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Thermo-Mechanical-Metallurgical Model of Welded Steel'

Part 2: Finite Element Formulation and Constitutive Equations

Jacek RONDA*, Hidekazu MURAKAWA**, Graeme OLIVER***, Yukio UEDA****

Abstract

Papers that contribute to the phenomenological description of solid state transformations do not meet

requirements of FE incremental formulation of thermo-mechanical-metallurgical problems. They are
always inconsistent because the formulation of the mechanical problem is given in incremental form
but phase evolution laws are given in algebraic form. Even when they are given in the evolution form,
metallurgical phenomena are discoupled from thermo-mechanical variables.

Key words: (phase transformation), (thermo-mechanical-metallurgical problem), (evolution
law), (temperature), (stress), (heat affected zone), (microregion), (Lagrangian de-
scription), (Galerkin type Finite Element Method), (Hilbert space), (Gateaux de-
rivative), (singular surface), (ferritic), (pearlitic), (bainitic), (martensitic), (nucle-
ation), (phase growth), (transformation plasticity), (consistent tangent modulus).

1. Introduction

This paper is an attempt to give the consistent for-
mulation of coupled thermo-mechanical-metallurgical
(TMM) problem treated as the generalization of
thermo-mechanical (TM) problem. Such formula-
tion can be shown in the form of partial differen-
tial equations—balance laws, and ordinary differential
equations—microstructure evolution laws. The for-
mulation of generalized TM process consists of phase
transformation phenomena and ordinary thermo-
mechanical process. The temperature, stresses and
solid phase distribution in heat affected zone (HAZ)
are state variables for TMM process. The fields of
temperature, stress and strain are coupled with the
material microstructure. The microstructure depends
on the chemical composition of the steel and on its
thermal and mechanical history. The state of stress
and internal pressure affects the chain of subsequent
transformations of the initial austenitic steel structure
that undergoes four transformations: ferritic, pearl-
itic, bainitic, and martensitic. Mechanisms of phase
transformation and evolution laws has been studied in
[20].

The Lagrangian description of motion is used
primarily when considering geometrically non-linear
behaviour of inelastic materials since then the bound-
ary conditions are usually referred to in the initial con-

figuration.

The mathematical model of TMM process con-
sists of three principles expressing the balance of mo-
mentum, the balance of internal energy, and the mi-
crostructure evolution law. The first principle can be
written as the balance of virtual energy and the second
after some transformations can be expressed as the
heat equation for non-rigid conductor. The variational
formulation of the coupled TM problem is given which
is the basis for the finite element approximation.

The finite element method is applied to find the
configuration of a finite number of material dispersed
points called microregions. Each microregion is a
super-element with uniform isobaric stress, and is
composed of phases containing several elements.

Two global FE equations: one for TM problem,
and the second for TMM problem are derived here.

Resulting nonlinear finite element system of equa-
tions is solved iteratively by the Newton-Raphson
scheme.

2. Model of TMM Process
2.1 Lagrangian Description

The polycrystalline body is idealized by using the
concept of a generalized material point representing a
micro-region which is part of a grain deforming due to
phase transformations without the restraints of the
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neighbouring parts of the body.

The stress inside the micro-region is averaged, and
the strain and displacement are measured only at one
or more particular points of the bounding surfaces
where continuity conditions must be fulfilled for neigh-
bouring regions. This concept allows one to treat the
polycrystalline body motion as a continuum with in-
ternal local deformation of particles.* It is also as-
sumed that the shape of a micro-region does not vary
significantly during a deformation process.

Lagrangian analysis is used with the initial posi-
tion of the generalized particle X and the time ¢ taken
as independent variables. The variables (X?, X§, XJ)
of X are global and called the Lagrangian or material
variables. The internal deformation of the generalized
particle is defined in terms of the local coordinate sys-
tem. The local coordinate system can be transformed
to the global one by using the orthogonal transforma-
tion matrix shown in [4].

The generalized particle is the smallest micro-
structural element of the alloy and can be imagined as
the micro-region defined in [4] and [5] and seen to be
like a point of the considered body. The definition of a
micro-region and its deformation are developed from
the concept of “free” deformation. This “free” deform-
ation is defined with respect to a phase transformation
and means the deformation to the extent when neither
other micro-region nor the remaining part of the grain
restrains the local deformation. For example, a micro-
region for the martensitic transformation is a block of
laths or a plate dependent on the form of martens-
itic precipitations. A group of micro-regions form a
mesodomain and will be represented in FE analysis
by a finite element.

The motion, which carries a fixed material element
through various spatial positions, can be expressed by
the function of motion x = x(X,t). This function ex-
pressed in terms of Lagrangian variables, describe the
variation of physical parameters for a given particle
during its wandering through the space. The vector
joining the point X and its actual position in the space
x = (X}, X3, X3) is the displacement vector given by
u = X — x. The constitutive variables i.e. the stress
and strain measures used in the Lagrangian formu-
lation are the second Piola-Kirchhoff stress and the
Green-Lagrange strain which are energetically con-
jugated according to the Hill definition. The second
Piola-Kirchhoff stress tensor S is given in terms of the
Cauchy stress ¢ by the formula:

~ po
§=LF g By )

where p°, p' are the reference and current densities,
and the deformation gradient is

ox al‘l

F=—; Fix=2zig=—; 2
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where X and x = x(X, ) are the reference and current
coordinates respectively. 'The Green-Lagrange strain
conjugated with the second Piola-Kirchhoff stress is
defined by:

~ 1
L= 3 (ur,s +usr+ vk, ruk,r) (3)

“where the displacement gradient is

3}
ur.Jg = a—;(!; (4)

The large indices I, J, K refer to the reference config-
uration. The “ is the usual abbreviated notation for
differentiation with respect to coordinates. Material
parameters such as Young’s modulus F, Poisson’s ra-
tio v, yield limit, hardening parameters, thermal and
others parameters of a mesodomain are evaluated by
using the linear mixture rule that in vector form can

be written as

(BEy=E:y,{vy=v:y (5)

where y is a vector of phase fractions y; present at a
mesodomain.

2.2 Balance Laws for TMM Process

The mathematical model of TMM process consist
of two principles expressing thermal and mechanical
equilibrium, i.e. the balance of internal energy and
the balance of momentum which are supplemented by
phase evolution laws. These principles have been de-
rived to account for the coupling of thermal, mech-
anical and metallurgical effects for a thermo-inelastic
body with solid phase transformations. The equilib-
rium equation for solid is given by the following equa-
tions:

(gKLl‘z',L)’K —pob; =0 (6)
for particle X € V, and
Sxrzi Nk =T, (7)

for the particle X € 0V, where b; is the body force,
T; is the nominal stress vector. Assuming the actual
coordinate system {z;} which is collinear with the ref-
erence coordinate system {X;} these equations can be
rewritten in the forms

(Skr+ S'KLUI,L)’K —pobr=10 (8)

(Skr1+ Skrurr)Ng = Tr (9)

The local balance of internal energy - the first
law of thermodynamics for non-rigid conductor is ex-
pressed by two following equations that are appropri-
ate for volume and surface distributions of internal



and kinetic energies [8], [19]. The first equation, valid
for particles X € V, can be written as the following:
pé—i—divq—s:f_‘;—pR—Zf{:O, (10)
J

where e is the “heat energy” density per unit mass,
its rate is given by é = %, the vector of heat flux
transferred through the particle X € V is called q,
concentrated heat fluxes are 3, F{, and R is the
radiation of entropy per unit mass. The rate of mech-
anical energy is S:E.

