

Title	SOME EXOTIC ACTIONS OF FINITE GROUPS ON SMOOTH 4-MANIFOLDS
Author(s)	Sung, Chanyoung
Citation	Osaka Journal of Mathematics. 2016, 53(4), p. 1055-1061
Version Type	VoR
URL	https://doi.org/10.18910/58913
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

SOME EXOTIC ACTIONS OF FINITE GROUPS ON SMOOTH 4-MANIFOLDS

CHANYOUNG SUNG

(Received January 19, 2015, revised October 20, 2015)

Abstract

Using *G*-monopole invariants, we produce infinitely many exotic non-free actions of $\mathbb{Z}_k \oplus H$ on some connected sums of finite number of $S^2 \times S^2$, $\mathbb{C}P_2$, $\overline{\mathbb{C}P}_2$, and K3 surfaces, where $k \geq 2$, and H is any nontrivial finite group acting freely on S^3 .

1. Introduction

The purpose of this paper is to present exotic, i.e. C^0 -equivalent but smoothly inequivalent smooth actions of finite groups on some smooth 4-manifolds. We say that two smooth group actions G_1 and G_2 on a smooth manifold M is C^m -equivalent for $m = 0, 1, \ldots, \infty$, if there exists a C^m -homeomorphism $f: M \to M$ such that

$$G_1 = f \circ G_2 \circ f^{-1}.$$

Such exotic smooth actions of finite groups on smooth 4-manifolds have been found abundantly, for e.g., [7, 4, 9, 2, 10, 22, 8]. Ue showed that for any nontrivial finite group G there exists a smooth closed 4-manifold with infinitely many free G-actions which are all C^0 -equivalent but mutually smoothly inequivalent. And Fintushel, Stern, and Sunukjian constructed infinite families of exotic actions of finite cyclic groups on smooth closed 4-manifolds with nontrivial Seiberg–Witten invariant. All these examples are either free or cyclic actions.

In this article we use G-monopole invariants to detect infinitely many non-free non-cyclic exotic group actions on certain connected sums of 4-manifolds with vanishing Seiberg-Witten invariant. For example, for $k \ge 2$ and any nontrivial finite group H acting freely on S^3 , there exist infinitely many exotic non-free actions of $\mathbb{Z}_k \oplus H$ on some connected sums of finite numbers of $S^2 \times S^2$, $\mathbb{C}P_2$, $\overline{\mathbb{C}P}_2$, and K3 surfaces.

2. Preliminaries on G-monopole invariant

Let M be a smooth closed oriented 4-manifold. Suppose that a finite group G acts on M smoothly preserving the orientation, and this action lifts to an action on a Spin^c structure \mathfrak{s} of M. For a G-invariant Riemannian metric and G-invariant perturbation ε ,

²⁰¹⁰ Mathematics Subject Classification. 57R57, 57M60, 57R50.

1056 C. Sung

we consider a G-monopole moduli space \mathfrak{X} defined as the set of G-invariant solutions (A, Φ) of (perturbed) Seiberg–Witten equations

$$D_A \Phi = 0$$
, $F_A^+ = \Phi \otimes \Phi^* - \frac{|\Phi|^2}{2} \operatorname{Id} + \varepsilon$

modulo the group $\mathcal{G}^G = Map(M, S^1)^G$ of G-invariant gauge transformations. As shown in [19, 20], \mathfrak{X} for a generic ε is a smooth compact orientable finite-dimensional manifold, if the dimension $b_2^+(M)^G$ of the space of G-invariant self-dual harmonic 2-forms on M is bigger than 0. In fact, it is a subset of the ordinary Seiberg–Witten moduli space.

The intersection theory on $\mathfrak X$ using the universal cohomology classes of the ordinary Seiberg-Witten moduli space gives various G-monopole invariants defined first by Y. Ruan [17]. Considering gauge equivalence classes of G-invariant solutions under a based G-invariant gauge transformation group $\mathcal G_o^G = \{g \in \mathcal G^G \mid g(o) = 1\}$ for a fixed base point $o \in M$, we get a based G-monopole moduli space which is the principal S^1 -bundle over $\mathfrak X$ induced by $\mathcal G^G/\mathcal G_o^G$ action. Let's denote its first Chern class by μ , which is independent of choice of the base point by the connectedness of M. We define a G-monopole invariant $SW_{M,\mathfrak s}^G$ as $\langle \mu^{(\dim \mathfrak X)/2}, [\mathfrak X] \rangle$. (When $\dim \mathfrak X$ is odd, $SW_{M,\mathfrak s}^G$ is just set to be 0.)

