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Fig.1-2 Oxidation kinetics of iron.
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Fig.1-3 Oxidation behavior of Fe and phase reaction.
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Si

221

Table 2-1 Si
5mm 10 mmx 10 mm

#1500

Table 2-1 Chemical compositions of steels (mass%)

Steel C S Mh P S

Fe 01 <003 QB V0B <00H
Fe-023 01 020 QB V0B <00H
Fe-05S 01 050 QB V0B <00H
Fe-10S 01 100 QB V0B <00H
Fe-15S5 01 150 QB V0B <00H
Fe-20S 01 201 QB V0B <00H
Fe-30S 01 299 V0 <0025 <0025

222

2221

1100,1200 60 N,

LNG

-19-
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Fig.2-1  Schematic diagram of experiment
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200y m

Fig.2-5 Cross sections of the Si containing steels oxidized at 1100

(a) Si: 0 mass% (b) Si: 0.5 mass% (c) Si: 1.5 mass% (d) Si: 3.0 mass% a -Fe,0,;, e Fe;0,, AFeO, m Fe,SiO,
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(c) . (d)

254 m
Fig.2-6  Cross sections of scale/steel interface of the Si containing steels oxidized at 1100

(a) Si: 0 mass% (b) Si: 0.5 mass% (c) Si: 1.5 mass% (d) Si: 3.0 mass% o -Fe,0,;, o Fe,0,, AFeO, m Fe,SiO, O SiO,
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Fig.2-7 HAADF-STEM image of scale/steel interface of Fe-0.5 mass%Si alloy.
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A +0

Fig. 2-8 Cross sections of the Si containing steels oxidized at 1200

(a) Si: 0 mass% (b) Si: 0.5 mass% (c) Si: 1.5 mass% (d) Si: 3.0 mass% a -Fe,0,, e Fe;0,, AFeO, m Fe,SiO,
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Fig.2-9 Cross sections of scale/steel interface of the Si containing steels oxidized at 1200

(a) Si: 0 mass% (b) Si: 0.5 mass%(c) Si: 1.5 mass% (d) Si: 3.0 mass% o -Fe,0,, e Fe,0,, AFeO, m Fe,SiO, 0O SIO,
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Fig.2-11 RDF of inner scales formed at 1100
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Fig.2-12 RDF of inner scales formed at 1200
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Fig.2-18 Schematic diagram of the influence of Si content on the scale structure
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Fe,Si0, 1200 Si Fe,Si0,
Fe0 Fe?* Fe0
Si

Fe,Si0,

Table 2-2 Influence of Si on the scale structure and adhesion at high temperature.

Low S High
Si0,+Fe,Si0,+FeO  Fe,SiO,+ Fe,0,
1373K|  Wweak adhesion  Strong adhesion
FeO + Fe,SiO,(liquid)
1473K Weak adhesion Strong adhesion
(Si: 0-1.5%) (Si: 3%)
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321

Table 3-1 Si 15 mmx 15 mmx 0.5 mm

Table 3-1 Chemical composition of steels (mass %)

Steel C S Mh P S

Fe 01 <0.03 V05 005 <005
Fe-02S 01 020 V05 V05 <005
Fe-05S 01 030 V05 V05 <005
Fe-10S 01 100 05 V05 <005
Fe-155 01 130 V05 V05 <005
Fe-20S 01 201 V05 V05 <005
Fe-30S 01 299 <005 V05 <005

3.2.2 in-situ XRD
3221
in-situ XRD SPring-8 BL16B2 Si 311 2
50 keV X
Fig.3-1 4
1000
X
X Fig.3-1 X 1.1.
CCD Redlake MegaPlus 4.2i
CCD 2029x 2044 pixels
9 um 10 100,000
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a —Fe 110
d
Fig.3-2
3.2.2.2
(1)
Si
(2)

1.5 mass%Si

(3)

0.2 mass% Si

(a) Air + N,_Mix

(b) Air

Ar

@
Fe Fe
900
900
Ar
900
Ar
900
Ar

75¢cm
y —Fe
Ce0,
d
20 /min

900

Air (0.5 L/min) + N, (0.5 L/min)

Air (1.0 L/min)
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TC-slit2 TC-slit3

| |
Vo €- -slit1 .
: TC-slit : Monochoromatic
Strage Ring I | X-Ray
=
: | 53.8keV
= I Focusing Mirror :
|
Bending Magnet Si(311) Double Crystal Monochrometer |
1 I
<——— BL16B2 Optics Hutch ——=
-Ray Imaging Intensifier
1)( 1mm Furnace
Slit Camera
lon Chamber

Fig.3-1 Schematic drawing of the apparatus for the in-situ XRD measurement.

