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1. Introduction

The stable classification of closed connected topological respectively smooth four-
manifolds (with orientation or spin structure) via bordismtheory is a very nice result
in topology of manifolds, and can be found in [11] and [23]. Here stably means that
one allows additional connected sums with copies ofS2 × S2 on both sides. In [19]
the closed oriented 4-manifolds with finitely presentable fundamental groupπ were
classified modulo connected sum with simply connected closed 4-manifolds. More pre-
cisely, the stable equivalence classes of these manifolds are bijective to the quotient

4( π; Z)/(Autπ)∗ via the map → ∗[ ], where [ ] ∈ 4( ) is the fundamen-
tal class, and : → π is the classifying map for the universal covering of
(see [19, Theorem 1]). The proof of this theorem is based on some facts concern-
ing the cobordism groups 4( ), 4( π), and 4 (see for example [7] and [28]).
Recently, this result has been extended to the non-orientable case in [18] at least for
abelian fundamental groups.

The aim of the present paper is to study the stable classification of closed
connected oriented spin smooth 4-manifolds by using techniques of Kervaire-Milnor
surgery, as explained for example in [4], [5], [6], and [20].Then we reproduce a nice
result of Kurazono and Matumoto [19] for such manifolds under the assumption that
the fundamental group is finitely presentable and has vanishing second and third ho-
mology with Z2-coefficients.

Let Mπ (resp.MSpin
π ) be the set of closed connected oriented smooth (resp. spin)

4-manifolds with finitely presentable fundamental groupπ, which are considered up
to (resp. spin) stable equivalence. We say that two manifolds in Mπ (resp.MSpin

π )
are (resp.spin) stably equivalentif they become diffeomorphic (resp. spin preserv-
ing diffeomorphic) after taking connected sums with copiesof S2 × S2 and S2 ×

∼
S2

(resp.S2 × S2) on both sides. The first result of the paper is the following
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Theorem A. There are bijective maps

: 4( π)/(Aut π)∗ → Mπ

and

Spin: Spin
4 ( π)/(Aut π)∗ → MSpin

π

The inverse maps are given by sending{ } ∈ Mπ and { }Spin ∈ MSpin
π to

{( )} ∈ 4( π)/(Autπ)∗ and {( σ )} ∈ Spin
4 ( π)/(Aut π)∗, respectively.

Here σ denotes the spin structure on , and : → π is the classifying map.

The statement for the map was proved in [19], while that for the map Spin fol-
lows from the results given in the next section. Then we can consider the Hurewicz
homomorphisms

µ : 4( π) → 4( π; Z)

and

µSpin: Spin
4 ( π) → 4( π; Z)

defined by the correspondences ( )→ ∗[ ] and ( σ ) → ∗[ ], respec-
tively. By [11] and [19] the mapµ is surjective with kernel isomorphic toZ and gen-
erated byC 2. So there is a decomposition

4( π) ∼= 4 ⊕ ˜4( π) ∼= Z ⊕ 4( π; Z)

where ˜4( π) ∼= 4( π; Z) is the cokernel of the monomorphism :4 → 4( π),
and the isomorphism 4

∼= Z is given by the signature. In§3 we will prove that if

2( π; Z2) ∼= 3( π; Z2) ∼= 0, then the mapµSpin is surjective with kernel isomorphic
to 16Z and generated by the Kummer surface4. The last result permits to obtain
a stable decomposition theorem analogous to that proved in [19] for the class of spin
smooth 4-manifolds whose fundamental group satisfies the above homological condi-
tions. For this, we say that two closed connected oriented spin smooth 4-manifolds
are spin weakly stably equivalentif they become spin preserving diffeomorphic after
taking connected sums with copies of the Kummer surface4 and S2 × S2. Then the
second result, we will prove, is the following

Theorem B. Let π be a finitely presentable group which has vanishing sec-
ond and third homology withZ2-coefficients. Then the spin weak stable equivalence
classes of closed connected oriented spin smooth4-manifolds with fundamental
group π one-to-one correspond with the elements of4( π; Z)/(Autπ)∗ via the map
( σ ) → ∗[ ], whereσ is the spin structure on , and : → π is the
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classifying map. In particular, if ∗[ ] = 0, then is spin weakly stably equivalent
to the boundary of the regular neighborhood of an embedded finite 2-complex, realiz-
ing π, in 5-space.

For the proof we treat with the spin cobordism groupsSpin
4 ( π). For the defi-

nition of spin cobordism groups we refer to [7] and [28]. A spin structureσ on a
manifold is best thought of as a choice of trivialization of the tangent bundle of
over the 2-skeleton [27].