Assuming that the region I'’* where phase transforma-
tions proceed can be idealized by the singular surface
OTP' the second equation, appropriate for particles
X € I'?*, can be written in the form

esu* +

Y P e =
1 _
Hpvm <§V-V+e>+V~S-NF—q-NFH
(1)

where e°* is the surface concentration of the specific
energy, e**" is the surface source of energy, vP* and
VP! is the speed and normal speed of 9T*!, Cpp. is the
mean curvature of the surface, V is the velocity of
particle X, NU is the singular surface normal. The
double square brackets |[...]|, defined in [8] and [19],
denote the difference of the bracketed quantity on the
two sides of the surface OTP?.

The indical forms of Eqs.(10) and (11) are

pé+arr— Sty By —pR =Y FJ =0,
J

(12)

for particle X € V,

v — 2u§’jcme e =
1
Hpvm (5 Vi Vi + e)

+Vk Skr NE —qx Nk ] ‘ + e
for particle X € aT?".

(13)

Considering derivations shown in [13] and [19], the
following substitutions can be done

¢ = G0
q = k-Vé
divq = V-q
Vi{k - V6} {k-VIVe+{Ve -Vik+
Vo x {V x k} (14)

where C), is the specific heat per unit mass referred to
constant volume, V = n” a—?{f is the vector differential

operator nabla whose “components” a)?' + transform

like covariant vector components, n’ is the J-th base
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vector. The diagonal tensor of thermal conductivity
k is defined by

ki, 00
k=1 0 ke 0 (15)
0 0 ka3

This matrix is usually considered to be isotropic,
although anisotropic coefficients of conductivity are
used to simulate droplet penetration [11]. Such rela-
tions are given for kg2 and ka3 in the forms

_742
ke (1 + 3exp (-2—5;2—)>
__1"2
kme (1 + 10 exXp <W))

kos = ky; k3z =k,

kzz = (16)

a
)
%]

f

where ke is the mean conductivity, r is the horizontal
distance from the weld center, and §, is the standard
deviation of heat distribution measured in mm. The
z direction is vertically perpendicular to the weld and
the y direction is parallel to arc motion.

The expression for V{k - V#} in Eq.(14) can be
simplified assuming thermal homogeneity of inelastic
conductor, that leads to the assumption: kj;(X) =
const, VX € V. Hence it can be expressed by

Vik -V8}={k VIVo=k V? (17)

with the Laplacian operator V2. This can be rewritten
in the indical form as

(18)

The balance of internal energy for inelastic con-
ductor can be written in the form of “the improved
heat equation” substituting Eq.(18) to Eq.(12), and
introducing concentrated heat fluxes modelling either
separate one-point chemical reactions or laser-beam
welding. Such a “heat equation” can be expressed by

e+ krs0 51 ZféM-FZ}"{%—p'R, (19)
J

qr; = k10 1.

where the rate of mechanical energy is fM =

S'KLEKL, specific heat is ¢ = pC,.

Balance laws for momentum and internal energy
can be expressed in the functional forms and then
approximated by the Galerkin type Finite Element
Method. A formulation of the functional forms of the
balance laws consist of the following steps [7], [13]:

o Characterize two classes of functions: the trial
solutions U and the weighting functions V (or
variations), which are defined by
U={u,0|udecH'Y} (20)

where u and @ fulfills boundary conditions for the
thermo-mechanical problem,

V={v9}| v,dc H'Y} (21)
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where u, ¥ are equal zero at the boundary 0V,
and H! is the Hilbert space.

e Express the balance laws Eqgs.(8), (9), (14), (19),
as differential operators defined by

dy(u) = (Skr+ S;KLUI,L)’K —pobr=0;
(22)
oy (u) = (Sgr+ Skrurp)Ng —Tr=0;
(23)
\I/v'(@) = ¢f + k[]@]][ — féw
- Y F-pR=0; (24)
7
Tpy(0) = 6 — 207 Cp e — &

- Hpvpt(l/QVKVK—i—e)
+ Vk Skr NIE_‘]KNIE”~ (25)

e Take scalar products of these operators and
weighting functions v and ¥, correspondingly,

/Vu (§KI + S'KLUI,L) KUIdV

)

e b[’l)]dv = 0; (26)
Vo

/ (Skr + Skrurr)Nivr dP
BVe

~/ T[”U] dP = 0; (27)
AY)
/ (b + krs801) 0dV — | f3 9av
Vo Vo
—Zf{zﬂj—/ pR 9dV = 0; (28)
T Vo

/ (e — 208 Cpne e — ") 9 aP
aret

/81"1“
Ll“l"

+Vx gKL N}I{‘] ‘19 dP = 0. (29)

[pvme-quNII;-”z?d’P

[I/va Vi Vk

e Write the system of two variational equations
equivalent to the system of four equations after
amalgamation of pairs of equations: Eq.(26) with
Eq.(27), and Eq.(28) with Eq.(29), and balancing
surface projections:

(.§K1 + gKLuLL> vy on surface 9Vj,

1 .
5 (pvptVKVK + Vk Skr, NII;) 9 on OTPt,
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Such equations have the following forms:

/Vo (gKI + S'KLUI,L) KUIdV

3

—/ b[U]dV — / T]U} d'P = 0; (30)

Vo aVa

/ (cb + krs6r) wav — | £} 0dv

VD VD

—/ f3% 9dP — fi 9dP
aret oret

—ngﬂlj—/ f3 9dP =0, (31)
T Vo

where

fo = pR;
Y o= et — QUI;}Cme et — e
Fo= Hpvpte—i—lJKN};”.

e Use the Green formula to decompose the first in-
tegral of Eq.(30)

/Vo (gKI + gKLUI,L) KUIdV

= /Vo (S’KI,K + gKL,K“I,L)“IdV

+ Skrur vy dP
8V

— | SkrurpvrgdV (32)
Vo

where the second integral of R.H.S. vanishes be-
cause of the boundary conditions for the weight-
ing function v € V.

o Use the Green formula to decompose the integral
with the divergence of temperature in the heat
equation

/ k16 779dV =
Vo

/ krs0r9dP — | kps0597dV  (33)
8V0 Vg

where the integral favo krj0 r 9dP includes in-
and out-fluxes due to conduction, convection, and
radiation through the external surface of welded
body.

e Combination of the above decompositions with

Eq.(30) and Eq.(31) gives
/ S’KLUI,LUI,KdV -
Vo
/ (gKI,K + S'KL,KUI,L)'UICZV
Vo

+ / brurdV —|—/ TrvrdP =0 (34)
Vo A%



/ kry0r9,7dV — [ cf9dV
Vo Vo
+ [ fMydv —/ £V vdp
Vo Vo
+ / fa¥ 9dP + f3 9dP +
arrt arrt
Z}'{ﬂb—l-/ £ 9dP =0 (35)
J Vo
where
/ YV 9dP = kri0 1 9dP (36)
aVy Vo

Stationary conditions for functionals Eq.(34) and
Eq.(35) are the following variational equations:

Skrurr SvrgdV —
Vo

/ (§K1,K + gKL,KUI,L)évjdV
Vo

+ / by SurdV + / Ty v dP =0 (37)
Vo 6V0
/ kry6169 5dV — | cf 69dV
Vo Vo
+ [ M evdv - v s9dp
Vo A%
+ / f3% §9dP + fL s9ap
arrt arrt
+Z;f{5z9|j+/ £ 69dV =0 (38)
T Vo

which are obtained by using the Gateaux derivatives
appropriate for discontinuous temperature field ¥, the
term farp, f{ #dP, and continuous displacement field
v. The equation Eq.(37) is called the equation of vir-
tual work. Solutions of these variational equations, v
and ¥, are called the weak, or generalized, solutions.

