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1. Introduction

Let K be an algebraically closed field of characteristic zero and let @,,(K)=
K{[[%,, -+, x,]] be the formal power series ring over K in 7 variables. Accord-
ing to Bjork [1], we denote by DA,,(K) the subring of EndK(@,,(K)) generated
over K by the left multiplications by elements of @,,(K) and partial differentials
0,=0/0x;,

D(K) = O,(K) <8y, 0,

where 0, x,—x; 0,=3;; (Kronecker’s delta) and 9, 9,=09,90;. 'The ring ﬁ,,(K),
called the local Weyl algebra, has the Z-filtration {Z,},5, such that 20=(_€7,,(K)
and %,= {32, f, 0%; f,€0,(K) and 8*=08%:---93" with |a|=a,~+ - +a,<v} and
that the associated graded ring grp(ﬁn(K)) is a polynomial ring over @,,(K )in n
variables. Moreover, ﬁ,,(K) has weak global dimension #, i.e., W.gl.dim(ﬁ,,(K))
=n.

These are ring-theoretic, algebraic properties which the local Weyl algebra
ﬁ,,(K ) has. In the present article, we consider whether or not these properties
are sufficient to characterize the ring ﬁ,,(K). For this purpose, we introduce the
notion of pre-W-algebra and W-algebra (see below for the definition) and show
that a W-algebra, which satisfies the above-listed properties DA,,(K) has and one
additional condition, i.e., L=3,/3, is essentially abelian, is realized as a sub-
algebra of some ﬁ,,(K). Atter all, we are successful only in the case n=1. We
are, however, convinced that our approach of computing the weak global di-
mension of a W-algebra will be useful to study locally a vector field at a smooth
point on an algebraic variety.

We employ the terminology and notation in [1].

2. Structure theorems

To simplify the notation, we denote é,,(K ) by R. Let A be a (not neces-
sarily commutaiive) K-algebra containing R generated by finitely many elements
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over R. Consider the following three conditions on 4:

(i) A has a S-filtration {=,},5, such that =,(v>0) is a two-sided R-submodule
of 4, 3,=R, =, generates 4 over R, 3,-3,CZ,,, for any v,w>0 and
A=U 40 %3

(il) The associated graded ring grs(4):=®,» =,/Z,-1 is a polynomial ring
R[y), *, ¥] in m variables;

(iii) w.gl.dim (4)=n.
If A satisfies the above conditions (i) and (ii), we call it a pre-W-algebra over
R. We denote by L the free R-module 3,/3,= @7, Ry;.

Lemma 2.1. Let A be a pre-W-algebra over R. Then we have the follow-
ing:

(1) Let Y, -+, Y, be elements of =, such that y,=Y; (mod =) for any i.
Then A is generated by Y, --+, Y,, over R, which we write as A=R Y7, -+, Y,

(2) For any yEL and aER, definc y[a] by

yla] = Ya—aY
for YE3, with y=Y (mod =,). Then y|[a] is independent of the choice of Y, and

y s considered as a K-derivation on R. So, we have an R-linear map p: L—
Derg(R); we write y[a] as p(y) (a) as well and we use this map p in the subsequent
discussions without referring explicitly to this lemma.

(3) Define a bracket product [y, 2] on L by

[y,2] = YZ—ZY (modZ,)
for Y, ZE3, with y=Y (mod =) and 2=Z (mod %,). Then [y, z] is well-
defined and p is a Lie-algebra homomorphism, i.e., p([y, 2])=[p (¥), p(*)].

Proof. (1) Forany fEA4, we define v(f) as the smallest integer r with
fE3,. If v(f)=r, there exists F,(y;, -**, Ym) ER[y1, ***, Ym],=the r-th homo-
geneous part of grs(A4) such that f—F/(Y;, -, Y,)E3,.,. By induction on
v(f), we can verify the assertion straightforwardly.

(2) Replace Y be Y+-b with bER. Then we have

(Y+b)a—a (Y+b) = Ya—a?,
whence y[a] is independent of the choice of Y. Furthermore, we have

y[ab] = Y(ab)—(ab) Y = (aY+y[a]) b—abY
— a(Yb—bY)+y[a] b = ay[bl+y[a] b
So, y[ ] is a K-derivation on R.

