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1. Introduction

Let C be an irreducible algebraic curve in complex affine pl@fe We say that
C hasone place at infinity if the closure ofC intersects with theo-line in P? at
only one pointP andC is locally irreducible at that poiAt

The problem of finding the canonical models of curves with @hece at infin-
ity under the polynomial transformations of the coordisabé C2 has been studied by
many mathematicians since Suzuki [17] and Abhyankar-Mdhpfaved independently
that the canonical model af is a line whé&h is non-singular sintply connected.
Zaidenberg-Lin [19] proved thaf has the canonical modelypety? =x?, wherep
and g are coprime integers 1, whenC is singular and simply connected. ACampo-
Oka [5] studied the case of gengs< 3 as an application of a resolution tower of
toric modifications. For the casg < 4 Neumann [12] studied from the viewpoint
of the link at infinity, and Miyanishi [9] studied from the a&lrico-geometric view-
point. Nakazawa-Oka [11] gave the classifications of all theonical models for the
caseg < 7 using the result of ACampo-Oka, and gave the classifioatifor the case
g < 16 without proof. Jaworski [8] studied normal forms of irveible germs of func-
tions of two variables with given Puiseux pairs. Oka [14, §&ye the normal form of
plane curves which are locally irreducible at the origin amith a given sequence of
weight vectors corresponding to the Tschirnhausen-goediugon tower, and showed
that the moduli space of such curves is of the for@t)¢ x C”. Furthermore, Oka
translated this result to the case of affine curves with oaeepht infinity.

Also, Abhyankar-Moh [1, 3, 4] investigated properties ®5equencesvhich are
sequences of pole orders approximate rootof C. This result is called Abhyankar-
Moh’s semigroup theorem. Sathaye-Stenerson [16] provatitta sequence of nat-
ural numbers satisfies Abhyankar-Moh’s condition then ehexists a curve with one
place at infinity of thej-sequenceS . Suzuki [18] made it clear the relationship be-
tween thed-sequence and the dual graph of the minimal resolution ofsthgularity
of the curveC at infinity, and gave an algebrico-geometricopraf semigroup theo-
rem and its inverse theorem due to Sathaye-Stenerson.

In this paper, we develop Suzuki's result and give an algebgeometric proof of
Oka’s result (Theorem 7 and Corollary 1). We shall also gimealyorithm to compute
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the normal form and the moduli space of the curve with oneekcinfinity from a
given §-sequenck

Our construction method of normal forms is different from 8, 15] in the fol-
lowing respects. First, this method usésequences generating semigroups of affine
plane curves with one place at infinity. Second, this methimdctly generates defin-
ing polynomials at the origin of curves with one place at imjin

2. Preparations

In this section, we introduce some definitions and facts whg needed to de-
scribe our theorem.

Let C be a curve with one place at infinity defined by a polynongglation
f(x,y) = 0 in the complex affine plan€2. Assume that degf = deg m
andd = gcdf, n ). By the consideration of the Newton boundary, ae get

fy) = @x? +oy?) + Y capx®™y’,
qotpB<pqd

whereu ,v € C*, m = pd andn =gd . By a finitely many times of the coordinate
transformations of the form

X1 =X

y1=y+cx?

and the exchange of the coordinates and , we can reduce thropahl f into
one of the following two types:

A m=1,n=0

(B) m=pd, n=qd, gcdp,q)=1,p >qg > 1.

A curve of type (A) is a line. We call the curve of type (Bpn-linearlizable In this
paper, we shall consider only the curves of the type (B) fraaw on. The closureC
of C in the projective pland®? passes through the intersection podt  of tkeline
A and the linex =0 by the assumptign> q.

Let us denote byEy the (—1)-curve appeared by the blowing-up of the poit
and continue to denote the proper transformAof by the sameactes A . Leta be
the natural number satisfyingg < p < (a +1)g. If a = 1, then the proper transform
of C is tangent toA , or else is tangent K.

