

Title	On quasiinvariants of S_n of hook shape
Author(s)	Tsuchida, Tadayoshi
Citation	Osaka Journal of Mathematics. 2010, 47(2), p. 461-485
Version Type	VoR
URL	https://doi.org/10.18910/5910
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON QUASIINVARIANTS OF S_n OF HOOK SHAPE

TADAYOSHI TSUCHIDA

(Received July 11, 2008, revised January 8, 2009)

Abstract

O. Chalykh, A.P. Veselov and M. Feigin introduced the notion of quasiinvariants of Coxeter groups, which is a generalization of invariants. In [2], Bandlow and Musiker showed that for the symmetric group S_n of order n , the space of quasiinvariants has a decomposition indexed by standard tableaux. They gave a description of a basis for the components indexed by standard tableaux of shape $(n-1, 1)$. In this paper, we generalize their results to a description of a basis for the components indexed by standard tableaux of arbitrary hook shape.

1. Introduction

In [3] and [5], O. Chalykh, A.P. Veselov and M. Feigin introduced the notion of *quasiinvariants* for Coxeter groups, which is a generalization of invariants. For any Coxeter group G , the quasiinvariants are determined by a multiplicity m which is a G -invariant map from the set of reflections to non-negative integers.

We denote by S_n the symmetric group of order n . In the case of S_n , the multiplicity is a constant function. Take a non-negative integer m . A polynomial $P \in \mathbb{Q}[x_1, x_2, \dots, x_n]$ is called an m -quasiinvariant if the difference

$$(1 - (i, j))P(x_1, \dots, x_n)$$

is divisible by $(x_i - x_j)^{2m+1}$ for any transposition $(i, j) \in S_n$.

The notion of quasiinvariants appeared in the study of the quantum Calogero–Moser system. In the case of S_n , this system is determined by the following differential operator (the generalized Calogero–Moser Hamiltonian):

$$L_m = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} - 2m \sum_{1 \leq i < j \leq n} \frac{1}{x_i - x_j} \left(\frac{\partial}{\partial x_i} - \frac{\partial}{\partial x_j} \right)$$

where m is a real number.

Let G be a Coxeter group. We denote by S^G the sub ring generated by invariant polynomials for G and by I^G the ideal of the ring of quasiinvariants generated by the

invariant polynomials of positive degree. For a generic multiplicity, there exists an isomorphism from the ring S^G to the ring of G -invariant quantum integrals of the generalized Calogero–Moser Hamiltonian (sometimes called Harish-Chandra isomorphism). We denote by $\mathcal{L}_1, \mathcal{L}_2, \dots, \mathcal{L}_n$ the operators corresponding to fundamental invariant polynomials $\sigma_1, \sigma_2, \dots, \sigma_n$. The generalized Calogero–Moser Hamiltonian is a member of this ring (see for example [5], [6]).

In the case of non-negative integer multiplicities, Chalykh and Veselov showed that there exists a homomorphism from the ring of quasiinvariants to the commutative ring of differential operators whose coefficients are rational functions (see e.g. [3]). It is shown that the restriction of such homomorphism onto S^G induces the Harish-Chandra isomorphism. In the case of non-negative integer multiplicities there are much more quantum integrals.

Let m be a non-negative integer multiplicity. In [5], Feigin and Veselov introduced the notion of m -harmonics which are defined as the solutions of the following system:

$$\begin{aligned}\mathcal{L}_1\psi &= 0, \\ \mathcal{L}_2\psi &= 0, \\ &\dots \\ \mathcal{L}_n\psi &= 0.\end{aligned}$$

Feigin and Veselov also showed that the solutions of such system are polynomials. They also showed that the space of m -harmonic polynomials is a subspace of the space of m -quasiinvariants and has dimension $|G|$. In [7], G. Felder and Veselov gave a formula of the Hilbert series of the space of m -harmonic polynomials.

In [4], P. Etingof and V. Ginzburg proved the following:

- (i) the ring of quasiinvariants of G is a free module over S^G , Cohen–Macaulay and Gorenstein,
- (ii) there is an isomorphism from the quotient space of quasiinvariants by I^G to the dual space of m -harmonic polynomials,
- (iii) the Hilbert series of the quotient space of the quasiinvariants by I^G is equal to that of m -harmonic polynomials.

Let $I_2(N)$ be the dihedral group of regular N -gon. In [5], Feigin and Veselov considered quasiinvariants of $I_2(N)$ for any constant multiplicity. Since $I_2(N)$ has rank 2, quasiinvariants can be expressed as a polynomial in z and \bar{z} . Feigin and Veselov gave generators over $S^{I_2(N)}$ by a direct calculation. In [6], Feigin studied quasiinvariants of $I_2(N)$ for any non-negative integer multiplicity. He gave a free basis of the module of quasiinvariants over $S^{I_2(N)}$ using the above mentioned results of Etingof and Ginzburg. An explicit description of basis of the quotient space of quasiinvariants for S_3 is contained in [5]. Another description is given in [1]. In [7], for S_n Felder and Veselov provided integral expressions for the lowest degree non-symmetric quasiinvariant polynomials (the degree $nm + 1$). However, for any integer $n \geq 4$ a basis of the quotient

space of quasiinvariants of S_n is not known.

In this paper, we consider the quasiinvariants of S_n . In this case, m is a non-negative integer. We denote by \mathbf{QI}_m the ring of quasiinvariants and by Λ_n the ring of symmetric polynomials. We define \mathbf{QI}_m^* as the quotient space of \mathbf{QI}_m by the ideal generated by the homogeneous symmetric polynomials of positive degree.

In [2], J. Bandlow and G. Musiker showed that the space \mathbf{QI}_m has a decomposition into subspaces indexed by standard tableaux. Each component has a Λ_n module structure. The quotient space \mathbf{QI}_m^* is also decomposed in the same way. They constructed an explicit basis of the submodules of \mathbf{QI}_m^* indexed by standard tableaux of shape $(n-1, 1)$.

In this paper, we extend the result in [2]. We construct a basis of the submodules of \mathbf{QI}_m^* indexed by standard tableaux of shape $(n-k+1, 1^{k-1})$ (a hook) (see Theorem 3.8). The elements of our basis are expressed as determinants of a matrix with entries similar to elements of basis introduced in [2]. We also show that our basis is a free basis of the submodule of \mathbf{QI}_m indexed by a hook $(n-k+1, 1^{k-1})$ over Λ_n (Corollary 3.11).

We also show how the operator L_m acts on our basis. In [5], it is proved that the operator L_m preserves \mathbf{QI}_m . In [2], it is obtained explicit formulas of the action of L_m on their basis. We extend these formulas to those of our basis (Theorem 4.4).

2. Preliminaries

2.1. Symmetric group and Young diagram. We denote $\mathbb{Q}[x_1, x_2, \dots, x_n]$ by K_n and the symmetric group on $\{1, 2, \dots, n\}$ by S_n . For a finite set X , we denote the symmetric group on X by S_X .

The symmetric group S_n acts on K_n by

$$\sigma P(x_1, \dots, x_n) = P(x_{\sigma(1)}, \dots, x_{\sigma(n)}), \quad \sigma \in S_n.$$

A polynomial $P(x_1, x_2, \dots, x_n)$ is called a symmetric polynomial when for any $\sigma \in S_n$, $P(x_1, x_2, \dots, x_n)$ satisfies

$$\sigma P(x_1, \dots, x_n) = P(x_1, \dots, x_n).$$

We denote by Λ_n the subspace spanned by symmetric polynomials and by Λ_n^d the subspace of Λ_n spanned by homogeneous polynomials of degree d . We set $\Lambda_n^d = \{0\}$ if $d < 0$. The i -th elementary symmetric polynomial is denoted by e_i . For a partition $\nu = (\nu_1, \nu_2, \dots)$, we define $e_\nu = \prod_i e_{\nu_i}$. A basis of Λ_n is given by $\{e_\nu\}$.

The group ring of S_n over \mathbb{Q} is denoted by $\mathbb{Q}S_n$. The action of S_n on K_n is naturally extended to that of $\mathbb{Q}S_n$. For a subgroup H of S_n , we define $[H]$, $[H]'$ in $\mathbb{Q}S_n$ by

$$[H] = \sum_{\sigma \in H} \sigma,$$

$$[H]' = \sum_{\sigma \in H} \text{sgn}(\sigma) \sigma.$$

Let $\lambda = (\lambda_1, \lambda_2, \dots)$ be a partition. When λ is a partition of a positive integer n , we denote this by $\lambda \vdash n$. We define $l(\lambda) = \#\{i \mid \lambda_i \neq 0\}$ and $|\lambda| = \sum_i \lambda_i$. They are called the length and the size of λ respectively.

For a partition λ , the Young diagram of shape λ is a diagram such that its i -th row has λ_i boxes and it is arranged in left-justified rows. For example, the Young diagram of shape $(4, 3, 1)$ is

We denote by (i, j) a box on the (i, j) -th position of the diagram. For instance, the box $(2, 3)$ of the Young diagram of shape $(4, 3, 1)$ is

We identify the Young diagram of shape λ with the partition λ .

Let k, n be integers such that $k \geq 2$ and $n \geq k$. We define $\eta(n, k) = (n-k+1, 1^{k-1})$. We have $l(\eta(n, k)) = k$ and $|\eta(n, k)| = n$. We call $\eta(n, k)$ (also the Young diagram of $\eta(n, k)$) the hook.