As in the ordinary case, $SW_{M,s}^G$ is independent of the choice of a G-invariant metric and a G-invariant perturbation ε , if $b_2^+(M)^G > 1$. Thus we get a (smooth) topological invariant of a G-manifold M generalizing the ordinary Seiberg–Witten invariant $SW_{M,s}$, which is now $SW_{M,s}^{\{1\}}$ for the trivial group $\{1\}$. Also generalizing the Seiberg–Witten polynomial SW_M of M, the G-monopole polynomial of M is defined as

$$W_M^G SW_M^G := \sum_{\mathfrak{s}} SW_{M,\mathfrak{s}}^G PD(c_1(\mathfrak{s})) \in \mathbb{Z}[H_2(M;\mathbb{Z})^G],$$

where the summation is over the set of all G-equivariant $Spin^c$ structures. Note that G-monopole invariants may change when a homotopically different lift of the G-action to the $Spin^c$ structure is chosen. In a previous paper, we computed some examples of G-monopole invariants, which will be used as an essential tool in this paper:

Theorem 2.1 ([20]). Let M and N be smooth closed oriented connected 4-manifolds satisfying $b_2^+(M) > 1$ and $b_2^+(N) = 0$, and \overline{M}_k for any $k \ge 2$ be the connected sum $M # \cdots # M # N$ where there are k summands of M.

Suppose that a finite group G with |G| = k acts effectively on N in a smooth orientation-preserving way such that it is free or has at least one fixed point, and that N admits a Riemannian metric of positive scalar curvature invariant under the G-action and a G-equivariant Spin^c structure \mathfrak{s}_N with $c_1^2(\mathfrak{s}_N) = -b_2(N)$.

Define a G-action on \overline{M}_k induced from that of N permuting the k summands of M glued along a free orbit in N, and let \overline{s} be the $Spin^c$ structure on \overline{M}_k obtained by

gluing \mathfrak{s}_N and a $Spin^c$ structure \mathfrak{s} of M.

Then for any G-action on $\bar{\mathfrak{s}}$ covering the above G-action on \bar{M}_k ,

$$SW_{\bar{M}_{k},\bar{\mathfrak{S}}}^{G} \equiv SW_{M,\mathfrak{S}} \mod 2,$$

if the dimension $b_1(N)^G$ of the vector space consisting of G-invariant elements of $H_1(N; \mathbb{R})$ is zero.

Note that if a smooth closed manifold X has a smooth effective action of a compact Lie group G, then the fixed-point set X^g under $g \in G$ is either empty or an embedded submanifold each component of which has positive codimension. Thus N in the above theorem always has a free orbit under G. When $b_1(N)^G \neq 0$, we also obtained a mod 2 equality relating those two invariants, but we omit it here for simplicity. The examples of such N with $G = \mathbb{Z}_k$ regardless of $b_1(N)^{\mathbb{Z}_k}$ are as follows:

Theorem 2.2 ([20]). Let X be one of

$$S^4$$
, $\overline{\mathbb{C}P}_2$, $S^1 \times (L_1 \# \cdots \# L_n)$, and $\widehat{S^1 \times L}$

where each L_i and L are quotients of S^3 by free actions of finite groups, and $\widehat{S^1 \times L}$ is the manifold obtained from the surgery on $S^1 \times L$ along an $S^1 \times \{pt\}$.

Then for any integer $l \ge 0$ and any smooth closed oriented 4-manifold Z with $b_2^+(Z) = 0$ admitting a metric of positive scalar curvature,

satisfies the properties of N in Theorem 2.1 with $G = \mathbb{Z}_k$, where the Spin^c structure of X # klZ is given by gluing any Spin^c structure \mathfrak{s}_X on X and any Spin^c structure \mathfrak{s}_Z on Z satisfying $c_1^2(\mathfrak{s}_X) = -b_2(X)$ and $c_1^2(\mathfrak{s}_Z) = -b_2(Z)$ respectively.