3. Stress-Strain Constitutive Equations and
Tangent Moduli

Deformations of microregion V™ of an alloy with
multiphase internal structure occur due to phase
transformations driven by variations of temperature
and stress, external thermal and mechanical load-
ings and internal energy sources. A microregion de-
formation is separated into reversible and permanent
parts, and therefore appropriate elastic, thermal and
plastic components of Green-Lagrange finite strain
rate tensor are counted in the total strain rate evalu-

ation. The total strain rate L can be divided into five.

terms

L=L+L" L L 4 kP! 4 EVop (39)
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with L elastic strain rate, Lth thermal strain rate,
LY transformation strain rate, E?! plastic strain rate,
and E?"*P plastic strain rate induced by phase trans-
formation marked with **? which is the abbreviation
issued from the TRansformation Induced Plasticity.
The strain rate L can be also split into a spherical
and deviatoric part
.01 . .
ngtrL-1+E (40)
which are defined in terms of the second-order tensor
components
1, - 1.
—trLL =L
3 3 KK
1 /. ) )
= 3 (L%K + Ligk + L%K) ;

. 1 .
Ery — gé]_]iTL

(41)
By =
= B+ BT+ By (42)

3.1 Elastic Strain and Thermal Dilatation

The spherical part of elastic strain rate trL¢ and the
deviator of elastic strain rate E® are related to stress
rate T by Hooke’s law

tr'i‘

/{(ML—Z}?K—L%K) —|¥£trT, (43)

(44)

Sy 2 (EIJ — E'I)IJ - E}Sﬁp) + %S”,

with the bulk modulus (k) and the shear modulus {u)
defined by

_ B . (B
W =150y YT s po)y

where the Young’s modulus (£} and the Poisson’s ra-
tio (v) are averaged accordingly to the linear mixture
law

(E(0)) = Ei(0)yis (v(0)) = vi(O)wi-

The spherical part of thermal strain rate trLth =
L}?K represents the thermal expansion of different
phases and at inhomogeneous microregion is defined

by
. d a(t) )
trL'" = — yz'/ iaF%k (9)6k Y
at\ ¥/,

O @il | R
:yz./o Bk (9)5rcsd0+ 5 o vi 0

(45)

(46)

(47)
with the diagonal tensor ;%) (8) representing the
temperature dependent thermal expansion coefficients
of phase constituent 3. .

The transformation strain rate E'” is associated with
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the expansion generated by the change of parent phase
density ie. austenite density pgyus into the daughter
phase density p;, ¢ = 2,...,6. The spherical part of
this strain rate is evaluated by

1 . 1 .
3 trL'" = gaﬁmyi (48)

with the transformation expansion coefficient "¢
defined by

-]

0 C X
tra _ Paus — Pi
v 0°C

Paus

o (49)

where austenite density pg.s is taken at temperature

0°C.

3.2 Inelastic Strain Decomposition
3.2.1 Classical Plasticity

The plastic strain rates EP! are evaluated using the
Huber-Von Mises yield condition and the associated
flow rule. The yield surface with the isotropic and
kinematic hardening effects is defined by

f - ¢(EKL) - K:(Wpl) 97 yi)) (50)
where Y1 1s the effective stress deviator defined later
in this chapter, and the plastic work is given by

we! :/s” B dt, (51)
with the hardening function k. As the function f(Srs)
is a potential for strain and a plastic strain rate is

normal to the yield surface, f(Sry) = 0, the following
flow law can be written:

. Of

EY = A=A 52
1 =M= Age, (52)
That can be also expressed in incremental form
- Of
AR, = A=
IJ 65[,] ’ (53)

where A is the plastic function related to stress, strain,
strain rate, temperature, as well as phase fractions,
and it is, as yet, undetermined proportionality factor
or plastic multiplier. The plastic strain increment ful-
fills the following conditions for unloading of general-
ized particle:

(S]J) <0

1 f
AE?J —0{ F(Srs) =0

and AFEr;:Srr<0 (54)
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3.2.2 Tangent Moduli and the Solution Algorithm
for Determining the Plastic Strain Rate Mult:-
plier, A

The algorithmic or consistent tangent moduli is
used in forming the finite element stiffness matrices
Kyu, Kug, Koy, to ensure quadratic convergence of
the global Newton-Raphson solution scheme. These
matrices arise from algorithm for the time integration
of the plastic strain rate.

A yield criterion for assessment of plastic flow is
expressed by

. 2
f(S, Ho, Ko) =12 — \/;I&a =0 (55)
where two hardening effects are represented by iso-
tropic, K4, and kinematic, H,, hardening paramet-
ers. These parameters are related to equivalent plastic

strain EP! = \/gHEPZH, equivalent strain rate B =
A (ZAE : AE)3, and temperature 6, that symbol-
ically can be written as K, = KQ(E_'PI,E""‘I,G) and
H, = Ho(E?', E%9,0).

The effective stress defined by

$=-S_7Z (56)

appears in the yield criterion rather than the usual
deviatoric stress S. The back stress Z is determined
incrementally form the expression

2
Mt =77 + \/;AHan

A predictor - corrector method is used to determ-
ine the unknown value of the plastic strain increment
A = AtA. This increment is determined at time step
n + 1 by using the backward Euler implicit method.
Assuming that current increment is purely elastic, the
starting values of the variables are set up and hence
A = 0. These starting values are known as the elastic
predicted ones:

(57)

S* =8, + 2(u)AE? , ¥*=8"-7Z, (58)
where the deviatoric part of the strain increment is
used without accounting for the thermal and trans-
formation plastic strains, and given by

AE® =14 ¢ |AL — (a'"™)1A0 — %trAL”’l (59)

The fourth order tensor idw is an operator converting
a second order tensor to its deviator and is defined by
Ty = 1— %1 ® 1, where T and 1 are the fourth and
second order unit tensors, correspondingly.

The direction of plastic flow for an associate flow
rule (J3) is in the direction of applied stress which may
be determined assuming a purely elastic increment.



The direction n normal to the yield surface is given
by:
12+

(60)

The formula for the effective stress calculation can
be determined from Eq.(56) and the additive decom-
position of strain rates expressed by Eq.(39), and can
be written as

Y=

— 2(u) At [BF 4 Br7iP| \/gAHan (61)

Substituting this equation to the yield criterion leads
to

& =il 2K. <0

& |13 = 2u)At [EP’ +EWP] .

fAHan|| f[xa<0

& ‘2* () An — 2(p) At

\/EAHO,n” _ \[Aa <0.

The inequality condition is satisfied when the incre-

ment of strain is purely elastic, and the equality is

appropriate for the case of plastic strain increment.
The plastic corrector algorithm is the following:

(62)

1) calculate the derivative:

ofa) 2, s 2,
oK 3*a“f||z||-“[2<“>+§ﬂa]
2 2
= ikl in] @
3 3
where
! (64)

1+ 2 ALEY®

with the transformation induced plastic strain
rate given by

Etrzp Etrzp b

The functional form of this relation will be de-
rived later and shown as Eq.(82).

