

| Title        | On compact Galois groups of division rings       |
|--------------|--------------------------------------------------|
| Author(s)    | Nobusawa, Nobuo                                  |
| Citation     | Osaka Mathematical Journal. 1956, 8(1), p. 43-50 |
| Version Type | VoR                                              |
| URL          | https://doi.org/10.18910/5927                    |
| rights       |                                                  |
| Note         |                                                  |

# Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

## On Compact Galois Groups of Division Rings

## By Nobuo Nobusawa

On the subject of general non-commutative Galois theory, the present author has proved the existence of a fundamental correspondence between topologically closed regular subgroups and subrings for Galois division ring extensions with locally finite Galois groups,—in this case the groups are compact.<sup>1)</sup> The main object of this paper is to give a necessary and sufficient condition for such compact Galois groups. In § 1 it will be proved that a locally finite regular automorphism group is essentially outer, that is, can not contain but a finite number of inner automorphisms. Conversely we shall show in § 2 that an essentially outer regular automorphism group is necessarily locally finite when the division ring extension is algebraic. At the same time, an extension theorem and a normality theorem will be proved for the Galois extensions in [7]. And lastly in § 3 it will be proved that in the Galois extensions under the same assumptions any finite extensions are simply generated.

#### § 1. Locally finite automorphism groups.

Let  $\mathfrak{G}$  be a group of automorphisms of a division ring P. All the  $\mathfrak{G}$ -invariant elements of P form a subring  $\Phi$  of P; in this situation we say that  $\mathfrak{G}$  is an automorphism group of  $P/\Phi$ .

DEFINITION. So is said to be *locally finite* when each element of P is mapped by So to at most a finite number of elements.

It is clear that, if there exists an automorphism group of  $P/\Phi$  which is locally finite, then P is locally (left) finite over  $\Phi$ , that is, any subring generated by  $\Phi$  and a finite number of elements of P has a finite (left) rank over  $\Phi$ . For, such a subring is always considered to be contained in a ring which has a finite automorphism group over  $\Phi$  and the ring with a finite automorphism group over  $\Phi$  has a finite rank over  $\Phi$ .

<sup>1)</sup> See [7].

<sup>2)</sup> Its rank is not greater than the number of elements of the automorphism group. See  $\lceil 3 \rceil$ .

The regularization  $\mathfrak{G}^*$  of a given automorphism group  $\mathfrak{G}$  is defined thus: if  $\mathfrak{G}$  is an automorphism group of  $P/\Phi$ , we consider all the inner automorphisms of P leaving each element of  $\Phi$  invariant, that is, the inner automorphisms induced by all the elements of  $V(\Phi)^{\mathfrak{F}}$ ;  $\mathfrak{G}^*$  is the group generated by these inner automorphisms and  $\mathfrak{G}$ . We say  $\mathfrak{G}$  is a regular group if  $\mathfrak{G}^* = \mathfrak{G}$ .

The main idea of the proof of the next Lemma is due to D. Zelinsky who kindly permitted me to cite it here.

**Lemma 1.** Let  $\$  be a regular group of  $P/\Phi$  which consists only of inner automorphisms (hence of all the inner automorphisms induced by the element of  $V(\Phi)$ ). If there exists an element of P that is moved really by  $\$  but to at most a finite number of elements, then  $V(\Phi)$  is a finite field, that is,  $\$  is a finite abelian group.

Proof. Let  $\sigma$  be the element as mentioned in the Lemma. Then there exists such an element  $\rho(\pm 0)$  in  $V(\Phi)$  that  $\rho \sigma \rho^{-1} \pm \sigma$  by the assumption.

