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Abstract
Using G-monopole invariants, we produce infinitely many exotic +ficae actions
of Zx ® H on some connected sums of finite numberBfx , CP,, CP,, and
K 3 surfaces, wher& > 2, andH is any nontrivial finite group acting freely o8°.

1. Introduction

The purpose of this paper is to present exotic, C&equivalent but smoothly in-
equivalent smooth actions of finite groups on some smoothadiimids. We say that
two smooth group action§&; and G, on a smooth manifoldM is C™-equivalent for
m=0,1,..., oo, if there exists aC™-homeomorphismf: M — M such that

G1: fOGZO f_l.

Such exotic smooth actions of finite groups on smooth 4-roltsf have been found
abundantly, for e.g., [7, 4, 9, 2, 10, 22, 8]. Ue showed thatdoy nontrivial finite

group G there exists a smooth closed 4-manifold with infinitely mdree G-actions

which are allC%equivalent but mutually smoothly inequivalent. And Fistiel, Stern,

and Sunukjian constructed infinite families of exotic aasicof finite cyclic groups on
smooth closed 4-manifolds with nontrivial Seiberg—Wittewariant. All these examples
are either free or cyclic actions.

In this article we useG-monopole invariants to detect infinitely many non-free
non-cyclic exotic group actions on certain connected sufmd-manifolds with van-
ishing Seiberg—Witten invariant. For example, for 2 and any nontrivial finite group
H acting freely onS®, there exist infinitely many exotic non-free actions &f ® H
on some connected sums of finite numbersSdi S?, CP,, CP,, and K3 surfaces.

2. Preliminaries on G-monopole invariant

Let M be a smooth closed oriented 4-manifold. Suppose that a finitep G acts
on M smoothly preserving the orientation, and this action lifisan action on a Spin
structures of M. For aG-invariant Riemannian metric an@-invariant perturbatiorz,
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we consider a&G-monopole moduli spac& defined as the set db-invariant solutions
(A, @) of (perturbed) Seiberg—Witten equations

+ .o
DA@ZO, FA =<D®q) —T|d+8

modulo the grougg® = Map(M, SH)© of G-invariant gauge transformations. As shown
in [19, 20], X for a generice is a smooth compact orientable finite-dimensional mani-
fold, if the dimensionby (M)© of the space ofG-invariant self-dual harmonic 2-forms
on M is bigger than 0. In fact, it is a subset of the ordinary Sejb®vitten mod-
uli space.

The intersection theory oft using the universal cohomology classes of the ordi-
nary Seiberg—Witten moduli space gives varigaisnonopole invariantglefined first by
Y. Ruan [17]. Considering gauge equivalence classe&-ifivariant solutions under a
basedG-invariant gauge transformation gro@f = {g € G® | g(0) = 1} for a fixed
base pointo € M, we get a based-monopole moduli space which is the principal
St-bundle overX induced byG®/GE action. Let's denote its first Chern class jpy
which is independent of choice of the base point by the caedeess ofM. We de-
fine aG-monopole invarianBW{; , as (u@™*)/2 [x]). (When dim¥ is odd, SWG , is
just set to be 0.)

As in the ordinary caseSV\ﬁ’5 is independent of the choice of@-invariant met-
ric and aG-invariant perturbatiore, if bj(M)® > 1. Thus we get a (smooth) topo-
logical invariant of aG-manifold M generalizing the ordinary Seiberg—Witten invariant
SWy s, Which is nowSV\{f,,ly}5 for the trivial group{1}. Also generalizing the Seiberg—
Witten polynomialSW, of M, the G-monopole polynomial oM is defined as

Wi SWG =) SWE  PD(c1(s)) € Z[Ho(M: Z)°],

where the summation is over the set of @ltequivariant Spifi structures. Note that
G-monopole invariants may change when a homotopically wiffelift of the G-action

to the Spifi structure is chosen. In a previous paper, we computed sommpdes of
G-monopole invariants, which will be used as an essentidl itodhis paper:

Theorem 2.1([20]). Let M and N be smooth closed oriented connected
manifolds satisfying H(M) > 1 and bi(N) = 0, and M, for any k> 2 be the
connected sum M---#M#N where there are k summands of M.