BL16B2
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RT Ceriarite

Hematite (Fe,0O,)
Magnetite (Fe,O,)
Wustite FeO)

Fig. 3-2 Diffraction patterns of Fe and various iron oxides.
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in-situ

Fig.3-3 3-9 Si 900 20
/min Fig.3-2
Si Fe,0, Fes0, Fe0 Fe,Si0,
Table 3-2
Fes0, Si 680
Fe,0,4 Si 0.5%
680
FeO Si 680 Si
800 Si 1.5 mass% FeO
Fe,Si0, Si 0.5 mass%
Si Si 0.5 mass% Fe,SiO, 680 Si
3.0 mass% 800
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Fig.3-3 Diffraction patterns of scale formed on 0 mass% Si steel in air at

500-900
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Fig.3-4 Diffraction patterns of scale formed on 0.2 mass% Si steel in air at

500-900
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Fig.3-5 Diffraction patterns of scale formed on 0.5 mass% Si steel in air at

500-900
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.m“E.CEF:e

yaliter \

: ‘JI ____.;.__flmagneme
% _ 'Fayalite

Fig.3-6 Diffraction patterns of scale formed on 1.0 mass% Si steel in air at

500-900 .
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Fig.3-7

Diffraction

500-900

patterns of scale formed on 1.5 mass% Si steel in air
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Fig.3-8 Diffraction patterns of scale formed on 2.0 mass% Si steel in air at

500-900
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Fig.3-9 Diffraction patterns of scale formed on 3.0 mass% Si steel in air at

500-900
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Table 3-2 Oxidation behaviour on Si containing steel.

500 680 800 900
Fe Fe,O,, FeO
Fe-0.2%Si Fe,O, FeO
Fe-0.5%Si Fe,O,Fe,0,Fe,SIO, FeO
Fe—10%8| Fe304, F928|O4 Fe203 Feo
Fe—15%8| Fe304,Fe203 Fe28|04
Fe,O,,
Fe,SIiO,
3.3.2 in-situ
1.5 mass Si 900
Fig.3-10 Fig.3-2
Fig.3-11 1.5 mass% Si XRD
60 s
Fe,0, 300 s Fe;0, 1.8 ks
Fe,Si0, FeO Fig.3-3 3-9
Table 3-2 Si 1.5 mass% 900 20 /min
FeO
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900 1.8 ks

Fe,Si0,
Fe;0,
Fe;,0, Fe,04

Fe?*

Oxidation- for 300s

Fe,0,4

FeO

FeO

Fig.3-11

Fe;0,

Oxidation. for 1.8ks

(c)

(d)

Fe,Si0,

Fe,0,

Fig.10 Change in diffraction patterns of scale formed on Fe-1.5 mass% Si in

air at 900 for various oxidation periods.
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Fig.3-11 Time depencence of the oxidation behaviour on Fe-1.5 mass% Si in

air at 900

3.3.3

0.2 mass%Si

Fig.3-12(a)

(a),(b) XRD

N2_20 %02

Fig.3-13(a)

o Fe,0; e Fe,O,,

900

FeO, aAFe,SiO,

Fig.3-12(b)

Fig.3-13 (a),(b)

N,-10 %0,
XRD
N,-10 %0,
02
FeO
N,-10 %0,
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FeO Fe;0,

10 %0, 20 %0, FeO Fe,0,

Fe;0,
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Fig.3-12 Time dependence of the XRD spectrum during oxidation of 0.2 mass% Si

steel.
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Fig.3-13 Time dependence of the oxidation behaviour on Fe-1.5 mass% Si at

