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Abstract
By a theorem of A’Campo, the eigenvalues of certain Coxeter transformations are

positive real or lie on the unit circle. By optimally bounding the signature of tree-
like positive Hopf plumbings from below by the genus, we prove that at least two
thirds of them lie on the unit circle. In contrast, we show that for divide links, the
signature cannot be linearly bounded from below by the genus.

1. Introduction

1.1. Tree-like positive Hopf plumbings and Coxeter systems. Let 0 be a fi-
nite tree embedded in the plane. Thetree-like positive Hopf plumbing corresponding
to 0 is obtained by taking positive Hopf bandsHi with core curves�i that are in
one-to-one correspondence with the verticesvi of 0 and, starting from the root of0,
plumbing them together such that�i and � j intersect each other exactly once if the
verticesvi and v j are connected by an edge of0. Otherwise, the�i do not intersect.
The planar graph structure of0 provides a cyclic order on edges adjacent to a given
vertex, which has to be preserved by the intersection pointsof the �i . Here, plumb-
ing denotes the operation of glueing two surfaces separatedby a sphere together along
some square on the sphere, as defined by Stallings [26]. Againby Stallings, this pro-
cedure yields a fiber surface whose monodromy is conjugate tothe productT

�1 � � � T�n

of right Dehn twists along the�i . Starting with the one edge graph with two vertices,
this procedure yields thepositive trefoil fiber, the fiber surface of the left-handed trefoil
knot, see Fig. 1.

Let 0 be a finite forest. TheCoxeter system(W, S) corresponding to0 is the
group W with generating setSD {s1, : : : , sn}, where thesi are in one-to-one corres-
pondence with the verticesvi of 0, relationss2

i D 1 for all i , the relation (si sj )3
D 1

for all the vi and v j that are connected by an edge of0 and the relation (si sj )2
D 1

for all the vi and v j that are not connected by an edge of0 [8]. Note that except for
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Fig. 1.

s2
i D 1, these are the relations in the mapping class group of two positive Dehn twists

along curves that intersect exactly once or that do not intersect, respectively. LetV
0

be
the real vectorspace generated by the generatorssi of W, equipped with the symmetric
bilinear form q

0

given by q
0

(si , si ) D �2 andq
0

(si , sj ) D 1 if and only if vi and v j

are connected by an edge of0. To every generatorsi we associate the reflexionRi

on the hyperplane orthogonal tosi , given by Ri (sj ) D sj C q
0

(si , sj )si . The Coxeter
transformationcorresponding to0 is the productR1 � � � Rn of all these reflections [9]
and does, up to conjugation, not depend on the order of multiplication [27].

Theorem ([2]). All eigenvalues of the Coxeter transformation corresponding to a
finite forest are either positive real or lie on the unit circle.

The constructions of the monodromy of the tree-like positive Hopf plumbing and
the Coxeter transformation corresponding to0 seem very similar. Indeed, A’Campo
showed that for finite trees0, if one identifies the first homology of the positive Hopf
plumbing corresponding to0 with the vector spaceV

0

, the homological action of the
monodromyT

�1 � � � T�n becomes conjugate to�R1 � � � Rn [5].

1.2. Signature. For p andq coprime, one can show that the torus knotT(p, q)
has signature at least half the first Betti number of its fiber surface with the help of
the recursive formulas proven by Gordon, Litherland and Murasugi [14]. Furthermore,
by Shinohara’s cabling relation, this can be extended to allalgebraic knots [24]. More
recently, a linear lower bound that holds for all positive braids was given by Feller
[11]. We provide such a linear lower bound for the signature of tree-like positive Hopf
plumbings.

Theorem 1. The signature of any tree-like positive Hopf plumbing is at least two
thirds of the first Betti number.

This result is optimal. Indeed, we construct tree-like positive Hopf plumbings of
arbitrarily high genus but signature equal to exactly two thirds of the first Betti number.
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It is well-known that for fiberd links, the Alexander polynomial equals the charac-
teristic polynomial of the homological action of the monodromy. Thus, for a finite tree
0, the Coxeter transformation corresponding to0 has an eigenvalue� if and only if
�� is a zero of the Alexander polynomial of the tree-like positive Hopf plumbing cor-
responding to0. Furthermore, the absolute value of the signature of a link is a lower
bound on the number of zeroes of the Alexander polynomial that lie on the unit circle.
If the Alexander polynomial has only simple zeroes on the unit circle, this follows from
a result of Stoimenow [28]. In the Appendix, we give a generalalgebraic proof of this
fact. Thus, we obtain the following corollary of Theorem 1, which applies exactly to
the setting of A’Campo [2].

