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Abstract
O. Chalykh, A.P. Veselov and M. Feigin introduced the notion of quasiinvariants

of Coxeter groups, which is a generalization of invariants.In [2], Bandlow and
Musiker showed that for the symmetric groupSn of order n, the space of quasi-
invariants has a decomposition indexed by standard tableaux. They gave a description
of a basis for the components indexed by standard tableaux ofshape (n � 1, 1). In
this paper, we generalize their results to a description of abasis for the components
indexed by standard tableaux of arbitrary hook shape.

1. Introduction

In [3] and [5], O. Chalykh, A.P. Veselov and M. Feigin introduced the notion ofquasi-
invariants for Coxeter groups, which is a generalization of invariants. For any Coxeter
group G, the quasiinvariants are determined by a multiplicitym which is aG-invariant
map from the set of reflections to non-negative integers.

We denote bySn the symmetric group of ordern. In the case ofSn, the multiplicity
is a constant function. Take a non-negative integerm. A polynomial P 2Q[x1, x2,:::, xn]
is called anm-quasiinvariant if the difference

(1� (i , j ))P(x1, : : : , xn)

is divisible by (xi � x j )2mC1 for any transposition (i , j ) 2 Sn.
The notion of quasiinvariants appeared in the study of the quantum Calogero Moser

system. In the case ofSn, this system is determined by the following differential oper-
ator (the generalized Calogero–Moser Hamiltonian):

Lm D n
∑

iD1

�2

�x2
i

� 2m
∑

1�i< j�n

1

xi � x j

( ��xi
� ��x j

)

wherem is a real number.
Let G be a Coxeter group. We denote bySG the sub ring generated by invariant

polynomials forG and by I G the ideal of the ring of quasiinvariants generated by the
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invariant polynomials of positive degree. For a generic multiplicity, there exists an iso-
morphism from the ringSG to the ring of G-invariant quantum integrals of the gen-
eralized Calogero–Moser Hamiltonian (sometimes called Harish-Chandra isomorphism).
We denote byL1,L2, : : : ,Ln the operators corresponding to fundamental invariant poly-
nomials�1, �2, : : : , �n. The generalized Calogero–Moser Hamiltonian is a member of
this ring (see for example [5], [6]).

In the case of non-negative integer multiplicities, Chalykh and Veselov showed that
there exists a homomorphism from the ring of quasiinvariants to the commutative ring
of differential operators whose coefficients are rational functions (see e.g. [3]). It is
shown that the restriction of such homomorphism ontoSG induces the Harish-Chandra
isomorphism. In the case of non-negative integer multiplicities there are much more
quantum integrals.

Let m be a non-negative integer multiplicity. In [5], Feigin and Veselov introduced
the notion ofm-harmonics which are defined as the solutions of the following system:

L1 D 0,

L2 D 0,

� � �
Ln D 0.

Feigin and Veselov also showed that the solutions of such system are polynomials.
They also showed that the space ofm-harmonic polynomials is a subspace of the space
of m-quasiinvariants and has dimensionjGj. In [7], G. Felder and Veselov gave a for-
mula of the Hilbert series of the space ofm-harmonic polynomials.

In [4], P. Etingof and V. Ginzburg proved the following:
(i) the ring of quasiinvariants ofG is a free module overSG, Cohen–Macaulay and
Gorenstein,
(ii) there is an isomorphism from the quotient space of quasiinvariants by I G to the
dual space ofm-harmonic polynomials,
(iii) the Hilbert series of the quotient space of the quasiinvariants by I G is equal to
that of m-harmonic polynomials.

Let I2(N) be the dihedral group of regular N-gon. In [5], Feigin and Veselov con-
sidered quasiinvariants ofI2(N) for any constant multiplicity. SinceI2(N) has rank 2,
quasiinvariants can be expressed as a polynomial inz and Nz. Feigin and Veselov gave
generators overSI2(N) by a direct calculation. In [6], Feigin studied quasiinvariants of
I2(N) for any non-negative integer multiplicity. He gave a free basis of the module of
quasiinvariants overSI2(N) using the above mentioned results of Etingof and Ginzburg.
An explicit description of basis of the quotient space of quasiinvariants forS3 is con-
tained in [5]. Another description is given in [1]. In [7], for Sn Felder and Veselov
provided integral expressions for the lowest degree non-symmetric quasiinvariant poly-
nomials (the degreenmC 1). However, for any integern � 4 a basis of the quotient
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space of quasiinvariants ofSn is not known.
In this paper, we consider the quasiinvariants ofSn. In this case,m is a non-

negative integer. We denote byQIm the ring of quasiinvariants and by3n the ring
of symmetric polynomials. We defineQI�m as the quotient space ofQIm by the ideal
generated by the homogeneous symmetric polynomials of positive degree.

In [2], J. Bandlow and G. Musiker showed that the spaceQIm has a decompos-
ition into subspaces indexed by standard tableaux. Each component has a3n module
structure. The quotient spaceQI�m is also decomposed in the same way. They con-
structed an explicit basis of the submodules ofQI�m indexed by standard tableaux of
shape (n� 1, 1).

In this paper, we extend the result in [2]. We construct a basis of the submodules
of QI�m indexed by standard tableaux of shape (n � k C 1, 1k�1) (a hook) (see The-
orem 3.8). The elements of our basis are expressed as determinants of a matrix with
entries similar to elements of basis introduced in [2]. We also show that our basis is
a free basis of the submodule ofQIm indexed by a hook (n � k C 1, 1k�1) over 3n

(Corollary 3.11).
We also show how the operatorLm acts on our basis. In [5], it is proved that the

operatorLm preservesQIm. In [2], it is obtained explicit formulas of the action ofLm

on their basis. We extend these formulas to those of our basis(Theorem 4.4).

2. Preliminaries

2.1. Symmetric group and Young diagram. We denoteQ[x1, x2, : : : , xn] by
Kn and the symmetric group on{1, 2,: : : , n} by Sn. For a finite setX, we denote the
symmetric group onX by SX.

The symmetric groupSn acts onKn by

� P(x1, : : : , xn) D P(x� (1), : : : , x� (n)), � 2 Sn.

A polynomial P(x1, x2, : : : , xn) is called a symmetric polynomial when for any� 2 Sn,
P(x1, x2, : : : , xn) satisfies

� P(x1, : : : , xn) D P(x1, : : : , xn).

We denote by3n the subspace spanned by symmetric polynomials and by3d
n the sub-

space of3n spanned by homogeneous polynomials of degreed. We set3d
n D {0} if

d < 0. The i -th elementary symmetric polynomial is denoted byei . For a partition� D (�1, �2, : : : ), we definee� D∏i e�i . A basis of3n is given by{e�}.
The group ring ofSn overQ is denoted byQSn. The action ofSn on Kn is natur-

ally extended to that ofQSn. For a subgroupH of Sn, we define [H ], [ H ]0 in QSn by

[H ] D∑

�2H

� ,

[H ]0 D∑

�2H

sgn(� )� .
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Let � D (�1, �2, : : : ) be a partition. When� is a partition of a positive integern,
we denote this by� ` n. We definel (�) D #{i j �i ¤ 0} and j�j D ∑

i �i . They are
called the length and the size of� respectively.