900
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3.34 Si

600 1000
2
in-situ 2
Si Fig.3-14
Si Fe,Si0, Fe0
Si Si0,
Si0, Fe0 Fe,Si0, te
Si0, XRD Si0,
Si 0.2% Sio,
Fe,Si0, Si0, Fe?
Fe;0, FeO
Si 0.5% 680 Fe,Si0, Fe,0; Fej0, 900
FeO Si Si0,
Si0, 0% FeO SiO0,
Fe,Si0, Fe,Si0, Fe?
0% Fe,0, Fe,0,
Fe,Si0, Fe?
FeO
Si 1.5 mass% Fe,Si0, 800
Si Si0,
0% FeO
Fe,Si0,
Si 1.5 mass% 900 Fe0 900
1.8 ks Fe0
Fe0 Fe®*
FeO
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2 2
Si 2
2
Si 0.5 mass% Si
2 Fe,Si0, Fe,Si0,
Fe;0, Fe,04 Si Si
7-9 2
Si
FeO Fe;0, Fe,0; Fe,Si0,
Si 2
Fe,Si0,
y H
¥ H
M M X
W M
w W F F
&8s () o0
o 04l o ® pd
Fe Fe 027 Fe SiO,| Fe
0% 0.2% 1.0% 3.0%

Fig.3-14 Schematic diagram of the influence of Si content on the behaviour of

scale formation. (H: Fe,O,, M: Fe,O,, W: FeO, F: Fe,SiO,)
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in-situ XRD

900
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Fe;0,
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(2)Si 0.5 massk% Fe,Si0,
900 1.5 mass% Si
0.2 mass% Si N,-20 %0,

N,-10 %0,

- 63 -

Si

FeO

Si

Si
1.5 mass%
Fe,0,
Fe,Si0,
1.8 ks
Fe;0,
Fe0

Fe,Si0,

FeO



1) C. W. Tuck : Corros. Sci., 5(1965), 631.

2) W. W. Smeltzer, L. A. Morris and R. C. Logani : Can. Metall. Quart., 9 (1970),
513.

3) R. C. Logani and W. W. Smeltzer : Oxid. Met., 3 (1971), 15.

4) K. Yanagihara, S. Suzuki and S. Yamazaki : Oxid. Met., 57(2002), 281.

5) K. Kusabiraki, T. Sugihara and T. Ooka : Tetsu-to-Hagane, 77 (1991), 123.

6) M. Fukumoto, S. Maeda, S. Hayashi, and T. Narita, Tetsu-to-Hagane, 85 (1999), 16.
7) T. Fukagawa, H. Okada and Y..Maehara : Tetsu-to-Hagane, 81 (1995), 559.

8) T. Fukagawa, H. Okada,Y. Maehara and H. Fujikawa : Tetsu-to-Hagane, 82 (1996),
63.

9) H. Okada, T. Fukagawa, H. Ishihara, A. Okamoto, M. Azuma and Y. Matsuda

Tetsu-to-Hagane, 80 (1994), 849.

-64 -



Si

Fe,Si0,

Fe,0,

FeO

FeO
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o sj 1000

Fe0O Fe,0, Fe,0, Fe,SiO, Antis”
FeO
8.9) 600-1250
FeO0 Fe;0, Fe,04 — FeO

Fe;0, Fe,04

Si

Fe0O Fej0, Fe,0; Fe,SiO,

Si
Fe,SiO0, Fe,SiO0,
Remained FeO Red |

g

FeO . ([ — ) .
o9 2,0, Descaling o rolling
= o)

Fe,SiO,

Fig.4-1 Behaviour of the scale formation in the hot-rolling process.
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421

Fe0O Fej0, Fe,0; Fe,SiO,

4211 FeO
FeO  Fe,Si0,/Fe0 2.8x 107*® Pa at 850 Fe0/Fe,0,
2.6x 107** Pa at 850
570 570
10) Fe0
Fe  Fez0, FeO
Fe Fe;0, FeO
Fe Fe;0,
Fe Fes0, 0.8 1
55 mmx 55 mmx 8 mmt
CIP 1.5 2.0 ton
1100 1h Ar
900 1h 1x 107 Torr
50 MPa
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4212 FeQ,

Fe,0, Fe0/Fe;0, 2.6x 107 Pa at 850

4.1x 10°® Pa at 850

Fe,0,4 FeO
Fe,0, Fe;0,
Fe;0,
55 mmx 55 mmx 8 mmt
CIP 3.0 ton
1100 1h Ar
4213 Fe0,
Fe,0; Fe;0,/Fe,04 4.1x 10°% Pa at 850
Fe;0,
Fe203 Fe203
Fe,0,4
55 mmx 55 mmx 8 mmt
CIP 3.0 ton
1100 1h
4214 FeSiO,
Fe,Si0, Si0, FeO Si
FeOl g om
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Fe,Si0, Si10, / Fe,Si0, 2.7x 10" Pa at 850
2.8x 107 Pa at 850
Fe,Si0,
Fe,Si0,
Fe,Si0,
150 mesh
55 mmx 55 mmx 8 mmt
CIP 1.5 ton
1130 1h 1x 10°° Torr
4215
X
xY
c - A,
(A xY,)
Cn n vol %
An n
Yn n

- 069 -
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431

#1500

1000

10 mmx 20 mmx 3 mm

mass 1000 x 30 min.