The following corollary is related with some papers concerning the homotopy
type and the stable classification of closed 4-manifolds with free fundamental group
(see [2], [3], [13], [15], [16] and [17]).

Corollary. Let be a closed connected oriented spin smooth4-manifold whose
fundamental groupπ1( ) is a free product 1 ∗ · · · ∗ such that 2( ; Z2) =

3( ; Z2) = 0 for any = 1 . . . . Then # 4# (S2 × S2) is spin preserving dif-
feomorphic to a connected sum1# · · ·# of closed connected oriented spin smooth
4-manifolds withπ1( ) ∼= for some non-negative integers and . The decom-
position is spin stably unique.

2. The map cSpin

In this section we prove Theorem A for the class of closed connected spin smooth
4-manifolds with finitely presentable fundamental groupπ. We use only simple tech-
niques of Kervaire-Milnor surgery (see for example [4], [5], [6], and [20]).

Lemma 1. If π is finitely presented, any elementω in Spin
4 ( π) gives a closed

oriented spin smooth4-manifold ( σ ) with π1( ) ∼= π and a map : → π

such that induces an isomorphism onπ1 and [( σ )] = ω in Spin
4 ( π).

Proof. The proof goes in the same way as that of Lemma 5 of [19].We have
only to keep the spin structures as in [4], [5], [6] and [20]. We can arrange that
induces an epimorphism onπ1 by redefining to be # (S1 × S3) and redefining
(we continue to use the same notation). It is easy to see that extends in the desired
way as does the spin structure, also denotedσ (see for example [6, Proposition 4.2]).
Now perform surgery on embedded circles in Int which represent elements of the
kernel of ∗ to get a new spin 4-manifold ( σ ) (see [25, Lemma 5]). Indeed,σ
extends to a spin structureσ on the surgery manifold . Sinceπ is finitely pre-
sented, it is possible, by a finite number of surgeries, to obtain a closed oriented spin
smooth 4-manifold ( σ ) and a map : → π which induces an isomorphism
on π1. Furthermore, we have [( σ )] = ω in Spin

4 ( π) since (S1×S3) represents
the trivial class in Spin

4 ( π).



838 F. SPAGGIARI

Corollary 2. If the pairs ( σ ) and ( σ ) represent the same element
of Spin

4 ( π) such that the induced maps onπ1 are isomorphic, then there exist a com-
pact oriented smooth cobordism( ) and a spin structureσ on extending those
on ∂ = ∪ (− ) such that both inclusions ⊂ and ⊂ induce isomor-
phisms onπ1.

Lemma 3. Let ( σ ) be a compact oriented smooth spin cobordism be-
tween ( σ ) and ( σ ) such that both inclusions ⊂ and ⊂
induce isomorphisms onπ1. Then # (S2 × S2) is spin preserving diffeomorphic to

# (S2 × S2) for some non-negative integers and .

Proof. We can simplify the handle decomposition of relativeto so that
it has only 2-handles and 3-handles as in the usual proof of s-cobordism theorem in
higher dimension. Then the feet of 2-handles are isotopic tothe trivial one because it
should represent the zero element inπ1 by the assumption. So the middle level man-
ifold is a connected sum of and some copies ofS2 × S2 since the cobordism is
spin. By thinking from the other direction, it is also spin preserving diffeomorphic to
a connected sum of and some copies ofS2 × S2.

These results together imply that the mapSpin is bijective, as claimed.

3. Spin cobordism group

Let ( σ ) be a closed connected oriented spin smooth 4-manifold withfinite
presentable fundamental groupπ. Then we have a map : → π from to the
classifying space π. The map is unique up to homotopy if we fix the induced iso-
morphism onπ. The map determines the oriented spin cobordism class [(σ )]
in Spin

4 ( π). On the other hand, any elementω of Spin
4 ( π) gives a closed connected

oriented spin smooth 4-manifold ( σ ) and a map : → π with ∗ : π1( ) →∼= π

(see Lemma 1 in§2). The manifolds and will be shown to be spin weakly sta-
bly equivalent provided 2( π; Z2) ∼= 3( π; Z2) ∼= 0. For this we need some results
which describe the properties of the Hurewicz homomorphismµSpin.