2) update A applying the Newton-Raphson scheme

A(k-i—l) — A(k) _ f( ) |:af( ):| (65)

OA
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3) update the plastic strain using the current value
of the plastic strain increment

B /fHEP'Hdt
—_ gl
R4

4) update hardening functions:
k + 1 iteration of A,

~pl
En+1

(66)

AH, , K, for the

5) check the relation: f(A) < TOL, and terminate
the procedure when this condition is fulfilled, oth-
erwise repeat the above sequence of evaluations
again.

Stress is calculated either by

2
\/;Ka n,

when the strain increment is plastic or S,41 = S*
when the strain increment is elastic.

The full stress tensor is calculated by adding the
deviatoric stress and the spherical part of stress, ie.

g(k+1)

k+1
k) 7,(k+1)

n+1 (67)

1
Tn+1 = Sn+1 + g trT* 1, (68)

where T* is the stress predicted for elastic reaction of
an alloy.
The tangent modulus %

step n + 1 is defined by

0
AL

2 ,
+Z + \/;Kan + Q(M)AE"“’}

at the particular time

[trAL — trAL"” — (™) A0] 1

n+1

0Z 2 0Kq
= 1®1 - —
(Rlel+ Zr) +\/;6Ln+1n
6AEt7‘zp
20 5| (69)

where derivative of the back stress expressed in terms
of hardening parameters is

_ n®\/§6ﬂa
B 3 L n+1

2 0Hy OEP OE
39EP OE 8L

+\/§aH“ 0Lt OB
39Eee OE 0L
\/?aﬂai (OEPLOA
39EP " " "9) OE

2 ,
AE : AE)" %
\/; O‘QAt( )

oz
L |, .,

= ng

n+1

ne
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8E]
2E . —
oL ntl
2 - oA
= SH Ty : —
[3 adev " BE

1 AE
fHa At AEed

and the derivative of the isotropic hardening function
is

n@\/ﬁ K,
3 oL |, .,
\/51” 1 AE
37 At AEeY

The derivative of the transformation induced plastic
strain increment in Eq.{69) can be expressed by

n+1
(70)

ok
OE

2 N
® I:'g]{&:[dev :

(71)

n+1

8AEtrip
oL

d
oL nl
o _

_ t'rzp___ *
- 2(/”’>AtEa 8L [7(2 2<N>An
_\/gAHan)jl
n+1l
oA

= ¥ {Q(N)idev - 2(#)@ : idev @n

—-Idev:{ aaE fHO[At

AE }@ ]
n
AEe il
OA

= hiers 20T 20) 35 O m

9 R  [2..1 AE
— ZH \/jHT_
{3 “78 T V3 aAtAEeq}‘X’n

where

2(p)

n+1

= 2p)At— [EBrrE]

, (72)
n+1

¥ = 72(p) AELP (73)
The derivative 2& occurring in the above expression
is still unknown and it can be obtained by the implicit
differentiation technique applied to the yield condition
when assuming that plastic yielding occurs within the
increment At and A # 0, so that

H (11" In - 2( >A )

AHan— xan =

v {IIE*H — 2(u)A ~ \/%AHa}
3 _
—@Aa] Il = 0 (74)

but ||n|| # 0, and thus

= = 27(u)A - V@AHQ - \/gKa =0. (75)

Differentiating this with respect to the deviatoric

strain, E, yields an implicit expression for the deriv-

ative gﬁ in the following form:

o=, ( >3A \/@aKa
TToE T VIEE T V3 GE
2 0H . ey o O
3 0E ‘7_(2 T

ol >3Ix 2 OA \/§ OKo OB
ATS *9E oFes OE

2 oA \/EaH OE*
3%k TV 395 OE
=+ c’?A 2 ” A

2 1 AE 2 ., 0A
S ity ¢ il il 2 ! Mo
\ﬁf‘am AE“  737°6E
2 .1 AE
_Y@HQEAEW =0
which after rearrangement can be written as

oA
O

51 AE , .
- 2(/1»)')’11 \/;At AEeq (1 + ')’H )

and finally the required derivative is
R vimm— /AR (K" + HE)
OE ¥(pu) + (KL +vHY)
Using the derivatives expressed by Egs. (70), (71),

(72) and the final form of 22 the stress-strain tangent
modulus can be defined by

(2200 + 30 4 1)

(76)

oT N dA
= =(k)1®1 | PP H’
Ll .. (k)1® +n®[d “3E

[ L aE
TV 3tea; Ape

n+1

s < oA

+7Idev . [Q(U)I_2< )_8_5 ®n

oA 2 1 AE
! = r__="
{ Ha3E +\/;H% AEeq}®n

n+41



+n |1 ‘ZI”@—JF\/?]”‘ | _AE
w3TedE T V3T AlAR|
- 2 ,
= (k) 3|, ® Tieo : gHaIH‘
T 2 1 —
Tieo : g[&an — ')’2<ILL>Idev ‘n
~27H;ideu : n}
3 n+41
I .1 AE
+ |:7Idev2</‘t> + (1 - )Ha At AEW ®n
g L AE
RVXUNT R
and after grouping scalars multiplying (I, n), can

be written as

ox
oL n+1

+[<>
e o

+ {’yIdw Y+ (1—v)H,

= (K,>1®1

7{p)n ]
(KL 1 ED]) ©

- H, + K] - 72<u>] }

n+1
1 AE
“AfAEer O™
1 AE

K7 .
e xiapea ® n] n+1

(77)

3.2.8  Transformation Plasticity

The multiphase alloy, which is subjected to both in-
ternal stress and external loading, undergoes plastic
deformations for the lower applied stress than the
yield stress. This can happen due to the superposition
of external and internal stresses. Internal stresses are
generated mainly during phase transformations be-
cause of the variation of fraction specific volumes. The
plastic yielding occurs in the direction of the applied
stress.

The constitutive equation for transformation plas-
ticity is based on the Levy-Mises perfectly plastic
equation, and has been proposed by Greenwood and
Johnson [6] in the following form:

5Ses V
6Y V’
where S.; is the applied external stress, Y is the yield
stress of the weaker phase of two phases: the daugh-
ter and parent, % is the rate of the specific volume

Etrzp

(78)

change. Substituting % = 3 trEY into Eq.(78) gives
the constitutive equation for the transformation in-
duced plasticity shown in [18], and written as

5 trE”
Y

Etrzp

S.q. (79)
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where trE!" is the trace of the transformation strain
rate for phase i. The modification of this relation,
presented in [2], can be expressed by

3 Etrzp
2 S‘fq

where the equivalent transformation induced plastic
strain rate is defined by

EP =25y, (80)

1

b = (Sagr i) (81

Assuming that the softer phase is rigid-ideal plastic,
the constitutive equation for the transformation in-
duced plastic strain rate can be expressed in the form:

EfP =K (1—vi) i 1, (82)

which relates explicitly a portion of plastic strain rate
with the phase fraction y; and its rate y;.

This has been experimentally verified in 3] for
steel with temperature M; = 275C, the material con-

stant K = 1.5 x 10710 [%2], and the austenite yield

limit equal to 170 [ManzV_]

In the formulation of the TMM problem the
volume phase fractions are also state variables and
they are stored in a column vector, y, with the po-
sition in the vector determined by a type of phase
evolution. Eq. (82) can be written in the vector form

EVP =K(l—y):9 3% (83)

which is required for a consistent mathematical ap-
proach to the solution of TMM problem by FEM.
The unit vector 1 = [1,1,1,...1]% contains the same
number of entries as the number of considered phase
transformations. The symbol “ :” indicates an inner
product of vectors.

