

Title	On algebras which resemble the local Weyl algebra
Author(s)	Hang, Chang-Woo; Miyanishi, Masayoshi; Nishida, Kenji et al.
Citation	Osaka Journal of Mathematics. 1992, 29(2), p. 393–404
Version Type	VoR
URL	https://doi.org/10.18910/5900
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Hang, C.W., Miyanishi, M., Nishida K. and Zhang, D.Q. Osaka J. Math. 29 (1992), 393-404

ON ALGEBRAS WHICH RESEMBLE THE LOCAL WEYL ALGEBRA

CHANG WOO HANG, MASAYOSHI MIYANISHI, KENJI NISHIDA and DE-QI ZHANG

(Received April 11, 1991)

1. Introduction

Let K be an algebraically closed field of characteristic zero and let $\hat{\mathcal{O}}_n(K) = K[[x_1, \dots, x_n]]$ be the formal power series ring over K in n variables. According to Björk [1], we denote by $\hat{D}_n(K)$ the subring of $\operatorname{End}_K(\hat{\mathcal{O}}_n(K))$ generated over K by the left multiplications by elements of $\hat{\mathcal{O}}_n(K)$ and partial differentials $\partial_i = \partial/\partial x_i$,

$$\hat{D}_n(K) = \hat{\mathcal{O}}_n(K) \langle \partial_1, \cdots, \partial_n \rangle$$

where $\partial_i x_j - x_j \partial_i = \delta_{ij}$ (Kronecker's delta) and $\partial_i \partial_j = \partial_j \partial_i$. The ring $\hat{D}_n(K)$, called the *local Weyl algebra*, has the Σ -filtration $\{\Sigma_v\}_{v\geq 0}$ such that $\Sigma_0 = \hat{\mathcal{O}}_n(K)$ and $\Sigma_v = \{\Sigma_{\alpha} f_{\alpha} \partial^{\alpha}; f_{\alpha} \in \mathcal{O}_n(K) \text{ and } \partial^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n} \text{ with } |\alpha| = \alpha_1 + \cdots + \alpha_n \leq v\}$ and that the associated graded ring $\operatorname{gr}_{\Gamma}(\hat{D}_n(K))$ is a polynomial ring over $\hat{\mathcal{O}}_n(K)$ in *n* variables. Moreover, $\hat{D}_n(K)$ has weak global dimension *n*, i.e., w.gl.dim $(\hat{D}_n(K))$ = *n*.

These are ring-theoretic, algebraic properties which the local Weyl algebra $\hat{D}_n(K)$ has. In the present article, we consider whether or not these properties are sufficient to characterize the ring $\hat{D}_n(K)$. For this purpose, we introduce the notion of pre-*W*-algebra and *W*-algebra (see below for the definition) and show that a *W*-algebra, which satisfies the above-listed properties $\hat{D}_n(K)$ has and one additional condition, i.e., $L=\Sigma_1/\Sigma_0$ is essentially abelian, is realized as a sub-algebra of some $\hat{D}_n(K)$. After all, we are successful only in the case n=1. We are, however, convinced that our approach of computing the weak global dimension of a *W*-algebra will be useful to study locally a vector field at a smooth point on an algebraic variety.

We employ the terminology and notation in [1].

2. Structure theorems

To simplify the notation, we denote $\widehat{\mathcal{O}}_n(K)$ by R. Let A be a (not necessarily commutative) K-algebra containing R generated by finitely many elements

over R. Consider the following three conditions on A:

- (i) A has a Σ-filtration {Σ_v}_{v≥0} such that Σ_v(v≥0) is a two-sided R-submodule of A, Σ₀=R, Σ₁ generates A over R, Σ_v·Σ_w⊂Σ_{v+w} for any v, w≥0 and A=∪_{v≥0} Σ_v;
- (ii) The associated graded ring $\operatorname{gr}_{\Sigma}(A) := \bigoplus_{v \ge 0} \Sigma_v / \Sigma_{v-1}$ is a polynomial ring $R[y_1, \dots, y_m]$ in *m* variables;
- (iii) w.gl.dim (A)=n.
 If A satisfies the above conditions (i) and (ii), we call it a pre-W-algebra over R. We denote by L the free R-module Σ₁/Σ₀=⊕^m_{i=1} Ry_i.

Lemma 2.1. Let A be a pre-W-algebra over R. Then we have the following:

(1) Let Y_1, \dots, Y_m be elements of Σ_1 such that $y_i \equiv Y_i \pmod{\Sigma_0}$ for any *i*. Then A is generated by Y_1, \dots, Y_m over R, which we write as $A = R \langle Y_1, \dots, Y_m \rangle$. (2) For any $y \in L$ and $a \in R$, define y[a] by

For any $y \in L$ and $a \in R$, define y[a] by

$$y[a] = Ya - aY$$

for $Y \in \Sigma_1$ with $y \equiv Y \pmod{\Sigma_0}$. Then y[a] is independent of the choice of Y, and y is considered as a K-derivation on R. So, we have an R-linear map $\rho: L \to \text{Der}_{K}(R)$; we write y[a] as $\rho(y)(a)$ as well and we use this map ρ in the subsequent discussions without referring explicitly to this lemma.

(3) Define a bracket product [y, z] on L by

$$[y, z] \equiv YZ - ZY \pmod{\Sigma_0}$$

for $Y, Z \in \Sigma_1$ with $y \equiv Y \pmod{\Sigma_0}$ and $z \equiv Z \pmod{\Sigma_0}$. Then [y, z] is welldefined and ρ is a Lie-algebra homomorphism, i.e., $\rho([y, z]) = [\rho(y), \rho(z)]$.