For a partition�, the Young diagram of shape� is a diagram such that itsi -th row
has�i boxes and it is arranged in left-justified rows. For example,the Young diagram
of shape (4, 3, 1) is

.

We denote by (i , j ) a box on the (i , j )-th position of the diagram. For instance,
the box (2, 3) of the Young diagram of shape (4, 3, 1) is

� .

We identify the Young diagram of shape� with the partition�.
Let k, n be integers such thatk� 2 andn� k. We define�(n,k)D (n�kC1,1k�1).

We havel (�(n, k)) D k and j�(n, k)j D n. We call �(n, k) (also the Young diagram of�(n, k)) the hook.
For � ` n, we define the arm lengtha(i , j ) for box (i , j ) 2 � as

a(i , j ) D #{(i , l ) j j < l , (i , l ) 2 �}.
We also define the leg lengthl (i , j ) for box (i , j ) as

l (i , j ) D #{(k, j ) j i < k, (k, j ) 2 �}.
We defineh(i , j ) D a(i , j )C l (i , j )C 1 called the hook length for box (i , j ) 2 �.

A tableau of shape� is obtained by assigning a positive integer to each box of
the Young diagram�. In this paper, we assume that entries of boxes are differenteach
other. For a tableauD, we denote byDi , j the entry in the box (i , j ) of D. We define

mem(D) D {Di , j j (i , j ) 2 �}.
A tableauT is called a standard tableau ifT satisfiesmem(T) D {1, 2,: : : , n} and

Ti , j < Tk, j , Ti , j < Ti ,l , i < k, j < l .

We denote byST(�) the set of all standard tableaux of shape� and by ST(n) the set
of all standard tableaux withn boxes.
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For a tableauD of shape�, we define

C(D) D [{� 2 Smem(D) j � preserves each column ofD}]0,
R(D) D [{� 2 Smem(D) j � preserves each row ofD}],

f� D #ST(�),


D D f�C(D)R(D)

n!
,

VD D ∏

(i , j )2CD

(xi � x j )

whereCD D {(i , j ) j i < j and i , j are entries in a same column ofD}. The element
D 2 QSmem(D) satisfies
 2
D D 
D.

DEFINITION 2.1. Let s1, s2, : : : , sn be mutually distinct positive integers.
(1) We denote byD(s1, s2, : : : , skIs1, skC1, : : : , sn) the tableau of shape�(n, k) such that
the entries in the first column and in the first row ares1, s2, : : : , sk and s1, skC1, : : : , sn

in order, respectively.
(2) A tableauD(s1, s2, : : : , skI s1, skC1, : : : , sn) is a standard tableau of shape�(n, k)
if and only if the following holds:

s1, s2, : : : , sn is a permutation of 1, 2,: : : , n,

s1 D 1, s2 � � � � � sk, skC1 � � � � � sn.

Then we simply writeD(s1, s2, : : : , skI s1, skC1, : : : , sn) as T(1, s2, : : : , sk).
(3) Let i be an integer such that 1� i � k (resp.k C 1 � i � n). We set D D
D(s1, s2, : : : , skI s1, skC1, : : : , sn). We define

Dsi D D(s1, : : : , si�1, siC1, : : : , skI s1, skC1, : : : , sn)

(resp.Dsi D D(s1, : : : , skI s1, skC1, : : : , si�1, siC1, : : : , sn)).

For example, the standard tableauT(1, 3, 4)D D(1, 3, 4I1, 2, 5, 6) of shape (4, 1, 1) is

1 2 5 6
3
4

.

The tableauT(1, 3, 4)1 is

3 2 5 6
4

and T(1, 3, 4)2 is

1 5 6
3
4

.
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We have the following propositions.

Proposition 2.2 ([2]). For any f D∑�2Sn
f�� 2 QSn, P 2 3n and Q2 Kn, we

have f(P Q) D P f (Q).

Proposition 2.3 ([2]). Let i1, i2, : : : , in be a permutation of1, 2,: : : , n. Then
[Sn] and [Sn]0 are expressed as follows:

[Sn] D (1C (i1, in)C � � � C (in�1, in)) � � � (1C (i1, i3)C (i2, i3))(1C (i1, i2)),

[Sn]0 D (1� (i1, in) � � � � � (in�1, in)) � � � (1� (i1, i3) � (i2, i3))(1� (i1, i2)).

2.2. The quasiinvariants of Sn. We recall the definition and the notation of
m-quasiinvariants. Take a non-negative integerm. A polynomial P 2 Kn is called an
m-quasiinvariant if the difference

(1� (i , j ))P(x1, : : : , xn)

is divisible by (xi � x j )2mC1 for any transposition (i , j ) 2 Sn. We denote byQIm the
ring of quasiinvariants and by3n the space of symmetric polynomials. We denote by
Im the ideal ofQIm generated bye1, : : : , en. We setQI�m D QIm=Im.

We recall results in [2].

Lemma 2.4 ([2]). The ring QIm of quasiinvariants has following decomposition:

QIm D ⊕

T2ST(n)


T (QIm).

The space
T (QIm) has following description:

(2.1) 
T (QIm) D 
T (Kn) \ V2mC1
T Kn.

For � ` n, the vector space
⊕

T2ST(�) 
T (QIm) is called the�-isotypic component
of QIm.

Let K be a polynomial ring. We denote byK [i ] the subspace spanned by homo-
geneous polynomials of degreei in K . The Hilbert series ofK is defined as a formal
power series

∑1
iD0 dim(K [i ])t i . We denote it byH (K , t).

For [ f ] 2 QI�m, we define the degree of [f ] as the minimal degree in the class
[ f ]. In [4] and [7], the Hilbert series ofQI�m is given as follows:

Theorem 2.5 ([4], [7]).

(2.2) H (QI�m, t) D n! tmn(n�1)=2 ∑
�`n

∏

(i , j )2�
n
∏

kD1

tw(i , j Im) 1� tk

h(i , j )(1� th(i , j ))
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where we setw(i , j Im) D m(l (i , j ) � a(i , j ))C l (i , j ).
In particular, for T 2 ST(�) the Hilbert series of
T (QI�m) is given as follows:

(2.3) H (
T (QI�m)I t) D tmn(n�1)=2 ∏

(i , j )2�
n
∏

kD1

tw(i , j Im) 1� tk

1� th(i , j )
.

Lets1,s2,:::,sn be mutually distinct positive integers. We setDDD(s1,s2Is1,s3,:::,sn).
We define the following polynomial inQ[xs1, : : : , xsn ]:

(2.4) Ql Im
D D

∫ xs2

xs1

t l
n
∏

iD1

(t � xsi )
mdt.