(3) The assertion can be verified by a straightforward computation.

Q.E.D.
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The structure of a pre-W-algebra over R is given in the following:

Theorem 2.2. (1) Let A be a pre-W-algebra over R. Let Y, -+, Y, be
elements of =, as chosen in the previous lemma. Write

(2.0) Y, Y,~Y, Y, =S piya Yito,, 1<ij<m,
where p;; 4, 5;;ER. Then we have the following equalities:
(2.1) IE:(Pi it PiksTP bt Pri st Prit Pij,s)
=Yilojpatyilondtyilpisdd, 1<i,j,k,s<m
(2.2) Iz:(Pij.l Tixtpirs CutPrii 1)
= y;loplty;lonl+yiloi]l, 1<i,j,k<m
(2.3) Piih = —Pym Ty = —ay, 1<ij,k<m.

The elemen.s {p;; x; 1=<1,j, k<m} are determined uniquely by the Lie algebra
L and the choice of R-free basis {y, -**, Ym} of L.

(2) Suppose we are given as in Lemma 2.1 the Lie algebra L and an R-linear
map p: L—Derg R which is a Lie-algebra homomorphism. For an R-free basis
{31, =+, Yut of L, suppose we are given elements {c,;; 1<i,j<m} satisfying the
conditions (2.2) and (2.3) above. Then there exists a K-algebia A with a =-
filtration {2} ;>, such that
(i) A is generated over R by elements Y, -+, Y,,;
(i) The equalities (2.0)-(2.3) hold;
(i) Z={Z.fs Y*; [LER, Y*=Y1--- Yo, |a| <o} for any v>0;
(iv) grs(A)==R[y,, ***, Ym|:=the symmetric algebra of L over R.

Proof. (1) By the definition of [y;, y,] in Lemma 2.1, {p;; »; 1<4, 5, k<m}
are the multiplication constants of the Lie algebra L. Hence they are uniquely
determined by the choice ol the R-free basis {y,, -**, ¥} of L. If one chooses

{Y,, -+, Y} as in Lemma 2.1, then {1, Y3, -+, Y,} is an R-free basis of 3,.
Then the equalities (2.1) and (2.2) follow from the Jacobi identity:

([Y: Y1, Yi+I[Y,, Yal, Yi]+[[Ye Y], Y] =0,

where [V, Y ]=Y, Y,—Y,; Y.
(2) Let {Y,, -, Y,} be indeterminates and let 4 be the free K-algebra
generated by Y}, --+, Y, over R modulo the two-sided ideal I generated by

{Y,Y,~Y,Y,— kz pijn Yi—oiy3 1<i, j, k<m}

and

Y f—fYi—p(3:) (f); 1<i<m,VfER} .
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We write y,[ fl=p(¥;) (f) by identifying Y;’s with y,’s in L, We can employ
the proof of the Poincaré-Birkoff-Witt theorem (cf. Jacobson [2]) without major
changes in the present situvation to show that every element of A4 is written
uniquely as a linear combination of standard monomials in Y7, .-, ¥, with
coefficients in R. In particular, the equalities (2.1) and (2.2) imply that 3, (with
the notation in (iii)) is a free R-module generated by 1, Y, -+, ¥,,. Note that
there is a surjective homomorphism @: R[y,, -+, ¥,,]—>grs(4). Its kernel is
generated by the relations y;y,—y,y; and y; f—fy;, 1<i, j<m. But these
elements are already zero in R[y,, -**, y,]. Hence grs(4)=R[y,, -, Y-
Q.E.D.

Let A be a pre-W-algebra over R. We are interested in the existence of
an algebra homomorphism from A4 to the local Weyl algebra ﬁ,,(K), which is
the identity homomorphism when restricted on the subalgebra R. We call
it a K-algebra homomorphism over R.