Proof. (1) For any $f \in A$, we define $\nu(f)$ as the smallest integer r with $f \in \Sigma_r$. If $\nu(f) = r$, there exists $F_r(y_1, \dots, y_m) \in R[y_1, \dots, y_m]_r =$ the r-th homogeneous part of $\operatorname{gr}_{\Sigma}(A)$ such that $f - F_r(Y_1, \dots, Y_m) \in \Sigma_{r-1}$. By induction on $\nu(f)$, we can verify the assertion straightforwardly.

(2) Replace Y be Y+b with $b \in R$. Then we have

$$(Y+b)a-a(Y+b) = Ya-aY,$$

whence y[a] is independent of the choice of Y. Furthermore, we have

$$y[ab] = Y(ab)-(ab) Y = (aY+y[a]) b-abY$$

= $a(Yb-bY)+y[a] b = ay[b]+y[a] b$.

So, y[] is a K-derivation on R.

(3) The assertion can be verified by a straightforward computation.

Q.E.D.

The structure of a pre-W-algebra over R is given in the following:

Theorem 2.2. (1) Let A be a pre-W-algebra over R. Let Y_1, \dots, Y_m be elements of Σ_1 as chosen in the previous lemma. Write

(2.0)
$$Y_i Y_j - Y_j Y_i = \sum_{k=1}^m \rho_{ij,k} Y_k + \sigma_{ij}, \quad 1 \le i, j \le m,$$

where $\rho_{ij,k}, \sigma_{ij} \in \mathbb{R}$. Then we have the following equalities:

(2.1)
$$\sum_{l=1}^{m} (\rho_{ij,l} \rho_{lk,s} + \rho_{jk,l} \rho_{li,s} + \rho_{ki,l} \rho_{lj,s}) = y_i [\rho_{jk,s}] + y_j [\rho_{ki,s}] + y_k [\rho_{ij,s}], \quad 1 \le i, j, k, s \le m$$

(2.2)
$$\sum_{l=1}^{m} (\rho_{ij,l} \sigma_{lk} + \rho_{jk,l} \sigma_{li} + \rho_{ki,l} \sigma_{lj}) = y_i [\sigma_{jk}] + y_j [\sigma_{ki}] + y_k [\sigma_{ij}], \quad 1 \le i, j, k \le m$$

$$(2.3) \qquad \qquad \rho_{ij,k} = -\rho_{ji,k}, \, \sigma_{ij} = -\sigma_{ji}, \quad 1 \leq i,j,k \leq m.$$

The elements $\{\rho_{ij,k}; 1 \le i, j, k \le m\}$ are determined uniquely by the Lie algebra L and the choice of R-free basis $\{y_1, \dots, y_m\}$ of L.

(2) Suppose we are given as in Lemma 2.1 the Lie algebra L and an R-linear map $\rho: L \rightarrow \text{Der}_K R$ which is a Lie-algebra homomorphism. For an R-free basis $\{y_1, \dots, y_m\}$ of L, suppose we are given elements $\{\sigma_{ij}; 1 \le i, j \le m\}$ satisfying the conditions (2.2) and (2.3) above. Then there exists a K-algebra A with a Σ -filtration $\{\Sigma_v\}_{v\geq 0}$ such that

- (i) A is generated over R by elements Y_1, \dots, Y_m ;
- (ii) The equalities (2.0)-(2.3) hold;
- (iii) $\Sigma_{v} = \{\Sigma_{\alpha} f_{\alpha} Y^{\alpha}; f_{\alpha} \in \mathbb{R}, Y^{\alpha} = Y_{1}^{\alpha} \cdots Y_{m}^{\alpha}, |\alpha| \leq v\}$ for any $v \geq 0$;
- (iv) $\operatorname{gr}_{\Sigma}(A) \cong R[y_1, \dots, y_m] := the symmetric algebra of L over R.$

Proof. (1) By the definition of $[y_i, y_j]$ in Lemma 2.1, $\{\rho_{ij,k}; 1 \le i, j, k \le m\}$ are the multiplication constants of the Lie algebra L. Hence they are uniquely determined by the choice of the R-free basis $\{y_1, \dots, y_m\}$ of L. If one chooses $\{Y_1, \dots, Y_m\}$ as in Lemma 2.1, then $\{1, Y_1, \dots, Y_m\}$ is an R-free basis of Σ_1 . Then the equalities (2.1) and (2.2) follow from the Jacobi identity:

$$[[Y_i, Y_j], Y_k] + [[Y_j, Y_k], Y_i] + [[Y_k, Y_i], Y_j] = 0,$$

where $[Y_i, Y_j] = Y_i Y_j - Y_j Y_i$.

(2) Let $\{Y_1, \dots, Y_m\}$ be indeterminates and let A be the free K-algebra generated by Y_1, \dots, Y_m over R modulo the two-sided ideal I generated by

$$\{Y_{i} Y_{j} - Y_{j} Y_{i} - \sum_{k=1}^{m} \rho_{ij,k} Y_{k} - \sigma_{ij}; 1 \le i, j, k \le m\}$$

and

$$\{Y_i f - f Y_i - \rho(y_i)(f); 1 \le i \le m, \forall f \in R\}$$
.