Recall that we define�(n, k)D (n�kC1, 1k�1). In [2], J. Bandlow and G. Musiker
found an explicit basis of
T (QI�m) when T 2 ST(�(n, 2)).

Theorem 2.6 ([2]). Let T 2 ST(�(n, 2)). The set{Q0Im
T , Q1Im

T , : : : , Qn�2Im
T } is a

basis of
T (QI�m).

REMARK 2.7. In [2], it is shown thatQl Im
T is divisible by VT D (x1 � x j )2mC1.

We can similarly show thatQl Im
D is divisible by VD D (xs1 � xs2)

2mC1.

Let f 2 Q[xs1, xs2, : : : , xsn ]. We denote by degxsi
( f ) the degree off as the poly-

nomial in xsi . The leading term off in xsi means the highest term off in xsi and the
leading coefficient of f in xsi means the coefficient of the leading term off in xsi .
For a homogeneous polynomialg, we define deg(g) as the degree ofg.

The polynomialsQl Im
D have the following properties, which we will use to show

Proposition 3.3.

Proposition 2.8. Let s1, s2, : : : , sn be mutually distinct positive integers. Let l be
a non-negative integer and take a tableau DD D(s1, s2I s1, s3, : : : , sn) of shape�(n, 2).

The polynomial Ql ImD is a homogeneous polynomial of degree nmC l C 1 and sat-
isfies following properties.
(1) The polynomial Ql ImD is symmetric in xs3, : : : , xsn and anti-symmetric in xs1, xs2.

(2) We havedegxs1
(Ql Im

D ) D nmC l C 1. The leading coefficient of Ql ImD in xs1 is

(�1)mC1m!=∏m
sD0(mnC l C 1� s).

(3) Let i 2 {1,: : : , n}n{1, 2}. We havedegxsi
(Ql Im

D )Dm. The leading coefficient of Ql ImD

in xsi is equal to(�1)mQl Im
Dsi .

Proof. We show the caseD D T(1, 2) since the proofs of other cases are similar.
We setT D T(1, 2).
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(1) It follows from the fact thatt l
∏n

iD1(t � xi )m is symmetric inx1, x2, : : : , xn.
(2) We show this statement by induction onm.
WhenmD 0, the polynomialQl I0

T is (1=(lC1))(xlC1
j �xlC1

1 ). So, the statement holds.
When m� 1, assume that the statement holds for all numbers less thanm. In [2],

the polynomialQl Im
T is expressed as:

(2.5) Ql Im
T D

n
∑

iD0

(�1)i ei Q
nCl�i Im�1
T .

By the induction assumption onm, we have degxs1
(QnCl�i Im�1

T ) D nmC l � i C 1.

From (2.5), we have degx1
(Ql Im

T ) D nmC l C1 and the leading term is ine0QnCl Im�1
T �

e1QnCl�1Im�1
T . The leading coefficient ofQl Im

T in x1 is

(�1)m(m� 1)!
∏m�1

sD0 (mnC l C 1� s)
� (�1)m(m� 1)!
∏m�1

sD0 (mnC l � s)

D (�1)mC1m!
∏m

sD0(mnC l C 1� s)
.

(3) Expanding (t � xi )m in Ql Im
T , we have

Ql Im
T D

m
∑

sD0

(�1)s
(

m

s

)

Ql Im
T i xs

i .

Thus, the statement holds.

As a corollary of this proposition, we haveQl Im
D ¤ 0 when D is a tableau of

shape�(n, 2).

3. A basis for the isotypic component of shape (n� kC 1, 1k�1)

We give a basis for the�(n, k)-isotypic component. Lets1, s2, : : : , sn be mutually
distinct positive integers. Throughout this section, we set D D D(s1,:::,skIs1,skC1,:::,sn)
and T D T(1, 2,: : : , k).

DEFINITION 3.1. (1) Let p be a non-negative integer. Fori , j such that 1� i <
j � k, we define a polynomialRpIm

DIsi ,sj
in Q[xs1, xs2, : : : , xsn ] as

(3.1) RpIm
DIsi ,sj

D ∫ xsj

xsi

t p
n
∏

lD1

(t � xsl )
mdt.
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(2) Let k be an integer such thatk � 2. Take a partition� D (�1, �2, : : : , �k�1) such
that �1 > �2 > � � � > �k�1 � 0. We define a polynomialQ�Im

D in Q[xs1, xs2, : : : , xsn ]
as follows:

(3.2) Q�Im
D D

∣

∣

∣

∣

∣

∣

∣

∣

∣

R�1Im
DIs1,s2

R�2Im
DIs1,s2

� � � R�k�1Im
DIs1,s2

R�1Im
DIs2,s3

R�2Im
DIs2,s3

� � � R�k�1Im
DIs2,s3

...
...

.. .
...

R�1Im
DIsk�1,sk

R�2Im
DIsk�1,sk

� � � R�k�1Im
DIsk�1,sk

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We denote the empty sequence by;. When k D 1, � is the empty sequence;.
We setQ;Im

D D 1. We simply writeQm
D as Q;Im

D .

REMARK 3.2. SettingD0 D D(s1, s2I s1, s3, : : : , sn), we haveRpIm
DIs1,s2

D QpIm
D0 .

The polynomialQ�Im
D has the following properties, which we will use to show our

main results.

Proposition 3.3. Let s1, s2, : : : , sn be mutually distinct positive integers. We set
D D D(s1, : : : , skI s1, skC1, : : : , sn). Let � D (�1, �2, : : : , �k�1) be a partition such that�1 > �2 > � � � > �k�1 � 0.

Then, the polynomial Q�ImD satisfies the following.
(1) The polynomial Q�ImD is symmetric in xskC1, xskC2, : : : , xsn and anti-symmetric in

xs1, xs2, : : : , xsk . In particular, Q�Im
D is divisible by V2mC1

D .
(2) We havedegxs1

(Q�Im
D ) D (nC k � 2)mC �1 C 1. The leading coefficient of Q�ImD

in xs1 is

(�1)(k�1)mC1m!
∏m

sD0(mnC �1C 1� s)
Q(�2,:::,�k�1)Im

Ds1 .

In particular, we havedeg(Q�Im
D ) D (k � 1)nmC j�j C k � 1.

(3) We havedegxkC1
(Q�Im

D ) D (k � 1)m. The leading coefficient of Q�ImD in xkC1 is

(�1)(k�1)mQ�Im
DskC1 .

(4) The polynomial Q�ImD is invariant under
D.

Proof. We show the caseD D T . The proofs of other cases are similar.
(1) From Proposition 2.8 (1), it follows that the polynomialQ�Im

T is symmetric
in xkC1, xkC2, : : : , xn.

Adding the first row to the second row, we get

Q�Im
T D

∣

∣

∣

∣

∣

∣

∣

∣

∣

R�1Im
T I1,2 R�2Im

T I1,2 � � � R�k�1Im
T I1,2

R�1Im
T I1,3 R�2Im

T I1,3 � � � R�k�1Im
T I1,3

...
...