Corollary 2. At least two thirds of the eigenvalues of the Coxeter transformation
corresponding to a finite forest lie on the unit circle.

Since the signature is a lower bound for the topological four-ball first Betti number
by a result of Kauffman and Taylor [18], we obtain yet anotherresult as a corollary of
Theorem 1.

Corollary 3. The topological four-ball first Betti number of any tree-like positive
Hopf plumbing is at least two thirds of the ordinary first Betti number.

1.3. Divides. A divide is a finite collectionP of some generically immersed in-
tervals or circles in the closed unit discD. There is a canonical way of lifting these
intervals and circles to a linkL(P) � S3, whereS3 lies inside the tangent bundleT D,
which is identified with D � R2. Divides and their associated links were introduced
as a generalisation of algebraic links by A’Campo [3]. Furthermore, divide links of
connected divides were shown to be fiberd by A’Campo [4] and, more precisely, to be
plumbings of positive Hopf bands by Ishikawa [16]. While thesignature of any non-
trivial divide knot is also strictly positive, we constructdivide knots of arbitrarily high
genus but signature equal to two. This is in strong contrast with the above examples
where the signature is known to be linearly bounded from below by the genus.

In [5], A’Campo introduced theslalom knots, a certain class of knots which are
both divides and tree-like positive Hopf plumbings. As divides, they are obtained in
the following way: Take a rooted tree0 inside the unit discD with the root on the
boundary�D. Now, immerse an interval by the kind of slalom motion aroundthe ver-
tices of0 depicted in Fig. 2. Equivalently, take0, insert a new vertex for every edge,
then remove the root and its adjacent edge and do the tree-like positive Hopf plumb-
ing that corresponds to this new planar graph. Note that different planar embeddings
of the underlying abstract graph of0 yield different slalom knots which are related by
mutation [12]. For this class of knots, a stronger version ofTheorem 1 holds and thus
also a stronger version of the Corollaries 2 and 3.
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Fig. 2.

Theorem 4. The signature of any slalom knot is at least three quarters ofthe
first Betti number.

This lower bound is optimal in the same sense as Theorem 1. Since the proofs of
Theorem 4 and its optimality use exactly the same ideas as theproofs for the corres-
ponding statements for general tree-like positive Hopf plumbings, we omit them.

The last two sections are more open in nature. We ask whether divide knots are
plumbings of positive trefoil fibers and what can be said about homological monodromies
that are, up to a sign, conjugate to some Coxeter transformation. We furthermore con-
jecture that any zero of the Alexander polynomial of a positive braid link has real part
smaller or equal to 1.

2. Signature of tree-like Hopf plumbings

Let 0 be a finite tree embedded in the plane. A matrixS of a Seifert form of the
corresponding positive Hopf plumbing with core curves�i can easily be calculated.
One obtainsSi i D 2 for all i and Si j D 1 if and only if �i and� j intersect, otherwise
Si j D 0. In order to show that for any0, the signature of this matrix is at least two
thirds of its dimension, we use Lemma 5, which, roughly speaking, gives a way of
decomposing any tree into pieces on which the Seifert form ispositive definite. We
always identify the planar tree0 with its associated positive Hopf plumbing. When we
write � (0) or b1(0), we mean the signature or the first Betti number of the associated
Hopf plumbing. Actually,b1(0) is equal to the number of vertices of0.

Lemma 5. Any tree0 with at least six vertices has a subtree00 � 0 with at
least six vertices such that� (0) � � (0 � 00)C b1(00) � 2.
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Fig. 3.