We write $y_i[f] = \rho(y_i)(f)$ by identifying Y_i 's with y_i 's in L, We can employ the proof of the Poincaré-Birkoff-Witt theorem (cf. Jacobson [2]) without major changes in the present situation to show that every element of A is written uniquely as a linear combination of standard monomials in Y_1, \dots, Y_m with coefficients in R. In particular, the equalities (2.1) and (2.2) imply that Σ_1 (with the notation in (iii)) is a free R-module generated by 1, Y_1, \dots, Y_m . Note that there is a surjective homomorphism $\theta: R[y_1, \dots, y_m] \rightarrow \operatorname{gr}_{\Sigma}(A)$. Its kernel is generated by the relations $y_i y_j - y_j y_i$ and $y_i f - f y_i, 1 \le i, j \le m$. But these elements are already zero in $R[y_1, \dots, y_m]$. Hence $\operatorname{gr}_{\Sigma}(A) \cong R[y_1, \dots, y_m]$. Q.E.D.

Let A be a pre-W-algebra over R. We are interested in the existence of an algebra homomorphism from A to the local Weyl algebra $\hat{D}_n(K)$, which is the identity homomorphism when restricted on the subalgebra R. We call it a K-algebra homomorphism over R.

Theorem 2.3. Let A be a pre-W-algebra over R. Then the following conditions on A are equivalent:

(1) There is a K-algebra homomorphism $\tilde{\rho}: A \to \hat{D}_n(K)$ over R such that $\tilde{p}(\Sigma_v) \subset \Sigma_v$ for all $v \ge 0$ and $\tilde{\rho}|_{\Sigma_1}$ induces the Lie-algebra homomorphism $\rho: L:=\Sigma_1/\Sigma_0 \to \text{Der}_K(R)$ (cf. Lemma 2.1).

(2) There exists a lifting $\{Y_1, \dots, Y_m\}$ of the R-free basis $\{y_1, \dots, y_m\}$ in Σ_1 for which $\sigma_{ij}=0, 1 \le i, j \le m$.

(3) There exist $\{a_i\}_{1 \le i \le m}$ in R such that

(2.4)
$$\sigma_{ij} = \sum_{l=1}^{m} \rho_{ij,l} a_l + y_j[a_i] - y_i[a_j], \quad 1 \le i, j \le m.$$

(4) There exists an R-free submodule \tilde{L} of Σ_1 such that \tilde{L} is closed under the bracket product [Y, Z] = YZ - ZY and the natural residue homomorphism $\pi: \Sigma_1 \rightarrow L$ induces a Lie-algebra isomorphism $\pi \mid_{\tilde{L}}: \tilde{L} \rightarrow L$.

Proof.

 $(1) \Rightarrow (2)$. Note that $\hat{D}_n(K)$ acts on R in the natural fashion. So, A acts on R via the homomorphism $\tilde{\rho}$. For $Y \in \Sigma_1$, let $a = \tilde{\rho}(Y) \cdot 1$ and let Y' = Y - a. Then, since $\tilde{\rho}(Y) \in \Sigma_1 := \bigoplus_{i=1}^n R\partial/\partial x_i + R$, we know that $\tilde{\rho}(Y') \in \text{Der}_K(R)$. In particular, $\tilde{\rho}(Y') \cdot 1 = 0$. Now, for the given lifting $\{Y_1, \dots, Y_m\}$, we set $Y'_i = Y_i - \tilde{\rho}(Y_i) \cdot 1$, $1 \le i \le m$. Then $\{Y'_1, \dots, Y'_m\}$ is a lifting of $\{y_1, \dots, y_m\}$ in Σ_1 . We assume from the beginning that $Y'_i = Y_i$, $1 \le i \le m$. Then the equality (2.0) implies $\sigma_{ij} = 0$ ($1 \le i, j \le m$) because $\tilde{\rho}(Y_i) \in \text{Der}_K(R)$.

 $(2) \Rightarrow (3)$. Suppose $\{Y_1, \dots, Y_m\}$ is the given lifting of $\{y_1, \dots, y_m\}$ and $\{Y'_1, \dots, Y'_m\}$ is a lifting for which $\sigma'_{ij} = 0$ when we write

(2.0)'
$$Y'_i Y'_j - Y'_j Y'_i = \sum_{k=1}^m \rho_{ij,k} Y'_k + \sigma'_{ij}, \quad 1 \le i, j \le m.$$

396

Then $Y'_i = Y_i + a_i$ with $a_i \in \mathbb{R}$. Replacing Y'_i in (2.0)' by this expression, we obtain the equality (2.4).

 $(3) \Rightarrow (2)$. Conversely, if we are given $\{a_i\}_{1 \le i \le m}$ satisfying (2.4), set $Y'_i = Y_i + a_i$. Then $\{Y'_i, \dots, Y'_m\}$ is a lifting of $\{y_1, \dots, y_m\}$ for which $\sigma'_{ij} = 0$.

 $(2) \Rightarrow (4)$. Let $\{Y_1, \dots, Y_m\}$ be as in (2) above. Let \tilde{L} be the *R*-submodule of Σ_1 generated by Y_1, \dots, Y_m . Then \tilde{L} is a free *R*-module. Since $\sigma_{ij}=0$, we readily verify that $[Y, Z] \in \tilde{L}$ for any $Y, Z \in \tilde{L}$. Clearly, π induces an isomorphism between \tilde{L} and L.