For $\lambda \vdash n$, we define the arm length $a(i, j)$ for box $(i, j) \in \lambda$ as

$$a(i, j) = \#\{(i, l) \mid j < l, (i, l) \in \lambda\}.$$

We also define the leg length $l(i, j)$ for box (i, j) as

$$l(i, j) = \#\{(k, j) \mid i < k, (k, j) \in \lambda\}.$$

We define $h(i, j) = a(i, j) + l(i, j) + 1$ called the hook length for box $(i, j) \in \lambda$.

A *tableau* of shape λ is obtained by assigning a positive integer to each box of the Young diagram λ . In this paper, we assume that entries of boxes are different each other. For a tableau D , we denote by $D_{i,j}$ the entry in the box (i, j) of D . We define

$$mem(D) = \{D_{i,j} \mid (i, j) \in \lambda\}.$$

A tableau T is called a standard tableau if T satisfies $mem(T) = \{1, 2, \dots, n\}$ and

$$T_{i,j} < T_{k,j}, \quad T_{i,j} < T_{i,l}, \quad i < k, \quad j < l.$$

We denote by $ST(\lambda)$ the set of all standard tableaux of shape λ and by $ST(n)$ the set of all standard tableaux with n boxes.

For a tableau D of shape λ , we define

$$C(D) = [\{\sigma \in S_{mem(D)} \mid \sigma \text{ preserves each column of } D\}]',$$

$$R(D) = [\{\sigma \in S_{mem(D)} \mid \sigma \text{ preserves each row of } D\}],$$

$$f_\lambda = \#ST(\lambda),$$

$$\gamma_D = \frac{f_\lambda C(D)R(D)}{n!},$$

$$V_D = \prod_{(i,j) \in C_D} (x_i - x_j)$$

where $C_D = \{(i, j) \mid i < j \text{ and } i, j \text{ are entries in a same column of } D\}$. The element $\gamma_D \in \mathbb{Q}S_{mem(D)}$ satisfies $\gamma_D^2 = \gamma_D$.

DEFINITION 2.1. Let s_1, s_2, \dots, s_n be mutually distinct positive integers.

(1) We denote by $D(s_1, s_2, \dots, s_k; s_1, s_{k+1}, \dots, s_n)$ the tableau of shape $\eta(n, k)$ such that the entries in the first column and in the first row are s_1, s_2, \dots, s_k and s_1, s_{k+1}, \dots, s_n in order, respectively.

(2) A tableau $D(s_1, s_2, \dots, s_k; s_1, s_{k+1}, \dots, s_n)$ is a standard tableau of shape $\eta(n, k)$ if and only if the following holds:

$$s_1, s_2, \dots, s_n \text{ is a permutation of } 1, 2, \dots, n,$$

$$s_1 = 1, s_2 \leq \dots \leq s_k, s_{k+1} \leq \dots \leq s_n.$$

Then we simply write $D(s_1, s_2, \dots, s_k; s_1, s_{k+1}, \dots, s_n)$ as $T(1, s_2, \dots, s_k)$.

(3) Let i be an integer such that $1 \leq i \leq k$ (resp. $k+1 \leq i \leq n$). We set $D = D(s_1, s_2, \dots, s_k; s_1, s_{k+1}, \dots, s_n)$. We define

$$D^{s_i} = D(s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_k; s_1, s_{k+1}, \dots, s_n)$$

$$(\text{resp. } D^{s_i} = D(s_1, \dots, s_k; s_1, s_{k+1}, \dots, s_{i-1}, s_{i+1}, \dots, s_n)).$$

For example, the standard tableau $T(1, 3, 4) = D(1, 3, 4; 1, 2, 5, 6)$ of shape $(4, 1, 1)$ is

1	2	5	6
3			
4			

The tableau $T(1, 3, 4)^1$ is

3	2	5	6
4			

and $T(1, 3, 4)^2$ is

1	5	6
3		
4		

We have the following propositions.

Proposition 2.2 ([2]). *For any $f = \sum_{\sigma \in S_n} f_{\sigma} \sigma \in \mathbb{Q}S_n$, $P \in \Lambda_n$ and $Q \in K_n$, we have $f(PQ) = Pf(Q)$.*

Proposition 2.3 ([2]). *Let i_1, i_2, \dots, i_n be a permutation of $1, 2, \dots, n$. Then $[S_n]$ and $[S_n]'$ are expressed as follows:*

$$[S_n] = (1 + (i_1, i_n) + \dots + (i_{n-1}, i_n)) \cdots (1 + (i_1, i_3) + (i_2, i_3))(1 + (i_1, i_2)),$$

$$[S_n]' = (1 - (i_1, i_n) - \dots - (i_{n-1}, i_n)) \cdots (1 - (i_1, i_3) - (i_2, i_3))(1 - (i_1, i_2)).$$

2.2. The quasiinvariants of S_n . We recall the definition and the notation of m -quasiinvariants. Take a non-negative integer m . A polynomial $P \in K_n$ is called an m -quasiinvariant if the difference

$$(1 - (i, j))P(x_1, \dots, x_n)$$

is divisible by $(x_i - x_j)^{2m+1}$ for any transposition $(i, j) \in S_n$. We denote by \mathbf{QI}_m the ring of quasiinvariants and by Λ_n the space of symmetric polynomials. We denote by I_m the ideal of \mathbf{QI}_m generated by e_1, \dots, e_n . We set $\mathbf{QI}_m^* = \mathbf{QI}_m/I_m$.

We recall results in [2].

Lemma 2.4 ([2]). *The ring \mathbf{QI}_m of quasiinvariants has following decomposition:*

$$\mathbf{QI}_m = \bigoplus_{T \in ST(n)} \gamma_T(\mathbf{QI}_m).$$

The space $\gamma_T(\mathbf{QI}_m)$ has following description:

$$(2.1) \quad \gamma_T(\mathbf{QI}_m) = \gamma_T(K_n) \cap V_T^{2m+1} K_n.$$

For $\lambda \vdash n$, the vector space $\bigoplus_{T \in ST(\lambda)} \gamma_T(\mathbf{QI}_m)$ is called the λ -isotypic component of \mathbf{QI}_m .

Let K be a polynomial ring. We denote by $K[i]$ the subspace spanned by homogeneous polynomials of degree i in K . The Hilbert series of K is defined as a formal power series $\sum_{i=0}^{\infty} \dim(K[i])t^i$. We denote it by $H(K, t)$.

For $[f] \in \mathbf{QI}_m^*$, we define the degree of $[f]$ as the minimal degree in the class $[f]$. In [4] and [7], the Hilbert series of \mathbf{QI}_m^* is given as follows:

Theorem 2.5 ([4], [7]).

$$(2.2) \quad H(\mathbf{QI}_m^*, t) = n! t^{mn(n-1)/2} \sum_{\lambda \vdash n} \prod_{(i, j) \in \lambda} \prod_{k=1}^n t^{w(i, j; m)} \frac{1 - t^k}{h(i, j)(1 - t^{h(i, j)})}$$

where we set $w(i, j; m) = m(l(i, j) - a(i, j)) + l(i, j)$.

In particular, for $T \in ST(\lambda)$ the Hilbert series of $\gamma_T(\mathbf{QI}_m^*)$ is given as follows:

$$(2.3) \quad H(\gamma_T(\mathbf{QI}_m^*); t) = t^{mn(n-1)/2} \prod_{(i, j) \in \lambda} \prod_{k=1}^n t^{w(i, j; m)} \frac{1-t^k}{1-t^{h(i, j)}}.$$

Let s_1, s_2, \dots, s_n be mutually distinct positive integers. We set $D = D(s_1, s_2; s_1, s_3, \dots, s_n)$. We define the following polynomial in $\mathbb{Q}[x_{s_1}, \dots, x_{s_n}]$:

$$(2.4) \quad Q_D^{l:m} = \int_{x_{s_1}}^{x_{s_2}} t^l \prod_{i=1}^n (t - x_{s_i})^m dt.$$

Recall that we define $\eta(n, k) = (n-k+1, 1^{k-1})$. In [2], J. Bandlow and G. Musiker found an explicit basis of $\gamma_T(\mathbf{QI}_m^*)$ when $T \in ST(\eta(n, 2))$.

Theorem 2.6 ([2]). *Let $T \in ST(\eta(n, 2))$. The set $\{Q_T^{0:m}, Q_T^{1:m}, \dots, Q_T^{n-2:m}\}$ is a basis of $\gamma_T(\mathbf{QI}_m^*)$.*

REMARK 2.7. In [2], it is shown that $Q_T^{l:m}$ is divisible by $V_T = (x_1 - x_j)^{2m+1}$. We can similarly show that $Q_D^{l:m}$ is divisible by $V_D = (x_{s_1} - x_{s_2})^{2m+1}$.

Let $f \in \mathbb{Q}[x_{s_1}, x_{s_2}, \dots, x_{s_n}]$. We denote by $\deg_{x_{s_i}}(f)$ the degree of f as the polynomial in x_{s_i} . The leading term of f in x_{s_i} means the highest term of f in x_{s_i} and the leading coefficient of f in x_{s_i} means the coefficient of the leading term of f in x_{s_i} . For a homogeneous polynomial g , we define $\deg(g)$ as the degree of g .

The polynomials $Q_D^{l:m}$ have the following properties, which we will use to show Proposition 3.3.

Proposition 2.8. *Let s_1, s_2, \dots, s_n be mutually distinct positive integers. Let l be a non-negative integer and take a tableau $D = D(s_1, s_2; s_1, s_3, \dots, s_n)$ of shape $\eta(n, 2)$.*

The polynomial $Q_D^{l:m}$ is a homogeneous polynomial of degree $nm + l + 1$ and satisfies following properties.