1The computer calculation by our algorithm verified the resfilNakazawa-Oka [11].
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Ey

A blowing-up C

VARE B

In casea > 1, after furthera — 1 times of the blowing-ups of the point at infinity
of the curveC , the proper transform @f is tangent to the £1)-curve E; obtained
by the last blowing-up. (In case =1, we sE{=A.)

Eq Ey

blowing-ups

[ x

Thus we get a compactification d&? with the boundary curve of which the dual
graph is of the following form:

—a -1 -2 -2 2 -1
O—0—0—0----0—20
Ey E; A

By a — 1 times of the blowing-downs of the—()-curve on the right hand side
from A of the above dual graph, we get the following dual graph:

—a 0
o—-O .
Eo E;

Let (M1, EoU E1) be the compactification of? thus obtained.

The intersection point oy and E; is the indetermination point of . Now, we
blow up from the surfacé{; the indetermination points of  successively, until the in-
determination points off disappear. L&, be the surface thuagireed. We denote
the proper transform id; oEo (resp.E1) by the same charactdfy (resp. E;). Let
E;(2 < i < R) be the proper transform idf/, of the-{)-curve obtained by the
(i — 1)-th blowing-up. Furthermore, we s&; EpU E1U---U Eg.

The following theorem about the compactificatial {, E; ) ®©f is very impor-
tant for the classification problem of the curves with onecelat infinity.
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Theorem 1 ([18]). (i) The dual graphI'(E;) of E; has the following form

[

El E}Z Ejh

(i) f is non-constant only olEx and has the pole Bn — Ek.
(i) The degree off orEx I4.
(iv) Eg is the unique(—1)-curve inE; .

Note. There is a small gap in the proof of (i) described in [18]. l&tresp. P ,
S) be the union of the components &, on whigh =0 (regp. ocs f =non-
constant). Let’ be the union of the other componentsEef . Froenproof of (i)
described in [18], we know that and  are both connected &indE; = ere,Hsince
f is non-zero constant ol 77 does not interséct #&nd T K (), thenT inter-
sects onlyS . But sinceS (£ ) is the last-{)-curve onM, , the relations of inter-
section amongZ P § and is one of the following two types:

) P—S—2Zz any P—S—T.

If Z #0, then we get the contradiction as it is described in [18]. $imailar argument
applies to the case df # (). Thus we getZ # andT =(. As a consequencé, E( )
has the above form.

In T(Ey), letiy, ia, ..., in (resp.jo, j1, ..., jn) be the indices of the branch ver-
tices (resp. the terminal vertices) from the left hand sidkere jo = 0 and j; = 1. Let
M¢ be the surface obtained by the blowing-down &% Eg_1,..., E;,+1 from My.
For i (0 < i < i), we shall continue to denote b, the proper transformbpf
in Mc. Further, we setEc =EoU E; U ---U E;,. We shall call the pair Mc, Ec )
the compactification ofc? obtained by theminimal resolutionof the singularity ofC
at infinity. We setL;, 4 E; for eachk (1< k < h) like the following figure,
whereig = —1.

Ejo Eil
(oo
L1 :
Ejl

ir—1<i <ig

E:

Lh

L,
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Derinimion 1 (6-sequence). Leb, (0 < k < h) be the order of the pole of
on E; . We shall call the sequend@o, d1, ..., d,} the -sequenceof C (or of f).

We have the following fact since deg = and d¢g n=
Fact 1. 09=n, 61 =m.

DerinmioN 2 ((p, g)-sequence). Now, we assume that the weightd pf is of
the following form:

Ly O O-mmmnee Lis+1
I —m

Jk
We define the natural numbegs a, g, b,  Satisfying

(proar) =L (g, bi) =1 O<ar < pr, 0 < bp < g,

1 1
Z_ﬁ:ml_ 1 and Z_Z:"l_ 1
my — — np —
ms3 — 1 n3 — 1
m, g
We shall call the sequencfp1, q1), (p2,q2), ---, (pn.qn)} the (p, g ysequencef C
(or of f).

We shall assume thaf x{y ) is monic in . We define approximatesrdgyt
Abhyankar’s definition.