- 1°. First we shall show that  $V(\sigma, \Phi)$  is a finite field where  $V(\sigma, \Phi)$  is the centralizer of the ring generated by  $\sigma$  and  $\Phi$ . For any element  $\tau$  of  $V(\sigma, \Phi)$  we denote by  $I_{\tau}$  the inner automorphism induced by  $1+\rho\tau$ . Since  $1+\rho\tau\in V(\Phi)$ ,  $I_{\tau}$  is contained in  $\mathfrak{G}$ . Now it will be shown that, if  $\tau \neq \tau'$   $(\tau, \tau' \in V(\sigma, \Phi))$ , then  $\sigma I_{\tau} \neq \sigma I_{\tau'}$ . For, assume  $\sigma I_{\tau} = \sigma I_{\tau'}$ . Then  $(1+\rho\tau)\sigma(1+\rho\tau)^{-1} = (1+\rho\tau')\sigma(1+\rho\tau')^{-1}$  and hence  $(1+\rho\tau')^{-1}(1+\rho\tau)\sigma((1+\rho\tau')^{-1}(1+\rho\tau))^{-1} = \sigma$ , that is,  $(1+\rho\tau')^{-1}(1+\rho\tau) = \tau'' \in V(\sigma, \Phi)$ . This implies that  $\rho(\tau-\tau'\tau'')=\tau''-1\in V(\sigma, \Phi)$ . Since  $\rho$  is not contained in  $V(\sigma, \Phi)$ , we have  $\tau-\tau'\tau''=\tau''-1=0$ , that is,  $\tau=\tau'$ , which is a contradiction. Considering then that  $\{\sigma I_{\tau} \mid \tau \in V(\sigma, \Phi)\}$  must be finite by assumption, we get the result that  $V(\sigma, \Phi)$  is a finite set. Since it is a division ring, it is a finite field.
- 2°. Next we shall show that  $[V(\Phi):V(\sigma,\Phi)]_l < \infty$ . Let  $\alpha_1^{-1}\sigma\alpha_1(=\sigma)$ ,  $\alpha_2^{-1}\sigma\alpha_2$ ,  $\cdots$ ,  $\alpha_n^{-1}\sigma\alpha_n$  be all the different images of  $\sigma$  by  $\mathfrak G$  where  $\alpha_i$  are elements of  $V(\Phi)$ . Now for any element  $\xi$  of  $V(\Phi)$ , we have  $\xi^{-1}\sigma\xi=\alpha_i^{-1}\sigma\alpha_i$  for some element  $\alpha_i$ ; that is,  $\xi\alpha_i^{-1}\in V(\sigma,\Phi)$  and hence  $\xi\in V(\sigma,\Phi)\alpha_i$ . This implies that  $\alpha_1$ ,  $\alpha_2$ ,  $\cdots$ ,  $\alpha_n$  form a (not necessarily independent)  $V(\sigma,\Phi)$ -basis of  $V(\Phi)$ . Thus we have  $[V(\Phi):V(\sigma,\Phi)]_l < \infty$ .

By  $1^{\circ}$  and  $2^{\circ}$ ,  $V(\Phi)$  is a finite field.

<sup>3)</sup>  $V(\mathbf{0})$  implies the centralizer of  $\mathbf{0}$  in P.

<sup>4)</sup> All our operators will be written on the right. As a result of this convention, a product st of operators means the composite obtained by performing first s, then t.

The proof of the next Theorem on a necessary condition for locally finiteness is now quite easy by Lemma 1.

**Theorem 1.**50 Let  $\ \ \,$  be a regular automorphism group of  $\ \, P/\Phi$ . If  $\ \ \,$  is locally finite, then  $\ \ \,$  contains at most a finite number of inner automorphisms of  $\ \,$  P.

Proof. If  $\mathfrak D$  is the set of all the inner automorphisms contained in  $\mathfrak D$ , then  $\mathfrak D$  is a locally finite regular automorphism group of  $P/\Psi$  where  $\Psi$  is the subring of all the  $\mathfrak D$ -invariant elements of P. If  $P \neq \Psi$ , then  $\mathfrak D$  is a finite group by Lemma 1. And if  $P = \Psi$ , then  $\mathfrak D$  consists only of the identity automorphism.

We insert here an example of finite regular automorphism groups which consist only of inner automorphisms.

Let F be a finite field consisting of p elements (p is a prime number) and K an infinite algebraic extension of F. We construct a non-commutative polynomial ring K[x] where x is an indeterminate and the multiplication of x with an element k of K is defined so that  $xk=k^px$  ( $k \in K$ ). Now we can make the quotient division ring K(x) of K[x]. The center of K(x) is F. Let K be any finite extension of K contained in K. All the inner automorphisms induced by the elements of K make a finite regular automorphism group which consists only of inner automorphisms.

REMARK. From Lemma 1, it is clear that if the characteristic of P is 0 then S is an outer automorphism group, that is, S contains no inner automorphism except the identity automorphism.

#### § 2. Essentially outer automorphism groups and Galois theory.

It has been shown in §1 that a locally finite regular automorphism group contains only a finite number of inner automorphisms, but it will be proved that conversely a regular automorphism group of  $P/\Phi$  which contains only a finite number of inner automorphisms is necessarily locally finite if P is (left) algebraic over  $\Phi$ .