Suppose that a finite group G witls| = k acts effectively on N in a smooth
orientation-preserving way such that it is free or has atskeane fixed pointand
that N admits a Riemannian metric of positive scalar curmaatinvariant under the
G-action and a G-equivarianBpirf structuresy with cf(ﬁN) = —by(N).

Define a G-action orMy induced from that of N permuting the k summands of
M glued along a free orbit in Nand lets be theSpirf structure onM, obtained by
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gluing sy and a Spirf structures of M.
Then for any G-action o3 covering the above G-action oMy,

SV\GM_, =SWy, mod 2,

if the dimension KN)® of the vector space consisting of G-invariant elements of
Hi(N; R) is zero.

Note that if a smooth closed manifold has a smooth effective action of a com-
pact Lie groupG, then the fixed-point seK9 underg € G is either empty or an em-
bedded submanifold each component of which has positivémeodsion. ThusN in
the above theorem always has a free orbit un@erWhenb;(N)® # 0, we also ob-
tained a mod 2 equality relating those two invariants, butowst it here for simplicity.
The examples of sucN with G = Z, regardless ob(N)% are as follows:

Theorem 2.2 ([20]). Let X be one of

e

S', CP, S'x(Li#---#L,), and S'xL

where each | and L are quotients of by free actions of finite groupsind St x L
is the manifold obtained from the surgery oh>SL along an $ x {pt}.

Then for any integer B 0 and any smooth closed orientedmanifold Z with
b, (Z) = 0 admitting a metric of positive scalar curvatyre

X#klz

satisfies the properties of N ifheorem 2.1with G = Zy, where theSpirf structure
of X#klZ is given by gluing anyspirf structuresy on X and anySpirf structuresz
on Z satisfying f(sx) = —bx(X) and G(sz) = —by(Z) respectively.

3. Exotic group actions

Following [12], we say that a simply connected 4-manifdidsolvesf it is diffeo-
morphic to either
nC P, #mC P,
or
+(n(S? x %) #mK3)
for somen, m > 0 according to its homeomorphism type. We also use the termh 2o

basic classto mean the first Chern class of a Spistructure with nonzero mod 2
Seiberg—Witten invariant.
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Theorem 3.1. Let M be a smooth closed oriented connectedanifold and{M; |
i € J} be a family of smootl-manifolds such that every j;Ms homeomorphic to M
and the numbers ofmod 2 basic classes of N6 are all mutually differentbut each
M; #1;(S? x S?) is diffeomorphic to M¢l;(S? x S?) for an integer | > 1.

If Imax := SURe5 |i < oo, then for any integers k 2 and | > Iyax+ 1,

KIM#( —1)(S* x S9)

admits anJ-family of topologically equivalent but smoothly distiman-free actions of
Zy @ H where H is any group of order | acting freely or?.S

Proof. Think ofkIM # (| — 1)(S* x §°) as
KIM; #( — 1)(S? x ),

and our H action is defined as the deck transformation map of Itfield covering
map onto

Mi,k = kMi #S/l—z

Wheregllz for L = S*/H is defined as in Theorem 2.2. To definé&Zgaction, note

that M;  has aZg-action coming from theZ,-action ofm defined in Theorem 2.2,
which is basically a rotation along th®*-direction. ThisZ, action is obviously lifted
to the abovd-fold cover, and it commutes with the above definddaction. Thus we
have anJ-family of Z,@®H actions onkl M#( —1)(S?*x S?), which are all topologically
equivalent by using the homeomorphism between ddctand M.

Recall from Theorem 2.2 and its proof in [20] that all the Spatructures on a

spin manifoldérﬁ are Zg-equivariant withcf = —bZ(STﬁ) = 0, and henceZy-
equivariant Spif structures onM;  are parametrized by

Ha( M Z)% = Ha(M;: Z) @ Ha(SH x L; Z).
By Theorem 2.1 and the fact thbi(’ST;\L) = 0, for any Spifi structures; on M;,

k —
SV\éi‘k,ﬁ\ = vawivﬁi mod 2,
and hence

SWit =SWy Y [d]