 $(4) \Rightarrow (1)$. Define $\tilde{\rho}: \tilde{L} \to \text{Der}_{K}(R)$ by $\tilde{\rho}(Y) = \rho(\pi(Y))$. Extend this to Σ_{1} in a natural fashion by putting $\tilde{\rho}|_{\Sigma_{0}} = \text{id}_{R}$. Furthermore, we extend $\tilde{\rho}$ to the free *K*-algebra *F* generated over *R* by Y_{1}, \dots, Y_{m} as follows. For an element $Y_{i_{1}}f_{i_{1}}\cdots Y_{i_{r}}f_{i_{r}}$ of *F* with $Y_{i_{j}} \in \{Y_{1}, \dots, Y_{m}\}$ and $f_{i_{j}} \in \mathbb{R}$, define

$$Y_{i_1}f_{i_1}\cdots Y_{i_r}f_{i_r}\cdot(a) = y_{i_1}[f_{i_1}[y_{i_2}[\cdots[f_{i_r}a]\cdots]]],$$

where $y_{ij} = \pi(Y_{ij})$ and $f[b] := fb \in \mathbb{R}$. In view of (2) of Theorem 2.2, A is identified with the residue ring of F by the two-sided ideal I considered in Theorem 2.2. So, in order to have $\tilde{\rho}$ as above, we have only to show that

$$y_i[y_j[a]] - y_j[y_i[a]] = \sum_{k=1}^{m} \rho_{ij,k} y_k[a]$$
 and $y_i[fa] = fy_i[a] + y_i[f] a$

for $a \in R$. These equations hold, in fact, because $\rho: L \rightarrow \text{Der}_{\kappa}(R)$ being a Liealgebra homomorphism implies

$$y_i[y_j[a]] - y_j[y_i[a]] = [y_i, y_j][a] = \sum_{k=1}^{m} \rho_{ij,k} y_k[a]$$

and the second equality above.

If a pre-W-algebra A over R satisfies one of the equivalent conditions in Theorem 2.3, we call A a W-algebra over R.

REMARK 2.4. (1) Suppose that $\rho: L \to \text{Der}_{K}(R)$ is an isomorphism. Then, as an *R*-free basis $\{y_{1}, \dots, y_{m}\}$ of *L*, we can take $y_{i} = \rho^{-1}(\partial/\partial x_{i})$. Then $\rho_{ij,k} = 0$ for all $1 \le i, j, k \le m$. So the case with all $\rho_{ij,k} = 0$ can take place. We then say that *L* is *essentially abelian*.

(2) Suppose L is essentially abelian. Let $\{y_1, \dots, y_m\}$ be an R-free basis of L such that $[y_i, y_j]=0, 1 \le i, j \le m$ and let $\{Y_1, \dots, Y_m\}$ be such that $y_i \equiv Y_i$ $(\mod \Sigma_0)$ and $Y_i Y_j - Y_j Y_i = \sigma_{ij} \in R$. Suppose we can take $\sigma_{ij} = c_{ij} \in K^* = K -$ (0) for $1 \le i, j \le m$ and $i \ne j$ and that $\rho(y_i) (\mathcal{M}) \subset \mathcal{M}$, where \mathcal{M} is the maximal ideal of R. Then we cannot find $\{a_i\}_{1\le i\le m}$ so that the equality (2.4) holds. There exists a K-algebra A over R satisfying these conditions. In fact, we take $m=n, \rho: L \rightarrow \operatorname{Der}_K(R)$ to be a homomorphism such that $\rho(y_i) = \partial/\partial x_i, 1 \le i \le n$, and A to be the residue ring of a free K-algebra F over R generated by Y_1, \dots, Y_n modulo the two-sided ideal I as considered in Theorem 2.2, (2). Then ρ cannot

Q.E.D.

be extended to a K-algebra homomorphism $\tilde{\rho}: A \to \tilde{D}_n(K)$ over R as considered in Theorem 2.3.

3. Case L is essentially abelian

We begin with the following:

Lemma 3.1. Let A be a W-algebra over R with a K-algebra homomorphism $\tilde{\rho}: A \rightarrow \hat{D}_n(K)$ over R which is an extension of the Lie-algebra homomorphism $\rho: L \rightarrow \text{Der}_K(R)$. Then we have w.gl.dim $(A) \ge n$.

Proof. Note that any element ξ of A can be expressed as $\xi = \sum_{\alpha} f_{\alpha} Y^{\alpha}$, where $f_{\alpha} \in R$ and $Y^{\alpha} = Y_{1}^{\alpha_{1}} \cdots Y_{m}^{\alpha_{m}}$ (cf. the equality Ya - aY = y[a] in Lemma 2.1). Furthermore, this expression is unique. Indeed, if we have a nontrivial expression $\sum_{\alpha} f_{\alpha} Y^{\alpha} = 0$ then this yields a homogeneous nontrivial relation

$$\sum_{|\alpha|=v} f_{\alpha} y^{\alpha} = 0, \quad y^{\alpha} = y_1^{\alpha_1} \cdots y_m^{\alpha_m}$$

where $v = \max\{|\alpha|; f_{\alpha} \neq 0\}$. This contradicts the hypothesis that $\operatorname{gr}_{\Sigma}(A)$ is a polynomial ring in y_1, \dots, y_m over R. Hence A is a free R-module, whence A is R-flat as a left R-module. Similarly, ξ can be expressed uniquely as $\xi = \Sigma_{\beta} Y^{\beta} g_{\beta}$. So, A is R-flat as a right R-module. Hence A is R-flat as a right R-module. The set of R is R-flat as a right R-module.

(*) w.dim_R(
$$A \otimes_R M$$
) \leq w.dim_A($A \otimes_R M$)

for any left *R*-module *M*. Take an *R*-module $K = R/\mathcal{M}$ with $\mathcal{M} = (x_1, \dots, x_n) R$. Then, by the theory of syzyzy, we know that w.dim_{*R*}(*K*)=*n*; in fact, Tor^{*R*}_{*n*}(*K*, *K*) = $K \neq (0)$. Then the above inequality (*) implies that w.dim_{*A*}($A \otimes_R K$) $\geq n$. Hence w.gl.dim(A) $\geq n$. Q.E.D.