Let  $\Sigma$  be a subring of P containing  $\Phi$ .  $\Sigma$  is considered as a  $\Phi_l$ -module where  $\Phi_l$  signifies the ring of operators induced by left multiplications of the elements of  $\Phi$ . The most important role is played by  $\mathfrak{M}(\Sigma)$  which we define as the set of all the  $\Phi_l$ -homomorphisms of  $\Phi_l$ -module  $\Sigma$  into P.  $\mathfrak{M}(\Sigma)$  is then a  $\Sigma_r$  (left)-P<sub>r</sub> (right) two-sided module.

<sup>5)</sup> The same result has been first given by T. Nagahara and H. Tominaga. See [5].

N. Nobusawa

Lemma 2. If  $[\Sigma : \Phi]_t = n < \infty$ , then  $[\mathfrak{M}(\Sigma) : P_r]_r = n$ .

Proof. Let  $\xi_1, \xi_2, \dots, \xi_n$  be an independent  $\Phi_r$ -basis of  $\Sigma$ . Any element of  $\mathfrak{M}(\Sigma)$  is then uniquely determined by its restriction to  $\xi_i$ . If  $e_i$  are the elements of  $\mathfrak{M}(\Sigma)$  such that  $\xi_i e_i = 1$  and  $\xi_j e_i = 0$  (j + 1), then  $e_1, e_2, \dots, e_n$  form an independent  $P_r$ -right basis of  $\mathfrak{M}(\Sigma)$ .

Let  $\mathfrak{G}$  be an automorphism group of  $P/\Phi$ . We denote by  $\mathfrak{G}_{\Sigma}$  the restrictions of  $\mathfrak{G}$  to  $\Sigma$  and by  $S_{\Sigma}$  ( $S \in \mathfrak{G}$ ) the restriction of S to  $\Sigma$ . It is clear that  $\mathfrak{G}_{\Sigma}P_r$  is a  $\Sigma_r-P_r$  two-sided submodule of  $\mathfrak{M}(\Sigma)$  and  $S_{\Sigma}P_r$  is an irreducible  $\Sigma_r-P_r$  two-sided submodule of  $\mathfrak{M}(\Sigma)$ .

**Lemma 3.** Let  $\Re$  be an irreducible  $\Sigma_r - P_r$ , two-sided submodule of  $\mathfrak{M}(\Sigma)$  which is isomorphic to  $S_{\Sigma}P_r$ . If an element s of  $\Re$  corresponds to  $S_{\Sigma}$  in this isomorphism, then  $s = S_{\Sigma}(1 \cdot s)_t$ .

Proof. For any element  $\sigma$  of  $\Sigma$ ,  $\sigma_r s$  corresponds to  $\sigma_r S_{\Sigma}$  in this isomorphism, but  $\sigma_r S_{\Sigma} = S_{\Sigma}(\sigma \cdot S_{\Sigma})$ . On the other hand  $s(\sigma \cdot S_{\Sigma})$  corresponds to  $S_{\Sigma}(\sigma \cdot S_{\Sigma})$ , and hence  $\sigma_r s = s(\sigma \cdot S_{\Sigma})$ . Then,  $\sigma \cdot s = 1 \cdot \sigma_r s = 1 \cdot s(\sigma \cdot S_{\Sigma}) = \sigma \cdot S_{\Sigma}(1 \cdot s)_I$ . Hences  $s = S_{\Sigma}(1 \cdot s)_I$ .

DEFINITION. P is said to be (left) *algebraic* over  $\Phi$  if any subring generated by  $\Phi$  and an element of P has a finite (left) rank over  $\Phi$ .

**Theorem 2.** Let  $\mathfrak{G}$  be a regular automorphism group of  $P/\Phi$  where P is algebraic over  $\Phi$ . If  $\mathfrak{G}$  contains only a finite number of inner automorphisms, then  $\mathfrak{G}$  is locally finite.

Proof. It will suffice to show that, for any subring  $\Sigma$  of P which contains  $\Phi$  and has a finite rank over  $\Phi$ ,  $\mathfrak{G}_{\Sigma}$  is a finite set, because P is algebraic over  $\Phi$  and each element of P is contained in such a subring  $\Sigma$ .