. ..
...

R�1Im
T Ik�1,k R�1Im

T Ik�1,k � � � R�k�1Im
T Ik�1,k

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Repeating this process, we get

(3.3) Q�Im
T D

∣

∣

∣

∣

∣

∣

∣

∣

∣

R�1Im
T I1,2 R�2Im

T I1,2 � � � R�k�1Im
T I1,2

R�1Im
T I1,3 R�2Im

T I1,3 � � � R�k�1Im
T I1,3

...
...

.. .
...

R�1Im
T I1,k R�2Im

T I1,k � � � R�k�1Im
T I1,k

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Thus, the polynomialQ�Im
T is anti-symmetric inx2, : : : , xk. We can show thatQ�Im

T is
anti-symmetric inx1, x3, : : : , xk and x1, x2, x4 � � � , xk in similar ways. Thus the first
statement holds.

From Remark 2.7 and (3.3), the polynomialQ�Im
T is divisible by

∏n
sD2(x1� xs)2mC1.

Using this proposition (1), we seeQ�Im
T is also divisible byV2mC1

T .
(2) We seeQ�Im

T as a polynomial inx1. From Proposition 2.8 (2), (3), the lead-
ing term of Q�Im

T in xs1 is in R�1Im
T I1,2R�2Im

T I2,3 � � � R�kIm
T Ik�1,k. We use Proposition 2.8 (2), (3)

again, and the statement holds.
(3) From Proposition 2.8 (3), the leading coefficient ofQ�Im

T in xkC1 is

(3.4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(�1)mR�1Im
TkC1I1,2 (�1)mR�2Im

TkC1I1,2 � � � (�1)mR�kIm
TkC1I1,2

(�1)mR�1Im
TkC1I2,3 (�1)mR�2Im

TkC1I2,3 � � � (�1)mR�kIm
TkC1I2,3

...
...

. ..
...

(�1)mR�1Im
TkC1Ik�1,k (�1)mR�2Im

TkC1Ik�1,k � � � (�1)mR�kIm
TkC1Ik�1,k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The polynomial (3.4) is equal to (�1)(k�1)mQ�Im
TkC1.

(4) To prove (4), we define the following notation.
For positive integersi , j such that i ¤ j , we define a tableau (i , j )D as fol-

lows. When i , j 62 mem(D), we define (i , j )D D D. When i 2 mem(D) and j 62
mem(D), (i , j )D is a tableau obtained by replacing the entryi in D with j . When
i , j 2 mem(D), (i , j )D is a tableau obtained by interchanging the entryi and j in D.

Using Proposition 2.3,
T is equal to

1

n(n� k)! (k � 1)!

{

1� k
∑

sD2

(1, s)

}

[S{2,3,:::,k}]
0{1C n

∑

sDkC1

(1, s)

}

[S{kC1,:::,n}].

From (1), we obtain


T (Q�Im
T ) D 1

n

{

kQ�Im
T C n

∑

sDkC1

{1� (1, 2)� � � � � (1, k)}Q�Im
(1,s)T

}

.
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We consider the sum
∑n

sDkC1{1� (1, 2)� � � � � (1, k)}Q�Im
(1,s)T . We have

n
∑

sDkC1

{1� (1, 2)� (1, 3)� � � � � (1, k)}Q�Im
(1,s)T

D n
∑

sDkC1

{Q�Im
(1,s)T C Q�Im

(2,s)T C Q�Im
(3,s)T C � � � C Q�Im

(k,s)T }.

Consider the sumQ�Im
(1,s)T C Q�Im

(2,s)T . By definition, we have

Q�Im
(1,s)T C Q�Im

(2,s)T

D
∣

∣

∣

∣

∣

∣

∣

∣

∣

R�1Im
T Is,2 R�2Im

T Is,2 � � � R�k�1Im
T Is,2

R�1Im
T I2,3 R�2Im

T I2,3 � � � R�k�1Im
T I2,3

...
...

. ..
...

R�1Im
T Ik�1,k R�2Im

T Ik�1,k � � � R�k�1Im
T Ik�1,k

∣

∣

∣

∣

∣

∣

∣

∣

∣

C
∣

∣

∣

∣

∣

∣

∣

∣

∣

R�1Im
T I1,s R�2Im

T I1,s � � � R�k�1Im
T I1,s

R�1Im
T Is,3 R�2Im

T Is,3 � � � R�k�1Im
T Is,3

...
...

.. .
...

R�1Im
T Ik�1,k R�2Im

T Ik�1,k � � � R�k�1Im
T Ik�1,k

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Adding the first row to the second row in the second determinant, we get

Q�Im
(1,s)T C Q�Im

(2,s)T

D
∣

∣

∣

∣

∣

∣

∣

∣

∣

R�1Im
T Is,2 R�2Im

T Is,2 � � � R�k�1Im
T Is,2

R�1Im
T Is,3 R�2Im

T Is,3 � � � R�k�1Im
T Is,3

...
...

. ..
...

R�1Im
T Ik�1,k R�2Im

T Ik�1,k � � � R�k�1Im
T Ik�1,k

∣

∣

∣

∣

∣

∣

∣

∣

∣

C
∣

∣

∣

∣

∣

∣

∣

∣

∣

R�1Im
T I1,s R�2Im

T I1,s � � � R�k�1Im
T I1,s

R�1Im
T Is,3 R�2Im

T Is,3 � � � R�k�1Im
T Is,3

...
...

.. .
...

R�1Im
T Ik�1,k R�2Im

T Ik�1,k � � � R�k�1Im
T Ik�1,k

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Adding the two terms, we obtain

Q�Im
(1,s)T C Q�Im

(2,s)T

D
∣

∣

∣

∣

∣

∣

∣

∣

∣

R�1Im
T I1,2 R�2Im

T I1,2 � � � R�k�1Im
T I1,2

R�1Im
T Is,3 R�2Im

T Is,3 � � � R�k�1Im
T Is,3

...
...

...
...

R�1Im
T Ik�1,k R�2Im

T Ik�1,k � � � R�k�1Im
T Ik�1,k

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Repeating this process, we get

{1� (1, 2)� (1, 3)� � � � � (1, k)}Q�Im
(1,s)T D Q�Im

T .

Thus, the statement holds.

As a corollary of this proposition, we haveQ�Im
T 2 
T (QIm) whereT 2 ST(�(n, k)).

We introduce the following notations.
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DEFINITION 3.4. Let s, t , u be non-negative integers. Whenu � 1, we set the
subsetsP(sI t I u), P(t I u) and Q(sI t I u) of the set of partitions as:

P(sI t I u) D {� 2 Zu j j�j D s, t � �1 > �2 > � � � > �u � 0},

Q(sI t I u) D P(sI t I u)nP(sI t � 1I u),

P(t I u) D⋃
s�0

P(sI t I u).