Theorem 2.3. Let A be a pre-W-algebra over R. Then the following con-
ditions on A are equivalent :

(1) There is a K-algebra homomorphism p: A—>b\,,(K ) over R such that p(=,)
CZ, for all v>0 and p| s, induces the Lie-algebra homomorphism p: L:=3,[3,—
Derk(R) (¢f. Lemma 2.1).

(2) There exists a lifting {Y,, .-+, Y,.} of the R-free basis {y,, -**, Vn} in =,
for which o, ;/=0, 1<i, j<m.

(3) There exist {a;}1<;<m in R such that

(2.4) o= 1}-:1' Piji al+yj[ai]_yi[aj] , 1Z4,j<m.

(4) There exists an R-free submodule L of 3, such that L is closed under
the bracket product [Y,Z]|=YZ—ZY and the natural residue komomorphzsm
n: Z,—L induces a Lie-algebra isomorphism = |7: L—L.

Proof.

(1)=(2). Note that ﬁ,,(K ) acts on R in the natural fashion. So, 4 acts on
R via the homomorphism p. For YEZ,, let a=p(Y)-1 and let V'=Y—a.
Then, since p(Y)EZ,:=D%., R3/0x;+ R, we know that (Y’)EDerg(R). In
particular, (Y")-1=0. Now, for the given lifting {Y;, ---, Y,}, we set YV/=
Y,—p(Y;)-1,1<i<m. Theo {Y], -+, Y}} is a lifting of {y, -, y,,} in =,.
We assume from the beginning that Y/=Y; 1</<m. Then the equality
(2.0) implies o; ;=0 (1<%, j <m) because §(Y;)E Derg(R).

(2)=(3). Suppose {Y,, -, Y,} is the given lifting of {y,, -, y,} and
{Y{, -+, Y} is a lifting for which o/;=0 when we write

(2.0)’ Y Y~V Vi = ép,.,.,,, Yitol;, 1<i,j<m.
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Then Y!{=Y,;+a; with a,€R. Replacing Y/ in (2.0)" by this expression,
we obtain the equality (2.4).

(3)=(2). Conversely, if we are given {a;}<;<n satisfying (2.4), set Y=
Y,+a;. Then {Y!, ---, Y1} is a lifting of {y,, -+, ¥} for which &{;=0.

(2)=(4). Let {Y,, -, Y,} beasin (2)above. Let L be the R-submodule
of 3, generated by Y,, -+, ¥,,. Then L is a free R-module. Since o =0, we
readily verify that [V, Z]€L for any Y, Z€EL. Clearly, = induces an isomor-
phism between L and L.

(4)=(1). Define p: L—Derg(R) by p(Y)=p(=(Y)). Extend this to =, in
a natural fashion by putting g|s,=id;. Furthermore, we extend p to the free
K-algebra F generated over R by Y, -, Y, as follows. For an element
Y. fi, Y, fi, of Fwith Y, ,€{Y,, -+, V,} andf,-jER, define

Y. fir Vi, fi, (@) = yi [ [ [3i,[- 1, @l 100

where y;,==(Y;;) and f[b] :=fbER. In view of (2) of Theorem 2.2, 4 is identi-
fied with the residue ring of F by the two-sided ideal I considered in Theorem
2.2. So, in order to have p as above, we have only to show that

yily;lall—y;ly:[a]] = k‘ép.-,-,kyk [4] and y;[fa] = fy:[a]+yilf]a

for acR. These equations hold, in fact, because p: L—Derg(R) being a Lie-
algebra homomorphism implies

yily;lall—y;lyilell = [y, 3,1 [a] = 2 pijn e 1d]
and the second equality above. Q.E.D.

If a pre-W-algebra 4 over R satisfies one of the equivalent conditions in
Theorem 2.3, we call A a W-algebra over R.

ReEMARK 2.4. (1) Suppose that p: L—>Derg(R) is an isomorphism. Then,
as an R-free basis {y,, -, yu} of L, we can take y,=p~'(3/0x;). Then p,;,=0
for all 1<, 5, k<m. So the case with all p,; ,=0 can take place. We then say
that L is essentially abelian.