- (1) *The polynomial $Q_D^{l:m}$ is symmetric in x_{s_3}, \dots, x_{s_n} and anti-symmetric in x_{s_1}, x_{s_2} .*
- (2) *We have $\deg_{x_{s_1}}(Q_D^{l:m}) = nm + l + 1$. The leading coefficient of $Q_D^{l:m}$ in x_{s_1} is $(-1)^{m+1} m! / \prod_{s=0}^m (mn + l + 1 - s)$.*
- (3) *Let $i \in \{1, \dots, n\} \setminus \{1, 2\}$. We have $\deg_{x_{s_i}}(Q_D^{l:m}) = m$. The leading coefficient of $Q_D^{l:m}$ in x_{s_i} is equal to $(-1)^m Q_{D^{s_i}}^{l:m}$.*

Proof. We show the case $D = T(1, 2)$ since the proofs of other cases are similar. We set $T = T(1, 2)$.

(1) It follows from the fact that $t^l \prod_{i=1}^n (t - x_i)^m$ is symmetric in x_1, x_2, \dots, x_n .
 (2) We show this statement by induction on m .

When $m = 0$, the polynomial $Q_T^{l,0}$ is $(1/(l+1))(x_j^{l+1} - x_1^{l+1})$. So, the statement holds.

When $m \geq 1$, assume that the statement holds for all numbers less than m . In [2], the polynomial $Q_T^{l,m}$ is expressed as:

$$(2.5) \quad Q_T^{l,m} = \sum_{i=0}^n (-1)^i e_i Q_T^{n+l-i;m-1}.$$

By the induction assumption on m , we have $\deg_{x_{s_1}}(Q_T^{n+l-i;m-1}) = nm + l - i + 1$. From (2.5), we have $\deg_{x_1}(Q_T^{l,m}) = nm + l + 1$ and the leading term is in $e_0 Q_T^{n+l;m-1} - e_1 Q_T^{n+l-1;m-1}$. The leading coefficient of $Q_T^{l,m}$ in x_1 is

$$\begin{aligned} & \frac{(-1)^m(m-1)!}{\prod_{s=0}^{m-1} (mn + l + 1 - s)} - \frac{(-1)^m(m-1)!}{\prod_{s=0}^{m-1} (mn + l - s)} \\ &= \frac{(-1)^{m+1}m!}{\prod_{s=0}^m (mn + l + 1 - s)}. \end{aligned}$$

(3) Expanding $(t - x_i)^m$ in $Q_T^{l,m}$, we have

$$Q_T^{l,m} = \sum_{s=0}^m (-1)^s \binom{m}{s} Q_{T^i}^{l;m} x_i^s.$$

Thus, the statement holds. □

As a corollary of this proposition, we have $Q_D^{l,m} \neq 0$ when D is a tableau of shape $\eta(n, 2)$.

3. A basis for the isotypic component of shape $(n-k+1, 1^{k-1})$

We give a basis for the $\eta(n, k)$ -isotypic component. Let s_1, s_2, \dots, s_n be mutually distinct positive integers. Throughout this section, we set $D = D(s_1, \dots, s_k; s_1, s_{k+1}, \dots, s_n)$ and $T = T(1, 2, \dots, k)$.

DEFINITION 3.1. (1) Let p be a non-negative integer. For i, j such that $1 \leq i < j \leq k$, we define a polynomial $R_{D;s_i, s_j}^{p;m}$ in $\mathbb{Q}[x_{s_1}, x_{s_2}, \dots, x_{s_n}]$ as

$$(3.1) \quad R_{D;s_i, s_j}^{p;m} = \int_{x_{s_i}}^{x_{s_j}} t^p \prod_{l=1}^n (t - x_{s_l})^m dt.$$

(2) Let k be an integer such that $k \geq 2$. Take a partition $\mu = (\mu_1, \mu_2, \dots, \mu_{k-1})$ such that $\mu_1 > \mu_2 > \dots > \mu_{k-1} \geq 0$. We define a polynomial $Q_D^{\mu;m}$ in $\mathbb{Q}[x_{s_1}, x_{s_2}, \dots, x_{s_n}]$ as follows:

$$(3.2) \quad Q_D^{\mu;m} = \begin{vmatrix} R_{D;s_1,s_2}^{\mu_1;m} & R_{D;s_1,s_2}^{\mu_2;m} & \cdots & R_{D;s_1,s_2}^{\mu_{k-1};m} \\ R_{D;s_2,s_3}^{\mu_1;m} & R_{D;s_2,s_3}^{\mu_2;m} & \cdots & R_{D;s_2,s_3}^{\mu_{k-1};m} \\ \vdots & \vdots & \ddots & \vdots \\ R_{D;s_{k-1},s_k}^{\mu_1;m} & R_{D;s_{k-1},s_k}^{\mu_2;m} & \cdots & R_{D;s_{k-1},s_k}^{\mu_{k-1};m} \end{vmatrix}.$$

We denote the empty sequence by \emptyset . When $k = 1$, μ is the empty sequence \emptyset . We set $Q_D^{\emptyset;m} = 1$. We simply write Q_D^m as $Q_D^{\emptyset;m}$.

REMARK 3.2. Setting $D' = D(s_1, s_2; s_1, s_3, \dots, s_n)$, we have $R_{D;s_1,s_2}^{p;m} = Q_{D'}^{p;m}$.

The polynomial $Q_D^{\mu;m}$ has the following properties, which we will use to show our main results.

Proposition 3.3. *Let s_1, s_2, \dots, s_n be mutually distinct positive integers. We set $D = D(s_1, \dots, s_k; s_1, s_{k+1}, \dots, s_n)$. Let $\mu = (\mu_1, \mu_2, \dots, \mu_{k-1})$ be a partition such that $\mu_1 > \mu_2 > \dots > \mu_{k-1} \geq 0$.*

Then, the polynomial $Q_D^{\mu;m}$ satisfies the following.

- (1) *The polynomial $Q_D^{\mu;m}$ is symmetric in $x_{s_{k+1}}, x_{s_{k+2}}, \dots, x_{s_n}$ and anti-symmetric in $x_{s_1}, x_{s_2}, \dots, x_{s_k}$. In particular, $Q_D^{\mu;m}$ is divisible by V_D^{2m+1} .*
- (2) *We have $\deg_{x_{s_1}}(Q_D^{\mu;m}) = (n+k-2)m + \mu_1 + 1$. The leading coefficient of $Q_D^{\mu;m}$ in x_{s_1} is*

$$\frac{(-1)^{(k-1)m+1}m!}{\prod_{s=0}^m (mn + \mu_1 + 1 - s)} Q_{D^{s_1}}^{(\mu_2, \dots, \mu_{k-1});m}.$$

In particular, we have $\deg(Q_D^{\mu;m}) = (k-1)nm + |\mu| + k - 1$.

- (3) *We have $\deg_{x_{k+1}}(Q_D^{\mu;m}) = (k-1)m$. The leading coefficient of $Q_D^{\mu;m}$ in x_{k+1} is $(-1)^{(k-1)m} Q_{D^{s_{k+1}}}^{\mu;m}$.*
- (4) *The polynomial $Q_D^{\mu;m}$ is invariant under γ_D .*

Proof. We show the case $D = T$. The proofs of other cases are similar.

- (1) From Proposition 2.8 (1), it follows that the polynomial $Q_T^{\mu;m}$ is symmetric in $x_{k+1}, x_{k+2}, \dots, x_n$.

Adding the first row to the second row, we get

$$Q_T^{\mu;m} = \begin{vmatrix} R_{T;1,2}^{\mu_1;m} & R_{T;1,2}^{\mu_2;m} & \cdots & R_{T;1,2}^{\mu_{k-1};m} \\ R_{T;1,3}^{\mu_1;m} & R_{T;1,3}^{\mu_2;m} & \cdots & R_{T;1,3}^{\mu_{k-1};m} \\ \vdots & \vdots & \ddots & \vdots \\ R_{T;k-1,k}^{\mu_1;m} & R_{T;k-1,k}^{\mu_2;m} & \cdots & R_{T;k-1,k}^{\mu_{k-1};m} \end{vmatrix}.$$

Repeating this process, we get

$$(3.3) \quad Q_T^{\mu;m} = \begin{vmatrix} R_{T;1,2}^{\mu_1;m} & R_{T;1,2}^{\mu_2;m} & \cdots & R_{T;1,2}^{\mu_{k-1};m} \\ R_{T;1,3}^{\mu_1;m} & R_{T;1,3}^{\mu_2;m} & \cdots & R_{T;1,3}^{\mu_{k-1};m} \\ \vdots & \vdots & \ddots & \vdots \\ R_{T;1,k}^{\mu_1;m} & R_{T;1,k}^{\mu_2;m} & \cdots & R_{T;1,k}^{\mu_{k-1};m} \end{vmatrix}.$$

Thus, the polynomial $Q_T^{\mu;m}$ is anti-symmetric in x_2, \dots, x_k . We can show that $Q_T^{\mu;m}$ is anti-symmetric in x_1, x_3, \dots, x_k and $x_1, x_2, x_4, \dots, x_k$ in similar ways. Thus the first statement holds.

From Remark 2.7 and (3.3), the polynomial $Q_T^{\mu;m}$ is divisible by $\prod_{s=2}^n (x_1 - x_s)^{2m+1}$. Using this proposition (1), we see $Q_T^{\mu;m}$ is also divisible by V_T^{2m+1} .