The trace of strain increment related to transform-
ation plasticity is expressed by
trAL? = o : Ay.

(84)

4. FE Approximation of TMM Problem

The alloy with microstructure is approximated by
super-elements, which correspond to grains, and are
composed of several ordinary finite elements that con-
tain various microregions or phases represented at ele-
mental integration points, ie. nodes of Gaussian quad-
rature at elements. This hierarchy in the approx-
imation of material properties is consistent with the
micromechanical model of the alloy and provides for
the transmission of information about micro-material
state to the macro-level of finite element method solu-
tion.

The Finite Element Method for the fully coupled
thermo-mechanical problem is based on Galerkin’s ap-
proximation of variational equations i.e. the principle
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of virtual work and the balance of internal energy. The
FEM consists of the following steps [1], [7]:

e The first step in developing the method is to con-
struct the finite-dimensional approximation of the
collections of trial functions & and the weighting
functions V, or variations, which are defined by

Ut cu (85)
ifu® 6" e U thenu”, 6" e U
Vhcv (86)

if v 9" € YV theno”, 9" € ¥

e Discretization of the space-time domain, @ =
{(X,1); X € V,t € [t;,t7]}, by a combination of
finite elements, covering the space, and Euler fi-
nite differences through fime. Discretizations are
characterized by length scales {hx,h:}, corres-
pondingly.

e Express v* and 9" as linear combinations of given
shape functions, or interpolation functions,

e Approximation of integrals in variational equa-
tions by sums,

e Formulation of a coupled system of linear algeb-
raic equations, usually expressed in the matrix
form and called the Finite Element Equation,
for values of v* and 9" at nodal points,

e Solution of the system of algebraic equations by
the Newton-Raphson method.

The FE approximation of balance laws is combined
with finite difference approximation of phase evolution
law.

4.1 FE Approximation of Virtual Work Bal-

ance

The equation of virtual work Eq(37) is solved by the
Finite Element Method combined with linearization
techniques for Finite Element Equation. The lin-
earizations are applied after incremental decomposi-
tions for strain and stress given by

AU = 4 £ (87)

tHAtp — tp TA (88)
where "*AH{L, T} and *{L, T} corresponds to the ac-
tual and the previous strain-stress state. The incre-
ments of strain and stress are iA, ~TA. The incre-
ment of the Green-Lagrange strain L% is further de-
composed into its linear and nonlinear components:

L°=L+1L, (89)
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i _;. [FT . (VAu)" + (VAu- F)] ;

- 1

L, = §VAu (VAu)". (90)
The finite element equation for virtual work, shown in
[1], and [7], for the total Lagrangian formulation
at time (n+1) is obtained from Eq.(37) and expressed
by

(BKL + tOKnL) Au(z) — 6+A1Ru _ B+A1ng—l) (91)

where § K7 and {K,, is linear and nonlinear stiffness
matrix , Au(® is the vector of displacement increment,
B‘*’M R, is the vector of externally applied nodal point
loads, B"’Athf—l) is the vector of nodal point forces
equivalent to the internal stresses. This equation is
linear in respect of Au®) and the matrices in Eq.(91)
are taken at four levels of solution. These matrices are
evaluated at two time steps ¢ and (¢+ At), and for two
iterations ¢ and (¢ — 1). The linear stiffness matrix is
defined by

PKr :/ BT Crr 1B dVo (92)
Vo

where meaning of matrices B and Cry comes from

the following expression:

(tBT Au™) Crr (}BLAu) = L7 : Crp : L. (93)
The matrix Cry, is the consistent or algorithmic tan-
gent modulus which has to be defined for each mater-

ial model as the [%%] contribution to the global stiff-

ness matrix, and §By, is the linear strain-displacement

matrix. The nonlinear stiffness matrix is defined by

tKnr :/ tBT, smel tB,; dv;. (94)
Vo

The sense of the nonlinear strain-displacement matrix
!B, comes from the substitution

(tBI, Au”) 8™l (!B, Au) =S : L, (95)
where S[™?] i the matrix representation of 2nd Piola-
Kirchhoff stress, *S. The linear and nonlinear stiffness
matrices are not modified in iteration process during
the step (¢t + At). They are updated when the itera-
tion process at (¢ + At) is completed. The vector of
externally applied nodal point loads is given by

g+A‘Ru:/ HY "HATTdP +
vy ’

HT'T4%b 4V, (96)

Vo
where H; is the surface interpolation matrix, and H
is the volume interpolation matrix. These matrices
are formed from the interpolating polynomial during



the process of Gaussian integration. The matrix H; is
evaluated for two of the 3-coordinates at Gauss points
and one at the given surface. The nominal stress vec-
tor is TA'T = {7}, and the vector of body forces
is "*8%h = {b;}. The vector of nodal point forces
equivalent to stresses at time (¢ + At) and defined for
previous iteration (¢ — 1) is expressed in the form

HRATR(i-1) /

Vo

tBr FFAISE-L gy (97)

4.2 FE Approximation of Internal Energy
Balance

The variational equation of internal energy balance
Eq.(38) is solved by the Galerkin type Finite Element
Method. The appropriate finite element equation for

the fully coupled thermo-mechanical problem is given
by:

1O 5RO 4 (JKF 4 DKM 4 (KT +5K?) A0C)

— 6+AtR9(i—1) _ 6+AtR§j—1) . 6+Athz‘u—l)

At (i-1 Atg(i— A

"f)+ tR(ZZ) )~ i0+ thzleql) - E)+ tFp) (98)
where JK* is the stiffness matrix corresponding to
conduction, ! KM is the stiffness related to the heat
generated by mechanical energy, {K” is the stiffness
resulting from entropy radiation, {K* and g"’AtFp are
related to the dissipation of inelastic energy (EP : S),
+atp(oD is called the matrix of non-equilibrated
heat fluxes generated due to convergence criterion ap-
plied in iteration technique. The R.H.S. vector of
nodal thermal loads, which correspond to the thermal
boundary conditions, is given by

and

i—1 (z-1)
ARG = g

6+A1R§(i—1) +6+Ath(i_l) (99)

where ng,Rg,Rg are fluxes due to conduction, con-
vection and radiation phenomena on external surfaces
of the body. The terms 6+AtR¥_l) and 6+AtR§Z_1) are
connected with internal heat fluxes generated in the
thickest FE region containing the singular surface I'P?
or separate microregions, where thermally activated
phase transformations proceed. The correspondence
of terms appearing in Eq.(98) has been summarized
in Table 4.2.
The FE Eq.(98) can be written in the form con-

sistent with the FE virtual work Eq.(91)

6 C g-{-mé(i) +

(bK* + §KM + (K™ +{K?) A0

_ é-l—Ath(z'-l) _ 6+Athi—1), (100)

when substituting the matrix of residual fluxes given
by

i—1 i—1 -
SR = AR ARG

+6+Ath—1) +6+AtF£Lié;1) +B+A1Fp_ (101)
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Table 1  Correspondence of matrices in FE
equation for thermo-mechanical problem

and integrals in the balance of internal

energy.
| FE Eq.(98) [ Energy Eq.(38) | Meaning |
| £ C F8Th0) | — [y, ¢ §9dV ‘ “heat energy” |
gKkAg(i) an krsf 1 619’,]dV heat flux
FKM A Jy, f3" 804V mech. energy
3N an fi 69dV entropy radia.

t+ At ker(i—1)
0 R€

favo 2V 69dpP

bound. fluxes

At (-1
6+ th )

Soree f§* 69dP

surf. energy

—1
é+Athlu )

Jope: [3¥ 69dP

energy jump

1—1
3+AtR(E )

Yg 80,

point source

5. FE Equation for TMM Problem

The assemblage of FE equations for virtual work
Eq.(91) and internal energy Eq.(100) together with
appropriate phase evolution law yields the combined
Global Finite Element Equation for thermo-
mechanical-metallurgical problem. The global FE
equation for thermo-mechanical problem is formu-
lated at first, and afterwards more complex thermo-
mechanical-metallurgical problem will be presented.