(2) Suppose L is essentially abelian. Let {y,, --:, y,.} be an R-free basis
of L such that [y,,y,]=0,1<4,j<m and let {Y,, ---, Y,,} be such that y,=Y;
(mod Zp)and Y; Y, — Y, Y;=0,,ER. Suppose we can take o;;=¢; , EK*=K—
(0) for 1<7,j<m and i< and that p(y;) (JH)C M, where M is the maximal
ideal of R. Then we cannot find {a;},<;<s so that the equality (2.4) holds.
There exists a K-algebra 4 over R satisfying these conditions. In fact, we take
m=n, p: L—>Derg(R) to be a homomorphism such that p(y,)=09/0x;, 1<i<n,
and 4 to be the residue ring of a free K-algebra F over R generated by Y, -+, Y,
modulo the two-sided ideal I as considered in Theorem 2.2, (2). Then p cannot
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be extended to a K-algebra homomorphism g: A—D,(K) over R as considered
in Theorem 2.3.

3. Case L is essentially abelian

We begin with the following:

Lemma 3.1. Let A be a W-algebra over R with a K-algebra homomorphism
p: A——>ﬁ,,(K) over R which is an extension of the Lie-algebra homomorphism p:
L—Derg(R). Then we have w.gl.dim (4)>n.

Proof. Note that any element & of 4 can be expressed as £§=3,f,Y*,
where f,ER and Y*=Y{1..- Y y» (cf. the equality Ya—aY=y[a] in Lemma 2.1).
Furthermore, this expression is unique. Indeed, if we have a nontrivial expres-
sion 3, f, Y*=0 then this yields a homogeneous nontrivial relation

Efd_y“:os yw:y‘l’;ln.y:m

|l@l=v

where v=max{|a|; f,#0}. This contradicts the hypothesis that grs(4) is a
polynomial ring in yy, --+, 5, over R. Hence A is a free R-module, whence
4 is R-flat as a left R-module. Similarly, £ can be expressed uniquely as
E=35YPgs. So, A is Rflat as a right R-module. Hence 4 is R-flat as a
ring. In view of Bjork [1, Cor.2.9, p.42], we have

(*) w.dimy(AQ, M)<w.dim, (AR M)

for any left R-module M. Take an R-module K=R/ M with H=(x,, >+, x,) R.
Then, by the theory of syzyzy, we know that w.dimz(K)=m; in fact, Torf(K, K)
=K=+(0). Then the above inequality (*) implies that w.dim,(4AQ; K)=>n.
Hence w.gl.dim(4)>#. Q.E.D.

We shall be concerned with the condition w.gl.dim(4)=n for a W-algebra
over R.

Theorem 3.2. Let A be a W-algebra over R with a K-algebra homomor-
phism p: A—D,(K) over R. Suppose that L is essentially abelian and A has
w.gl.dim(A)=n. Then p is an injection.

Proof. Let p,:=p|z, where L is an R-free submodule of =, isomorphic to
L as a Lie algebra (cf. Theorem 2.3). Then there exists an R-free basis
{Y,, -, Y.} of L such that ¥, Y,=Y,Y, for 1<i,j<m. Let L=®".KY,
and let Q=Ker(p,|z,). Then Ly=QPp,(L,) is a direct sum as Lie algebras
and Q is contained in the center of 4. Let B be the R-subalgebra of 13,,(K)
generated by py(L,) and let J be the two-sided ideal of 4 generated by Q. Then
B=A|] and B is a W-algebra over R. Indeed, we may take {Y3,---, Y,} so
that {Y,,,, -+, Y,.} is a K-basis of Q. Let f’;:pl(Y,-), 1<i<r. Then B is
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generated by Y, -, I_’,_ over R which act on R via the derivations §;=y;[ 1,
1<i<r. Note that {Y}, ---,Y,} are linearly independent over R. So, r<n.
We claim:

Lemma 3.3. {0, ‘-, 8,} are algebraically independent over R. Namely, if
Sy fy 8'=0 with fyER and §'=258Y1:--8} then f3=0 for all 7y.