Proof of Theorem 1. Let0 be a finite tree. Apply Lemma 5 first to0, then to
some tree of the forest0 �00, etc. Apply Lemma 5 as often as possible, sayr times,
until the remaining forest does not have a tree with six or more vertices. Let00,i be the
subtree we obtain by the i-th use of Lemma 5 and define the forest 01,i D 01,i�1�00,i

recursively, where00,1D 00 and01,0D 0. By Lemma 5, we get

� (0) � � (01,1)C (b1(00,1) � 2)� � � � � � (01,r )C
r
X

iD1

(b1(00,i ) � 2).

It is easily checked that for any tree0 with at most five vertices, either� (0) D b1(0)
or � (0) D 4. Since01,r is a forest consisting only of trees with at most five vertices,
we get that� (01,r ) � 4

5b1(01,r ) � 2
3b1(01,r ). Furthermore, sinceb1(00,i ) � 6, we have

that b1(00,i ) � 2� 2
3b1(00,i ). This yields

� (01,r )C
r
X

iD1

(b1(00,i ) � 2)�
2

3

 

b1(01,r )C
r
X

iD1

b1(00,i )

!

D

2

3
b1(0).

Piecing all the inequalities together, we get that the signature � (0) is at least two thirds
of the first Betti numberb1(0), as desired.

Proof of Lemma 5. Let0 be a tree with at least six vertices. We choose a root
for 0 and orient all the edges away from the root. Letv be a vertex that is outermost
among the vertices of degree at least three. Every edge pointing away fromv defines a
subtree of0 with only vertices of degree at most two: the maximal subtreecontaining
the edge andv but no other edge adjacent tov. Let nD deg(v)�1 denote the number
of such subtrees. Furthermore, letk be the number of vertices outside (further away
from the root) ofv, let v0 be the vertex which is adjacent tov but closer to the root
and definev00 and v000 analogously tov0, see Fig. 3.
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CASE 1: k � 5. Let 00 be the union of then subtrees specified above. Since on
00 � v, the Seifert form is positive definite, the statement holds.

CASE 2: k D 4, n � 3. Let 00 be as in Case 1, but add the vertexv0 and the
corresponding edge. Since on00�v

0, the Seifert form is positive definite, the statement
holds. Note that in this case,0 � 00 need not be connected.

CASE 3: k D n D 4. Let 00 be as in Case 2. Since the Seifert form is not posi-
tive definite on00 � v

0, we cannot proceed as in Case 2. The Seifert form of0 is
given by the matrix

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

.. .
...

...
...

...
...

...
...

...
� � � � � � 0 0 0 0 0
� � � � 2 � 0 0 0 0 0
� � � � � 2 1 0 0 0 0
� � � 0 0 1 2 1 1 1 1
� � � 0 0 0 1 2 0 0 0
� � � 0 0 0 1 0 2 0 0
� � � 0 0 0 1 0 0 2 0
� � � 0 0 0 1 0 0 0 2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

...
...

...
...

...
...

...
...

...
� � � � � � 0 0 0 0 0
� � � � 2 � 0 0 0 0 0
� � � � � 2 1 0 0 0 0
� � � 0 0 1 0 0 0 0 0
� � � 0 0 0 0 2 0 0 0
� � � 0 0 0 0 0 2 0 0
� � � 0 0 0 0 0 0 2 0
� � � 0 0 0 0 0 0 0 2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

where the bottom-right block corresponds to the restriction of the Seifert form to00,
the top-left block to the restriction of the the Seifert formto 0 � 00 and� denotes a
change of base. By changing base again, we get that the Seifert form can be expressed
by the matrix

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

. ..
...

...
...

...
...

...
...

...
� � � � � 0 0 0 0 0 0
� � � � 2 0 0 0 0 0 0
� � � 0 0 2 1 0 0 0 0
� � � 0 0 1 0 0 0 0 0
� � � 0 0 0 0 2 0 0 0
� � � 0 0 0 0 0 2 0 0
� � � 0 0 0 0 0 0 2 0
� � � 0 0 0 0 0 0 0 2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

.. .
...

...
...

...
...

...
...

...
� � � � � 0 0 0 0 0 0
� � � � 2 0 0 0 0 0 0
� � � 0 0 2 0 0 0 0 0
� � � 0 0 0 �

1
2 0 0 0 0

� � � 0 0 0 0 2 0 0 0
� � � 0 0 0 0 0 2 0 0
� � � 0 0 0 0 0 0 2 0
� � � 0 0 0 0 0 0 0 2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Since the changes of base we applied never changed the top-left block, we get that
� (0) D � (0 � 00)C 4.