5.1 Global FE Equation for TM Problem

The displacement increment Au and temperature
are state variables for the coupled thermo-mechanical
problem which is defined by Eqgs.(91) and (100). The

corresponding global FE equation is expressed as the

following;:
] [ t+aty :|(i)

t+At6}
6Ku€ Au ©
[ Ky Af

(i-1)
BES

LrAtp
the stiffness corresponding to mech-
anical effects, {K,p is the matrix which trans-
forms thermal energy into mechanical and matrix
t Ky, transform mechanical energy into thermal, the
thermal stiffness {Kpp is a sum of {K* ![K° and
LK. The right hand vectors of Eq.(102) are defined
by Eqgs.(96), (97), (99), (101). The stiffness matrices
Ko, b Koe, §Kue and [ Ky, are defined by appropri-
ate integrals with kernels expressed by a combination
of unknowns {Au, 8}, shape functions, and strain-
displacement matrices, as has been shown in [13], [14].

[ tHatg

tratg (102)

where {K,, is
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They can be also viewed from the perspective of the
Newton-Raphson solution process as the derivatives of
vectors F,, Fy with respect to the state variable Au
and 6. Hence, they can be also expressed as follows:

t t .

(]Kuu = oFu,ua

t t .

Kos = (Foe;

t t

oKu9 = ()Fu,e;

i t

OKGu = OFG,u) (103)
where ’)” indicates differentiation.

The balance of internal energy expressed by
Eq(100) for the temperature rate approximated by the
backward Euler scheme can be written in the form

1 c r 7
{Egc+gK’“+gK + K +3Kf’}Aa<>
= GHATR, — BrAtp(TY, (104)

Substituting this to Eq.(102), the global finite element
equation for the thermo-mechanical system can be re-
written in a more compact form

[ Kuw 5K ] [ Au ]“)
EKou 27 5C+ 5K Ad
3 AR, 1(5)+AtFu (i-1)
=g |- [ B | (105)
where matrix §Kyg is defined by
Koo = HK* + (K + (K" 4 {K”. (106)

5.2 Global FE Equation for Body with Phase
Transformations

Combining Eq.(102) together with evolution equation
for ferritic and pearlitic transformations, shown in Ta-
ble 5 of Partl, the following global FE equation is
obtained:

[ -1 B, A oty 70
0 0 0 t-I—Atl'l
0 0 }C L)
[0 0 0 Ay; 1%
+ 8Kuy f)Kuu (t)Kuﬂ Au
i f)Kgy tOKgu BKgg Af
[ AR, LAt (E-1)
i t-l—-Ath 6+AtF€

where the vector *+2'R,, is related to the term R;
of Eq.(154), components of stiffness matrix: ;Kyy,
'Kuo, tKou, and §Kgg, as well as the RHS vectors:
6+AtFu(i—l), 6+AtF9(i_l): 6+AtRu, é‘*’Ath, are the
same as in Eq.(102), and the subscript ¢ assumes two
values: 2 for ferritic, and 3 for pearlitic transforma-
tion.

104

Approximating the fraction rate, velocity, and
temperature rate by backward finite differences, the
system of FE equations can be written in the follow-
ing form:

?Eyy ?Eyu ?EW AAyi ®
0By 0Buu  oBud u
éKoy f)Kgu BKgg Af
tHAIR f)+AtFy,- (i-1)
=| HAR, | — | §TYE, (108)
t+ALR, 't0+AtF9
with r = Zl?’ and stiffness matrices defined as such
BKW = —-71,
(Kyu = 7'B
Ky = 7'As;
éKuy = Ku;
Koy = EKpis;
6K99 = T EC + EKQQ, (109)
wheref K4 is related to the plastic function
A(S,E, [Edt,0,y) and

FE displacement-strain matrices By, B, 1, the stiff-
ness matrix §K,;, depends on the mixture rule used
to evaluate material parameters for multiphase body.

The kinetic law for bainitic transformation, ex-
pressed by Eq.(37) of Part 1, reveals that this
phase growth is not related to temperature rate nor
to displacement velocity w. Therefore the rate of
bainitic phase fraction yff is not coupled explicitly
with other two state variables: Awu, A6, and the
thermo-mechanical-metallurgical problem is described
by Eq.(37) of Part 1 and Eq.(102) or Eq.(105).

The thermo-mechanical-metallurgical problem
with martensitic transformation is described by the
global FE Eq.(108) taken with matrices

f)Kyu = Ttge;

BKyg = Tt.Ae, (110)
and R.H.S. vectors evaluated appropriately for this
reaction, i.e. f)"'mFys and 7:'"A”Sys. These matrices

and vectors are derived correspondingly to factors of
equation shown in Table 4 of Part 1.

6. Solution of FE Equations

The nonlinear finite element system of equations given
either by Eq.(105) or Eq.(108) is solved iteratively by
the Newton-Raphson scheme. The system Eq.(108)
can be rewritten in the form

(K1) = [R] — [F] (111)
where
1(:)Kyy BKyu éKyB
[]C] = BKuy BKuu éKuG' ) (112)
iKey 5Kou 5Kos
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Fig 1 Nucleation and solid phase transformations

ij
Au
Af

(113)

:I(i)

- At
o °F

t+AtR
U

(-1
: :l

p (114)
B+AtF9

t+ At
Ry
t+AtR
U

;
tHAtR :I

The L.H.S. can be defined as the linear function of [¢/]

(115)

(116)

The Newton-Raphson method provides the approxim-
ation [U]"T" of the root [U]* of the equation
fiul=0 (117)
computed from the approximation [L{]Z using the equa-
tion

) = ) - k7 (R - 1) (118)

The recombination of the last relation leads to the
form

k) (0™ - ) = 171 - [R) (119)
from where the convergence of the method can be eval-
uated. The matrix [Z/{]i+1 converges to the solution
4]" when ([u]i“ —
pens when the vector of nodal thermal and mechanical
loads [R] balances the vector of nodal stress vectors
and heat fluxes [F]* i.e. [F]' — [R] = 0.

) converges to zero that hap-

105

7. Temperature-Displacement-Phase
Fraction Coupling

The global stiffness matrix for TMM problem con-
sists of terms which couple each of two state variables:'
temperature, displacement, and phase fractions. Sub-
matrices will be derived here subsequently.