When u D 0, we set

P(0I t I 0)D {;},
P(t I 0)D {;}.

Let l be a positive integer. We setP(l I t I 0) as empty set.
We definep(sI t I u) D #P(sI t I u) and q(sI t I u) D #Q(sI t I u).

REMARK 3.5. Let� 2 P(n�2Ik�1) (resp.� 2⋃s�0 Q(sIn�2Ik�1)). We have

(k � 1)(k � 2)

2
� j�j � (k � 1)(n� k)C (k � 1)(k � 2)

2
(resp.n� 2C (k � 2)(k � 3)=2� j�j � (k � 1)(n� k)C (k � 1)(k � 2)=2).

We have the following proposition.

Proposition 3.6. Let k be an integer such that k� 2.
(1) Let l be an integer such that0� l � n� k � 1. Then, we have

p

(

l C (k � 1)(k � 2)

2
I n� 3I k � 1

) D p

(

l C (k � 1)(k � 2)

2
I n� 2I k � 1

)

.

(2) Let l be an integer such that l� n� k. Then, we have

p

(

l C (k � 1)(k � 2)

2
I n� 2I k � 1

)

D p

(

l C (k � 1)(k � 2)

2
I n� 3I k � 1

)

C p

(

l C k � nC (k � 2)(k � 3)

2
I n� 3I k � 2

)

.

(3) Let l be an integer such that0� l � k � 2. Then, we have

p

(

(k � 1)(n� k)C (k � 1)(k � 2)

2
� l I n� 2I k � 1

)

D p

(

(k � 2)(n� k)C (k � 2)(k � 3)

2
� l I n� 3I k � 2

)

.
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Proof. (1) By definition, we have

q

(

l C (k � 1)(k � 2)

2
I n� 2I k � 1

)

D p

(

l C (k � 1)(k � 2)

2
I n� 2I k � 1

) � p

(

l C (k � 1)(k � 2)

2
I n� 3I k � 1

)

.

Therefore we showq(l C (k � 1)(k � 2)=2I n� 2I k � 1)D 0.
We havel C (k�1)(k�)=2� n� k�1C (k�1)(k�2)=2< n�2C (k�2)(k�3)=2.

From Remark 3.5, we haveQ(lC(k�1)(k�2)=2In�2Ik�1)D ;. Thus, the proposition
follows.

(2) To prove (2), we show

q

(

l C (k � 1)(k � 2)

2
I n� 2I k � 1

)

D p

(

l C k � nC (k � 2)(k � 3)

2
I n� 3I k � 2

)

.

Let �D ( j ,�2, : : : ,�k) 2 Q(i I j Ik). Then, we have (�2, : : : ,�k) 2 Q(i � j I�2Ik�1).
So, we getQ(i I j I k) D⋃i�1

sD0 Q(i � j I sI k � 1). Thus, we have

q

(

l C (k � 1)(k � 2)

2
I n� 2I k � 1

) D n�3
∑

sD0

q

(

l C (k � 1)(k � 2)

2
� nC 2I sI k � 2

)

.

We havel C (k � 1)(k � 2)=2� nC 2D l C k � nC (k � 2)(k � 3)=2. So, we get

q

(

l C (k � 1)(k � 2)

2
I n� 2I k � 1

)

D n�3
∑

sD0

q

(

l C k � nC (k � 2)(k � 3)

2
I sI k � 2

)

.

By definition, we obtain

n�3
∑

sD0

q

(

l C k � nC (k � 2)(k � 3)

2
I sI k � 2

)

D p

(

l C k � nC (k � 2)(k � 3)

2
I n� 3I k � 2

)

.

(3) By definition, we have

p

(

(k � 1)(n� k)C (k � 1)(k � 2)

2
� l I n� 2I k � 1

)

D n�2
∑

sD0

q

(

(k � 1)(n� k)C (k � 1)(k � 2)

2
� l I sI k � 1

)

.
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From Remark 3.5, we haveq((k � 1)(n � k) C (k � 1)(k � 2)=2� l I sI k � 1) D 0
when s� n� 3. Therefore, we obtain

p

(

(k � 1)(n� k)C (k � 1)(k � 2)

2
� l I n� 2I k � 1

)

D q

(

(k � 1)(n� k)C (k � 1)(k � 2)

2
� l I n� 2I k � 1

)

.

From (2), we have

q

(

(k � 1)(n� k)C (k � 1)(k � 2)

2
� l I n� 2I k � 1

)

D p

(

(k � 1)(n� k)C (k � 2)(k � 3)

2
� l C k � nI n� 3I k � 2

)

D p

(

(k � 2)(n� k)C (k � 2)(k � 3)

2
� l I n� 3I k � 2

)

.

We next consider the Hilbert series of
T (QI�m). To simplify notation, we write
ps,n�2,k�1 D p(sC (k � 1)(k � 2)=2I n� 2I k � 1).

Proposition 3.6 is rewritten as:
(1) pl ,n�3,k�1 D pl ,n�2,k�1,
(2) pl ,n�2,k�1 D pl ,n�3,k�1C plCk�n,n�3,k�2,
(3) p(k�1)(n�k)�l ,n�2,k�1 D p(k�2)(n�k)�l ,n�3,k�2.

Lemma 3.7. We have

(3.5) H (
T (QI�m)I t) D t (k�1)nmCk(k�1)=2 (k�1)(n�k)
∑

sD0

ps,n�2,k�1ts.

Proof. From (2.3), the Hilbert seriesH (
T (QI�m)I t) is equal to

tmn(n�1)=2 ∏

(i , j )2�
n
∏

lD1

tm(l (i , j )�a(i , j ))Cl (i , j ) 1� t l

1� th(i , j )
.

For 2� i � n� kC 1 and 2� j � k, we have

a(1, 1)D n� k, l (1, 1)D k � 1, h(1, 1)D n,

a(1, i ) D n� kC 1� i , l (1, i ) D 0, h(1, i ) D n� kC 2� i ,

a( j , 1)D 0, l ( j , 1)D k � j , h( j , 1)D k � j C 1.
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Thus, we have

H (
T (QI�m)I t) D t (k�1)nmCk(k�1)=2 k�1
∏

sD1

(1� tn�s)

(1� ts)
.

Therefore, we must show

(3.6)
k�1
∏

sD1

(1� tn�s)

(1� ts)
D (k�1)(n�k)

∑

sD0

ps,n�2,k�1ts.

We show this by induction onn.
If n D k, then both of l.h.s. and r.h.s. are equal to 1.
When n � k C 1, we assume that (3.6) holds with all numbers less thann. We

have the following identity:

k�1
∏

sD1

(1� tn�s)

(1� ts)
D k�1
∏

sD1

(1� tn�s�1)

(1� ts)
C tn�k

k�2
∏

sD1

(1� tn�s�1)

(1� ts)
.