(2) We see $Q_T^{\mu;m}$ as a polynomial in x_1 . From Proposition 2.8 (2), (3), the leading term of $Q_T^{\mu;m}$ in x_{s_1} is in $R_{T;1,2}^{\mu_1;m} R_{T;2,3}^{\mu_2;m} \cdots R_{T;k-1,k}^{\mu_{k-1};m}$. We use Proposition 2.8 (2), (3) again, and the statement holds.

(3) From Proposition 2.8 (3), the leading coefficient of $Q_T^{\mu;m}$ in x_{k+1} is

$$(3.4) \quad \begin{vmatrix} (-1)^m R_{T^{k+1};1,2}^{\mu_1;m} & (-1)^m R_{T^{k+1};1,2}^{\mu_2;m} & \cdots & (-1)^m R_{T^{k+1};1,2}^{\mu_{k-1};m} \\ (-1)^m R_{T^{k+1};2,3}^{\mu_1;m} & (-1)^m R_{T^{k+1};2,3}^{\mu_2;m} & \cdots & (-1)^m R_{T^{k+1};2,3}^{\mu_{k-1};m} \\ \vdots & \vdots & \ddots & \vdots \\ (-1)^m R_{T^{k+1};k-1,k}^{\mu_1;m} & (-1)^m R_{T^{k+1};k-1,k}^{\mu_2;m} & \cdots & (-1)^m R_{T^{k+1};k-1,k}^{\mu_{k-1};m} \end{vmatrix}.$$

The polynomial (3.4) is equal to $(-1)^{(k-1)m} Q_{T^{k+1}}^{\mu;m}$.

(4) To prove (4), we define the following notation.

For positive integers i, j such that $i \neq j$, we define a tableau $(i, j)D$ as follows. When $i, j \notin \text{mem}(D)$, we define $(i, j)D = D$. When $i \in \text{mem}(D)$ and $j \notin \text{mem}(D)$, $(i, j)D$ is a tableau obtained by replacing the entry i in D with j . When $i, j \in \text{mem}(D)$, $(i, j)D$ is a tableau obtained by interchanging the entry i and j in D .

Using Proposition 2.3, γ_T is equal to

$$\frac{1}{n(n-k)! (k-1)!} \left\{ 1 - \sum_{s=2}^k (1, s) \right\} [S_{\{2,3,\dots,k\}}]' \left\{ 1 + \sum_{s=k+1}^n (1, s) \right\} [S_{\{k+1,\dots,n\}}].$$

From (1), we obtain

$$\gamma_T(Q_T^{\mu;m}) = \frac{1}{n} \left\{ k Q_T^{\mu;m} + \sum_{s=k+1}^n \{1 - (1, 2) - \cdots - (1, k)\} Q_{(1,s)T}^{\mu;m} \right\}.$$

We consider the sum $\sum_{s=k+1}^n \{1 - (1, 2) - \cdots - (1, k)\} Q_{(1,s)T}^{\mu;m}$. We have

$$\begin{aligned} & \sum_{s=k+1}^n \{1 - (1, 2) - (1, 3) - \cdots - (1, k)\} Q_{(1,s)T}^{\mu;m} \\ &= \sum_{s=k+1}^n \{Q_{(1,s)T}^{\mu;m} + Q_{(2,s)T}^{\mu;m} + Q_{(3,s)T}^{\mu;m} + \cdots + Q_{(k,s)T}^{\mu;m}\}. \end{aligned}$$

Consider the sum $Q_{(1,s)T}^{\mu;m} + Q_{(2,s)T}^{\mu;m}$. By definition, we have

$$Q_{(1,s)T}^{\mu;m} + Q_{(2,s)T}^{\mu;m} = \left| \begin{array}{cccc} R_{T;s,2}^{\mu_1;m} & R_{T;s,2}^{\mu_2;m} & \cdots & R_{T;s,2}^{\mu_{k-1};m} \\ R_{T;s,3}^{\mu_1;m} & R_{T;s,3}^{\mu_2;m} & \cdots & R_{T;s,3}^{\mu_{k-1};m} \\ \vdots & \vdots & \ddots & \vdots \\ R_{T;k-1,k}^{\mu_1;m} & R_{T;k-1,k}^{\mu_2;m} & \cdots & R_{T;k-1,k}^{\mu_{k-1};m} \end{array} \right| + \left| \begin{array}{cccc} R_{T;1,s}^{\mu_1;m} & R_{T;1,s}^{\mu_2;m} & \cdots & R_{T;1,s}^{\mu_{k-1};m} \\ R_{T;s,3}^{\mu_1;m} & R_{T;s,3}^{\mu_2;m} & \cdots & R_{T;s,3}^{\mu_{k-1};m} \\ \vdots & \vdots & \ddots & \vdots \\ R_{T;k-1,k}^{\mu_1;m} & R_{T;k-1,k}^{\mu_2;m} & \cdots & R_{T;k-1,k}^{\mu_{k-1};m} \end{array} \right|.$$

Adding the first row to the second row in the second determinant, we get

$$Q_{(1,s)T}^{\mu;m} + Q_{(2,s)T}^{\mu;m} = \left| \begin{array}{cccc} R_{T;s,2}^{\mu_1;m} & R_{T;s,2}^{\mu_2;m} & \cdots & R_{T;s,2}^{\mu_{k-1};m} \\ R_{T;s,3}^{\mu_1;m} & R_{T;s,3}^{\mu_2;m} & \cdots & R_{T;s,3}^{\mu_{k-1};m} \\ \vdots & \vdots & \ddots & \vdots \\ R_{T;k-1,k}^{\mu_1;m} & R_{T;k-1,k}^{\mu_2;m} & \cdots & R_{T;k-1,k}^{\mu_{k-1};m} \end{array} \right| + \left| \begin{array}{cccc} R_{T;1,s}^{\mu_1;m} & R_{T;1,s}^{\mu_2;m} & \cdots & R_{T;1,s}^{\mu_{k-1};m} \\ R_{T;s,3}^{\mu_1;m} & R_{T;s,3}^{\mu_2;m} & \cdots & R_{T;s,3}^{\mu_{k-1};m} \\ \vdots & \vdots & \ddots & \vdots \\ R_{T;k-1,k}^{\mu_1;m} & R_{T;k-1,k}^{\mu_2;m} & \cdots & R_{T;k-1,k}^{\mu_{k-1};m} \end{array} \right|.$$

Adding the two terms, we obtain

$$Q_{(1,s)T}^{\mu;m} + Q_{(2,s)T}^{\mu;m} = \left| \begin{array}{cccc} R_{T;1,2}^{\mu_1;m} & R_{T;1,2}^{\mu_2;m} & \cdots & R_{T;1,2}^{\mu_{k-1};m} \\ R_{T;s,3}^{\mu_1;m} & R_{T;s,3}^{\mu_2;m} & \cdots & R_{T;s,3}^{\mu_{k-1};m} \\ \vdots & \vdots & \ddots & \vdots \\ R_{T;k-1,k}^{\mu_1;m} & R_{T;k-1,k}^{\mu_2;m} & \cdots & R_{T;k-1,k}^{\mu_{k-1};m} \end{array} \right|.$$

Repeating this process, we get

$$\{1 - (1, 2) - (1, 3) - \cdots - (1, k)\} Q_{(1,s)T}^{\mu;m} = Q_T^{\mu;m}.$$

Thus, the statement holds. \square

As a corollary of this proposition, we have $Q_T^{\mu;m} \in \gamma_T(\mathbf{QI}_m)$ where $T \in ST(\eta(n, k))$. We introduce the following notations.

DEFINITION 3.4. Let s, t, u be non-negative integers. When $u \geq 1$, we set the subsets $P(s; t; u)$, $P(t; u)$ and $Q(s; t; u)$ of the set of partitions as:

$$\begin{aligned} P(s; t; u) &= \{\lambda \in \mathbb{Z}^u \mid |\lambda| = s, t \geq \lambda_1 > \lambda_2 > \cdots > \lambda_u \geq 0\}, \\ Q(s; t; u) &= P(s; t; u) \setminus P(s; t - 1; u), \\ P(t; u) &= \bigcup_{s \geq 0} P(s; t; u). \end{aligned}$$

When $u = 0$, we set

$$\begin{aligned} P(0; t; 0) &= \{\emptyset\}, \\ P(t; 0) &= \{\emptyset\}. \end{aligned}$$

Let l be a positive integer. We set $P(l; t; 0)$ as empty set.

We define $p(s; t; u) = \#P(s; t; u)$ and $q(s; t; u) = \#Q(s; t; u)$.

REMARK 3.5. Let $\mu \in P(n-2; k-1)$ (resp. $\mu \in \bigcup_{s \geq 0} Q(s; n-2; k-1)$). We have

$$\frac{(k-1)(k-2)}{2} \leq |\mu| \leq (k-1)(n-k) + \frac{(k-1)(k-2)}{2}$$

(resp. $n-2 + (k-2)(k-3)/2 \leq |\mu| \leq (k-1)(n-k) + (k-1)(k-2)/2$).

We have the following proposition.

Proposition 3.6. Let k be an integer such that $k \geq 2$.