7.1 Displacement-temperature coupling

The finite element matrix K, coupling the displace-
ment and temperature in Eq.(107) is defined in terms
of stress derivatives by

Ko = / BICre dVh (120)
Vo

where the matrix

- [ (), (), - (#),] o

consists of column vectors (%‘—)_ of the dimension

2
6 x 1, and N is the number of nodes in the element.
These column vectors are calculated from the
stress-temperature derivative which is evaluated using
the same procedure as for derivation of %%

nt+l’
The stress-temperature derivative is expressed by
0T _
86 n+1 -

%{(@ [trAL — Atate sy — (oz”””)A@] 1

2 - SNtrip
+Z + \/;]xan—l-Q(p)AtE }n+1
= (k)4 [trAL — o™ : Ay — ("™ A0] 1

n+1
dy 0y oS
tra . . ira < <z .
() [(ef5" - Ay + At g {—aa + 5o '—ae}

o 20 6]
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0Z

+ —
69 n+1

2 - ~irt
- {\/;Aa,gnH(u)AtEfe Pl (122)
n+1

where the derivative of the transformation plasticity
strain rate is

6Etrip i . i
50 =Ky(l—y: 92 +K(1-y):

9y dy 8s f6)>
{56’ 35 - 86}2+A(1 y): y6 (123)

The other derivatives required for evaluation of
T

8_€n+1 are:

oy 9y oS Oy Oy . AT

5 T3S g6 @0 T as v ag (124)

o2 9% 4S 0T . 0T

90~ 89S T 88 ' pg’ (125)

and

Y 20H,

%M_[\/;—ag n] . (126)
n+1

Substituting these expressions to Eq.(122) yields

oT

— = (k) e [trAL — ' : Ay

90 |, 41 [ <

_ thm _ ira tra .
(o )AG} n+11 (k) [( DAty + Ate’*

Oy Oy .
(6—%+8_é11deu:é;—§)

s iwom)] o

2 2
\/;Ha,en+ \@KQ ,en}
+2{p At{lx p(L—y): Yy

o0 By . T
+K(l-y): (5ﬁ+ Y Idw:%—g)z

oT 2
g J;H"’en }
n+1

that after rearrangement in respect to T gives the
following: .

n+1

+K(L—y) :gidw

aT ira . ag . aT
5 .. + (k) Ata '35 X gey ¥ . 1
. 9y o 9T
At KL= 1) 5 Lo a—g]wzm
o oT
+E Plgey =
90 |,

= (k) [trAL—a"® : Ay — (a"™)Af] 1

n+1
9y

ira . tra . <

— (k) [(a DAty + Ata’ 3
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thm thm
+ (2l A0 + (o >)]n+11

2 2
\/;Ho,,gn + \/;Ka ,on
n+1

+2(u) At [K s(l—y):g=+K(1—y):

9y . \ﬁ
< rip z
56>~ Fe Tgey 3Ha,gn] ot (127)

The L.H.S. of Eq.(127) can be also expressed as a
product of the fourth and the second order tensors
and written in the following form:

Ay .
a_g ®1 :Ige

—2(u)AtK(1—y) : 8—@2

o
n+1. 89

= (k)g [trAL —al™e Ay —

[i + (k) At :

Idev + E pIdev ]

n+1
(a"™yAf] 1
9y
tra . tra . _<
()[(a DAty + At t 50

+( thmA9+< thm>>] +11

2
3Ha9n+\/7 agn
n+l

+2(p) At [K,e(l —y):yE+K(1l-y):

dy 2
Yy _ privi,, \/jHa , 12
o8 ¢ 3 ’enjln-l-l (128)

Finally the required stress-temperature derivative is
given by
oT
a0 |, .,

+

6“ 1:1
88 &® dev

= [i + (k) Ata'®

By -,
~AW) ALK (L= y) : 56 ®  : Tawy + BT P1acy]

as
{(K))Yg [trAL —a' Ay — (athm)AH} 1
9y
tra . y tra . ~Z
—{x) [(gyg DAty + Ata” 30
+ (a0 + (o) 1

2 2
+\/;Ha,en+ \/;Ka,gn

+2Am)AL[Ko(L—y) g8 + K(L—y)

0y )
A trip - ZH, 12
862 Errirg, \/;H 79n]}n+1 (129)

7.2 Coupling between temperature and in-
elastic energy dissipation

The matrix ;Kgs appearing in Eqs.(105) and (107)
contains §K” which is the only undefined term in
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Eq.(106).

The heat flux generated by dissipation of the in-
elastic strain energy contributes to the variation of
the body stiffness, so that, the corresponding stiffness
term has the form:

K’ = [ H'F", dV. (130)
Vo

and this belongs to the L.H.S of Eq.(98). This stiffness
contribution is associated by the corresponding R.H.S.

vector of Eq. (98)
Fr= [ HTF",00-D 4y, (131)
Vo ’
where the derivative of the heat flux F{" =
fo (T : L7'”> related to the dissipation of inelastic en-
ergy is
el

ory” = = fo

50 = FL"

T, (132)

with HT as the finite element interpolation mat-

rix. The derivative appeared in the second term of
Eq.(132) is

gL 1 9 - srip
50~ Atdd [A‘”AtE ]
1 6A OEtrir

where % can be found by implicit differentiation of
the yield function:

. - 2 2
S| - 2y(u)& — 7\/;/3& - \/;fsa}

) o
= Tl 2y — 2870 () + () }

RPN
\/QAM (134)

After re-ordering this can be expressed as

oA 1 . ox* .,
3 = W[MHE 1]'*‘27-3—9-2

—2A(y,0 (1) +¥(1),0)7, \/%Aﬂa

RN

The other derivatives are defined as the following:

Oy 0
T =T3¢~ 0

0
08

(135)

[1+2(m)AtK(L—y): 9]

1+ 2w Ak (- y) g

2ALK [(u),o(l -y g+t pl-y): Q,a}
(136)

and

ox* 0 ) thm
25 = % {2(u>1dev : [AL— (a*h™)V1 A8
1 ira . -
_gAtg .gl]}

= 2 oLaey : [AL— éAtg”” Lyl

—<oﬁhm>Ae1] + 2 Lge -
[— ((oz”‘m) g AO + (athm)>

——At{ Grigtaig H1 s
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7.3 Temperature-displacement coupling

The stiffness matrix related to temperature-
displacement coupling is defined by

Fin
Ko, = H" QLBL dVo, (138)
Vo oL
where the derivative of the corresponding heat flux
generated by inelastic dissipation is

O  pin oL
oL oL

oFsn

: T
oL

= fo

(139)

The derivative in the second term is derived from

(140)

aLG_i @@ HAEP
oL At oL °" oL |’

with % given by Eq.(76), and aAE}I:TiP determined
by Eq.(72).

7.4 Coupling between displacement and
phase fractions

The finite element stiffness sub-matrix K,y which

couples displacement and phase fractions is defined
by

K., = / BICr, Vi, (141)
Vo

where

en=[ (%), (%), - (&),] oo

The coupling between a phase evolution and the stress
requires also the definition of corresponding tangent



modulus
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(143)
and
aEijIP
oy Ly l-y)-1L:y (144)

10 0 ... 0

01 0 ... 0
I=

0 0 0 1

which size depends on a number of considered phases.

7.5 Coupling between temperature and phase
fraction

The contribution to the global stiffness matrix arising
from the coupling of temperature and phase trans-
formations is defined by

_OF
HY =5~

Ky, =
! Vo Y

" ave, (145)

with the corresponding heat flux derivative expressed
by
AL

Li"+Ty—:T].

oT
dy

gFin
dy
The derivative in the second term of the R.H.S. is

written as

oLin 1

=fs [ (146)

_ a A trzp
1 oA oEw
= et oy (147)
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The derivative 3y can be found by implicit differenti-

ation of the consistency condition

- 2 2 .
5y |11 - 2 A - n2am -2k,
oz .
7= ||+27—5— 57— 241y (1) + 7(1)
2
gy a3 5o
—\/;Ka,g:o,

and taking % to the L.H.S.