CASE 4: k D 3, n D 2, deg(v0) D 2. Let 00 be as in Case 2 but add the vertex
v

00 and the corresponding edge. Since on00 � v
00, the Seifert form is positive definite,

the statement holds. Again,0 � 00 need not be connected.
CASE 5: k D n D 3, deg(v0) D 2. Let 00 be as in Case 4. This works very

similar to Case 3. Writing down a matrix for the Seifert form of 0 with the Seifert
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form restricted to00 in the bottom-right block and applying a change of base, we get
that � (0) D � (0 � 00)C 4.

CASE 6: k D n D 2, deg(v0) D deg(v00) D 2. Let 00 be as in Case 4 but add the
vertex v000 and the corresponding edge. Since on00 � v

000, the Seifert form is positive
definite, the statement holds. Again,0 � 00 need not be connected.

CASE 7: none of the other cases apply. If three or four vertices lieoutside of
v

0, then let00 be as in Case 4. Since Case 6 does not apply, at least five vertices lie
outside ofv00. Since none of the other cases apply, it is easily checked that on 00�v

00,
the Seifert form is positive definite and the statement holds. If at least five vertices lie
outside ofv0, then let00 be as in Case 2. Again none of the other cases apply, the
Seifert form is positive definite on00�v

0 and the statement holds. Once more,0�00

need not be connected.

REMARK 6. The optimality of Theorem 1 follows directly from Case 5 inthe
proof of Lemma 5. The signature of the link corresponding to the tree dealt with in
this case is 4, while its first Betti number is 6. By the reasoning in the proof, glueing
such a tree to another tree always adds 4 to the signature and 6to the first Betti num-
ber. Like this, one always obtains a tree with signature equal to exactly two thirds of
the first Betti number. This constructions yields links of arbitrarily high genus. Inter-
estingly, one can show that these examples have topologicalfour-ball first Betti number
equal to the signature. This leads to the question whether this holds for any tree-like
positive Hopf plumbing. This and similar questions will be subject to future research.

QUESTION 7. Is the topological four-ball first Betti number of any tree-like posi-
tive Hopf plumbing equal to the signature?

3. Divides

A matrix S of a Seifert form of a given divide link can be calculated as described
in [6]. As a basis of the first homology of the fiber surface, take the core curves�i

of the positive Hopf bands used in Ishikawa’s plumbing constructions [16]. Thus, the
basis consists of one curve for each inner face and one curve for each double point
of the divide. Drawing pictures of the various situations, one obtainsSi i D 2 for all
i and Si j D n if �i and � j are n-fold adjacent, wheren-fold adjacencyis defined as
follows. Two curves corresponding to inner faces are calledn-fold adjacent, if the inner
faces haven common edges. A curve corresponding to a double point and a curve
corresponding to an inner face are calledn-fold adjacentif the double point occursn
times in the boundary of the inner face. Two curves corresponding to different double
points are 0-fold adjacent.

It is a rather simple result that the signature of any nontrivial divide knot is strictly
positive and we only give a sketch of the proof. Since two curves corresponding to
different double points are 0-fold adjacent, the Seifert form is positive definite on the
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Fig. 4.

subspace of the first homology spanned by the curves corresponding to all the double
points. An Euler characteristic argument shows that these account for exactly half the
genus. This shows that the signature is greater or equal to zero. To show strict posi-
tivity, one again uses an Euler characteristic argument to find an inner faceF with at
most three double points on its boundary. Since the matrices

0

B

B

�

2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

1

C

C

A

,

0

�

2 1 1
1 2 0
1 0 2

1

A,

�

2 1
1 2

�

and (2)

are positive definite, the Seifert form is still positive definite on the subspace spanned
by the curves corresponding to all the double points and the curve corresponding toF .
Thus, the signature of any nontrivial divide knot is strictly positive. In fact, one can
easily adapt this proof to show that the signature of any nontrivial divide link is also
strictly positive.