Lemma 4. Let be aCW-complex such that 2( ; Z2) = 3( ; Z2) = 0. Then
the map

µSpin: Spin
4 ( ) → 4( ; Z)

defined by

µSpin[( σ )] = ∗[ ]
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is surjective andKerµSpin ∼= Spin
4 . Moreover, the restriction ofµSpin on

˜Spin
4 ( ) = Ker

( Spin
4 ( ) → Spin

4 (∗)
)

is an isomorphism.

Proof. The Atiyah-Hirzebruch spectral sequence

2 :
(

; Spin
)
⇒ Spin

+ ( )

has vanishing 2 terms for + ≤ 4 except for 2
0 4 and 2

4 0. In fact, recall that Spin

is Z, Z2, Z2, 0, andZ for = 0, 1, 2, 3, 4 (see [26]), and hence2
3 1 = 3( ; Spin

1 ),
2
2 2 = 2( ; Spin

2 ) and 2
1 3 = 1( ; Spin

3 ) vanish (under our hypothesis). In general,
∞ ∼= / −1 +1, where

= Im
( Spin

+ ( ( ) ( −1)) → Spin
+ ( )

)

Thus ∞
0 4 is the image of the split monomorphismSpin(∗) → Spin

4 ( ) whose coker-
nel is ∞

4 0 ⊂ 4( ; Z). By dimensional reasoning

: → − + −1

and by comparing with the spectral sequence forSpin
+ (∗), it follows that every ele-

ment in 2
0 4 and 2

4 0 is a permanent cycle. So we have∞4 0 = 2
4 0

∼= 4( ; Z) and
∞
0 4 = 2

0 4
∼= 0( ; Z) ∼= Z ∼= Spin

4 (∗). Then we get the exact sequence

0 −−−−→ 2
0 4

∼= Spin
4 (∗) −−−−→ Spin

4 ( ) −−−−→ 2
4 0

∼= 4( ; Z) −−−−→ 0

The mapµSpin: Spin( ) → ( ; Z) induces a map from the spectral sequence
for Spin

+ ( ) to the spectral sequence for + ( ; Z) and coincides with the map
Spin
4 ( ) → 2

4 0
∼= 4( ; Z) of the sequence above for = 4. Finally, we note that

the kernel of this map is 2
0 4

∼= Spin
4

∼= Z, which is generated by the Kummer sur-
face 4.

Corollary 5. If 2( π; Z2) = 3( π; Z2) = 0, then the map

µSpin: Spin
4 ( π) → 4( π; Z)

is an epimorphism, and KerµSpin ∼= Spin
4 is generated by the Kummer surface. Then

there is a decomposition

Spin
4 ( π) ∼= Spin⊕ ˜Spin

4 ( π) ∼= 16Z ⊕ 4( π; Z)
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where ˜Spin
4 ( π) ∼= 4( π; Z) denotes the cokernel of the split monomorphism

Spin: Spin
4 → Spin

4 ( π),

and the isomorphism Spin
4

∼= 16Z is given by the signature.

As a consequence of Corollary 5, we get the following useful results first proved
in [5, Theorem 5.2] and [6, Proposition 5.1], respectively.

Corollary 6. If 2( π; Z2) = 3( π; Z2) = 0, then an oriented spin cobordism
class [( σ )] is zero in Spin

4 ( π) if and only if the signature of vanishes,
and ∗[ ] = 0 in 4( π; Z).

Corollary 7. Suppose that 2( π; Z2) = 3( π; Z2) = 0. Then ˜Spin
4 ( π) is triv-

ial if and only if 4( π; Z) = 0.

Now we are going to prove Theorem B. Letπ be a finitely presented group which
has vanishing second and third homology withZ2-coefficients. A closed connected ori-
ented spin 4-manifold ( σ ) with fundamental groupπ carries a classifying map

: → π. The triple ( σ ) determines an oriented spin cobordism class
[( σ )] in Spin

4 ( π), and an elementµSpin[( σ )] = ∗[ ] in 4( π; Z).
Of course, spin weakly stably equivalent 4-manifolds determine the same element of

4( π; Z)/(Aut π)∗. Conversely, take any element of4( π; Z). Then it gives an el-
ement of

˜Spin
4 ( π) = Ker

( Spin
4 ( π) → Spin

4 (∗)
)

by Corollary 5. It comes from a closed connected spin smooth 4-manifold ( σ )
with π1( ) ∼= π and a map : → π by Lemma 1. Let ( σ ) be another
triple with π1( ) ∼= π and a map : → π such that ∗[ ] = ∗[ ]. Then for
some and we have

[
( # 4 σ′ ′)

]
=
[
( # 4 σ′ ′)

]

in Spin
4 ( π) by Corollary 5, and the fact that Spin

4 (∗) is generated by the Kummer
surface 4 (Here ′ and ′ are maps sending 4 ’s to one point). Therefore the man-
ifolds and are spin weakly stably equivalent by Corollary 2,and Lemma 3, i.e.