(148)

A 1 ax*
— = — Tl 4+ 2 N
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—7,1,\/»AH \/7H ay \/rlxa y} (149)

The other derivatives in Eq.(149) are given by
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The derivative in the second term of Eq.(147) is ex-
pressed by

__At{ ira y'+gt7"a (151)
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(152)
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8. Matrices of FE Phase Evolution Equation

8.1 Ferritic and Pearlitic Transformations

The general form of evolution law for ferritic and
pearlitic diffusional transformations, that has been
proposed in [20], can be written in the following form:

it = A(S,0,uf1) 6+ Bi (S.0,0,1) 8

+Ri (S,6,57.1) (153)

where yf is the fictitious ferrite or pearlite phase frac-
tion, A;, B;, and R; are material functions, and sub-
script ¢ assumes one of two values: 2 or 3. The time
approximation and linearization leads to the linear ex-
pression

t+/_\zy;¢> — tAZ_ 1+At6‘ + tBZ_ 6+Ats _}_tRZ_. (154)
The rate of the second Piola-Kirchhoff stress must be
transformed to the increment of displacement Au be-
fore this equation will be substituted to the global FE
equation for thermo-mechanical-metallurgical prob-
lem. Such transformation can be derived using
elastic constitutive equation and strain-displacement
matrices. The evolution equation expressed in terms

of temperature rate and displacement increment can
be written as

t+AL ¢ =t g, UL L TR tHALy 4t (155)
where particular forms of ! B; and *R; will be shown
after introducing constitutive equations for elastic and
inelastic deformations.

The simplest evolution equation for diffusional

transformations, without metallurgical- mechanical
coupling, is given by

(-t [

.]tni

which after time approximation can be written as the
following:

(156)

t+At ¢ _tA 1+At9+tR (157)
with factors given by
db;
t g t, @\ tyn; | &Y
A= (1) [d&}
'R = (1 t 4’) il tpg, (158)

where b; and n; are empirical related to cooling rate
and the nucleation rate, ¢ is time equal to zero at the
nucleation period.
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8.2 Bainitic Transformation

The evolution equation for bainitic transformation,
shown in [20], can be written in the following form:

. ymic i
g = —7—1- (l—yi’f) (l—ﬂ'ryff) X
K AG?
exp [<r2>yf -8 (1- B s)

K2(AGY  — Gu)

4maz

rRE

(T2) =
(160)

where V™€ is the volume of a microregion, K; is
the parameter related to austenite grain size, v =
Yy Ya,,az; Yy 1s the fraction of residual austenite, 5 is
the autocatalysis factor, Ko is constant, R is gas con-
stant, AGY ___ is the change of maximum nucleation
free energy determined from the free energy diagram,
r 1s the positive constant appearing in approximation
of the value Gy that is exceeded by AGY  at tem-
perature W;. Note that this equation does not contain
rates of variables controlling bainitic transformation.
The time approximation and linearization results in
the relationship

t+Aiy£€f — (1 _tyzf) (1 __Al tyff> A2
X eXp [—f%s (tGl tyg — th)] (161)
where
A = P A2=—“—V Kl; A3=£2‘3
v r R
‘Gi = [(AGS,.. -GN,
‘G, = r—[(AGY, )],

The general form of Eq.(161) can be expressed by

t+At ¢ _ tA4 exp <:-_07:) )

where
‘Ay = (1 —’yi’f) (1 -4 *yf) Ay;
tG2> .

'F = Ag (tGl tyf —

(162)

8.3 Martensitic Transformation

The general form of evolution equation for martensitic
transformation shown in [20] following the proposition
[9], can be written as the following kinetic law:

Js = As (S,0,96,8) 0 + K6 (S, 0,85, 1)EL. = S, (163)

where Ag and K¢ are material functions, E},. is a value
of the macroscopic transformation strain E* when
ys = 1 and stress S is assumed to be homogeneous in
a microregion representing a group of finite elements.



This stress is balancing the external stress load. The
time approximation and linearization result in the ex-
pression

t-l-At)'}G - t.As t+At9' + tBS '(t)—}-AtS, (164)
with
‘Bs = 'K EX,. (165)

Transformation of stress thS to strain rate E and
velocity u leads to the following martensitic growth
law

ALt gy THALY IR ALy i (166)

where ‘B and "R will be derived later using elastic
constitutive equations.

The simplest evolution equation for martensitic
fraction is given by

(167)

which after time approximation can be re-written as
the following

3.:/6:&(1_@6)9.1

t+At t t+ At
+ y6: "46 + 9)

tAG = (1 —tyﬁ))

(168)

where « is the constant coefficient that for most steels
equals to 1.1 x 1072[K~1].

Matrices ¢B;, ‘Bs, "R, and 'R in Eqs.(155) and
(166) are derived using elastic constitutive relation
Eq.(44) expressed in the form:

é+AtS(i) = 2 (é-l—AtEA(i) _ gtﬁtEA(i—l))

£y
+— S’ 169

x (169)
where Bt;?tEA(i‘l) is the inelastic strain rate defined
for the previous iteration (¢ — 1). Substituting the
following relation:

MBSO = (1B 4 4B, IBu) A (1T0)
to Eq.(169) results in the equation
LFATS() = ittty kAR i (171)

B=2u (¢Br+6Bh iBaL);
H—At/[é =9 t+AtEA(z‘—1),
=t oin ’
R=L1s
M

Combining Eq.(171) with Eq.(154) leads to the form of
the evolution law for ferritic-pearlitic transformation

¢+Azy§> — t-Az' t+At9' + tBi B t+At1-1

—B; TAMR 4B, 'R 4R, (172)
Introducing the following symbols:
‘B = !B B;
"Ry = 'Bi'R+'Ri — B TR (173)
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into Eq.172 results in the Eq.(155). Substituting
Eq.(171) in Eq.(164) gives
t+At§6 — tA6 1+At6}+t66 3 t+Aty

+'Bs 'R — B "TAIR. (174)
Denoting
tBs = tBs B;
"Re = Bs (‘R —TAR). (175)

results in Eq.(166).

9. Conclusions

The structure of FE program developed for solution of
TMM problem is shown in Fig. 3. Constitutive equa-
tions for macroregions are coupled with heat equa-
tion and evolution laws by the mixture rule. This
scheme facilitates transformation of micro-structural
state variables: phase fractions, isobaric macrore-
gional stresses, cooling and nucleation rates, the Gibbs
free energy changes, etc. to the level of global state
variables for considered body. Constraints for this
transformation are the mixture rule and the balance of
virtual work for isobaric macro-elements. The micro-
structure of alloy is approximated by super-elements,
which corresponds to grains. Each super-element is
composed of several ordinary finite elements that con-
tain various microregions or phases represented at
Gaussian nodes of integration. This hierarchy in ap-
proximation of material properties provides a trans-
mission of micro-material state variables to the macro-
level of finite element method solution of welding prob-
lem.
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CONSTITUTIVE EQUATIONS |

1. Hooke’s Law )
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EVOLUTION EQUATIONS

Material structure

Volume fractions:
. ferrite,

. pearlite, 0
. bainite,

. martensite,

. resid. austenite

E S,S

Tt O DN =

Total strain rate L

|

Total stress rate T and S, 8

stress T

Fig 3 Scheme for solution of TMM problem
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