However, we focus on the fact that this result is optimal. Forany numbern �
1, Proposition 8 provides an example of a divide withn double points such that the
signature of the corresponding knot is equal to two. Since the number of double points
of a divide is equal to the genus of the associated divide knot, this shows that the
signature of divide knots cannot be linearly bounded from below by the genus.

Proposition 8. The signature of any divide knot of the family depicted inFig. 4
is equal to two.

Proof. Choose the following basis of the first homology of thefiber surface. First
take the curves corresponding to the double points from inside out, then take the curves
corresponding to the inner faces from inside out. For this choice of basis, the Seifert
form of the divide withn crossings is given by the 2n � 2n matrix

S2n D

�

An Bn

Bt
n Dn

�

,
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where

An D

0

B

�

2
...

2

1

C

A

, Bn D

0

B

B

B

B

B

B

�

1 2 1
...

...
.. .

1 2 1
1 2

1

1

C

C

C

C

C

C

A

,

Dn D

0

B

B

B

B

B

B

B

�

2 1
1 2 2

2 2
...

.. .
. .. 2
2 2

1

C

C

C

C

C

C

C

A

.

Since An is invertible, the formula

S2n D

�

An Bn

Bt
n Dn

�

D

�

An 0
Bt

n I d

��

I d A�1
n Bn

0 Dn � Bt
n A�1

n Bn

�

holds. Furthermore, sinceAn is a scalar matrix, it certainly commutes withBn and we
obtain

det(S2n) D det(An) det(Dn � Bt
n A�1

n Bn)

D (�1)n det(Bt
n Bn � An Dn).

Calculating Bt
n Bn � An Dn yields the matrix

0

B

B

B

B

B

B

B

B

�

�3 0 1

0 1 0
...

1 0 2
... 1

...
. ..

... 0
1 0 2

1

C

C

C

C

C

C

C

C

A

,

which is easily brought into upper triangular form. This upper triangular form then
shows that the determinant ofBt

nBn � An Dn is always negative. Thus, we have that
sign(det(S2n)) D (�1)n(�1)D (�1)nC1. Now we conclude the proof by induction over
n. A quick calculation shows thatS4 has signature two. Now assume that the signa-
ture of S2n is equal to two. The determinant ofS2(nC1) is of opposite sign than the
determinant ofS2n. Additionally, S2(nC1) containsS2n as a minor. Thus, in addition to
the eigenvalues ofS2n, S2(nC1) has exactly one positive and one negative eigenvalue. In
particular, the signatures ofS2(nC1) and S2n are equal.
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4. Hopf vs. trefoil plumbing

It was shown by Giroux and Goodman that the fiber surface of anyfiberd link is
obtained from the disc by consecutively plumbing and deplumbing some Hopf bands
[13]. They include a remark suggesting that for fiberd knots,their plumbing and de-
plumbing operations can be made two by two, such that the intermediate steps are al-
ways fiberd knots. Thus, the fiber surface of any fiberd knot would be a plumbing and
deplumbing of trefoil and figure eight fibers. We give an example that shows that the
deplumbing operation is necessary even in the case where thefiber surface is actually
a plumbing of Hopf bands.

Since a plumbing of two surfaces is quasipositive if and onlyif the two surfaces
are quasipositive [23], any plumbing of positive Hopf bandsis quasipositive. Further-
more, the only way of obtaining such a surface as a plumbing oftrefoil and figure
eight fibers is as a plumbing of positive trefoil fibers. In Example 10, we describe a
fiberd knot whose fiber surface is a plumbing of four positive Hopf bands but not a
plumbing of two positive trefoil fibers.

Lemma 9. Plumbing a Hopf band changes the signature by at most one and
plumbing a positive trefoil fiber never reduces the signature.

Proof. Note that by choosing bases correctly, the matrix of the Seifert form be-
fore the plumbing is a minor of the matrix of the Seifert form after the plumbing.
Since plumbing a Hopf band changes the first Betti number by one, the first statement
follows. Similarly, the second statement follows from the fact that only one of the core
curves of the two positive Hopf bands forming the positive trefoil fiber touches the sur-
face the positive trefoil fiber is plumbed onto.