Proof. Denote by O(R) the quotient field of R. We can find A, -+, A, €
7-1 O(R) §; satisfying the following conditions:
(1) i1 O(R) 8;=Di-1 O(R) A
(2) We can express A,=>3}., @;; 0, with ¢;;ER and 3,=0/0x, and if we define
s; as min{j; a;; %0} then 5;<5,<:--<s,.
Suppose we have a nontrivial relation 2y fy 8'=0. Let v=max {|v]|; fy=0}.
Expressing 8; as a Q(R)-linear combination of A/’s and substituting it for §; in
Sy fy 87=0, we obtain a nontrivial relation =y gy AY=0 with max {|v|; gy+0} =
v. Expressing then A? in terms of 9#=08%1---95#, we obtain

(*) ) (g0 1T (a:)%) 7+ =0,

1Yi=v

where 4, as an n-tuple, has ¥; at the s;-th entry for 1<i<r and 0 elsewhere
if y=(vy, +**,v,). Among gy’s with |y|=v and g,=%0, let (a,, :**, @,) be the
smallest with respect to the lexicographic relation: (vy, -+, ¥,) < (Y1, =+, ¥7)
if and only if v,=v{, -+, ¥,;="/-1, V. <Vi. Then (g, TT71(a:5)%) 8® has no
other terms in (*) to cancel with. This is a contradiction. Q.E.D.

Proof of Theorem 3.2 resumed. The above lemma implies that B is
isomorphic to a W-algebra over R generated by Y, .-+, Y,. Since any element
£ of A is expressed uniquely in the form

(¥%) = ;fy Y'+9, f4€R and €],

where Y'=Y1--- Y77, we know that 4/] is isomorphic to B.

Now we can easliy show that A=B[Y,,,, -+, Y,], a polynomial ring in
Y, 41, o+, Y, over B (cf. the above expression (**) of £). By Bjork [1, Th. 3.4,
p-43], we have w.gl.dim(4)=w.gl.dim(B)+(m—r)>n+m—r (cf. Lemma 3.1).
By the hypothesis w.gl.dim(A4)=n, we have m=r. This implies J=(0). Hence
A=B,. Q.E.D.

A W-algebra A over R is called a W-subalgebra of ﬁ,,(K) provided p is
injective.

Theorem 3.4. There is a one-to-one correspondence between the set of W-

subalgebras of ﬁn(K) and the set of R-submodules L of Derx(R) satisfying the con-
ditions :
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(L-1) L is a free R-submodule of Derg(R);
(L-2) L is closed under the bracket product of Derg(R).

Proof. Let A4 be a W-subalgebra of ﬁ,,(K). Then we can find an R-
free submodule L of 3, which is isomorphic to L:=3,/3,. Since 5 is injective,
so is p: L->Derg(R). Hence L is an R-free submodule of Derg(R). Since
p+(z| 1) is a Lie-algebra homomorphism, L is closed under the bracket product
of Derg(R) (cf. Theorem 2.3). Conversely, let L be an R-submodule of Derx(R)
satisfying the conditions (L-1) and (L-2). Let {Y}, -+, ¥,,} be an R-free basis
of L. Then we have:

(1) V,Y,-Y, Y, =30pis Yi 154, <m,
(2) Y, f—fY,=Y,[f] for fER and 1<i<m.
Construct a K-algebra 4 over R as in Theorem 2.2, (2). Then the natural

K-algebra homomorphism A—>DA,,(K ) over R is injective (cf. the proof of Lemma
3.3). Q.E.D.

A W-subalgebra A4 of b\,,(K) is said to be of maximal rank if rank L=n.
We shall consider the case n=1. Then L is essentially abelian. Hence there
exists a K-algebra homomorphism p: A—>ﬁ1(K) over R which must be in-
jective by virtue of Theorem 3.4. We set Y=Y, a free generator of the R-
module L (cf. Theorem 2.3). Then we have Yx—xY=Ff, where f=x"u with
uER*. Replacing Y by ™! Y, we may assume that f=x". We shall show:

Lemma 3.5. Tor{(K,K)=K if r>2, whie it is zero if r=I.
Tor{(K, K)=K if r=1.