Derinimion 3 (approximate roots). Lef x(y ) be the defining polynomial, mon
in y, of a curve with one place at infinity. Ld®o, 1, ..., d,} be thej-sequence off .
We setn = degf de = gCﬁﬁo, 01, .-, 5/(—1} and ny =n/dk (1 <k < h+l). Then, for
eachk (1< k < h+1), a pair of polynomialsg; x(, y ,)vx(x, y)) satisfying the follow-
ing conditions is uniquely determined:
() gk is monic iny and degg: i ,
(i) deg, v <n —ny, '
(il)) f= g+ v
We call thisg; thek-th approximate rootof f.
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We can easily get the following fact from the definition of appmate roots.

Fact 2. We have

lp/4]
gi=y+ Y axt, gwm=f
/=0

wherec, € C, p = deq f/d, q = deg, f/d, d = gcd{degq, f, degf} and |p/q] is
the maximal integef such thdt< p/q.

DeriniTion 4 (g-sequence). The sequence of polynomjgls= x, g1, ..., gn+1 IS
called theg-sequenceof f.

Here, we denote by, the curve defined pyx,X ) = 0GA. The following
theorem abouCC; plays a vital role in the main theorem.

Theorem 2. For eachk (0 < k < h), Cy is also with one place at infinity. Fur-
ther, its closure C; in Mc intersects transverself;,, and does not intersect other
irreducible components of¢

Suzuki [18] gave the algebrico-geometric proof of this tleeo. We get the fol-
lowing theorem as a corollary of the above theorem.

Theorem 3. For eachk (0 <k <), g, has the pole of ordeb, on E;, .
The following lemma about approximate roots will be used hedrem 6.

Lemma 1. Let f be the defining polynomjamonic iny, of a curve with one
place at infinity. Let{do, 01, ..., d,} be thed-sequence off, and go, g1, - - -, &r, gn+1
be theg -sequence gf . Thegx (0< k < h —1) is also thek -th approximate root of
gj forany j withk < j <h+1

Proof. For example, see Proposition 2.2 in [5]. [l

3. Intersection matrix and successive blow-up

Let M be a non-singular projective algebraic surface overpmermnumber field,
and E be an algebraic curve a . We shall assume HatE,, ..., E; are irre-
ducible components off , and denote by the intersection M@H; - E;))i j=1,....s
of E. The following lemma about the intersection matrix is Melown by Mumford.

Lemma 2. E is an exceptional set if and only 1fy  is negative definite.
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Let E; be the (1)-curve appeared by blowing-up at a poif§ on a surfaceM |,
and let P; be a point onEj. Fori (> 1), let E/,, be the ¢1)-curve appeared by
blowing-up at a pointP; , and leP,+; be the point onE/,,. We get{P:}i=o, ..
{E/}i=1...., by the above finite operations. In this paper we call this diséquence of
blowing-ups asuccessive blow-up fronf. Let M’ be the surface obtained by a suc-
cessive blow-up fromPy. Fori (1 < i < r), we shall continue to denote b¥; the
proper transform oft] in M’. Further, we sett’ = Ji_; E/ and Ags = det(—1z/). We
have the following fact since\g: is invariant under the successive blow-up.

Fact 3. Ag =1

The following lemma is Lemma 1 in [18]. Here, we describe itdgse it is used
many times in the next section.

Lemma 3. LetEy, Ey, ..., E,, E..1 be the irreducible components &f and as-
sume that the dual grapl'(E) is of the following linear type

Ey E> E, E
O—0---0—20 (ni > 2).

—ni —n3 —n,

Assume further that there exists a holomorphic functjpn  one@mhborhoodU of
Ui=; Ei such that the zero divisoff) of f on U is written in the following form

r
> miEi+mpaEranU.
i=1

Let (p;, pi+1) be the coprime integers defined by the following continuedtifor

: 1
p”l:n,-——(lgigr).
Di

ni—1—
ni
Then m; =m1p; (1 <i <r+1)
Now, consider a pair of natural numberg, (g ) with ged¢ ) =p>q > 0.