3. Exotic group actions

Following [12], we say that a simply connected 4-manifold *dissolves* if it is diffeomorphic to either

$$n\mathbb{C}P_2 \# m\overline{\mathbb{C}P}_2$$

or

$$\pm (n(S^2 \times S^2) \# mK3)$$

for some $n, m \ge 0$ according to its homeomorphism type. We also use the term mod 2 basic class to mean the first Chern class of a Spin^c structure with nonzero mod 2 Seiberg–Witten invariant.

1058 C. Sung

Theorem 3.1. Let M be a smooth closed oriented connected 4-manifold and $\{M_i \mid i \in \mathcal{I}\}$ be a family of smooth 4-manifolds such that every M_i is homeomorphic to M and the numbers of mod 2 basic classes of M_i 's are all mutually different, but each $M_i \# l_i(S^2 \times S^2)$ is diffeomorphic to $M \# l_i(S^2 \times S^2)$ for an integer $l_i \geq 1$.

If $l_{max} := \sup_{i \in \mathfrak{I}} l_i < \infty$, then for any integers $k \geq 2$ and $l \geq l_{max} + 1$,

$$klM \# (l-1)(S^2 \times S^2)$$

admits an \Im -family of topologically equivalent but smoothly distinct non-free actions of $\mathbb{Z}_k \oplus H$ where H is any group of order l acting freely on S^3 .

Proof. Think of $klM \# (l-1)(S^2 \times S^2)$ as

$$klM_i \# (l-1)(S^2 \times S^2),$$

and our H action is defined as the deck transformation map of the l-fold covering map onto

$$\overline{M}_{i,k} := kM_i \# \widehat{S^1 \times L}$$

where $\widehat{S^1 \times L}$ for $L = S^3/H$ is defined as in Theorem 2.2. To define a \mathbb{Z}_k -action, note that $\overline{M}_{i,k}$ has a \mathbb{Z}_k -action coming from the \mathbb{Z}_k -action of $\widehat{S^1 \times L}$ defined in Theorem 2.2, which is basically a rotation along the S^1 -direction. This \mathbb{Z}_k action is obviously lifted to the above l-fold cover, and it commutes with the above defined H action. Thus we have an \mathfrak{I} -family of $\mathbb{Z}_k \oplus H$ actions on $klM\#(l-1)(S^2 \times S^2)$, which are all topologically equivalent by using the homeomorphism between each M_i and M.

Recall from Theorem 2.2 and its proof in [20] that all the Spin^c structures on a spin manifold $\widehat{S^1 \times L}$ are \mathbb{Z}_k -equivariant with $c_1^2 = -b_2(\widehat{S^1 \times L}) = 0$, and hence \mathbb{Z}_k -equivariant Spin^c structures on $\overline{M}_{i,k}$ are parametrized by

$$H_2(\bar{M}_{i,k};\mathbb{Z})^{\mathbb{Z}_k} \cong H_2(M_i;\mathbb{Z}) \oplus H_2(\widehat{S^1 \times L};\mathbb{Z}).$$

By Theorem 2.1 and the fact that $b_1(\widehat{S^1 \times L}) = 0$, for any Spin^c structure \mathfrak{s}_i on M_i ,

$$SW_{\bar{M}_{i,k},\bar{\mathfrak{s}}_i}^{\mathbb{Z}_k} \equiv SW_{M_i,\mathfrak{s}_i} \mod 2,$$

and hence

$$SW_{\bar{M}_{i,k}}^{\mathbb{Z}_k} \equiv SW_{M_i} \sum_{[\alpha] \in H_2(\widehat{S^1 \times L}; \mathbb{Z})} [\alpha]$$

modulo 2. Therefore $SW_{\tilde{M}_{i,k}}^{\mathbb{Z}_k}$ mod 2 for all i have mutually different numbers of monomials, and hence the \mathfrak{I} -family of $\mathbb{Z}_k \oplus H$ actions on $klM \# (l-1)(S^2 \times S^2)$ cannot be smoothly equivalent, completing the proof.

Corollary 3.2. Let H be a finite group of order $l \ge 2$ acting freely on S^3 . For any $k \ge 2$, there exists an infinite family of topologically equivalent but smoothly distinct non-free actions of $\mathbb{Z}_k \oplus H$ on

$$(klm + l - 1)(S^2 \times S^2),$$

 $(kl(n - 1) + l - 1)(S^2 \times S^2) \# klnK3,$
 $(kl(2n' - 1) + l - 1)\mathbb{C}P_2 \# (kl(10n' + m' - 1) + l - 1)\overline{\mathbb{C}P}_2$

for infinitely many m, and any $m' \ge 1$, $n, n' \ge 2$.