600U m
1000 6)
4.3.2

60 mmx 10 mmx 2 mm

EG-HT(EG-LT)
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E = 4m*p S/ (a?l) x f

Table 4-1

Table 4-1 Atmosphere of the measurement of Young Modulus.

Oxide Atmosphere
FeO Ar
Fe;O, Ar
Fe,O, Air

Fe,SiO, In Vacuum

4.3.3

3.5 mmx 3.5 mmx 18 mm
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TMA8140 1000

Table 4-2 5
/min
Table 4-2 Atmosphere of the measurement of Thermal expansion
coefficient.
FeO Ar
Fe,0, Ar
Fe,0, Air
Fe,Si0, He
43.4
¢ 10 mmx 1.5 mm
TC-7000
1000
DSC
Ar DSC220C

NETZSCH  DSC404C 200 800
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4.4.1

X
Fig.4-2 5 Fe,0; Fe;0, Fe0 Fe,SiO,
FeO FeOl Fe;0,
Table 4-3 FeO Fe;0,
2.0 mass
Fe,0, Fe;0, Fe0 Fe,Si0,
Table 4-4 Fe,0;
FeO 1
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Fig. 4-2 X-ray diffract pattern of Fe,O; specimen.
A A y-FegOg4
20000
15000 -
10000 = 4a
5000 =
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Fig. 4-3  X-ray diffract pattern of Fe,O, specimen.
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Fig. 4-4 X-ray diffract pattern of FeO specimen.
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Fig. 4-5 X-ray diffract pattern of Fe,SiO, specimen.
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Table 4-3  Concentration of oxide phase in FeO specimen (vol %).

Feo03 Fe30y FeO «-Fe
0 1.9 86.8 11.3

Table 4-4  Density of the various oxides.

Measurement Literature
(g cm™) (g cm™)
FeO 6.27 5.70
Fe,0, 5.08 5.18
Fe,0, 4.69 5.27
Fe,Si0, 4.08 4.08
4.4.2
Fig.4-6
Fe,Si0, Fe,0, Fe,0, Fe0 Fe,Si0, Fe,0;
Fe0 Fe,Si0, Fe,0;
400 Fes0, Fe0
400 Fe,SiO0, 1170
1000
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Vickers Hardness, Hv

6)

Table 4-5

1000
O FEEDE
® Fej0y
A FeO
A FeySi0y

800 I T | I

600

400

200

0

0 200 400 600 800 1000
Temperature, 7/°C

Fig. 4-6 Hardness of the specific iron oxides at high-temperature.
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Table 4-5 Comparison of Vickers hardness (GPa) of the specific iron

oxides and the cross-sectional oxide scales on iron.

Sample form

Temperature
Sintered specimen  Scale formed on iron
FeO RT 167 3.50
1000°C 0.0436 0.05
Fe,0, RT 1.64 4.00
1000°C 0.0505 0.08
Fe,0, RT 3.27 6.70
1000°C 0.0734 0.53
Fe,Si0, RT 3.29 5.50
1000°C — 0.63
4.4.3
Fig.4-7 550 Fe,0, Fe0
Fe.0, Fe,Si0, FeO 550
800 Fe,0, Fe,0, Fe0
Fe,Si0, 550 FeO Fes0,
- Fe0 570 FeO
Fe0 Table 4-3 Fe  Fes0,
570 FeO Fe
Fe,0, Fe0
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=
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Temperature, T/

Fig.4-7 Young Modulus of the specific iron oxides at high-temperature
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4.4.4