We shall be concerned with the condition w.gl.dim(A) = n for a W-algebra over R.

Theorem 3.2. Let A be a W-algebra over R with a K-algebra homomorphism $\tilde{\rho}: A \rightarrow \hat{D}_n(K)$ over R. Suppose that L is essentially abelian and A has w.gl.dim(A)=n. Then $\tilde{\rho}$ is an injection.

Proof. Let $\tilde{\rho}_1:=\tilde{\rho}|_{\tilde{L}}$, where \tilde{L} is an *R*-free submodule of Σ_1 isomorphic to *L* as a Lie algebra (cf. Theorem 2.3). Then there exists an *R*-free basis $\{Y_1, \dots, Y_m\}$ of \tilde{L} such that $Y_i Y_j = Y_j Y_i$ for $1 \le i, j \le m$. Let $\tilde{L}_0 = \bigoplus_{i=1}^m KY_i$ and let $Q = \operatorname{Ker}(\tilde{\rho}_1|_{\tilde{L}_0})$. Then $\tilde{L}_0 \cong Q \oplus \tilde{\rho}_1(\tilde{L}_0)$ is a direct sum as Lie algebras and *Q* is contained in the center of *A*. Let *B* be the *R*-subalgebra of $\hat{D}_n(K)$ generated by $\tilde{\rho}_1(\tilde{L}_0)$ and let *J* be the two-sided ideal of *A* generated by *Q*. Then $B \cong A/J$ and *B* is a *W*-algebra over *R*. Indeed, we may take $\{Y_1, \dots, Y_m\}$ so that $\{Y_{r+1}, \dots, Y_m\}$ is a *K*-basis of *Q*. Let $\bar{Y}_i = \tilde{\rho}_1(Y_i), 1 \le i \le r$. Then *B* is

398

generated by $\overline{Y}_1, \dots, \overline{Y}_r$ over R which act on R via the derivations $\delta_i = y_i$ [], $1 \le i \le r$. Note that $\{\overline{Y}_1, \dots, \overline{Y}_r\}$ are linearly independent over R. So, $r \le n$. We claim:

Lemma 3.3. $\{\delta_1, \dots, \delta_r\}$ are algebraically independent over R. Namely, if $\Sigma_{\gamma} f_{\gamma} \delta^{\gamma} = 0$ with $f_{\gamma} \in R$ and $\delta^{\gamma} = \delta_1^{\gamma_1} \dots \delta_r^{\gamma_r}$ then $f_{\gamma} = 0$ for all γ .

Proof. Denote by Q(R) the quotient field of R. We can find $\Delta_1, \dots, \Delta_r \in \bigoplus_{i=1}^r Q(R) \delta_i$ satisfying the following conditions:

- (1) $\bigoplus_{i=1}^{r} Q(R) \delta_i = \bigoplus_{i=1}^{r} Q(R) \Delta_i;$
- (2) We can express $\Delta_i = \sum_{j=1}^n a_{ij} \partial_j$ with $a_{ij} \in R$ and $\partial_j = \partial/\partial x_j$, and if we define s_i as min $\{j; a_{ij} \neq 0\}$ then $s_1 < s_2 < \cdots < s_r$.

Suppose we have a nontrivial relation $\Sigma_{\gamma} f_{\gamma} \delta^{\gamma} = 0$. Let $v = \max \{ |\gamma|; f_{\gamma} \pm 0 \}$. Expressing δ_i as a Q(R)-linear combination of Δ_j 's and substituting it for δ_i in $\Sigma_{\gamma} f_{\gamma} \delta^{\gamma} = 0$, we obtain a nontrivial relation $\Sigma_{\gamma} g_{\gamma} \Delta^{\gamma} = 0$ with $\max \{ |\gamma|; g_{\gamma} \pm 0 \} = v$. Expressing then Δ^{γ} in terms of $\partial^{\beta} = \partial^{\beta_1} \cdots \partial^{\beta_n}_n$, we obtain

(*)
$$\sum_{|\gamma|=v} (g_{\gamma} \prod_{i=1}^{r} (a_{is_{i}})^{\gamma_{i}}) \partial^{\widetilde{\gamma}} + \cdots = 0,$$

where $\tilde{\gamma}$, as an *n*-tuple, has γ_i at the s_i -th entry for $1 \le i \le r$ and 0 elsewhere if $\gamma = (\gamma_1, \dots, \gamma_r)$. Among g_{γ} 's with $|\gamma| = v$ and $g_{\gamma} \neq 0$, let $(\alpha_1, \dots, \alpha_r)$ be the smallest with respect to the lexicographic relation: $(\gamma_1, \dots, \gamma_r) \le (\gamma'_1, \dots, \gamma'_r)$ if and only if $\gamma_1 = \gamma'_1, \dots, \gamma_{t-1} = \gamma'_{t-1}, \gamma_t \le \gamma'_t$. Then $(g_{\omega} \prod_{i=1}^r (a_{is_i})^{\omega_i}) \partial^{\tilde{\omega}}$ has no other terms in (*) to cancel with. This is a contradiction. Q.E.D.