(1) Let l be an integer such that $0 \leq l \leq n-k-1$. Then, we have

$$p\left(l + \frac{(k-1)(k-2)}{2}; n-3; k-1\right) = p\left(l + \frac{(k-1)(k-2)}{2}; n-2; k-1\right).$$

(2) Let l be an integer such that $l \geq n-k$. Then, we have

$$\begin{aligned} &p\left(l + \frac{(k-1)(k-2)}{2}; n-2; k-1\right) \\ &= p\left(l + \frac{(k-1)(k-2)}{2}; n-3; k-1\right) \\ &\quad + p\left(l + k-n + \frac{(k-2)(k-3)}{2}; n-3; k-2\right). \end{aligned}$$

(3) Let l be an integer such that $0 \leq l \leq k-2$. Then, we have

$$\begin{aligned} &p\left((k-1)(n-k) + \frac{(k-1)(k-2)}{2} - l; n-2; k-1\right) \\ &= p\left((k-2)(n-k) + \frac{(k-2)(k-3)}{2} - l; n-3; k-2\right). \end{aligned}$$

Proof. (1) By definition, we have

$$\begin{aligned} & q\left(l + \frac{(k-1)(k-2)}{2}; n-2; k-1\right) \\ &= p\left(l + \frac{(k-1)(k-2)}{2}; n-2; k-1\right) - p\left(l + \frac{(k-1)(k-2)}{2}; n-3; k-1\right). \end{aligned}$$

Therefore we show $q(l + (k-1)(k-2)/2; n-2; k-1) = 0$.

We have $l + (k-1)(k-2)/2 \leq n-k-1 + (k-1)(k-2)/2 < n-2 + (k-2)(k-3)/2$. From Remark 3.5, we have $Q(l + (k-1)(k-2)/2; n-2; k-1) = \emptyset$. Thus, the proposition follows.

(2) To prove (2), we show

$$\begin{aligned} & q\left(l + \frac{(k-1)(k-2)}{2}; n-2; k-1\right) \\ &= p\left(l + k-n + \frac{(k-2)(k-3)}{2}; n-3; k-2\right). \end{aligned}$$

Let $\mu = (j, \mu_2, \dots, \mu_k) \in Q(i; j; k)$. Then, we have $(\mu_2, \dots, \mu_k) \in Q(i-j; \mu_2; k-1)$. So, we get $Q(i; j; k) = \bigcup_{s=0}^{i-1} Q(i-j; s; k-1)$. Thus, we have

$$q\left(l + \frac{(k-1)(k-2)}{2}; n-2; k-1\right) = \sum_{s=0}^{n-3} q\left(l + \frac{(k-1)(k-2)}{2} - n+2; s; k-2\right).$$

We have $l + (k-1)(k-2)/2 - n+2 = l + k-n + (k-2)(k-3)/2$. So, we get

$$\begin{aligned} & q\left(l + \frac{(k-1)(k-2)}{2}; n-2; k-1\right) \\ &= \sum_{s=0}^{n-3} q\left(l + k-n + \frac{(k-2)(k-3)}{2}; s; k-2\right). \end{aligned}$$

By definition, we obtain

$$\begin{aligned} & \sum_{s=0}^{n-3} q\left(l + k-n + \frac{(k-2)(k-3)}{2}; s; k-2\right) \\ &= p\left(l + k-n + \frac{(k-2)(k-3)}{2}; n-3; k-2\right). \end{aligned}$$

(3) By definition, we have

$$\begin{aligned} & p\left((k-1)(n-k) + \frac{(k-1)(k-2)}{2} - l; n-2; k-1\right) \\ &= \sum_{s=0}^{n-2} q\left((k-1)(n-k) + \frac{(k-1)(k-2)}{2} - l; s; k-1\right). \end{aligned}$$

From Remark 3.5, we have $q((k-1)(n-k) + (k-1)(k-2)/2 - l; s; k-1) = 0$ when $s \leq n-3$. Therefore, we obtain

$$\begin{aligned} & p\left((k-1)(n-k) + \frac{(k-1)(k-2)}{2} - l; n-2; k-1\right) \\ &= q\left((k-1)(n-k) + \frac{(k-1)(k-2)}{2} - l; n-2; k-1\right). \end{aligned}$$

From (2), we have

$$\begin{aligned} & q\left((k-1)(n-k) + \frac{(k-1)(k-2)}{2} - l; n-2; k-1\right) \\ &= p\left((k-1)(n-k) + \frac{(k-2)(k-3)}{2} - l + k - n; n-3; k-2\right) \\ &= p\left((k-2)(n-k) + \frac{(k-2)(k-3)}{2} - l; n-3; k-2\right). \quad \square \end{aligned}$$

We next consider the Hilbert series of $\gamma_T(\mathbf{QI}_m^*)$. To simplify notation, we write $p_{s,n-2,k-1} = p(s + (k-1)(k-2)/2; n-2; k-1)$.

Proposition 3.6 is rewritten as:

- (1) $p_{l,n-3,k-1} = p_{l,n-2,k-1}$,
- (2) $p_{l,n-2,k-1} = p_{l,n-3,k-1} + p_{l+k-n,n-3,k-2}$,
- (3) $p_{(k-1)(n-k)-l,n-2,k-1} = p_{(k-2)(n-k)-l,n-3,k-2}$.

Lemma 3.7. *We have*

$$(3.5) \quad H(\gamma_T(\mathbf{QI}_m^*); t) = t^{(k-1)nm + k(k-1)/2} \sum_{s=0}^{(k-1)(n-k)} p_{s,n-2,k-1} t^s.$$

Proof. From (2.3), the Hilbert series $H(\gamma_T(\mathbf{QI}_m^*); t)$ is equal to

$$t^{mn(n-1)/2} \prod_{(i,j) \in \lambda} \prod_{l=1}^n t^{m(l(i,j)-a(i,j))+l(i,j)} \frac{1-t^l}{1-t^{h(i,j)}}.$$

For $2 \leq i \leq n-k+1$ and $2 \leq j \leq k$, we have

$$\begin{aligned} a(1, 1) &= n-k, \quad l(1, 1) = k-1, \quad h(1, 1) = n, \\ a(1, i) &= n-k+1-i, \quad l(1, i) = 0, \quad h(1, i) = n-k+2-i, \\ a(j, 1) &= 0, \quad l(j, 1) = k-j, \quad h(j, 1) = k-j+1. \end{aligned}$$

Thus, we have

$$H(\gamma_T(\mathbf{QI}_m^*); t) = t^{(k-1)nm+k(k-1)/2} \prod_{s=1}^{k-1} \frac{(1-t^{n-s})}{(1-t^s)}.$$

Therefore, we must show

$$(3.6) \quad \prod_{s=1}^{k-1} \frac{(1-t^{n-s})}{(1-t^s)} = \sum_{s=0}^{(k-1)(n-k)} p_{s,n-2,k-1} t^s.$$

We show this by induction on n .

If $n = k$, then both of l.h.s. and r.h.s. are equal to 1.

When $n \geq k+1$, we assume that (3.6) holds with all numbers less than n . We have the following identity:

$$\prod_{s=1}^{k-1} \frac{(1-t^{n-s})}{(1-t^s)} = \prod_{s=1}^{k-1} \frac{(1-t^{n-s-1})}{(1-t^s)} + t^{n-k} \prod_{s=1}^{k-2} \frac{(1-t^{n-s-1})}{(1-t^s)}.$$

By the induction assumption, we obtain

$$\begin{aligned} & \prod_{s=1}^{k-1} \frac{(1-t^{n-s-1})}{(1-t^s)} + t^{n-k} \prod_{s=1}^{k-2} \frac{(1-t^{n-s-1})}{(1-t^s)} \\ &= \sum_{s=0}^{(k-1)(n-k-1)} p_{s,n-3,k-1} t^s + t^{n-k} \sum_{s=0}^{(k-2)(n-k)} p_{s,n-3,k-2} t^s. \end{aligned}$$

We can rewrite this as

$$\begin{aligned} & \prod_{s=1}^{k-1} \frac{(1-t^{n-s})}{(1-t^s)} \\ &= \sum_{s=n-k}^{(k-1)(n-k-1)} (p_{s-n+k,n-3,k-2} + p_{s,n-3,k-1}) t^s \\ &+ \sum_{s=(k-1)(n-k)-k+2}^{(k-1)(n-k)} p_{s-n+k,n-3,k-2} t^s + \sum_{s=0}^{n-k-1} p_{s,n-3,k-1} t^s. \end{aligned}$$

Using Proposition 3.6 (2), we have

$$\begin{aligned} & \sum_{s=n-k}^{(k-1)(n-k-1)} (p_{s-n+k,n-3,k-2} + p_{s,n-3,k-1}) t^s \\ &= \sum_{s=n-k}^{(k-1)(n-k-1)} p_{s,n-2,k-1} t^s. \end{aligned}$$

From Proposition 3.6 (1) and (3), the lemma holds. \square

We state the main theorem in this paper.

Theorem 3.8. *The set $\{Q_T^{\mu;m}\}_{\mu \in P(n-2;k-1)}$ is a basis of $\gamma_T(\mathbf{QI}_m^*)$.*

To simplify notation, we set

$$\begin{aligned} P_{s,n-2,k-1} &= P\left(s + \frac{(k-1)(k-2)}{2}; n-2; k-1\right), \\ P_{n-2,k-1} &= P(n-2; k-1), \\ Q_{s,n-2,k-1} &= Q\left(s + \frac{(k-1)(k-2)}{2}; n-2; k-1\right). \end{aligned}$$

We define following notations.

Let $X = \{s_1, s_2, \dots, s_n\}$ be the set of n positive integers. We recall that S_X is the symmetric group on X and S_X acts on $\mathbb{Q}[x_{s_1}, x_{s_2}, \dots, x_{s_n}]$ from the left.