By Lemma 2 we have  $[\mathfrak{G}_{\Sigma}P_r:P_r]_r \leq [\mathfrak{M}(\Sigma):P_r]_r = [\Sigma:\Phi]_l < \infty$  and hence there do not exist infinitely many irreducible  $\Sigma_r - P_r$  two-sided modules which are not isomorphic with each other. On the other hand, let T and S be two elements of  $\mathfrak{G}$  such that  $T_{\Sigma}P_r$  is isomorphic to  $S_{\Sigma}P_r$ . If  $T_{\Sigma}\rho_r$  ( $\rho \in P$ ) corresponds in this isomorphism to  $S_{\Sigma}$ , then by Lemma 3  $T_{\Sigma}\rho_r = S_{\Sigma}(1 \cdot T_{\Sigma}\rho_r)_l = S_{\Sigma}\rho_l$ , that is,  $T_{\Sigma} = S_{\Sigma}I$  where  $I = \rho_l\rho_r^{-1} \in \mathfrak{G}$ . But the inner automorphisms in  $\mathfrak{G}$  are finite in number, and this implies that  $\mathfrak{G}_{\Sigma}$  is finite.

**Lemma 4.** If  $\mathfrak{G}$  is a locally finite regular automorphism group of  $P/\Phi$ , then  $\mathfrak{M}(\Sigma) = \mathfrak{G}_{\Sigma}P_{r}$  for any subring  $\Sigma$  which has a finite rank over  $\Phi$ .

Proof.  $\Sigma$  is imbedded in a subring  $\Lambda$  of P on which  $\mathfrak{G}$  induces a finite regular automorphism group  $\mathfrak{G}_{\Lambda}$  over  $\Phi$ . Each element of  $\mathfrak{M}(\Sigma)$  can be then extended to an element of  $\mathfrak{M}(\Lambda)$ , in other words,  $\mathfrak{M}(\Sigma)$  is considered to be the restriction of  $\mathfrak{M}(\Lambda)$  to  $\Sigma$ . But  $\mathfrak{M}(\Lambda) = \mathfrak{G}_{\Lambda}P_r$  since the elements of  $P_r$ -basis of  $\mathfrak{M}(\Lambda)$  in the sens of Lemma 2 are contained already in  $\mathfrak{G}_{\Lambda}\Lambda_r$ . Hence  $\mathfrak{M}(\Sigma) = \mathfrak{G}_{\Sigma}P_r$ .

**Theorem 3.** (Extension Theorem) Let the maximal automorphism group  $\mathfrak G$  of  $P/\Phi$  be locally finite For any subring  $\Sigma$  of P containing  $\Phi$ , any isomorphism T' of  $\Sigma$  into P which is the identity on  $\Phi$  can be extended to an automorphism T of P.

Proof. 1°. First assume that  $[\Sigma : \Phi]_I < \infty$ . Then  $T' \in \mathfrak{M}(\Sigma) = \mathfrak{G}_{\Sigma} P_r$  by Lemma 4. Since  $T'P_r$  is an irreducible  $\Sigma_r - P_r$  two-sided module, it is isomorphic to  $S_{\Sigma}P_r$  for some element S of  $\mathfrak{G}$ . As in the proof of Theorem 2, we can show that  $T' = S_{\Sigma}I = (SI)_{\Sigma}$  for some inner automorphism I of  $\mathfrak{G}$ . If we put SI = T, T is an extension of T'.

2°. Generally let  $\Sigma$  be the join of the subrings  $\Sigma_{\alpha}$  which are finite over  $\Phi: \Sigma = \bigcup_{\alpha} \Sigma_{\alpha}$ . Let  $T_{\alpha}'$  be the restriction of T' to  $\Sigma_{\alpha}$ .  $T_{\alpha}'$  is always extendable to an automorphism of P by 1°; we denote the set of all these extensions of  $T_{\alpha}'$  by  $E_{\alpha}$ . Then  $E_{\alpha}$  is a topologically closed set. If  $\bigcap_{\alpha} E_{\alpha} = \phi$ , then there exist a finite number of  $\alpha_i$   $(i=1, \dots, m)$  such that  $\bigcap_{i=1}^{m} E_{\alpha i} = \phi$ , for  $\mathfrak{B}$  is a compact group. If we consider  $\Sigma_{\beta}$  which is generated by  $\Sigma_{\alpha_i}$   $(i=1, \dots, m)$ , then  $E_{\beta} = \bigcap_{\alpha} E_{\alpha_i} = \phi$ . This is a contradiction by 1°. Now any element T of  $\bigcap_{\alpha} E_{\alpha}$  is the required extension of T'.