EXAMPLE 10. Fig. 5 shows the fiber surface of the left-handed trefoil knot and
two embedded intervals with endpoints on the boundary of thesurface. Every such
embedded interval describes a Hopf plumbing. Now plumb a positive Hopf band first
along the dashed interval and then another one along the dotted interval. By choosing
the suitably oriented core curves of the plumbed Hopf bands as a basis of the first
homology, the entries of the matrix for the Seifert form become just the intersection
numbers of the core curves. Calculating these yields the matrix

0

B

B

�

2 1 3 2
1 2 2 3
3 2 2 4
2 3 4 2

1

C

C

A

,

which has signature equal to zero. Since a plumbing of positive trefoil fibers has strictly
positive signature by Lemma 9, the surface obtained after plumbing positive Hopf bands
along the dashed and the dotted interval is not a plumbing of positive trefoil fibers.
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Fig. 5.

For specific classes of fiberd knots, however, the deplumbingoperation need not be
necessary. For example, it was shown by Baader and Dehornoy that the fiber surface
of any positive braid knot is a plumbing of positive trefoil fibers [7]. Another example
of positive trefoil plumbings are slalom knots. In fact, Lewark showed that a tree-like
positive Hopf plumbing has one boundary component if and only if it is actually a
plumbing of positive trefoil fibers [20].

One can show that the examples provided by Proposition 8 are plumbings of posi-
tive trefoil fibers. By Lemma 9, these examples actually minimise the signature among
plumbings of positive trefoil fibers.

QUESTION 11. Is the fiber surface of any divide knot a plumbing of positive tre-
foil fibers?

5. Coxeter systems and the location of zeroes of the Alexander polynomial

In 2002, Hoste conjectured the following result on the location of zeroes of the
Alexander polynomial of alternating knots.

Conjecture (J. Hoste, 2002). The real part of any zero of the Alexander poly-
nomial of an alternating knot is strictly greater than�1.

In the restricted case of two-bridge knots, a first lower bound was proven by Lyubich
and Murasugi [21]. Recently, this bound has been improved by Koseleff and Pecker [17]
and independently by Stoimenow [29]. Furthermore, Hirasawa and Murasugi constructed
many examples of alternating links with all zeroes of the Alexander polynomial real and
strictly positive [15]. Interestingly, we get a very similar but antipodal result for tree-like
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positive Hopf plumbings. Since all the zeroes of the Alexander polynomial are either
negative real or on the unit circle, we get that the real part of any zero of the Alexander
polynomial is smaller or equal to 1 with strict inequality ifand only if the link in ques-
tion is actually a knot.

Actually, the homological monodromy of any plumbing of positive Hopf bands whose
core curves intersect at most once is, up to a sign, conjugateto some Coxeter transform-
ation. Since the corresponding Coxeter graph need not be simply connected, there are,
in general, several conjugacy classes of Coxeter transformations. If the Coxeter graph
is bipartite, there is still a distinguished Coxeter transformation, thebicolored Coxeter
transformation, for which the eigenvalues are either positive real or lie onthe unit circle,
see e.g. [22]. The homological monodromy, however, has no particular reason to be in
the conjugacy class of this bicolored Coxeter transformation. It is indeed not difficult to
construct examples of positive braids such that the corresponding Coxeter graph is bipart-
ite but the homological monodromy of the positive braid linkhas non-real eigenvalues
outside the unit circle.

QUESTION 12. What can be said about homological monodromies that are,up
to sign, conjugate to some Coxeter transformation?

The distribution of zeroes of the Alexander polynomial of positive braids still seems
very particular. See for example Figure 25 appearing towards the end of [10], which
shows the distributions of zeroes of the Alexander polynomial of random positive braids.
Considering this figure leads to the following conjecture, again antipodal to Hoste’s
conjecture.

Conjecture 13. The real part of any zero of the Alexander polynomial of a posi-
tive braid link L is smaller or equal to1 with strict inequality if and only if L is
a knot.

Appendix. Signature and the Alexander polynomial

In this appendix, we prove that the absolute value of the signature of a link is
a lower bound for the number of zeroes of the Alexander polynomial that lie on the
unit circle. We believe that this result is known to a certainextent. For example, if
the Alexander polynomial has only simple zeroes on the unit circle, it follows from a
result of Stoimenow [28]. However, we do not know of any reference providing the
general statement.