We define Λ_X as the subspace of $\mathbb{Q}[x_{s_1}, x_{s_2}, \dots, x_{s_n}]$ spanned by all polynomials which is invariant under S_X . We define Λ_X^d as the subspace of Λ_X spanned by homogeneous polynomials of degree d . We define $\Lambda_X^d = \{0\}$ if $d < 0$.

Theorem 3.8 follows from the following proposition.

Proposition 3.9. *Let D be a tableau of shape $\eta(n, k)$. If*

$$(3.7) \quad \sum_{\mu \in P(n-2;k-1)} f_\mu Q_D^{\mu;m} = 0$$

where $f_\mu \in \Lambda_{\text{mem}(D)}$, then all f_μ is equal to 0.

Proof. We show this proposition by induction on the size n of tableau D .

In the case $k = 1$, (3.7) is $f Q_D^m = 0$ where $f \in \Lambda_{\text{mem}(D)}$. Therefore, the proposition holds when $k = 1$. We assume that $k \geq 2$.

We recall that $n \geq k$. When $n = 2$, we have $k = 2$. Then l.h.s. of (3.7) is equal to $f_0 Q_D^{0;m}$. Therefore, the lemma holds when $n = 2$.

Assume that (3.7) holds when the size of the tableau D is less than n for $n \geq 3$. We show the case $D = T$ since the proofs of other cases are similar.

We recall that Λ_n is a graded ring. Therefore, we can decompose

$$f_\mu = \sum_{l \geq 0} f_{\mu,l}$$

where $f_{\mu,l} \in \Lambda_n^l$. Thus, (3.7) is written as

$$(3.8) \quad \sum_{\mu \in P(n-2;k-1)} \sum_{l \geq 0} f_{\mu,l} Q_T^{\mu;m} = 0$$

where $f_{\mu,l} \in \Lambda_n^l$. We have $\deg(Q_T^{\mu;m}) = (k-1)nm + |\mu| + k - 1$, and we obtain $\deg(f_{\mu,l} Q_T^{\mu;m}) = (k-1)nm + |\mu| + d + k - 1$.

Thus, (3.8) is written as

$$(3.9) \quad \sum_{d \geq 0} \sum_{\mu \in P(n-2;k-1)} f_{\mu,d-(k-1)nm-|\mu|-k+1} Q_T^{\mu;m} = 0.$$

Hence, for any d we obtain

$$(3.10) \quad \sum_{\mu \in P(n-2;k-1)} f_{\mu,d-(k-1)nm-|\mu|-k+1} Q_T^{\mu;m} = 0.$$

Fix d . Recall that the set $P_{s,n-2,k-1}$ is not the empty set if $0 \leq s \leq (k-1)(n-k)$. Let s be an integer such that $0 \leq s \leq (k-1)(n-k)$ and take $\mu \in P_{s,n-2,k-1}$. Then, we have $\deg(Q_T^{\mu;m}) = (k-1)nm + k(k-1)/2 + s$. We set $d' = d - (k-1)nm - k(k-1)/2$. We express $f_{\mu,d'-s}$ as

$$\sum_{r=0}^{d'-s} \sum_{\substack{|v|=d'-s \\ l(v)=r}} a_{r,v}^\mu e_v.$$

We recall that

$$\begin{aligned} P_{s,n-2,k-1} &= P\left(s + \frac{(k-1)(k-2)}{2}; n-2; k-1\right), \\ P_{n-2,k-1} &= P(n-2; k-1), \\ Q_{s,n-2,k-1} &= Q\left(s + \frac{(k-1)(k-2)}{2}; n-2; k-1\right). \end{aligned}$$

Therefore, (3.10) is written as

$$(3.11) \quad \sum_{s=0}^{(k-1)(n-k)} \sum_{\mu \in P_{s,n-2,k-1}} \sum_{r=0}^{d'-s} \sum_{\substack{|v|=d'-s \\ l(v)=r}} a_{r,v}^\mu e_v Q_T^{\mu;m} = 0.$$

We show $a_{r,v}^\mu = 0$ for $r \geq 0$. We show this by induction on r . To prove this, we consider the leading terms in x_{k+1} .

As a polynomial in x_{k+1} , the degree of l.h.s. of (3.11) is $(k-1)m + d'$ and the leading term is in $a_{d',(1^{d'})}^{(k-2,k-3,\dots,0)} e_{(1^{d'})} Q_T^{(k-2,k-3,\dots,0);m}$. Hence we have $a_{d',(1^{d'})}^{(k-2,k-3,\dots,0)} = 0$.

Using the following lemma, we complete the proof of Proposition 3.9.

Lemma 3.10. *Let k be an integer such that $k \geq 3$. We assume that for each integer l such that $2 \leq l \leq n-1$ and each tableau of shape $\eta(n-1, l)$, the statement of Proposition 3.9 holds.*

Let r an integer such that $1 \leq r \leq d'-1$. If we have the following equation:

$$(3.12) \quad \sum_{s=0}^{(k-1)(n-k)} \sum_{\mu \in P_{s,n-2,k-1}} \sum_{i=0}^r \sum_{\substack{|\nu|=d'-s \\ l(\nu)=i}} a_{i,\nu}^\mu e_\nu Q_T^{\mu;m} = 0,$$

then all constants $a_{r,\nu}^\mu$ are equal to 0.

Proof. We set

$$I = \sum_{s=0}^{(k-1)(n-k)} \sum_{\mu \in P_{s,n-2,k-1}} \sum_{i=0}^r \sum_{\substack{|\nu|=d'-s \\ l(\nu)=i}} a_{i,\nu}^\mu e_\nu Q_T^{\mu;m}.$$

From Proposition 3.3 (3), we have $\deg_{x_{k+1}}(I) = (k-1)m + r$. The leading term of I in x_{k+1} is in

$$\sum_{s=0}^{(k-1)(n-k)} \sum_{\mu \in P_{s,n-2,k-1}} \sum_{\substack{|\nu|=d'-s \\ l(\nu)=r}} a_{r,\nu}^\mu e_\nu Q_T^{\mu;m}.$$

Recall that we have $P_{s,n-2,k-1} = Q_{s,n-2,k-1} \cup P_{s,n-3,k-1}$ and this union is disjoint. Therefore, we can rewrite this as

$$\begin{aligned} & \sum_{s=n-k}^{(k-1)(n-k)} \sum_{\mu \in Q_{s,n-2,k-1}} \sum_{\substack{|\nu^{(1)}|=d'-s \\ l(\nu^{(1)})=r}} a_{r,\nu^{(1)}}^\mu e_{\nu^{(1)}} Q_T^{\mu;m} \\ & + \sum_{s=0}^{(k-1)(n-k-1)} \sum_{\mu \in P_{s,n-3,k-1}} \sum_{\substack{|\nu^{(2)}|=d'-s \\ l(\nu^{(2)})=r}} a_{r,\nu^{(2)}}^\mu e_{\nu^{(2)}} Q_T^{\mu;m}. \end{aligned}$$

We set

$$\begin{aligned} I_1 &= \sum_{s=n-k}^{(k-1)(n-k)} \sum_{\mu \in Q_{s,n-2,k-1}} \sum_{\substack{|\nu^{(1)}|=d'-s \\ l(\nu^{(1)})=r}} a_{r,\nu^{(1)}}^\mu e_{\nu^{(1)}} Q_T^{\mu;m}, \\ I_2 &= \sum_{s=0}^{(k-1)(n-k-1)} \sum_{\mu \in P_{s,n-3,k-1}} \sum_{\substack{|\nu^{(2)}|=d'-s \\ l(\nu^{(2)})=r}} a_{r,\nu^{(2)}}^\mu e_{\nu^{(2)}} Q_T^{\mu;m}. \end{aligned}$$

First, we show that the constants $a_{r,v}^\mu$ in I_1 are equal to 0.

If $r > d' - n + k$, we have $|\mu| < (k-1)(k-2)/2 + n - k$. On the other hand, if $\mu \in Q_{s,n-2,k-1}$, we have $|\mu| \geq (k-1)(k-2)/2 + n - k$. Therefore if $r > d' - n + k$, the sum in I_1 is empty. We only need to consider the case when $r \leq d' - n + k$.

We define the following notations. Let $X = \{s_1, s_2, \dots, s_n\}$ be the set of n positive integers. For a partition $v = (v_1, v_2, \dots)$, we define

$$\begin{aligned} e_{X,i} &= \sum_{1 \leq l_1 < \dots < l_i \leq n} x_{s_{l_1}} \cdots x_{s_{l_i}}, \\ e_{X,v} &= \prod_i e_{X,v_i}, \\ e_{X,i}^{(s_j)} &= e_i(x_{s_1}, \dots, x_{s_{j-1}}, x_{s_{j+1}}, \dots, x_{s_n}), \\ e_{X,v}^{(s_j)} &= \prod_{s_i} e_{X,v_i}^{(j)}. \end{aligned}$$

In particular, if $X = \{1, 2, \dots, n\}$, then we simply write $e_{X,i}^{(j)}$ as $e_i^{(j)}$ and $e_{X,v}^{(j)}$ as $e_v^{(j)}$.