If  $\mathfrak G$  is a locally finite automorphism group, then P is locally finite over  $\Phi$  and it is possible to introduce a Haussdorf topology in  $\mathfrak G.^{\mathfrak G}$ . In [7] the present author showed the fundamental correspondence between topologically closed regular subgroups and subrings when the maximal automorphism group  $\mathfrak G$  of  $P/\Phi$  is locally finite. But it will be shown that, if  $\mathfrak G$  is a locally finite regular automorphism group of  $P/\Phi$ , its topological closure  $\overline{\mathfrak G}$  is the maximal automorphism group of  $P/\Phi$  which is naturally locally finite.

**Theorem 4.** If  $\mathfrak{G}$  is a locally finite regular automorphism group of  $P/\Phi$ , then its topological closure  $\bar{\mathfrak{G}}$  is the maximal automorphism group of  $P/\Phi$ .

<sup>6)</sup> See [7].

Proof. Let T be any automorphism of P leaving each element of  $\Phi$  invariant and  $\Sigma$  any subring containing  $\Phi$  which has a finite rank over  $\Phi$ . Then  $T_{\Sigma} \in \mathfrak{M}(\Sigma) = \mathfrak{G}_{\Sigma} P_r$  by Lemma 4 and, as in the proof of Theorem 2,  $T_{\Sigma} = (SI)_{\Sigma}$  where  $SI \in \mathfrak{G}$  since  $\mathfrak{G}$  is regular. This implies  $T \in \overline{\mathfrak{G}}$ .

Let  $\Sigma$  be a subring of P containing  $\Phi$ , and  $\Phi$  the subgroup of  $\Phi$  consisting of all the automorphisms of  $\Phi$  which leave  $\Sigma$  setwise invariant.

**Theorem 5.** (Normality Theorem) Let the maximal automorphism group  $\mathfrak{G}$  of  $P/\Phi$  be locally finite. Then  $\Sigma$  is a Galois extension of  $\Phi$  (that is, there exists an automorphism group of  $\Sigma/\Phi$ ) if and only if the topological closure  $\bar{\mathfrak{F}}^*$  of the regularization  $\mathfrak{F}^*$  of  $\mathfrak{F}$  is equal to  $\mathfrak{G}$ .

Proof. First assume that  $\Sigma$  is a Galois extension of  $\Phi$ . Since any automorphism of  $\Sigma$  which is the identity of  $\Phi$  is extendable to an automorphism of P, that is, to an automorphism contained in  $\mathbb{Q}$ , and since  $\Phi(\mathbb{Q}(\Sigma)) = \Sigma^{7}$   $\Phi$  is the same as the ring of all the  $\mathbb{Q}$ -invariant elements of P. This implies that  $\mathbb{Q}^*$  is a regular automorphism group of  $P/\Phi$ . Then  $\mathbb{Q}^* = \mathbb{Q}$  by Theorem 4.

Next assume that  $\bar{\mathfrak{D}}^*=\mathfrak{G}$ . Let  $\Psi$  be the ring of all the  $\mathfrak{D}$ -invariant elements. Then, as before,  $\bar{\mathfrak{D}}^*$  is the maximal automorphism group of  $P/\Psi$  and hence  $\Psi=\Phi$ . Of course  $\mathfrak{D}$  is an automorphism group of  $\Sigma/\Phi$ , this is,  $\Sigma$  is a Galois extension of  $\Phi$ .

### § 3. Structure of the Galois extensions.

Using a result due to Kasch, it will be proved that, if P is a Galois extension of  $\Phi$  with the locally finite maximal automorphism group  $\mathfrak{G}$ , then any subring which is finite over  $\Phi$  is simply generated over  $\Phi$ . We always assume that  $\Phi$  is not a finite field, for, if  $\Phi$  is a finite field, P becomes a field and the assertion is clear.

**Lemma 5.** (KASCH) Let  $\Sigma$  be a subring of P containing  $\Phi$ . For any finite number of element  $s_1, s_2, \dots, s_n$  of  $\mathfrak{M}(\Sigma)$ , non of which is the identity mapping, there exists an element  $\sigma$  of  $\Sigma$  such that  $\sigma s_i \neq \sigma$   $(i=1,\dots,n)$ .