Proof. By the result of B. Hanke, D. Kotschick, and J. Wehrheim [13], $m(S^2 \times S^2)$ for infinitely many m has the property of M in the above theorem with each $l_i = 1$ and $|\mathfrak{I}| = \infty$. The different smooth structures of their examples are constructed by fibersumming a logarithmic transform of E(2n) and a certain symplectic 4-manifold along a symplectically embedded torus, and different numbers of mod 2 basic classes are due to those different logarithmic transformations. Indeed the Seiberg-Witten polynomial of the multiplicity r logarithmic transform of E(2n) is given by

$$([T]^r - [T]^{-r})^{2n-2}([T]^{r-1} + [T]^{r-3} + \dots + [T]^{1-r})$$

whose number of terms with coefficients mod 2 can be made arbitrarily large by taking r sufficiently large, and the fiber sum with the other symplectic 4-manifold is performed on a fiber in an N(2) disjoint from the Gompf nucleus N(2n) where the log transform is performed so that all these mod 2 basic classes survive the fiber-summing by the gluing formula of C. Taubes [21]. Therefore $(klm + l - 1)(S^2 \times S^2)$ has desired actions by the above theorem.

For the second example, we use a well-known fact that E(n) for $n \ge 2$ also has the above properties of M in the above theorem with each $l_i = 1$, where its exotica M_i 's are $E(n)_K$ for a knot $K \subset S^3$ by the Fintushel–Stern knot surgery. Recall the theorem by S. Akbulut [1] and D. Auckly [3] which says that for any smooth closed simply-connected X with an embedded torus T such that $T \cdot T = 0$ and $\pi_1(X - T) = 0$, a knot-surgered manifold X_K along T via a knot K satisfies

$$X_K \# (S^2 \times S^2) = X \# (S^2 \times S^2).$$

And from the formula

$$SW_{E(n)_K} = \Delta_K([T]^2)([T] - [T]^{-1})^{n-2}$$

where Δ_K is the symmetrized Alexander polynomial of K, one can easily see that the number of mod 2 basic classes of $E(n)_K$ can be made arbitrarily large by choosing K

1060 C. Sung

appropriately. (For example, take K with

$$\Delta_K(t) = 1 + \sum_{j=1}^{2d} (-1)^j (t^{jn} + t^{-jn})$$

for sufficiently large d.) Therefore

$$klE(2n) \# (l-1)(S^2 \times S^2) = klnK3 \# (kl(n-1) + l-1)S^2 \times S^2$$

has desired actions, where we used the fact that $S\#(S^2\times S^2)$ dissolves for any smooth closed simply-connected elliptic surface S by the work of R. Mandelbaum [14] and R. Gompf [11].

For the third example, one can take M to be $E(n') \# m' \overline{\mathbb{C}P}_2$ for $n' \ge 2$, $m' \ge 1$, where its exotica M_i 's are $E(n')_K \# m' \overline{\mathbb{C}P}_2$ for a knot $K \subset S^3$, because

$$\begin{split} SW_{E(n')_K \# m'}\overline{\mathbb{C}P_2} &= SW_{(E(n') \# m'}\overline{\mathbb{C}P_2})_K \\ &= \Delta_K([T]^2)([T] - [T]^{-1})^{n'-2} \prod_{i=1}^{m'} ([E_i] + [E_i]^{-1}), \end{split}$$

where E_i 's denote the exceptional divisors, and we used the fact that E(n') is of simple type. Since $E(n') \# \overline{\mathbb{C}P}_2$ for any n' is non-spin,

$$kl(E(n') \# m' \overline{\mathbb{C}P}_2) \# (l-1)(S^2 \times S^2) = kl(E(n') \# m' \overline{\mathbb{C}P}_2) \# (l-1)(\mathbb{C}P_2 \# \overline{\mathbb{C}P}_2),$$

and it dissolves into the connected sum of $\mathbb{C}P_2$'s and $\overline{\mathbb{C}P_2}$'s, using the dissolution ([14, 11]) of $E(n') \# \mathbb{C}P_2$ into $2n'\mathbb{C}P_2 \# (10n'-1)\overline{\mathbb{C}P_2}$.