# 4# (S2×S2) is spin preserving diffeomorphic to # 4# (S2×S2) for some ,
, and .

4. Some applications

(1). If π is a free group of rank , then π ≃ ∨
S1, so we get in particular

( π; Z2) ∼= 0 for = 2, 3, and 4( π; Z) ∼= 0. Thus we have Spin
4 ( π) ∼= 16Z,
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and the isomorphism is given by the signature. Theorem A implies that if is a
closed connected oriented spin 4-manifold with signature zero andπ1( ) ∼= π, then

is spin stably homeomorphic to # (S1 × S3) (see [2], [3], [13], and [15]). Theo-
rem B says that a closed connected oriented spin 4-manifold with π1( ) ∼= π be-
comes homeomorphic to # (S1 × S3) after taking connected sums with copies of4

and S2 × S2. We recall that there exists a closed oriented topological 4-manifold with
fundamental groupZ which is not the connected sum ofS1 × S3 with a simply con-
nected 4-manifold (see [12]).
(2). Let π be a group with a presentation of deficiency one which is an extension
of Z by a finitely generated normal subgroup. It was shown in [14] that the canonical
2-complex corresponding to that presentation is aspherical, henceπ has geometric di-
mension at most 2. Furthermore, the Euler characteristic ofπ vanishes. Suppose that

1( π; Z2) ∼= Z2 (examples are given byknot like groups, i.e., groups having abelian-
ization Z and deficiency one). Sinceχ( π) = 0, it follows that ( π; Z2) = 0 for

= 2, 3, and 4( π; Z) = 0. Thus we obtain Spin
4 ( π) ∼= 16Z, as before. We recall

that an algebraic characterization of certain 4-manifolds(called exact manifolds) with
infinite cyclic first homology was given in nice recent papersof Kawauchi (see [16]
and [17]).
(3). If π ∼= Z ⊕ Z where is a prime number, > 2, then 4( π; Z) ∼=
Z . Since Autπ identifies all the non-zero elements of4( π; Z), we get that

4( π; Z)/(Autπ)∗ is isomorphic toZ2 (see [19]). Further, we have (π; Z2) ∼= 0
for = 2, 3, hence Spin

4 ( π) ∼= 16Z⊕Z . Let 4 be the boundary of a regular neigh-
bourhood of an embedded finite 2-complex2 realizingπ in the standard 5-space. The
induced homomorphism 4( ; Z) → 4( π; Z) is trivial since it factorizes through

4( ; Z) = 0. Thus [ ] goes to zero in 4( π; Z)/(Autπ)∗ ∼= Z2. Of course, 4 is
spin and has trivial signature since it embeds smoothly inR5. Let be the product

( 1)×S1, where ( 1) is the usual lens space. Then [ ] goes to a nontrivial el-
ement of 4( π; Z). Theorem B says that any closed connected oriented spin smooth
4-manifold becomes spin stably equivalent to either or4.
(4). If π is a cyclic groupZ of odd order, then (π; Z2) = 0 for = 2, 3, and

4( π; Z) = 0, hence Spin
4 ( π) ∼= 16Z. Let ¯ be the closed spin 4-manifold ob-

tained from by killing the generator ofZ ⊂ π1( ) = Z ⊕ . By Theorem B
any closed connected oriented spin 4-manifold withπ1( ) ∼= Z becomes diffeo-
morphic to ¯ after stabilization with copies of 4 and S2 × S2 (compare with The-
orem 2.5 of [11]). Further examples of smooth 4-manifolds with cyclic fundamental
groups were constructed in [8] by using the knot surgery construction.
(5). Let π be the fundamental group of a closed aspherical 4-manifold4 which is a
rational homology 4-sphere. The existence of such a manifold was proved for example
in [24]. If further 2( π; Z2) = 0, then the conditionχ( π) = 2 implies that the Betti
numbersβ vanish (mod 2) for = 1, 3, hence 3( π; Z2) = 0. Of course, we also
have 4( π; Z) ∼= Z, hence 4( π; Z)/(Autπ)∗ is isomorphic to eitherZ or Z/{±1}
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(see [19]). Finally, we obtain Spin
4 ( π) ∼= 16Z ⊕ Z.
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