By the induction assumption, we obtain

k�1
∏

sD1

(1� tn�s�1)

(1� ts)
C tn�k

k�2
∏

sD1

(1� tn�s�1)

(1� ts)

D (k�1)(n�k�1)
∑

sD0

ps,n�3,k�1tsC tn�k
(k�2)(n�k)
∑

sD0

ps,n�3,k�2ts.

We can rewrite this as

k�1
∏

sD1

(1� tn�s)

(1� ts)

D (k�1)(n�k�1)
∑

sDn�k

(ps�nCk,n�3,k�2C ps,n�3,k�1)ts

C (k�1)(n�k)
∑

sD(k�1)(n�k)�kC2

ps�nCk,n�3,k�2tsC n�k�1
∑

sD0

ps,n�3,k�1ts.

Using Proposition 3.6 (2), we have

(k�1)(n�k�1)
∑

sDn�k

(ps�nCk,n�3,k�2C ps,n�3,k�1)ts

D (k�1)(n�k�1)
∑

sDn�k

ps,n�2,k�1ts.
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From Proposition 3.6 (1) and (3), the lemma holds.

We state the main theorem in this paper.

Theorem 3.8. The set{Q�Im
T }�2P(n�2Ik�1) is a basis of
T (QI�m).

To simplify notation, we set

Ps,n�2,k�1 D P

(

sC (k � 1)(k � 2)

2
I n� 2I k � 1

)

,

Pn�2,k�1 D P(n� 2I k � 1),

Qs,n�2,k�1 D Q

(

sC (k � 1)(k � 2)

2
I n� 2I k � 1

)

.

We define following notations.
Let X D {s1, s2, : : : , sn} be the set ofn positive integers. We recall thatSX is the

symmetric group onX and SX acts onQ[xs1, xs2, : : : , xsn ] from the left.
We define3X as the subspace ofQ[xs1, xs2, : : : , xsn ] spanned by all polynomials

which is invariant underSX . We define3d
X as the subspace of3X spanned by homo-

geneous polynomials of degreed. We define3d
X D {0} if d < 0.

Theorem 3.8 follows from the following proposition.

Proposition 3.9. Let D be a tableau of shape�(n, k). If

(3.7)
∑

�2P(n�2Ik�1)

f�Q�Im
D D 0

where f� 2 3mem(D), then all f� is equal to0.

Proof. We show this proposition by induction on the sizen of tableauD.
In the casekD 1, (3.7) is f Qm

D D 0 where f 23mem(D). Therefore, the proposition
holds whenk D 1. We assume thatk � 2.

We recall thatn � k. Whenn D 2, we havek D 2. Then l.h.s. of (3.7) is equal to
f0Q0Im

D . Therefore, the lemma holds whenn D 2.
Assume that (3.7) holds when the size of the tableauD is less thann for n � 3.

We show the caseD D T since the proofs of other cases are similar.
We recall that3n is a graded ring. Therefore, we can decompose

f� D∑
l�0

f�,l
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where f�,l 2 3l
n. Thus, (3.7) is written as

(3.8)
∑

�2P(n�2Ik�1)

∑

l�0

f�,l Q
�Im
T D 0

where f�,l 2 3l
n. We have deg(Q�Im

T ) D (k � 1)nmC j�j C k � 1, and we obtain
deg(f�,l Q

�Im
T ) D (k � 1)nmC j�j C dC k � 1.

Thus, (3.8) is written as

(3.9)
∑

d�0

∑

�2P(n�2Ik�1)

f�,d�(k�1)nm�j�j�kC1Q�Im
T D 0.

Hence, for anyd we obtain

(3.10)
∑

�2P(n�2Ik�1)

f�,d�(k�1)nm�j�j�kC1Q�Im
T D 0.

Fix d. Recall that the setPs,n�2,k�1 is not the empty set if 0� s� (k� 1)(n� k).
Let s be an integer such that 0� s� (k� 1)(n� k) and take� 2 Ps,n�2,k�1. Then, we
have deg(Q�Im

T ) D (k� 1)nmC k(k� 1)=2C s. We setd0 D d� (k� 1)nm� k(k� 1)=2.
We expressf�,d0�s as

d0�s
∑

rD0

∑

j�jDd0�s
l (�)Dr

a�r ,�e� .

We recall that

Ps,n�2,k�1 D P

(

sC (k � 1)(k � 2)

2
I n� 2I k � 1

)

,

Pn�2,k�1 D P(n� 2I k � 1),

Qs,n�2,k�1 D Q

(

sC (k � 1)(k � 2)

2
I n� 2I k � 1

)

.

Therefore, (3.10) is written as

(3.11)
(k�1)(n�k)
∑

sD0

∑

�2Ps,n�2,k�1

d0�s
∑

rD0

∑

j�jDd0�s
l (�)Dr

a�r ,�e�Q�Im
T D 0.

We showa�r ,� D 0 for r � 0. We show this by induction onr . To prove this, we
consider the leading terms inxkC1.

As a polynomial inxkC1, the degree of l.h.s. of (3.11) is (k � 1)mC d0 and the
leading term is ina(k�2,k�3,:::,0)

d0,(1d0 ) e(1d0 ) Q(k�2,k�3,:::,0)Im
T . Hence we havea(k�2,k�3,:::,0)

d0,(1d0 ) D 0.

Using the following lemma, we complete the proof of Proposition 3.9.
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Lemma 3.10. Let k be an integer such that k� 3. We assume that for each in-
teger l such that2� l � n� 1 and each tableau of shape�(n� 1, l ), the statement of
Proposition 3.9holds.

Let r an integer such that1� r � d0 � 1. If we have the following equation:

(3.12)
(k�1)(n�k)
∑

sD0

∑

�2Ps,n�2,k�1

r
∑

iD0

∑

j�jDd0�s
l (�)Di

a�i ,�e�Q�Im
T D 0,

then all constants a�r ,� are equal to0.

Proof. We set

I D (k�1)(n�k)
∑

sD0

∑

�2Ps,n�2,k�1

r
∑

iD0

∑

j�jDd0�s
l (�)Di

a�i ,�e�Q�Im
T .

From Proposition 3.3 (3), we have degxkC1
(I ) D (k � 1)mC r . The leading term ofI

in xkC1 is in

(k�1)(n�k)
∑

sD0

∑

�2Ps,n�2,k�1

∑

j�jDd0�s
l (�)Dr

a�r ,�e�Q�Im
T .

Recall that we havePs,n�2,k�1 D Qs,n�2,k�1 [ Ps,n�3,k�1 and this union is disjoint.
Therefore, we can rewrite this as

(k�1)(n�k)
∑

sDn�k

∑

�2Qs,n�2,k�1

∑

j�(1)jDd0�s
l (�(1))Dr

a�r ,�(1)e�(1) Q�Im
T

C (k�1)(n�k�1)
∑

sD0

∑

�2Ps,n�3,k�1

∑

j�(2)jDd0�s
l (�(2))Dr

a�r ,�(2)e�(2) Q�Im
T .