Proof of Theorem 3.2 resumed. The above lemma implies that B is isomorphic to a *W*-algebra over R generated by Y_1, \dots, Y_r . Since any element ξ of A is expressed uniquely in the form

(**)
$$\xi = \sum_{\gamma} f_{\gamma} Y^{\gamma} + \eta, \quad f_{\gamma} \in R \quad \text{and} \quad \eta \in J,$$

where $Y^{\gamma} = Y_{1}^{\gamma} \cdots Y_{r}^{\gamma}$, we know that A/I is isomorphic to B.

Now we can easily show that $A \cong B[Y_{r+1}, \dots, Y_m]$, a polynomial ring in Y_{r+1}, \dots, Y_m over B (cf. the above expression (**) of ξ). By Björk [1, Th. 3.4, p.43], we have w.gl.dim(A)=w.gl.dim(B)+ $(m-r) \ge n+m-r$ (cf. Lemma 3.1). By the hypothesis w.gl.dim(A)=n, we have m=r. This implies J=(0). Hence $A \cong B$. Q.E.D.

A W-algebra A over R is called a W-subalgebra of $\hat{D}_n(K)$ provided $\tilde{\rho}$ is injective.

Theorem 3.4. There is a one-to-one correspondence between the set of W-subalgebras of $\hat{D}_n(K)$ and the set of R-submodules \tilde{L} of $\text{Der}_K(R)$ satisfying the conditions:

(L-1) \tilde{L} is a free *R*-submodule of $\text{Der}_{K}(R)$;

(L-2) \tilde{L} is closed under the bracket product of $\text{Der}_{K}(R)$.

Proof. Let A be a W-subalgebra of $\hat{D}_n(K)$. Then we can find an R-free submodule \tilde{L} of Σ_1 which is isomorphic to $L := \Sigma_1 / \Sigma_0$. Since $\tilde{\rho}$ is injective, so is $\rho: L \to \text{Der}_K(R)$. Hence \tilde{L} is an R-free submodule of $\text{Der}_K(R)$. Since $\rho \cdot (\pi | \tilde{z})$ is a Lie-algebra homomorphism, \tilde{L} is closed under the bracket product of $\text{Der}_K(R)$ (cf. Theorem 2.3). Conversely, let \tilde{L} be an R-submodule of $\text{Der}_K(R)$ satisfying the conditions (L-1) and (L-2). Let $\{Y_1, \dots, Y_m\}$ be an R-free basis of \tilde{L} . Then we have:

- (1) $Y_i Y_j Y_j Y_i = \sum_{k=1}^{m} \rho_{ij,k} Y_k, 1 \le i, j \le m$,
- (2) $Y_i f f Y_i = Y_i [f]$ for $f \in \mathbb{R}$ and $1 \le i \le m$.

Construct a K-algebra A over R as in Theorem 2.2, (2). Then the natural K-algebra homomorphism $A \rightarrow \hat{D}_n(K)$ over R is injective (cf. the proof of Lemma 3.3). Q.E.D.

A W-subalgebra A of $\hat{D}_n(K)$ is said to be of maximal rank if rank $\tilde{L}=n$. We shall consider the case n=1. Then L is essentially abelian. Hence there exists a K-algebra homomorphism $\tilde{\rho}: A \rightarrow \hat{D}_1(K)$ over R which must be injective by virtue of Theorem 3.4. We set $Y=Y_1$, a free generator of the R-module \tilde{L} (cf. Theorem 2.3). Then we have Yx-xY=f, where f=x'u with $u \in \mathbb{R}^*$. Replacing Y by u^{-1} Y, we may assume that f=x'. We shall show:

Lemma 3.5. $\operatorname{Tor}_2^A(K, K) = K$ if $r \ge 2$, while it is zero if r=1. $\operatorname{Tor}_1^A(K, K) = K$ if r=1.

Proof. Suppose r > 0. Then K is a two-sided A-module. As a right A-module K has the following free A-module resolution:

$$0 \to e_2 A \xrightarrow{\varphi_1} e_1 A \oplus e'_1 A \xrightarrow{\varphi_0} e_0 A \xrightarrow{\varepsilon} K \to 0 ,$$

where ε is the natural residue homomorphism and $\varphi_i(i=0, 1)$ is given as:

$$\varphi_0(e_1) = e_0 Y, \ \varphi_0(e_1') = e_0 x \text{ and } \varphi_1(e_2) = e_1 x - e_1' (Y + x^{r-1})$$

Take the tensor product of this sequence with a left A-module K=Av to obtain the complex:

$$0 \to e_2 A \otimes_A Av \xrightarrow{\overline{\varphi}_1} (e_1 A \otimes_A Av) \oplus (e'_1 A \otimes_A Av) \xrightarrow{\overline{\varphi}_0} e_0 A \otimes_A Av \to 0,$$

where we can identify $e_i A \otimes_A Av$ with $e_i \otimes Kv$ for $e_i = e_0$, e_1 , e_1' and e_2 . Then it is clear that $\overline{\varphi}_1 = \overline{\varphi}_0 = 0$ if $r \ge 2$. Hence $\operatorname{Tor}_2^A(K, K) = K$ if $r \ge 2$. If r = 1, then $\overline{\varphi}_1(e_2 \otimes v) = -e_1' \otimes v$, whence $\overline{\varphi}_1$ is injective. So, $\operatorname{Tor}_2^A(K, K) = 0$ if r = 1. If r = 1, $\operatorname{Tor}_1^A(K, K) = K$ because $\overline{\varphi}_0 = 0$. Q.E.D. **Corollary 3.6.** Let A be a W-subalgebra of $\hat{D}_1(K)$ with w.gl.dim (A)=1. Then $A=\hat{D}_1(K)$.

