

Title	A note on semiprimary PP-rings
Author(s)	Clark, W. Edwin
Citation	Osaka Journal of Mathematics. 1967, 4(1), p. 177-178
Version Type	VoR
URL	https://doi.org/10.18910/5909
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Clark, W. E.
Osaka J. Math.
4 (1967), 177-178

A NOTE ON SEMIPRIMARY PP-RINGS

W. EDWIN CLARK

(Received November 1, 1966)

A ring R with identity is called a left PP-ring if every principal left ideal of R is R -projective. In [1] Harada gave a characterization of semiprimary left PP-rings in terms of his generalized triangular matrix rings and used this to show that a left PP-ring which is semiprimary is also a right PP-ring. The purpose of this note is to give a more direct and somewhat less complicated proof of this result of Harada.

Recall that a *Baer ring* is a ring with identity in which the left annihilator of every subset is generated by an idempotent. As was observed by Kaplansky [2], left may be replaced by right in this definition. To see this, let $l(X)$ and $r(X)$ denote the left and right annihilators of the subset X in R , then $r(X)=r l r(X)$; hence if $l(r(X))=Re$, $e^2=e$, then $r(X)=r(Re)=(1-e)R$.

Theorem. *Let R be a semiprimary ring with identity. Then, the following are equivalent*

- (i) R is a left PP-ring.
- (ii) R is a Baer ring.
- (iii) R is a right PP-ring.

Proof. (i) implies (ii): If $a \in R$, then Ra is projective and therefore the exact sequence $R \xrightarrow{d} Ra \rightarrow 0$ splits (where $d(r)=ra$) and hence $\text{Ker } d=l(a)$ is a direct summand of ${}_R R$. Since R has an identity one easily shows that $l(a)=Re$ for some idempotent e in R . Now by an argument due to Maeda [3], we can extend this to two elements: Let $a, b \in R$. If $l(a)=Re$ and $l(b)=Rf$, then $l(a)=l(1-e)$ and $l(b)=l(1-f)$. As we have just shown there is an idempotent g such that $l(e(1-f))=Rg$. It is straightforward now to show that ge is an idempotent and $l(1-e, 1-f)=Rge$. Hence, $l(a, b)=Rge$.

Since $l(1-e)=Re$ when $e^2=e$, we have by induction that if X is finite, $l(X)=Re$ for some idempotent e . Now, since $l(X)=\cap \{l(x): x \in X\}$, to establish (ii) it clearly suffices to prove that a semiprimary ring satisfies the descending

The author wishes to express his appreciation to Professor David Foulis for bringing Maeda's paper [3] to his attention.

chain condition on principal left ideals which are generated by idempotents. But this is clear since $Rf \subset Re$ implies that $Re = Rf \oplus R(e - ef)$.

By the above comment on the left-right symmetry of Baer rings it suffices to show that (ii) implies (i): Let $a \in R$, then $l(a) = Re$, $e^2 = e$. Hence ${}_R R = R(1 - e) \oplus l(a)$, and since $l(a) = \text{Ker } (r \rightarrow ra)$ we have ${}_R R \cong Ra \oplus l(a)$ and so Ra is projective.

UNIVERSITY OF FLORIDA

References

- [1] M. Harada: *On semiprimary PP-rings*, Osaka J. Math. **2** (1965), 153–161.
- [2] I. Kaplansky: Rings of operators, University of Chicago, mimeographed notes, 1955.
- [3] S. Maeda: *On a ring whose principal right ideals generated by idempotents form a lattice*, J. Sci. Hiroshima Univ. Ser. A, **24** (1960), 509–525.