We can easily show that there exists a unique pair of natunalbers &, b ) withpg —
ag—bp=1,0<a<p 0<b<yg.
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We consider the following continued fractions for the aboventionedp g a b :

1 1
=ni—

p_
a ! 1

my — —— ny —

SR
[iny

m3 — 1 n3_._ 1

mr Ux

wherem; > 2 andn; > 2.
Let (x, y) be the local coordinate for the neighborhood of a pdtnon M which
has P as the origin. Then,

Lemma 4. we can construct a exceptional curve with the following \wtigby
a successive blow-up from

y-axis O oO——"-0—"7"0C0—"O0———- O x-axis

-m, —m_1 —mp -1 -m —ns_1 —nNg

Proof. We consider the curv€ defined by y# =0. The resoluti@plgrat
origin of C is as follows:

! !
- Ev Evfl Ei ET El Eufl Eu -
y-axis O O———--0—""C0C0—"0———- O x-axis
! / li
—my,  —my_ —my -1 -m 1 Ty

Let Ir be the intersection matrix of the exceptional cuke  egponding to
the above dual graph. Here, we set

U=
I
3
S
|
H
=
|
S
S
|
H

5\

u n v

We get detl-1g) = p'q’—a’q’—b'p’. On the other handE is the exceptional curve ob-
tained by a successive blow-up from origin. Therefore, wedgd(—I¢) = 1 by Fact 3.
Thusp'q’ —a'q’ —b'p' = 1.

As the above dual graph, |&; i <u), Er, E; (1 < j < v) be the irreducible
components off . We denote hy (1 <i < u) the zero order of the functiom oA;
and by ur the zero order of the functiom oBr . Also, we denoteihy(l < j <)
the zero order of the function oE; and by vr the zero order of the function
on Er. Sinceq =ur andp, =1, we getq’ = ur/u, =g by Lemma 3. As the same
way, we getp =p’. Thus pg —a’q — b’'p = 1. Further, it must bee &', b =b’, since
0<a < pandO0<d <gq. Therefore, we geb # m. =m; (L <i <r), u=s,
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n; =n;(1 < j <s) by the uniqueness of the expansion into continued fracth

a result, the assertion was proved. [l

4. Construction of a curve with one place at infinity

We setN = {n € Z | n > 0} and C* = C\ {0}. The following theorem about
d-sequence andp( g )-sequence is called Abhyankar-Moh’'s SeapgTheorem.

Theorem 4 (Abhyankar-Moh). Let C be a non-linearlizable affine plane curve
with one place at infinity. Let{do, 01,...,0,} be the J-sequence ofC and
{(p1,q1), - -, (pn, qn)} be the(p, g)-sequence o€ . We séf = gcd{do, 01, ..., 0k—1}

(1 <k <h+1). We have then,
() qx=di/di+1, dpea = 1(L< k < h),

) 51 (k= 1)
i) di+ = ,
() diapi { Gk—10k—1—0x 2<k <h)

(III) qkék € Nog+ Ny +--- + N _1 (1 <k < /’l)
The following theorem gives the converse of the above theore

Theorem 5 (Sathaye-Stenerson [16])Let {do, d1, ..., d,} (h > 1) be the se-
qguence ofz + 1 natural numbers. We sef, = gcd{do, 91, ..., 0%—1} (1 <k < h+1)
and g = di/dr+1 (1 < k < h). Furthermore, suppose that the following conditions are
satisfied
(1) do < 01,

(2) g =21 <k <h),

() dnv1=1,

(4) o < gr-10k—1(2< k < h),

(5) qrdr € Nog+Nop +---+No_1 (L <k < h).

Then there exists a curve with one place at infinity of theequencegdo, d1, . . .,
o}

Suzuki [18] gave an algebrico-geometric proof of the abowe theorem by
the consideration of the resolution graph at infinity.