Proof. With the same notations as in Lemma 3.5, it suffices to show that w.gl.dim(A)=2 if r=1. Suppose r=1 and consider the following exact sequence

$$0 \to e_2 A \xrightarrow{\varphi_1} e_1 A \oplus e'_1 A \xrightarrow{\varphi_0} \operatorname{Im} \varphi_0 \to 0 .$$

Suppose that w.gl.dim(A)=1. Then Im φ_0 is a projective A-module in view of the free A-module resolution of K given in the proof of Lemma 3.5. So, the above sequence must split. Hence there exists an A-homomorphism $\psi: e_1 A \oplus e'_1 A \rightarrow e_2 A$ such that $\psi \varphi_1 = id_{e_2A}$, Write $\psi(e_1) = e_2a$ and $\psi(e'_1) = e_2b$ for some a, b of A. Then we have ax - b(Y+1) = 1. We claim, however, that Ax + A(Y+1) is a proper left ideal of A. Indeed, Ax = xA (cf. Lemma 3.7 below) and A/Ax is isomorphic to a polynomial ring K[Y]. Hence A/Ax + A(Y+1) =K and our claim is proved. This is a contradiction. Consequently, we have w.gl.dim (A)=2. Q.E.D.

We still remain in the case n=r=1. A simple right or left A-module M is said to be *unfaithful* if $\operatorname{ann}_A(M) \neq 0$. For $\alpha \in K$, define $K_{\alpha} = A/xA + (Y-\alpha)A$. Then we have the following:

Lemma 3.7. The following assertions hold true :

- (1) K_{α} is a simple right A-module as well as a simple left A-module.
- (2) $K_{\alpha} \cong K_{\beta}$ if and only if $\alpha = \beta$.
- (3) Every unfaithful simple right or left A-module is isomorphic to K_{α} for some $\alpha \in K$.
- (4) Let S_A and ${}_{A}T$ be unfaithful simple right and left A-modules, respectively. Then $\operatorname{Tor}_{1}^{A}(S, T)=0$.

Proof. The first three assertions can be proved as in the case of a skew polynomial ring or in the case of the universal enveloping algebra of a twodimensional Lie algebra over K. For the convenience of the readers, we shall sketch the proof.

(1) By the relation Yx - xY = x, we have

$$(Y-\alpha)x-x(Y-\alpha)=x$$
 for $\alpha \in K$

This implies that

$$xA = Ax$$
 and $xA + (Y-\alpha)A = Ax + A(Y-\alpha)$

Since $K_{\alpha} \cong K[Y]/(Y-\alpha)$, K_{α} is simple as right and left A-modules.

- (2) This easily follows from the first assertion.
- (3) Since $xA \subset \operatorname{ann}_A(K_{\alpha})$, K_{α} is unfaithful. Let I be a nonzero two-sided

ideal of A. Then $x^n \in I$ for some n. Indeed, let ξ be a nonzero element of I and write it as

$$\xi = \sum_{i=0}^r f_i Y^i$$
 with $f_i \in R$ and $f_r \neq 0$.

Then $\xi x - x\xi = rx f_r Y^{r-1} + (\text{terms of lower degree})$ is an element of I. Since $rxf_r \neq 0$, we can continue this step of finding an element of I with lower degree in Y. After the r-steps repeated, we find an element $x^r f_r$ of I. Multiplying to this element a unit in R, we find $x^r \in I$. Let S be an unfaithful simple right A-module. Set $I = \operatorname{ann}_A(S) \neq 0$. Then $x^n \in I$ and $x^{n-1} \notin I$ for some n. Since $Sx^{n-1} \neq 0$, there exists $s \in S$ such that $sx^{n-1} \neq 0$. Since S is simple, we have $S = sx^{n-1}A = sAx^{n-1}$, whence $Sx = sAx^n = 0$. Hence $x \in I$. So, $xA \subset I$. It is clear that I is a prime ideal of A in the sense that $J_1 J_2 \subset I$ for two-sided ideals J_1, J_2 of A implies $J_1 \subset I$ or $J_2 \subset I$. Let $\overline{A} = A/xA \cong K[Y]$ and \overline{I} the image of I in \overline{A} . Since \overline{I} is a prime ideal of K[Y], we have $\overline{I} = (Y - \alpha)K$ for some $\alpha \in K$. Hence $I = xA + (Y - \alpha)A$ and $S \cong A/I = K_{\alpha}$. A similar argument applies to a simple left A-module.

(4) In order to prove the assertion, we have to show

$$\operatorname{\Gammaor}_1^A(K_{\alpha},K_{\beta})=0 \quad ext{for} \quad lpha,eta\!\in\! K.$$

We can easily show this result by replacing Y by $Y-\alpha$ in the proof of Lemma 3.5. Q.E.D.

If $n \ge 2$, we know little on *W*-subalgebras of $\hat{D}_n(K)$ even if it is of maximal rank. We shall give two partial results.

Proposition 3.8. Let A be a W-subalgebra of maximal rank of $\hat{D}_n(K)$ corresponding to a Lie subalgebra $\tilde{L} = \bigoplus_{i=1}^n RY_i$ with $Y_i = x_i^{r_i} \partial/\partial x_i$ and $r_i \ge 1$. Then we have

$$\mu := \max\{v; \operatorname{Tor}_v^A(K, K) \neq 0\} = 2\#\{i; r_i \ge 2\} + \#\{i; r_i = 1\}.$$

Hence $r_i = 1$ for all *i* provided w.gl.dim(A) = n.