[a]eHa(StxL:Z)

modulo 2. ThereforeSV\éFk mod 2 for alli have mutually different numbers of mono-

mials, and hence tha-family of Z, @ H actions onkIM # (I — 1)(S* x S) cannot be
smoothly equivalent, completing the proof. ]
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Corollary 3.2. Let H be a finite group of order ¥ 2 acting freely on & For
any k> 2, there exists an infinite family of topologically equivaldntt smoothly dis-
tinct non-free actions o, ® H on

(KIm +1 —1)(S? x S,
(Kl(n — 1) + 1 — 1)(S? x ) #kInK 3,
(kl2n' —1) +1 —1)CP # (kI(10n + m —1)+1 —1)CP,

for infinitely many mand any m> 1, n,n’ > 2,

Proof. By the result of B. Hanke, D. Kotschick, and J. Wehmh§l3], m(S*x &)
for infinitely manym has the property oM in the above theorem with eath= 1 and
|J] = oo. The different smooth structures of their examples are tcocted by fiber-
summing a logarithmic transform df(2n) and a certain symplectic 4-manifold along a
symplectically embedded torus, and different numbers ofl fBdbasic classes are due
to those different logarithmic transformations. Indeed ®eiberg—Witten polynomial
of the multiplicity r logarithmic transform ofE(2n) is given by

(T =TI 20T+ [T1 = 4+ [T])

whose number of terms with coefficients mod 2 can be maderarihytlarge by tak-
ing r sufficiently large, and the fiber sum with the other symptedtimanifold is per-
formed on a fiber in arN(2) disjoint from the Gompf nucleusl(2n) where the log
transform is performed so that all these mod 2 basic class®$/s the fiber-summing
by the gluing formula of C. Taubes [21]. Therefoldrt+ | — 1)(S* x $%) has desired
actions by the above theorem.

For the second example, we use a well-known fact t@t) for n > 2 also has
the above properties ol in the above theorem with eadh= 1, where its exotica
M;’s are E(n)kx for a knot K C S by the Fintushel-Stern knot surgery. Recall the
theorem by S. Akbulut [1] and D. Auckly [3] which says that fany smooth closed
simply-connectedX with an embedded toru$ such thatT - T =0 andz(X—T) =0,
a knot-surgered manifol&Kx along T via a knotK satisfies

Xk #(F x ) = X#(S x F).
And from the formula

SV, = A([TID(T] = [T] H"?

where Ax is the symmetrized Alexander polynomial &f, one can easily see that the
number of mod 2 basic classes B{n)x can be made arbitrarily large by choosikg
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appropriately. (For example, také with

2d
Ak) =1+ (-1))ti"+t7")

j=1
for sufficiently larged.) Therefore
KIE@n)#( —1)( x ) =kInK3# KI(n—1)+1 —1)F x

has desired actions, where we used the fact 8#(S? x S?) dissolves for any smooth
closed simply-connected elliptic surface by the work of R. Mandelbaum [14] and
R. Gompf [11].

For the third example, one can také to be E(n) #mCP, for n’ > 2, m' > 1,
where its exoticaM;’s are E(n')x #mCP, for a knotK c S°, because

Sy smep, = SWe(myimcr,)

= Ac(TPATI=[TIH"? TJAE] + [E17,
i=1

where E;’s denote the exceptional divisors, and we used the factElj@) is of simple
type. SinceE(n") #CP, for any n’ is non-spin,

KI(E(N) #MCPy) # (1 — 1)(S? x ) = KI(E(N) #M'CP,) # (I — 1)(CP, # CPy),

and it dissolves into the connected sum@®,’s and C P.’s, using the dissolution ([14,
11]) of E(n)#CP; into 2n'C P, # (100" — 1)CP». O

REMARK. For other combinations oK 3 surfaces and¥ x $°)’s in the above
corollary, one can use B. Hanke, D. Kotschick, and J. Wehrisebther examples in
[13]. One can also construct many other such exampletoWith infinitely many
exotica which become diffeomorphic after one stabilizathy using the knot surgery.

Any finite group acting freely ors® is in fact a subgroup o6Q4) by the well-
known result of G. Perelman ([15, 16]), and Theorem 3.1 andol@wy 3.2 can be
generalized a little further. (See [18].)
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