Fig.4-8
FeO Fej0, Fe,0; Fe,Si0,
FeO Fe,Si0, FeO
400 FeO 600 700

FeO

O FEEDS
® Fe;0y
A FeO

A FesSi0y

20

0 200 400 600 800 1000
Temperature, 7/°C

Thermal Expansion Coefficient, @ X 1076/°C

Fig.4-8 Thermal expansion coefficient of the specific iron oxides at

high-temperature.
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4.4.5

Fig.4-9
FeO0 Fe,0, Fez0, Fe,Si0,
FeO Fe,Si0,
Fe,0,4

Fe,Si0, FeO

O FEEGS
2 FESG_,;
A FeO
rFy FEESiU4
20 : ! :
15

p—
=

0 200 400 600 800 1000
Temperature, 7/°C

Thermal Conductivity, #/W=m-1-K™

Fig.4-9 Thermal conductivity of the specific iron oxides at high-temperature
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4.4.6 Y
4.4.2 4.4.5 FeO Fe;0,
Fe,Si0,
Si
Si
Si Fe,Si0, Fe0
1-5) Si Si Fe,Si0,
Fe,Si0, Fe?
0> 12 Si
FeO Fe;0, Fey04
12 Si Fe,Si0,
Si Fe,Si0,
4.4.6.1 Si
Si
Fe,Si0, Si Fe,Si0,
Fig.4-8 Fe,Si0, Fe
800 14.6x 1078 /° C 13 Fe,Si0, 1000
Fe Fe,Si0,
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Fe0

Fig.4-7
800
8,9)
FeO
Fe,Si0, FeO
800
Fe,Si0,
4.4.6.2 Si
4.4.5.1
Fe?
0%
Fig.4-9
Fe,Si0,

Fe,0,

Fe,Si0,

Fe,Si0,

12

12
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Si

Fe0 Fe;0, Fe,04

FeO
Fe,Si0, FeO
1000

Fe,Si0,

Fe,Si0,
Fe,Si0,
Fe0O  Fe;0, Fe,04
Fe,Si0,

Si Fe,0,



Fig.4-6 800 Fe,0,
Fig.4-7 Fe,0,
Fe,04

Fe0 Fej0, Fe,04

Fe,0,
FeO 8.9
Fe,04
Si
15-18 19-21 Fe203
FeO Fe,0,
Si
Si Fe,Si0,
Fe Fe,0,4
Fe,0,
FeOl Fe;0,
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Si

Fe,Si0,

Fe,Si0,
Fe,Si0,
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Si
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Si
Fe,0;
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5.2.1

Fe-Si
Si Fe
Si0, Fe
Fig.5- A-B Fe-Si
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Surface
02 A+BOn A-B Alloy
(Fe+SiO,) | (Fe-Si Alloy)

Internal-Oxidation Layer

Fig.5-1 Approximate concentration profiles for oxygen and silicon

in the internal-oxide layer of Fe-Si alloys.
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5.2.2

N,
B BO,
Wagner 9 A B A
NG exply?ferf(y)
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A(T)

Fe-0.1 mass%C-0.2 mass%, 0.5 mass%, 1.0 mass%, 2.0 mass%Si

Table 5-

Table 5-1 Chemical compositions of Si containing steels. (mass%)

Steal (i Si Cr Mn =] g
Fe-0.2masshSi 0.09 0.20 < 001 < 003 < 0.005 0.0023
Fe-0.SmasshSi 0.10 .50 <. 0.01 <Z0.03 <2 0005 0.0006
Fe=1.0mass%5i a1 1.00 < 0,01 < 003 = 0.005 0.0031
Fe-2 Omass%Si 0.10 2.0 <. 0.01 <003 < 0,005 Q.0018

1100 x 10 h 1100 x 2 h
30 ton 1100 x1.5h 30 t-10 t

50 % 10 t-5 t

® 6 mmx 10 mm

850
Fe/Fe0
2.76x 107 Pa at 850

N,-3 %H, 2.4 /s

#220 #1500

SEM

SEM

-03 -



5.4.1

(2D N, /Ng@n) Ng@ n Do N,©®
D, NO(S)
Takeda Fe-0.069 0.274 wt% Si D, D,

11 D
o

_ 89.5
DO =2.91x 10 7exp(— ﬁ} (m2 S—l)

Fe-0.2 mass% Si 850 10
SEM Fig.5-2 Si0,
(20N, /N;©n) N,
N () 11 14)
(o]
Fe N,
Fe
Fe/Fe0 N,
14 PO, Table5-2
Fe/Fe0
A(T) 12,13)
S) = AT)- szz mol/mol
104
S) =0.381exp ——— mol/mol
RT
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AT)=9.67x 10_5exp(16;j|_95j

Table 5-2  Equilibrium oxygen pressures of Fe/FeO.