Proof. Suppose r>0. Then K is a two-sided A-module. As a right
A-module K has the following free A-module resolution:

0>e AR e ADl AR e 45K —0,
where € is the natural residue homomorphism and @;(7=0, 1) is given as:
ooe) = &Y, @yel) =ex and @y(e) = e x—ef(Y+a").

Take the tensor product of this sequence with a left A-module K=Av to
obtain the complex:

0> e, AR, Ao 2 (6, AR , Av)D(el AR , Av) B 6, A® , Av — 0,

where we can identify ¢; AQ 4, Av with ¢;@Kv for ¢;= ¢, ¢;, ] and ¢,. Then it
is clear that §,=@,=0 if r>2. Hence Tors(K, K)=K if r>2. If r=1, then
Py(e,Qv)=—e{®v, whence @, is injective. So, Tor;(K, K)=0 if r=1. If
r=1, Tor{(K, K)=K because $,=0. Q.E.D.
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Corollary 3.6. Let A be a W-subalgebra of l/)\l(K) with w.gl.dim (4)=1.
Then A=D\(K).

Proof. With the same notations as in Lemma 3.5, it suffices to show that
w.gldim(4)=2if r=1. Supposer=1 and consider the following exact sequence

0—>e, A3 e, ADel A5 Im g, — 0.

Suppose that w.gl.dim(4)=1. Then Im ¢, is a projective 4-module in view
of the free 4-module resolution of K given in the proof of Lemma 3.5. So,
the above sequence must split. Hence there exists an A-homomorphism
yr: e, ADe] A—e, A such that vp,=id,,,, Write yr(e;)=e,a and r(e{)=e,b for
some a,b of A. Then we have ax—b(Y+1)=1. We claim, however, that
Ax+A(Y+1) is a proper left ideal of 4. Indeed, Ax=xA (cf. Lemma 3.7 below)
and A4/Ax is isomorphic to a polynomial ring K[Y]. Hence 4/Ax+A(Y+1)=
K and our claim is proved. This is a contradiction. Consequently, we have

w.gl.dim (4)=2. Q.E.D.

We still remain in the case n=r=1. A simple right or left A-module M
is said to be unfaithful if ann,(M)=+0. For a €K, define K,=A[xA+(Y—a)A.
Then we have the following:

Lemma 3.7. The following assertions hold true :

(1) K, is a simple right A-module as well as a simple left A-module.

(2) K,=Kgif and only if a=_5.

(3) Ewery unfaithful simple right or left A-module is isomorphic to K, for some
aeK.

(4) Let S, and ,T be unfaithful simple right and left A-modules, respectively.
Then Torf (S, T)=0.

Proof. The first three assertions can be proved as in the case of a skew
polynomial ring or in the case of the universal enveloping algebra of a two-
dimensional Lie algebra over K. For the convenience of the readers, we shall
sketch the proof.

(1) By the relation Yx—xY=ux, we have

(Y—a)x—x(Y—a)=x for a€K
This implies that
%4 = Ax and xA+(Y—a)A = Ax+A(Y—a)

Since K,=K[Y]/(Y—a), K, is simple as right and left 4-modules.
(2) This easily follows from the first assertion.
(3) Since x4ACann,(K,), K, is unfaithful. Let I be a nonzero two-sided
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ideal of A. 'Then x"&1I for some n. Indeed, let £ be a nonzero element of I
and write it as

E=3fY with f,€R and f=+0.
i=0

Then Ex—xE=rx f, Y '4(terms of lower degree) is an element of I. Since
rxf,=0, we can continue this step of finding an element of / with lower degree
in Y. After the r-steps repeated, we find an element &” f, of 7. Multiplying to
this element a unit in R, we find &"€1. Let S be an unfaithful simple right
A-module. Set I=ann,(S)=0. Then x"&I and x" '€ for some n. Since
Sx*~ 120, there exists €S such that sx*'&0. Since S is simple, we have
S=sx""'A=sAx""', whence Sx=sAx"=0. Hence x&I. So, xACI. It is
clear that [ is a prime ideal of 4 in the sense that J; J,C I for two-sided ideals
Jui, J» of A implies J;CI or J,CI. Let A=A[xA=K[Y] and I the image of [
in A. Since I is a prime ideal of K[Y], we have I=(Y—a) K for some a K.
Hence I=xA+4(Y—a) A and S=A/I=K,. A similar argument applies to a
simple left A-module.