When $r \leq d' - n + k$, the leading term of I in x_1 is in I_1 . For $\mu \in Q_{s,n-2,k-1}$, there exists $\mu' = (\mu'_1, \dots, \mu'_{k-2}) \in P_{n-3,k-2}$ such that $\mu = (n-2, \mu'_1, \dots, \mu'_{k-2})$. In particular, we have $\mu' \in P_{s+k-n, n-3, k-2}$. The leading coefficient of I_1 in x_1 is

$$\sum_{s=n-k}^{(k-1)(n-k)} \sum_{\mu' \in P_{s+k-n, n-3, k-2}} \sum_{\substack{|\nu^{(1)}|=d'-s \\ l(\nu^{(1)})=r}} b_{\nu^{(1)}}^{\mu'} e_{\nu^{(1)}-(1^r)}^{(1)} Q_{T^1}^{\mu';m}$$

where we set $b_{\mu', \nu^{(1)}} = (-1)^{(k-1)m+1} m! / \prod_{s=0}^m (mn + n - 1 - s) a_{r, \nu^{(1)}}^{(n-2, \mu'_1, \dots)}$. We can rewrite this as

$$\sum_{s=0}^{(k-2)(n-k)} \sum_{\mu' \in P_{s, n-3, k-2}} \sum_{\substack{|\nu^{(1)}|=d'-s+k-n \\ l(\nu^{(1)})=r}} b_{\nu^{(1)}}^{\mu'} e_{\nu^{(1)}-(1^r)}^{(1)} Q_{T^1}^{\mu';m}.$$

Since $e_{\nu^{(1)}-(1^r)}^{(1)} = e_{mem(T^1), \nu^{(1)}-(1^r)}$, this is rewritten as

$$\sum_{s=0}^{(k-2)(n-k)} \sum_{\mu' \in P_{s, n-3, k-2}} \sum_{\substack{|\nu^{(1)}|=d'-s+k-n \\ l(\nu^{(1)})=r}} b_{\nu^{(1)}}^{\mu'} e_{mem(T^1), \nu^{(1)}-(1^r)} Q_{T^1}^{\mu';m}.$$

The shape of the tableau T^1 is $(n-k+1, 1^{k-2})$. Thus T^1 has $n-1$ boxes. By the induction assumption on n , all $b_{\nu^{(1)}}^{\mu'}$ are equal to 0. Thus we have $a_{r, \nu^{(1)}}^{(n-2, \mu'_1, \dots)} = 0$. So, we get $I_1 = 0$.

We next consider I_2 . The leading coefficient of I_2 in x_{k+1} is

$$(3.13) \quad \sum_{s=0}^{(k-1)(n-k-1)} \sum_{\mu \in P_{s,n-3,k-1}} \sum_{\substack{|\nu^{(2)}|=d'-s \\ l(\nu^{(2)})=r}} c_{\nu^{(2)}}^\mu e_{\nu^{(2)}-(1^r)}^{(k+1)} Q_{T^{k+1}}^{\mu;m}$$

where we set $c_{\nu^{(2)}}^\mu = (-1)^{(k-2)m} a_{r,\nu^{(2)}}^\mu$.

Since $e_{\nu^{(2)}-(1^r)}^{(k+1)} = e_{mem(T^{k+1}),\nu^{(2)}-(1^r)}$, we can rewrite (3.13) as

$$\sum_{s=0}^{(k-1)(n-k-1)} \sum_{\mu \in P_{s,n-3,k-1}} \sum_{\substack{|\nu^{(2)}|=d'-s \\ l(\nu^{(2)})=r}} c_{\nu^{(2)}}^\mu e_{mem(T^{k+1}),\nu^{(2)}-(1^r)} Q_{T^{k+1}}^{\mu;m}.$$

The tableau T^{k+1} has $n-1$ boxes. By the induction assumption on n , all $c_{\nu^{(2)}}^\mu$ are equal to 0. Thus, all $a_{r,\nu}^\mu$ are equal to 0.

Thus, the lemma follows. Therefore, the proposition also follows. \square

From Theorem 3.8 and Proposition 3.9, we obtain the following corollary.

Corollary 3.11. *Let $T \in ST(\eta(n, k))$. The space $\gamma_T(\mathbf{QI}_m)$ is a free module over Λ_n and the set $\{Q_T^{\mu;m}\}_{\mu \in P(n-2;k-1)}$ is a free basis.*

Proof. In this proof, we simply write $Q_T^{\mu;m}$ as Q^μ . Using Proposition 3.9, the set $\{Q^\mu\}$ is linearly independent over Λ_n .

Since $H(\gamma_T(\mathbf{QI}_m^*); t) = t^{(k-1)nm+k(k-1)/2} \sum_{s=0}^{(k-1)(n-k)} p_{s,n-2,k-1} t^s$, we have

$$\gamma_T(\mathbf{QI}_m) = \bigoplus_{d \geq (k-1)nm+k(k-1)/2} \gamma_T(\mathbf{QI}_m)[d].$$

Let d be a non-negative integer such that $d \geq (k-1)nm + k(k-1)/2$. We show that the subspace of $\gamma_T(\mathbf{QI}_m)[d]$ is generated by $\{Q^\mu\}$ over Λ_n by induction on d .

When $d = (k-1)nm + k(k-1)/2$, the coefficient of $t^{(k-1)nm+k(k-1)/2}$ in the polynomial $H(\gamma_T(\mathbf{QI}_m^*); t)$ is equal to 1. Therefore, $\gamma_T(\mathbf{QI}_m)[d]$ is a space spanned by $Q^{(k-2,k-1,\dots,0)}$. Thus the statement follows when $d = (k-1)nm + k(k-1)/2$.

When $d \geq (k-1)nm + k(k-1)/2 + 1$, we assume that the statement holds with all numbers less than d . We denote by V the vector space over \mathbb{Q} spanned by $\{Q^\mu\}_{\mu \in P(n-2;k-1)}$.

Take $f \in \gamma_T(\mathbf{QI}_m)[d]$. From Theorem 3.8, we can find $g \in V[d]$ such that $[f] = [g]$ in $\gamma_T(\mathbf{QI}_m^*)$. Thus, we have $f - g \in I_m$. This is expressed as

$$f - g = \sum_{s \geq 1} A_s u_s$$

where $A_s \in \Lambda_n^s$ and $u_s \in \gamma_T(QI_m)$.

Since $\gamma_T(QI_m)$ is a graded space, we can decompose $u_s = \sum_{i \geq 0} u_{s,i}$ where $u_{s,i} \in \gamma_T(QI_m)[i]$. We have $\deg(A_s u_{s,i}) = s + i$. Thus, we have

$$f - g = \sum_{l \geq 0} \sum_{s+i=l} A_s u_{s,i}.$$

Since $f - g \in \gamma_T(\mathbf{QI}_m)[d]$, we get $\sum_{l \neq d} \sum_{s+i=l} A_s u_{s,i} = 0$. Therefore, we have

$$f - g = \sum_{s \geq 1} A_s u_{s,d-s}.$$

The polynomial A_s has the degree at least 1. So, the polynomial $u_{s,d-s}$ has the degree less than d . By the induction assumption, $u_{s,d-s}$ can be expressed as

$$u_{s,d-s} = \sum_l B_l v_l$$

where $B_l \in \Lambda_n$ and $v_l \in V$. Thus, the statement follows. \square

4. The operator L_m

The operator L_m is defined as

$$L_m = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} - 2m \sum_{1 \leq i < j \leq n} \frac{1}{x_i - x_j} \left(\frac{\partial}{\partial x_i} - \frac{\partial}{\partial x_j} \right).$$

This operator is discussed in [4] and [5]. It is related to the quasiinvariants. In [5], Feigin and Veselov showed that the operator L_m preserves \mathbf{QI}_m . We consider how L_m acts on our polynomial $Q_T^{\mu;m}$. In [2], for $T(1, 2)$ Bandlow and Musiker showed the following formulas for the action of L_m .

Theorem 4.1 ([2]). *Let k, m be non-negative integers.*

Then, we have $L_m(Q_{T(1,2)}^{k;m}) = k(k-1)Q_{T(1,2)}^{k-2;m}$ for $k \geq 2$ and $L_m(Q_{T(1,2)}^{k;m}) = 0$ for $k = 0, 1$.

We extend these formulas. We set $T = T(1, 2, \dots, k)$. To write formulas simply, we define the following polynomials.

DEFINITION 4.2. Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{k-1}) \in \mathbb{Z}^{k-1}$.

We define a polynomial $Q_T^{\alpha;m}$ as follows:

$$(4.1) \quad Q_T^{\alpha;m} = \begin{vmatrix} R_{T;1,2}^{\alpha_1;m} & R_{T;1,2}^{\alpha_2;m} & \cdots & R_{T;1,2}^{\alpha_{k-1};m} \\ R_{T;2,3}^{\alpha_1;m} & R_{T;2,3}^{\alpha_2;m} & \cdots & R_{T;2,3}^{\alpha_{k-1};m} \\ \vdots & \vdots & \ddots & \vdots \\ R_{T;k-1,k}^{\alpha_1;m} & R_{T;k-1,k}^{\alpha_2;m} & \cdots & R_{T;k-1,k}^{\alpha_{k-1};m} \end{vmatrix}$$

when $\alpha_i \geq 0$, $i = 1, \dots, k-1$. Otherwise we define $Q_T^{\alpha;m} = 0$.

REMARK 4.3. If α is a partition, $Q_T^{\alpha;m}$ is equal to a polynomial defined in Definition 3.1 (2). If $\alpha \in \mathbb{Z}_{\geq 0}^{k-1}$, $Q_T^{\alpha;m}$ is equal to $Q_T^{\mu;m}$ up to a sign where μ is a partition sorted α .