Temperature, TG EOD 825 a50 875 SO0

Equilibrium ocxygen prassure | 6§ x (011 TESx 1001 280 10012 868> 10-13 307 = 1012
of Fe/FeOQ. P../Pa

Si Fe-Si
N,
3.42x 107*° Pa
850 D,=1.99x 107 m2/s
N,(2=6.096x 10-" mol/mol 1.88x 10'* Pa
850 D,=1.99x 107! m?*/s

N,()=1.432x 10°° mol/mol
(2D,N,/N;™n)=3.033x 10°%5 m?/s 3.42x 10755 Pa (2D N,/N;®n)=7.124x

107 m*/s 1.88x 107" Pa

-05 -



Surface

045 g m

15U m

Fig. 5-2 Cross sectional SEM images of internally oxidized Fe-0.2mass%Si alloy

specimens
oxidized for 10 minutes at 850 in fixed oxygen partial pressures
of (a) P0,=2.03x 107*® Pa, (b) P0,=3.42x 10" Pa and
(c) P0,=1.88x 107 Pa.
5.4.2
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Fig. 5-3 Cross sectional SEM images of internally oxidized Fe-0.2mass%Si alloy
specimens oxidized at 850 for (a) 30 minutes, (b) 60 minutes and

(c) 120 minutes in oxygen partial pressures of P0,=3.42x 107" Pa.
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Fig. 5-4 Cross sectional SEM images of internally oxidized Fe-0.2mass%Si alloy
specimens oxidized at 850 for (a) 30 minutes, (b) 60 minutes and

(c) 120 minutes in oxygen partial pressures of P0,=1.88x 10 Pa.
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Fig. 5-5 Oxidation time dependence of penetration parameter Y

of Fe-0.2 mass%Si alloy specimens at 850
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Fe-Si Fig.5-10 13
Fig.5-10 13
Fe-0.2 mass%Si Fe-0.5 mass%Si

-08 -



850 Do No®
D, 1.99x 1071 m2/s

No®™ 3.32x 10%/ PO, (mol/mol)

TOEm
g
13,55 m
ETETTETA T AT ST BTN TN T - TP TR I I TONT P T Y R
G m

Fig. 5-6 Cross sectional SEM images of internally oxidized Fe-0.2 mass%Si alloy
specimens oxidized at 850 for (a) 10 minutes, (b) 30 minutes and (c) 60 minutes

in oxygen partial pressures of P0,=7.61x 107" Pa.

Surface

B0 m -
BOMm

Gm

Fig. 5-7 Cross sectional SEM images of internally oxidized Fe-0.5mass%Si alloy
specimens oxidized at 850 for (a) 10 minutes, (b) 30 minutes and (c) 60

minutes in oxygen partial pressures of P0,=7.61x 10™* Pa.
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6 4m

Fig. 5-8 Cross sectional SEM images of internally oxidized Fe-0.2 mass%Si alloy
specimens oxidized at 850 for (a) 10 minutes, (b) 30 minutes and (c) 60 minutes

in oxygen partial pressures of P0,=2.76x 107** Pa.

Gum

Fig. 5-9 Cross sectional SEM images of internally oxidized Fe-0.5mass%Si alloy

specimens oxidized at 850 for (a) 10 minutes, (b) 30 minutes and (c) 60 minutes

in oxygen partial pressures of P0,=2.76x 107" Pa.
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Fig. 5-10 Time dependence of thickness of internal-oxide layer in

Fe-0.2 mass%Si alloy specimens in oxygen partial pressures

of P0,=7.61x 10" Pa at 850
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Fig. 5-11 Time dependence of thickness of internal-oxide layer in
Fe-0.5mass%Si alloy specimens in oxygen partial pressures

of P0,=7.61x 107* Pa at 850
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Fig. 5-12 Time dependence of thickness of internal-oxide layer in
Fe-0.2mass%Si alloy specimens in oxygen partial pressures

of P0,=2.76x 10°* Pa at 850

20

—{— Measured
------ Calculated

19

0 20 40 60

Depth of Internal-Oxide Layer, x/ U m

Oxidation Time, ¢/</g1/?
Fig. 5-13 Time dependence of thickness of internal-oxide layer in
Fe-0.5mass%Si alloy specimens in oxygen partial pressures

of P0,=2.76x 107" Pa at 850
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Fig. 2-14 Oxygen partial pressure vs Si concentration to illustrate transition

from internal to external oxidation in Fe-Si alloys at 850
o exhibiting internal oxidation, e exhibiting internal and
external oxidation; exhibiting external oxidation;