(4) In order to prove the assertion, we have to show
Tor{(K,,Kg) =0 for a,BEK.

We can easily show this result by replacing Y by Y—o in the proof of Lemma
3.5. Q.E.D.

If n>2, we know little on W-subalgebras of l/)\,,(K) even if it is of maximal
rank. We shall give two partial results.

Proposition 3.8. Let A be a W-subalgebra of maximal rank of ﬁ,,(K ) cor-
responding to a Lie subalgebra L= @®%., RY, with Y,=x7i0/0x; and r;>1. Then
we have

w = max{v; Tor}(K, K)*0} = 28{i; r,>2} +#{i;r, = 1} .
Hence r;=1 for all i provided w.gl.dim(4)=n.

Proof. Let S; be the free algebra generated by Y; over a one-dimensional
polynomial ring K[x,] modulo the two-sided ideal generated by Y, x;,—x; Y;=xi:.
Since V; Y,=Y,; Y, and »; Y,=Y, «; if i< j, A is isomorphic to

(SI®K SZ®K"'®K Sﬂ)@K[xl,»-,x,,] R )

when S\@Qg @k S, is regarded as an algebra over K[x,, -+, x,]. Consider a
complex

~ . (] . . (%) . €
(C): 0> ¢S, = e S;Pef ¥ S; > & S; > K—0,
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which is defined in the same fashion as in the proof of Lemma 3.5 with 4 re-
placed by S;. It is a resolution of the two-sided S;-module K by free right S;-
modules. The complex C':=(Ci®y @y C,)Qi,, ..., R is a resolution of
the two-sided A-module K by free right A-modules. Let C; (resp. C”) be the
complex obtained from C; (resp. C*) by replacing K by 0. Then, taking the
tensor products with the left A-module K, we obtain C:=C'QR,K=Ci®Qy
® C;, where Ci=C:®, K. By the Kunneth formula for homologies, we have

Tor} (K, K)=®, ..., Tor, (K, K)® @ Tor; (K, K) .
Hence we obtain the stated formula in view of Lemma 3.5. Q.E.D.

Proposition 3.9. Let A be a W-subalgebra of maximal rank of ﬁz(K) cor-
responding to a Lie subalgebra L=RY,+RY, with Y,=h0[0x,, where h=x, f-+
%, 8 ERx,+Rx,. Suppose that h is a homogeneous polynomial in x, and x,. Then
Torg(K, K)=#0 and Tor{(K, K)=0.

Proof. We have the following relations:

Y, Yz*‘ Yz Y, = —kxg Y1+hx1 Y,
Yo, %Y, =h=Y,%,—x7Y,
Yig—2, YV, = 0= Y,0,—x, Y,,

where &, =0h[0x;. Construct a complex of right A-modules:
P2 / 7/ 11 g %1
0—>e,A— e, APe;, APes’ APes’’ A —

e, APel ADel’ ADel’ A% ey 45K -0,
where:
(0) K is the two-sided A-module with x;-1=Y,-1=0 for i=1, 2;
(1) &eo)=1;
(ii) ¢’o(31):eo Y, (Po(ef)_—‘eo X1, ¢o(e{,):eo Y, ‘Po(ef,’):eo X253
(i) @i(e)=erx,—el(Y+f)—el” g, pi(et)=—ei f+el’ x,—el” (Y, +g),
pier)=erx,—el”" Yy, pi(e’)=—el Yotel’ x;;

(iv)  @ales)=es 3o Votgthu)+eh xy(Vitf+ho)—es s, (Votg-the)—

ey’ %(Y4-f+h,).
It is straightforward to show that this complex is a resolution of K by right free
A-modules. The stated result follows from this observation. Q.E.D.
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