We obtain the following formulas for the action of L_m . To write the formula simply, for $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{k-1}) \in \mathbb{Z}^{k-1}$ we define

$$\alpha^{(i,j)} = (\alpha_1, \dots, \alpha_{i-1}, \alpha_i - 1, \alpha_{i+1}, \dots, \alpha_{j-1}, \alpha_j - 1, \alpha_{j+1}, \dots, \alpha_n).$$

Theorem 4.4. Let $\alpha = (\alpha_1, \dots, \alpha_{k-1}) \in \mathbb{Z}^{k-1}$ and take $T \in ST(\eta(n, k))$. Then we have

$$\begin{aligned} L_m(Q_T^{\alpha;m}) &= \sum_{i=1}^n \alpha_i(\alpha_i - 1) Q_T^{(\alpha_1, \dots, \alpha_{i-2}, \dots, \alpha_n);m} \\ &+ 2m \sum_{1 \leq i < j \leq k-1} \left(-\alpha_j Q_T^{\alpha^{(i,j)};m} \right. \\ &\quad \left. + \sum_{\substack{\alpha_i-2 \geq s > t \geq 0 \\ s+t=\alpha_i+\alpha_j-2}} (s-t) Q_T^{(\alpha_1, \dots, \alpha_{i-1}, s, \alpha_{i+1}, \dots, \alpha_{j-1}, t, \alpha_{j+1}, \dots, \alpha_n);m} \right). \end{aligned}$$

This follows from following lemma. We define a polynomial $R_{T;1,2,3}^{s,t;m}$ as

$$R_{T;1,2,3}^{s,t;m} = \begin{vmatrix} R_{T;1,2}^{s;m} & R_{T;1,2}^{t;m} \\ R_{T;2,3}^{s;m} & R_{T;2,3}^{t;m} \end{vmatrix}.$$

Lemma 4.5. (1) We have

$$L_m(fg) = L_m(f)g + fL_m(g) + 2 \sum_{i=1}^n \left(\frac{\partial}{\partial x_i} f \right) \left(\frac{\partial}{\partial x_i} g \right).$$

(2) Let k be a non-negative integer and m be a positive integer. Then, we have

$$k \int_{x_i}^{x_j} t^{k-1} \prod_{s=1}^n (t - x_s)^m dt = -m \sum_{r=1}^n \int_{x_i}^{x_j} t^k (t - x_r)^{m-1} \prod_{s \neq r} (t - x_s)^m dt.$$

(3) Let k, l be non-negative integers such that $k > l$. Then we have

$$(4.2) \quad \begin{aligned} & \sum_{i=1}^n \left(\frac{\partial}{\partial x_i} R_{T;1,2}^{k;m} \right) \left(\frac{\partial}{\partial x_i} R_{T;1,3}^{l;m} \right) - \left(\frac{\partial}{\partial x_i} R_{T;1,3}^{k;m} \right) \left(\frac{\partial}{\partial x_i} R_{T;1,2}^{l;m} \right) \\ & = m \left(-l R_{T;1,2,3}^{k-1,l-1;m} + \sum_{\substack{k-2 \geq s > t \geq 0 \\ s+t=k+l-2}} (s-t) R_{T;1,2,3}^{s,t;m} \right). \end{aligned}$$

Proof. (1) It follows from Leibniz's rule.

(2) It follows from the following identity:

$$\int_{x_i}^{x_j} \frac{\partial}{\partial t} t^k \prod_{s=1}^n (t - x_s)^m dt = 0.$$

(3) When $m = 0$, it follows from $R_{T;1,2}^{k;m} = (x_2^{k+1} - x_1^{k+1})/(k+1)$. We consider the case $m \geq 1$.

We show this formula by induction on $k - l$. We define $f(t, x) = \prod_{s=1}^n (t - x_s)^m$ and $f_i(t, x) = (t - x_i)^{m-1} \prod_{s \neq i} (t - x_s)^m$.

When $k - l = 1$, l.h.s. of (4.2) is equal to

$$\begin{aligned} & m^2 \sum_{i=1}^n \int_{x_1}^{x_2} t^k f_i(t, x) dt \int_{x_1}^{x_3} u^{k-1} f_i(u, x) du \\ & - m^2 \sum_{i=1}^n \int_{x_1}^{x_3} t^k f_i(t, x) dt \int_{x_1}^{x_2} u^{k-1} f_i(u, x) du. \end{aligned}$$

So, this is equal to

$$\begin{aligned} & m^2 \sum_{i=1}^n \int_{x_1}^{x_2} t^{k-1} \{(t - x_i) + x_i\} f_i(t, x) dt \int_{x_1}^{x_3} u^{k-1} f_i(u, x) du \\ & - m^2 \sum_{i=1}^n \int_{x_1}^{x_3} t^{k-1} \{(t - x_i) + x_i\} f_i(t, x) dt \int_{x_1}^{x_2} u^{k-1} f_i(u, x) du \\ & = m^2 \sum_{i=1}^n \int_{x_1}^{x_2} t^{k-1} f_i(t, x) dt \int_{x_1}^{x_3} u^{k-1} f_i(u, x) du \\ & - m^2 \sum_{i=1}^n \int_{x_1}^{x_3} t^{k-1} f_i(t, x) dt \int_{x_1}^{x_2} u^{k-1} f_i(u, x) du. \end{aligned}$$

Using (2), we have

$$\text{l.h.s. of (4.2)} = -m(k-1) R_{T;1,2,3}^{k-1,k-2;m}.$$

We consider the case $k - l = 2$. Calculating it in the same way, we have

$$\begin{aligned} \text{l.h.s. of (4.2)} &= -m(k-2)R_{T;1,2,3}^{k-1,k-3;m} \\ &+ m^2 \sum_{i=1}^n \int_{x_1}^{x_2} t^{k-1} f_i(t, x) dt \int_{x_1}^{x_3} x_i u^{k-2} f_i(u, x) du \\ &- m^2 \sum_{i=1}^n \int_{x_1}^{x_3} t^{k-1} f_i(t, x) dt \int_{x_1}^{x_2} x_i u^{k-2} f_i(u, x) du. \end{aligned}$$

From $x_i = u - (u - x_i)$, we get

$$\begin{aligned} \text{l.h.s. of (4.2)} &= -m(k-2)R_{T;1,2,3}^{k-1,k-3;m} \\ &+ m^2 \sum_{i=1}^n \int_{x_1}^{x_2} t^{k-1} f_i(t, x) dt \int_{x_1}^{x_3} \{u - (u - x_i)\} u^{k-2} f_i(u, x) du \\ &- m^2 \sum_{i=1}^n \int_{x_1}^{x_3} t^{k-1} f_i(t, x) dt \int_{x_1}^{x_2} \{u - (u - x_i)\} u^{k-2} f_i(u, x) du. \end{aligned}$$

It is equal to $-m(k-2)R_{T;1,2,3}^{k-1,k-3;m}$. Thus the statement holds when $k - l = 2$.

When $k - l \geq 3$, we assume that the formula (4.2) holds with all numbers less than $k - l$. Calculating l.h.s. of (4.2) in the same way, we have

$$\begin{aligned} \text{l.h.s. of (4.2)} &= -mlR_{T;1,2,3}^{k-1,l-1;m} + m(k-1)R_{T;1,2,3}^{k-2,l;m} \\ &+ \sum_{i=1}^n \left(\frac{\partial}{\partial x_i} R_{T;1,2}^{k-1;m} \right) \left(\frac{\partial}{\partial x_i} R_{T;1,3}^{l+1;m} \right) - \left(\frac{\partial}{\partial x_i} R_{T;1,3}^{k-1;m} \right) \left(\frac{\partial}{\partial x_i} R_{T;1,2}^{l+1;m} \right). \end{aligned}$$

Hence the formula (4.2) holds by the induction assumption, and the statement has been proved. \square

ACKNOWLEDGMENTS. I would like to thank Professor Etsuro Date for introducing me to this subject of the quasiinvariants and for his many valuable advices. I would also like to thank Professor Misha Feigin for his interest and encouragement during preparation of this paper and for useful comments while he was fully occupied.

References

[1] J. Bandlow and G. Musiker: *Quasiinvariants of S_3* , J. Combin. Theory Ser. A 109 (2005), 281–298.

- [2] J. Bandlow and G. Musiker: *A new characterization for the quasiinvariants of S_n and explicit basis for two row hook shapes*, Preprint math.CO/arXiv:0707.3174.
- [3] O.A. Chalykh and A.P. Veselov: *Commutative rings of partial differential operators and Lie algebras*, Comm. Math. Phys. **126** (1990), 597–611.
- [4] P. Etingof and V. Ginzburg: *On m -quasi-invariants of a Coxeter group*, Mosc. Math. J. **2** (2002), 555–566.
- [5] M. Feigin and A.P. Veselov: *Quasi-invariants of Coxeter groups and m -harmonic polynomials*, Int. Math. Res. Not. (2002), 521–545.
- [6] M.V. Feigin: *Quasi-invariants of dihedral systems*, Math. Notes **76** (2004), 723–737.
- [7] G. Felder and A.P. Veselov: *Action of Coxeter groups on m -harmonic polynomials and Knizhnik-Zamolodchikov equations*, Mosc. Math. J. **3** (2003), 1269–1291.

Graduate School of Information Science and Technology
Osaka University
Toyonaka, Osaka 560–0043
Japan
e-mail: t-tsuchida@ist.osaka-u.ac.jp