A exhibiting outer scale formation.
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> metal
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no oxidation ~ metal

Fig. 2-15 Schematic representation of several scale structures of Fe-Si alloys.
(a) formation of FeO scale, (b) formation of internal-oxide layer
of SiO, and Fe,SiO, scale, (c) formation of internal-oxide layer

of SiO,, (d) formation of external scale of SiO,, (e) no oxidation.
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EPMA  SEM

621

Cr Table 6-1

8 mme x 12 mmL

Table 6-1 Chemical compositions of examined steels. (mass %)

Steel C Si Mn P S Cr Fe
A 031 0.19 075 0.012 0.006 1.10 bal.
B 032 0.20 068 0.011 0.003 0.90 bal.
C 0.10 0.18 041 0.013 0.013 0.04 bal.
Fig.6-1 72 % N, +18% H,0
+10 % CO, 1.8 3.6 ks 1100 1200
1300 30 I/min
LNG
N,
N,
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< > ——>
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Fig. 6-1 Schematic diagram showing the experimental procedure.
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Fig.6-2
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50 % 10 mm/s Ar

Compression (50%)

Remaining scale on the steel

Fig.6-2 Schematic diagram showing the procedure used to evaluate adhesion

at high temperature.

removed

>y A e
§ s 4 A

b e

i’h ; : <.

remaining scale

Imm
(a) optical micrograph of the steel (b) binarized image
surface after the compression test area fraction of remaining scale: 68 %)

Fig.6-3  Optical microgragh and binary image of the steel surface after the hot

compression test.
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Fig.6-3 Example showing characterization of the scale structure by EPMA and

micro-Raman spectroscopy.
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Fig.6-4 Effect of the amount of Cr and the temperature on the growth of scale

(for 30 min)
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Fig.6-5 The structure of inner scale formed at various oxidation temperatures on Steel A (for 1.8 ks)
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(b) 1200

(c) 1300

Fig.6-6 SEM image of the surface morphology of the inner scale from the steel side on

steel A at various temperatures.
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(b) 1300

Fig.6-7 Magnified SEM images of the surface morphology of the inner scale from

the steel side on steel A at 1100 and 1300
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Fig.6-8  The structure of inner scale obtained at various temperatures on Steel B (for 1.8 ks).
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(c) 1300

Fig.6-9 SEM image of the surface morphology of the inner scale from the steel

side on steel B at various temperatures.
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Fig.6-10 Magnified SEM images of the surface morphology of the inner scale from

the steel side on steel B at 1100 and 1300
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Fig.6-11 Effect of temperature on adhesion of scale on Steel A at high
temperature.
(a) adhesion as a function of weight gain,

(b) adhesion as a function of the mean diameter of the pores.
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Fig.6-12 Effect of Cr content on the high temperature adhesion of scale (for 1.8ks).
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Fe,0,,Fe;0,,Fe0
1 Fe,Si0, 2 FeCr,0,
Si0, Cr,0,
SEM-EDX Si
FeCr,0,
1100 Cr
Cr

Cr,Si

Cr,0,4

Fig.6-13(a)

Table 6-2 Equilibrium oxygen pressure of various oxides formation at 1100

Reaction Equilibrium  oxygen pressure

(Pa)

Fe,0,=(2/3)Fe,0,+(1/6)0, 5.7
Fe,0,=3Fe0+(1/2)0, 4.1x 1078
FeO = Fe+(1/2)0, 9.0x 10°°
Fe,SiO, = 2Fe+0,+SiO, 1.9x 10°°
FeCr,0,=Fe+(1/2)0,+Cr,0, 1.6x 1071
Cr,0,=2Cr+(3/2)0, 2.8x 1071
Si0,=Si+0, 1.6x 107%
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Fig.6-13 Schematic diagram of the scale structure of Cr containing steel.
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