We set

I1 D (k�1)(n�k)
∑

sDn�k

∑

�2Qs,n�2,k�1

∑

j�(1)jDd0�s
l (�(1))Dr

a�r ,�(1)e�(1) Q�Im
T ,

I2 D (k�1)(n�k�1)
∑

sD0

∑

�2Ps,n�3,k�1

∑

j�(2)jDd0�s
l (�(2))Dr

a�r ,�(2)e�(2) Q�Im
T .
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First, we show that the constantsa�r ,� in I1 are equal to 0.
If r > d0 � nC k, we havej�j < (k � 1)(k � 2)=2C n � k. On the other hand, if� 2 Qs,n�2,k�1, we havej�j � (k � 1)(k � 2)=2C n � k. Therefore ifr > d0 � nC k,

the sum inI1 is empty. We only need to consider the case whenr � d0 � nC k.
We define the following notations. LetX D {s1, s2, : : : , sn} be the set ofn positive

integers. For a partition� D (�1, �2, : : : ), we define

eX,i D ∑

1�l1<���<l i�n

xsl1
� � � xsl i

,

eX,� D∏
i

eX,�i ,

e
(sj )
X,i D ei (xs1, : : : , xsj�1, xsjC1, : : : , xsn),

e
(sj )
X,� D∏

si

e( j )
X,�i

.

In particular, if X D {1, 2,: : : , n}, then we simply writee( j )
X,i as e( j )

i and e( j )
X,� as e( j )� .

When r � d0 � n C k, the leading term ofI in x1 is in I1. For � 2 Qs,n�2,k�1,
there exists�0 D (�01, : : : , �0k�2) 2 Pn�3,k�2 such that� D (n � 2, �01, : : : , �0k�2). In
particular, we have�0 2 PsCk�n,n�3,k�2. The leading coefficient ofI1 in x1 is

(k�1)(n�k)
∑

sDn�k

∑

�02PsCk�n,n�3,k�2

∑

j�(1)jDd0�s
l (�(1))Dr

b�0�(1)e
(1)�(1)�(1r ) Q

�0Im
T1

where we setb�0,�(1) D (�1)(k�1)mC1m!=∏m
sD0(mnCn�1�s)a

(n�2,�01,:::)
r ,�(1) . We can rewrite

this as

(k�2)(n�k)
∑

sD0

∑

�02Ps,n�3,k�2

∑

j�(1)jDd0�sCk�n
l (�(1))Dr

b�0�(1)e
(1)�(1)�(1r ) Q

�0Im
T1 .

Sincee(1)�(1)�(1r ) D emem(T1),�(1)�(1r ), this is rewritten as

(k�2)(n�k)
∑

sD0

∑

�02Ps,n�3,k�2

∑

j�(1)jDd0�sCk�n
l (�(1))Dr

b�0�(1)emem(T1),�(1)�(1r ) Q
�0Im
T1 .

The shape of the tableauT1 is (n � k C 1, 1k�2). Thus T1 has n � 1 boxes. By the

induction assumption onn, all b�0�(1) are equal to 0. Thus we havea
(n�2,�01,:::)
r ,�(1) D 0. So,

we get I1 D 0.
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We next considerI2. The leading coefficient ofI2 in xkC1 is

(3.13)
(k�1)(n�k�1)

∑

sD0

∑

�2Ps,n�3,k�1

∑

j�(2)jDd0�s
l (�(2))Dr

c��(2)e
(kC1)�(2)�(1r )Q

�Im
TkC1

where we setc��(2) D (�1)(k�2)ma�r ,�(2).

Sincee(kC1)�(2)�(1r ) D emem(TkC1),�(2)�(1r ), we can rewrite (3.13) as

(k�1)(n�k�1)
∑

sD0

∑

�2Ps,n�3,k�1

∑

j�(2)jDd0�s
l (�(2))Dr

c��(2)emem(TkC1),�(2)�(1r ) Q
�Im
TkC1.

The tableauTkC1 hasn�1 boxes. By the induction assumption onn, all c��(2) are equal
to 0. Thus, alla�r ,� are equal to 0.

Thus, the lemma follows. Therefore, the proposition also follows.

From Theorem 3.8 and Proposition 3.9, we obtain the following corollary.

Corollary 3.11. Let T 2 ST(�(n, k)). The space
T (QIm) is a free module over3n and the set{Q�Im
T }�2P(n�2Ik�1) is a free basis.

Proof. In this proof, we simply writeQ�Im
T as Q�. Using Proposition 3.9, the set

{Q�} is linearly independent over3n.
Since H (
T (QI�m)I t) D t (k�1)nmCk(k�1)=2 ∑(k�1)(n�k)

sD0 ps,n�2,k�1ts, we have


T (QIm) D ⊕

d�(k�1)nmCk(k�1)=2 
T (QIm)[d].

Let d be a non-negative integer such thatd � (k � 1)nmC k(k � 1)=2. We show that
the subspace of
T (QIm)[d] is generated by{Q�} over3n by induction ond.

When d D (k � 1)nmC k(k � 1)=2, the coefficient oft (k�1)nmCk(k�1)=2 in the poly-
nomial H (
T (QI�m)I t) is equal to 1. Therefore,
T (QIm)[d] is a space spanned by
Q(k�2,k�1,:::,0). Thus the statement follows whend D (k � 1)nmC k(k � 1)=2.

Whend � (k � 1)nmC k(k � 1)=2C 1, we assume that the statement holds with all
numbers less thand. We denote byV the vector space overQ spanned by{Q�}�2P(n�2Ik�1).

Take f 2 
T (QIm)[d]. From Theorem 3.8, we can findg 2 V [d] such that [f ] D
[g] in 
T (QI�m). Thus, we havef � g 2 Im. This is expressed as

f � g D∑
s�1

Asus
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where As 2 3s
n and us 2 
T (QIm).

Since
T (QIm) is a graded space, we can decomposeus D∑i�0 us,i whereus,i 2
T (QIm)[i ]. We have deg(Asus,i ) D sC i . Thus, we have

f � g D∑
l�0

∑

sCiDl

Asus,i .

Since f � g 2 
T (QIm)[d], we get
∑

l¤d

∑

sCiDl Asus,i D 0. Therefore, we have

f � g D∑
s�1

Asus,d�s.

The polynomial As has the degree at least 1. So, the polynomialus,d�s has the
degree less thand. By the induction assumption,us,d�s can be expressed as

us,d�s D∑
l

Blvl

where Bl 2 3n and vl 2 V . Thus, the statement follows.

4. The operator Lm

The operatorLm is defined as

Lm D n
∑

iD1

�2

�x2
i

� 2m
∑

1�i< j�n

1

xi � x j

( ��xi
� ��x j

)

.

This operator is discussed in [4] and [5]. It is related to thequasiinvariants. In
[5], Feigin and Veselov showed that the operatorLm preservesQIm. We consider how
Lm acts on our polynomialQ�Im

T . In [2], for T(1, 2) Bandlow and Musiker showed the
following formulas for the action ofLm.