Proof. Let S_i be the free algebra generated by Y_i over a one-dimensional polynomial ring $K[x_i]$ modulo the two-sided ideal generated by $Y_i x_i - x_i Y_i = x_i^{r_i}$. Since $Y_i Y_j = Y_j Y_i$ and $x_i Y_j = Y_j x_i$ if $i \neq j$, A is isomorphic to

$$(S_1 \otimes_K S_2 \otimes_K \cdots \otimes_K S_n) \otimes_{K[x_1, \cdots, x_n]} R$$
,

when $S_1 \otimes_K \cdots \otimes_K S_n$ is regarded as an algebra over $K[x_1, \cdots, x_n]$. Consider a complex

$$(\tilde{C}_i^{\boldsymbol{\cdot}}): \ 0 \to e_2^{(i)} \ S_i \stackrel{\varphi_1}{\to} e_1^{(i)} \ S_i \oplus e_1^{\prime(i)} \ S_i \stackrel{\varphi_0}{\to} e_0^{(i)} \ S_i \stackrel{\varepsilon}{\to} K \to 0 \ ,$$

402

which is defined in the same fashion as in the proof of Lemma 3.5 with A replaced by S_i . It is a resolution of the two-sided S_i -module K by free right S_i -modules. The complex $\tilde{C}^*:=(\tilde{C}_1^*\otimes_K\cdots\otimes_K\tilde{C}_n^*)\otimes_{K[x_1,\cdots,x_n]}R$ is a resolution of the two-sided A-module K by free right A-modules. Let C_i^* (resp. C^*) be the complex obtained from \tilde{C}_i^* (resp. \tilde{C}^*) by replacing K by 0. Then, taking the tensor products with the left A-module K, we obtain $\bar{C}^*:=C^*\otimes_A K\cong \bar{C}_1^*\otimes_K\cdots\otimes_K \bar{C}_n^*$, where $\bar{C}_i^*=C_i^*\otimes_A K$. By the Kunneth formula for homologies, we have

$$\operatorname{Tor}_{v}^{A}(K,K) \cong \bigoplus_{v_{1}+\cdots+v_{n}=v} \operatorname{Tor}_{v_{1}}^{S_{1}}(K,K) \otimes_{K} \cdots \otimes_{K} \operatorname{Tor}_{v_{n}}^{S_{n}}(K,K).$$

Hence we obtain the stated formula in view of Lemma 3.5.

Q.E.D.

Proposition 3.9. Let A be a W-subalgebra of maximal rank of $\hat{D}_2(K)$ corresponding to a Lie subalgebra $\tilde{L}=RY_1+RY_2$ with $Y_1=h\partial/\partial x_i$, where $h=x_1f+x_2g\in Rx_1+Rx_2$. Suppose that h is a homogeneous polynomial in x_1 and x_2 . Then $\operatorname{Tor}_3^A(K, K) \neq 0$ and $\operatorname{Tor}_4^A(K, K) = 0$.

Proof. We have the following relations:

$$Y_1 Y_2 - Y_2 Y_1 = -h_{x_2} Y_1 + h_{x_1} Y_2$$

$$Y_1 x_1 - x_1 Y_1 = h = Y_2 x_2 - x_2 Y_2$$

$$Y_1 x_2 - x_2 Y_1 = 0 = Y_2 x_1 - x_1 Y_2,$$

where $h_{x_i} = \partial h / \partial x_i$. Construct a complex of right A-modules:

$$0 \to e_3 A \xrightarrow{\varphi_2} e_2 A \oplus e_2' A \oplus e_2'' A \oplus e_2''' A \xrightarrow{\varphi_1}$$
$$e_1 A \oplus e_1' A \oplus e_1'' A \oplus e_1''' A \xrightarrow{\varphi_0} e_0 A \xrightarrow{\varepsilon} K \to 0$$

where:

- (0) K is the two-sided A-module with $x_i \cdot 1 = Y_i \cdot 1 = 0$ for i=1, 2;
- (i) $\mathcal{E}(e_0) = 1;$
- (ii) $\varphi_0(e_1) = e_0 Y_1, \varphi_0(e_1') = e_0 x_1, \varphi_0(e_1'') = e_0 Y_2, \varphi_0(e_1''') = e_0 x_2;$

(iii)
$$\varphi_1(e_2) = e_1 x_1 - e_1'(Y_1 + f) - e_1''' g, \quad \varphi_1(e_2') = -e_1' f + e_1'' x_2 - e_1'''(Y_2 + g), \\ \varphi_1(e_2'') = e_1 x_2 - e_1''' Y_1, \quad \varphi_1(e_2'') = -e_1' Y_2 + e_1'' x_1;$$

(iv) $\varphi_2(e_3) = e_2 x_2(Y_2 + g + h_{x_2}) + e'_2 x_1(Y_1 + f + h_{x_1}) - e''_2 x_1(Y_2 + g + h_{x_2}) - e''_2 x_2(Y_1 + f + h_{x_1}).$

It is straightforward to show that this complex is a resolution of K by right free A-modules. The stated result follows from this observation. Q.E.D.

References

[1] J.E. Björk: Rings of differential operators, North-Holland, Amsterdam, Oxford, New York, 1979.

[2] N. Jacobson: Lie algebras, Dover, New York, 1979.

Chang Woo Hang Department of Mathematics Dong-A University Pusan, Korea

Masayoshi Miyanishi and De-Qi Zhang Department of Mathematics Faculty of Science Osaka University Toyonaka, Osaka 560

Kenji Nishida Department of Mathematics College of General Education Nagasaki University Nagasaki 852