Theorem A. The Alexander polynomial1L (t) of any link L is either identically
zero or has at leastj� (L)j zeroes(counted with multiplicity) on the unit circle.

We start by recalling the definitions of the Alexander polynomial, the signature and
its generalisations, the!—signatures, as defined by Levine and Tristram [19, 30]. Let
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L be a link andAn�n be a Seifert matrix forL. The Alexander polynomial1L of L
is defined, up to normalisation, as

1L (t) D det(t A� AT ),

and for! on the unit circle inC, the !—signature�
!

(L) of L is defined as the sig-
nature of the hermitian matrix

M
!

D (1� !)AC (1� N!)AT .

For ! D �1, this equals the definition of the classical signature invariant � (L), and for
! D 1, it is equal to zero.

As ! runs around the unit circle, the eigenvalues�i (!) 2 R of M
!

depend contin-
uously on!. It may happen that one of the eigenvalues�i (!) passes through zero for
some!0. In this case, detM

!0 D 0 and the!—signature�
!

(L) may have a disconti-
nuity at !0. We say that the!—signaturejumpsat !0 and call

j
!0 D

1

2
(�
!0C�(L) � �

!0��(L)) 2 Z

the signature jump at!0.
It is well-known that the signature can only jump at zeroes ofthe Alexander poly-

nomial. Indeed, for any! on the unit circle, it holds that

M
!

D �(1� N!)(!A� AT ),

and consequently, for any discontinuity!0 ¤ 1,

1L (!0) D det(!0A� AT )) D det((�(1� N!0)�1M
!0) D 0.

Lemma B. For any zero!0 ¤ 0 of the Alexander polynomial, the order is greater
or equal to the nullity of!0A� AT .

Proof. Consider the matrixt A� AT
2 Matn�n(C[t ]). There exist matricesP, Q 2

GL(C[t ]) such that P(t A � AT )Q is in Smith normal form, i.e.P(t A � AT )Q is a
diagonal matrix with entries�i 2 C[t ] and such that�i j�iC1, see [25]. Settingc D
det(P) det(Q) 2 C, we obtain

c �1K (t) D det(P) det(t A� AT ) det(Q)

D det(P(t A� AT )Q)

D �1 � � � �n

D (t � !0)m
� p(t),
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where p(!0)¤ 0. The number of�i that have a (perhaps multiple) zero at!0 is exactly
equal to the nullity of!0A� AT . Therefore, we get thatm is greater or equal to the
nullity of !0A � AT . However,m is exactly the order of the zero of the Alexander
polynomial at!0.

REMARK C. The order of the zero of the Alexander polynomial at!0 can actu-
ally be strictly greater than the nullity of!0A � AT . As an example, take!0 D �1
for the link of the singularitiy at zero of the curve given by (x2

C y3)(x3
C y2), see

[1]. The monodromy matrix given towards the end has an eigenvalue !0 D �1 with
algebraic multiplicity equal to two but geometric multiplicity equal to one.

Since for!0 ¤ 1, the jump j j
!0j is less or equal to the nullity ofM

!0 and the
nullity of M

!0 equals the nullity of!0A� AT , we get the following proposition relat-
ing the signature jumps to the order of the zeroes of the Alexander polynomial as a
consequence of Lemma B.

Proposition D. If the !—signature�
!

(K ) jumps at!0 ¤ 1, then the signature
jump j

!0 at !0 is smaller or equal to the order of the zero of the Alexander polynomial
at !0.

Proof of Theorem A. So far we examined the case!0 ¤ 1. In order to make a
statement about the total number of zeroes of the Alexander polynomial that lie on the
unit circle, we also have to study the situation at!0 D 1. If ! tends towards 1, the
eigenvalues�i (!) of M

!

tend, up to some normalisation constant, to the eigenvalues
of i A � i AT . Since A � AT is skew-symmetric, the signature ofi A � i AT is zero.
Therefore, for! close enough to 1, the modulusj�

!

(L)j D j� (M
!

)j is bounded from
above by the nullity ofA� AT , which in turn is bounded from above by the order of
the zero of the Alexander polynomial at 1 by Lemma B. Togetherwith Proposition D,
this yields the desired result.
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