Proof. We shall prove the lemma by induction. Since it is clear when n=1, assume that the lemma is true for  $s_1, s_2, \dots, s_{n-1}$ . Then there exists an element  $\sigma'$  of  $\Sigma$  such that  $\sigma's_i \neq \sigma'$   $(i=1, \dots, n-1)$ . On

<sup>7)</sup>  $\mathfrak{G}(\Sigma)$  implies the subgroup of  $\mathfrak{G}$  consisting of all the automorphisms in  $\mathfrak{G}$  which leave each element of  $\Sigma$  invariant, and  $\mathfrak{O}(\mathfrak{H})$  implies the subring of all the  $\mathfrak{H}$ -invariant elements.

the other hand let  $\sigma''$  be such an element of  $\Sigma$  that  $\sigma''s_n \neq \sigma''$ . Now we consider the element  $\sigma' + \varphi \sigma''$  where  $\varphi$  is any element of  $\Phi$ . We have  $(\sigma' + \varphi \sigma'')s_i - (\sigma' + \varphi \sigma'') = (\sigma's_i - \sigma') + \varphi(\sigma''s_i - \sigma'')$ . Since  $\sigma's_i - \sigma' \neq 0$  for  $i=1, \dots, n-1$ , and  $\sigma''s_i - \sigma'' \neq 0$  for i=n, there exist only a finite number of elements  $\varphi$  in  $\Phi$  such that they satisfy the equality:  $(\sigma's_i - \sigma') + \varphi(\sigma''s_i - \sigma'') = 0$  for some i. But  $\Phi$  is assumed to contain infinitely many elements and hence there exists such an element  $\theta$  in  $\Phi$  that, if we put  $\sigma = \sigma' + \theta \sigma''$ , then  $\sigma s_i \neq \sigma$  for  $i=1, \dots, n$ , which completes the proof of Lemma 5.

**Theorem 6.** If P is a Galois extension of  $\Phi$  with a locally finite regular automorphism group  $\mathfrak{G}$ , and if  $\Sigma$  is a subring containing  $\Phi$  which has a finite rank over  $\Phi$ , then there exists an element  $\alpha$  in  $\Sigma$  such that  $\Sigma$  is generated by  $\alpha$  and  $\Phi$ .

Proof. We have  $\mathfrak{M}(\Sigma) = \mathfrak{G}_{\Sigma} P_{r}$  by Lemma 4 and we apply Lemma 5 to all the elements of  $\mathfrak{G}_{\Sigma}$  except the identity mapping ( $\mathfrak{G}_{\Sigma}$  is a finite set.). Then we can find an element  $\alpha$  in  $\Sigma$  such that  $\alpha$  is really moved by any element of  $\mathfrak{G}_{\Sigma}$  except the identity mapping. It will be shown that  $\Sigma$  is then generated by  $\alpha$  and  $\Phi$ . For, if it is not so, there exists an element of  $\beta$  such that  $\beta S + \beta$  and  $\alpha S = \alpha$  by Galois theory, which is a contradiction since  $\alpha$  is moved by  $S_{\Sigma}$ .

**Corollary.** Under the same conditions as in Theorem 6, there exists an element  $\alpha$  in  $\Sigma$  such that  $\alpha$  is mapped to all its different images by the elements of  $\mathfrak{G}_{\Sigma}$ .

Proof. We may choose an element  $\alpha$  such that  $\Sigma$  is generated by  $\alpha$  and  $\Phi$ . Then each element of  $\mathfrak{G}_{\Sigma}$  is uniquely determined by its restriction to  $\alpha$ .

REMARK. In the case that  $\mathfrak{G}$  is an outer group, if  $[\Sigma:\Phi]_l=n$ , then the number of different images of  $\alpha$  is n.

(Received March 28, 1956)

#### References

- [1] H. Cartan: Théorie de Galois pour les corps non commutatifs, Ann. Sci. Ecole Norm. Sup. 64 (1947).
- [2] N. Jacobson: The fundamental theorem of Galois theory for quasifields, Ann. of Math. 41 (1940).

- [3] N. Jacobson: A note on division rings, Amer. J. Math. 69 (1947).
- [4] F. Kasch: Über den Satz vom primitiven Element bei Schiefkörpern, J. Reine Angew. Math. 189 (1951).
- [5] T. Nagahara and H. Tominaga: A note on Galois theory of division rings of infinite degree, Proc. Japan Acad. 31 (1955).
- [6] T. Nakayama: Galois theory of simple rings, Trans. Amer. Math. Soc. 73 (1952).
- [7] N. Nobusawa: An extension of Krull's Galois theory to division rings, Osaka Math. J. 7 (1955).