357-365.
[8] R. Fintushel, R.J. Stern and N. Sunukjian: Exotic group actions on simply connected smooth 4-manifolds, J. Topol. 2 (2009), 769-778.
[9] R.E. Gompf: Killing the Akbulut-Kirby 4-sphere, with relevance to the Andrews-Curtis and Schoenflies problems, Topology 30 (1991), 97-115.
[10] R.E. Gompf: More Cappell-Shaneson spheres are standard, arXiv:0908.1914.
[11] R.E. Gompf: Sums of elliptic surfaces, J. Differential Geom. 34 (1991), 93-114.
[12] R.E. Gompf and A.I. Stipsicz: 4-Manifolds and Kirby Calculus, Amer. Math. Soc., Providence, RI, 1999.
[13] B. Hanke, D. Kotschick and J. Wehrheim: Dissolving four-manifolds and positive scalar curvature, Math. Z. 245 (2003), 545-555.
[14] R. Mandelbaum: Decomposing analytic surfaces; in Geometric Topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York, 147-217, 1979.
[15] J. Morgan and G. Tian: Ricci Flow and the Poincaré Conjecture, Amer. Math. Soc., Providence, RI, 2007.
[16] J. Morgan and G. Tian: Completion of the proof of the geometrization conjecture, arXiv:0809.4040.
[17] Y. Ruan: Virtual neighborhoods and the monopole equations; in Topics in Symplectic 4-Manifolds (Irvine, CA, 1996), First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA, 101-116, 1998.
[18] C. Sung: G-monopole classes, Ricci flow, and Yamabe invariants of 4-manifolds, Geom. Dedicata 169 (2014), 129-144.
[19] C. Sung: Finite group actions and G-monopole classes on smooth 4-manifolds, arXiv: 1108.3875.
[20] C. Sung: G-monopole invariants on some connected sums of 4-manifolds, Geom. Dedicata 178 (2015), 75-93.
[21] C.H. Taubes: The Seiberg-Witten invariants and 4-manifolds with essential tori, Geom. Topol. 5 (2001), 441-519.
[22] M. Ue: Exotic group actions in dimension four and Seiberg-Witten theory, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), 68-70.

Dept. of mathematics education
Korea national university of education Cheongju
Korea
e-mail: cysung@kias.re.kr