REMARK. For other combinations of K3 surfaces and $(S^2 \times S^2)$'s in the above corollary, one can use B. Hanke, D. Kotschick, and J. Wehrheim's other examples in [13]. One can also construct many other such examples of M with infinitely many exotica which become diffeomorphic after one stabilization by using the knot surgery.

Any finite group acting freely on S^3 is in fact a subgroup of SO(4) by the well-known result of G. Perelman ([15, 16]), and Theorem 3.1 and Corollary 3.2 can be generalized a little further. (See [18].)

ACKNOWLEDGEMENT. The author would like to express sincere thanks to Prof. Ki-Heon Yun for helpful discussions and supports.

References

- [1] S. Akbulut: Variations on Fintushel–Stern knot surgery on 4-manifolds, Turkish J. Math. 26 (2002), 81–92.
- [2] S. Akbulut: Cappell–Shaneson homotopy spheres are standard, Ann. of Math. (2) 171 (2010), 2171–2175.
- [3] D. Auckly: Families of four-dimensional manifolds that become mutually diffeomorphic after one stabilization, Topology Appl. 127 (2003), 277–298.
- [4] S.E. Cappell and J.L. Shaneson: *Some new four-manifolds*, Ann. of Math. (2) **104** (1976), 61–72
- [5] W. Chen: Pseudoholomorphic curves in four-orbifolds and some applications; in Geometry and Topology of Manifolds, Fields Inst. Commun. 47, Amer. Math. Soc., Providence, RI, 11–37, 2005
- [6] W. Chen: Smooth s-cobordisms of elliptic 3-manifolds, J. Differential Geom. 73 (2006), 413–490.
- [7] R. Fintushel and R.J. Stern: An exotic free involution on S⁴, Ann. of Math. (2) 113 (1981), no. 2, 357–365.
- [8] R. Fintushel, R.J. Stern and N. Sunukjian: *Exotic group actions on simply connected smooth* 4-manifolds, J. Topol. **2** (2009), 769–778.
- [9] R.E. Gompf: Killing the Akbulut–Kirby 4-sphere, with relevance to the Andrews–Curtis and Schoenflies problems, Topology **30** (1991), 97–115.
- [10] R.E. Gompf: More Cappell-Shaneson spheres are standard, arXiv:0908.1914.
- [11] R.E. Gompf: Sums of elliptic surfaces, J. Differential Geom. 34 (1991), 93-114.
- [12] R.E. Gompf and A.I. Stipsicz: 4-Manifolds and Kirby Calculus, Amer. Math. Soc., Providence, RI, 1999.
- [13] B. Hanke, D. Kotschick and J. Wehrheim: *Dissolving four-manifolds and positive scalar curvature*, Math. Z. **245** (2003), 545–555.
- [14] R. Mandelbaum: Decomposing analytic surfaces; in Geometric Topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York, 147–217, 1979.
- [15] J. Morgan and G. Tian: Ricci Flow and the Poincaré Conjecture, Amer. Math. Soc., Providence, RI, 2007.
- [16] J. Morgan and G. Tian: Completion of the proof of the geometrization conjecture, arXiv:0809.4040.
- [17] Y. Ruan: Virtual neighborhoods and the monopole equations; in Topics in Symplectic 4-Manifolds (Irvine, CA, 1996), First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA, 101–116, 1998.
- [18] C. Sung: G-monopole classes, Ricci flow, and Yamabe invariants of 4-manifolds, Geom. Dedicata 169 (2014), 129–144.
- [19] C. Sung: Finite group actions and G-monopole classes on smooth 4-manifolds, arXiv: 1108.3875.
- [20] C. Sung: G-monopole invariants on some connected sums of 4-manifolds, Geom. Dedicata 178 (2015), 75–93.
- [21] C.H. Taubes: *The Seiberg–Witten invariants and 4-manifolds with essential tori*, Geom. Topol. **5** (2001), 441–519.
- [22] M. Ue: Exotic group actions in dimension four and Seiberg-Witten theory, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), 68–70.

Dept. of mathematics education Korea national university of education Cheongju Korea

e-mail: cysung@kias.re.kr