Theorem 4.1 ([2]). Let k, m be non-negative integers.
Then, we have Lm(QkIm

T (1,2)) D k(k � 1)Qk�2Im
T (1,2) for k � 2 and Lm(QkIm

T(1,2)) D 0 for
k D 0, 1.

We extend these formulas. We setT D T(1, 2,: : : , k). To write formulas simply,
we define the following polynomials.

DEFINITION 4.2. Let � D (�1, �2, : : : , �k�1) 2 Zk�1.
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We define a polynomialQ�Im
T as follows:

(4.1) Q�Im
T D

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R�1Im
T I1,2 R�2Im

DI1,2 � � � R�k�1Im
T I1,2

R�1Im
T I2,3 R�2Im

T I2,3 � � � R�k�1Im
T I2,3

...
...

. ..
...

R�1Im
T Ik�1,k R�2Im

T Ik�1,k � � � R�k�1Im
T Ik�1,k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

when �i � 0, i D 1, : : : , k � 1. Otherwise we defineQ�Im
T D 0.

REMARK 4.3. If � is a partition,Q�Im
T is equal to a polynomial defined in Defi-

nition 3.1 (2). If � 2 Zk�1�0 , Q�Im
T is equal toQ�Im

T up to a sign where� is a partition
sorted�.

We obtain the following formulas for the action ofLm. To write the formula sim-
ply, for � D (�1, �2, : : : , �k�1) 2 Zk�1 we define

�(i , j ) D (�1, : : : , �i�1, �i � 1, �iC1, : : : , � j�1, � j � 1, � jC1, : : : , �n).

Theorem 4.4. Let � D (�1, : : : , �k�1) 2 Zk�1 and take T2 ST(�(n, k)). Then
we have

Lm(Q�Im
T ) D n

∑

iD1

�i (�i � 1)Q(�1,:::,�i�2,:::,�n)Im
T

C 2m
∑

1�i< j�k�1






�� j Q

�(i , j )Im
T

C ∑

�i�2�s>t�0
sCtD�iC� j�2

(s� t)Q
(�1,:::,�i�1,s,�iC1,��� ,� j�1,t ,� jC1,:::,�n)Im
T






.

This follows from following lemma. We define a polynomialRs,t Im
T I1,2,3 as

Rs,t Im
T I1,2,3D

∣

∣

∣

∣

RsIm
T I1,2 Rt Im

T I1,2

RsIm
T I2,3 Rt Im

T I2,3

∣

∣

∣

∣

.

Lemma 4.5. (1) We have

Lm( f g) D Lm( f )gC f Lm(g)C 2
n
∑

iD1

( ��xi
f

)( ��xi
g

)

.

(2) Let k be a non-negative integer and m be a positive integer. Then, we have

k
∫ x j

xi

tk�1
n
∏

sD1

(t � xs)
mdt D �m

n
∑

rD1

∫ x j

xi

tk(t � xr )m�1
∏

s¤r

(t � xs)
mdt.
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(3) Let k, l be non-negative integers such that k> l. Then we have

n
∑

iD1

( ��xi
RkIm

T I1,2

)( ��xi
Rl Im

T I1,3

) � ( ��xi
RkIm

T I1,3

)( ��xi
Rl Im

T I1,2

)

D m






�l Rk�1,l�1Im

T I1,2,3 C ∑

k�2�s>t�0
sCtDkCl�2

(s� t)Rs,t Im
T I1,2,3






.

(4.2)

Proof. (1) It follows from Leibniz’s rule.
(2) It follows from the following identity:

∫ x j

xi

��t
tk

n
∏

sD1

(t � xs)
mdt D 0.

(3) When m D 0, it follows from RkIm
T I1,2 D (xkC1

2 � xkC1
1 )=(k C 1). We consider

the casem � 1.
We show this formula by induction onk � l . We define f (t , x) D ∏n

sD1(t � xs)m

and fi (t , x) D (t � xi )m�1 ∏

s¤i (t � xs)m.
When k � l D 1, l.h.s. of (4.2) is equal to

m2
n
∑

iD1

∫ x2

x1

tk fi (t , x) dt
∫ x3

x1

uk�1 fi (u, x) du

�m2
n
∑

iD1

∫ x3

x1

tk fi (t , x) dt
∫ x2

x1

uk�1 fi (u, x) du.

So, this is equal to

m2
n
∑

iD1

∫ x2

x1

tk�1{(t � xi )C xi } fi (t , x) dt
∫ x3

x1

uk�1 fi (u, x) du

�m2
n
∑

iD1

∫ x3

x1

tk�1{(t � xi )C xi } fi (t , x) dt
∫ x2

x1

uk�1 fi (u, x) du

D m2
n
∑

iD1

∫ x2

x1

tk�1 f (t , x) dt
∫ x3

x1

uk�1 fi (u, x) du

�m2
n
∑

iD1

∫ x3

x1

tk�1 f (t , x) dt
∫ x2

x1

uk�1 fi (u, x) du.

Using (2), we have

l.h.s. of (4.2)D �m(k � 1)Rk�1,k�2Im
T I1,2,3 .
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We consider the casek � l D 2. Calculating it in the same way, we have

l.h.s. of (4.2)D �m(k � 2)Rk�1,k�3Im
T I1,2,3

Cm2
n
∑

iD1

∫ x2

x1

tk�1 fi (t , x) dt
∫ x3

x1

xi u
k�2 fi (u, x) du

�m2
n
∑

iD1

∫ x3

x1

tk�1 fi (t , x) dt
∫ x2

x1

xi u
k�2 fi (u, x) du.

From xi D u � (u � xi ), we get

l.h.s. of (4.2)D �m(k � 2)Rk�1,k�3Im
T I1,2,3

Cm2
n
∑

iD1

∫ x2

x1

tk�1 fi (t , x) dt
∫ x3

x1

{u � (u � xi )}u
k�2 fi (u, x) du

�m2
n
∑

iD1

∫ x3

x1

tk�1 fi (t , x) dt
∫ x2

x1

{u � (u � xi )}u
k�2 fi (u, x) du.

It is equal to�m(k � 2)Rk�1,k�3Im
T I1,2,3 . Thus the statement holds whenk � l D 2.

Whenk� l � 3, we assume that the formula (4.2) holds with all numbers less than
k � l . Calculating l.h.s. of (4.2) in the same way, we have

l.h.s. of (4.2)

D �ml Rk�1,l�1Im
T I1,2,3 Cm(k � 1)Rk�2,l Im

T I1,2,3

C n
∑

iD1

( ��xi
Rk�1Im

T I1,2

)( ��xi
RlC1Im

T I1,3

) � ( ��xi
Rk�1Im

T I1,3

)( ��xi
RlC1Im

T I1,2

)

.

Hence the formula (4.2) holds by the induction assumption, and the statement has been
proved.
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