Derinimion 5 (Abhyankar-Moh’s condition).  We shall call the conditoiil)—(5)
concerning{do, 41, ..., oz} in Theorem 5Abhyankar-Moh’s condition

Theorem 6. Let {do, d1, ..., dn} (B > 1) be the sequence @+ 1 natural num-
bers satisfying Abhyankar-Moh'’s condition. Sgt= gcd{do, 01, ..., %-1} (1 < k <
h+1)and g; = di/d+1 (1 < k < h). Then
(i) the defining polynomialf, monic in y, of a curve with one place at infinity of
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the §-sequence{do, 01, ..., oy} has the following form using the approximate roots
g0, 81, ---, & Of f:
=gl +a&0&1...&,,_1gg°gfl gttt Z Cagar--an80 81 " 8"

(a0, 1, ..., ap)EA

where asoq,.-a,_, € C*, Cagayop € C, (0, a1, ..., ay—1) is the sequence df  non-
negative integers satisfying

h—1
Z&iéi =qnon, a; < q;i (0<i <h)
i=0

and

h
A:{(ao,al,...,ah)ENh+l Q; <q,-(0<i<h),ah <qh—1,2a,-5,- <qh5h}-
i=0

(i) Conversely let g, be the defining polynomiamonic in y, of a curve with one
place at infinity of thes-sequence{do/qn, 91/qn, - - ., 0n—1/qn}, and go, g1, ..., gn—1

be the approximate roots qf, . For any non-zero complex nunabgt,...s, , corre-

sponding to the sequence bf non-negative integess aa, ..., a;,_1) satisfying

h—1

> @i =quon. i <gqi(0<i<h)

i=0
and any complex numbers,,.,...o, COrresponding to the sequences iof+ 1 non-
negative integergao, a1, ..., a;) satisfying

h
Zai&' <qnop, ;i <qi(0<i<h), ap<gq,—1,
=0

we consider

— g _ _ O_zo &1 C;h—l Qg Q1 ap
f _gh1 tasoa;--an-180 81 8p—1 T E : Capar-cn80 817 """ 8n

(w0, a1y -y ) EA
where
h
A= {(ao,al,...,ah)e N o; < g (0< i < h), apy < qn _1’20"'5" <qh5h}.
i=0

Then the curve defined byf = 0 is a curve with one place at infinity of the
d-sequencedo, 1, --., On}, and has the approximate roos, g1, - - -, gn-
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Proof of Theorem 6. We shall prove (i). By the procedure dbedrin the proof
of Proposition 10 in [18], using the approximate rogts g1, ..., gx Of f and the set
of h + 1 non-negative integersy§, a1, ..., a;) with max{zf.‘zoa,-é,-} = g,0,, We can
write f as follows:

_ ao a1 an o
f= E Capar0n80 81 &h &' Cagaray € C.
;<qi(1<i<h)

Here, we suppos¢ gz gZ"’l. We have dggg,‘j"*l = nu(gn — 1) = deg f —ny =
n — ny,. But this is a contradiction, sincg, ¥ -th approximate robtfo Thus we

.....

.....

We shall prove (ii).
Case h=1. Setdy=¢q andd; = p. We can writef as follows:

f=y"+tax? + Z cagxo‘yﬂ, aeC* cqp€C.
qotpB<pq

The curve defined by =0 has one place at infinity of theequenceq, p} by the
consideration of Newton boundary.

Case h > 2. Setd;/qn = 5; (0<i <h-—1). We denote byC, the curve defined
by g« = 0 for eachk with 0< k < h. Further, we shall denote by, E) the com-
pactification ofC2 obtained by the minimal resolution @, at infinity. L&} be the
proper transform ofC; on¥ and E; be the irreducible components @f. (The way
of numbering about indices is same as Section 2.) By Theore@} has one place at
infinity and intersects transverseE/jk O<k<h-1).

Let O be the intersection point af), and E;, ,. Setp, =qu_164_1— 6p. (pp >0
since Abhyankar-Moh’s condition (4).) We have gpgl(q, ) = 1 frgodg,, 6,) =
dp+1 =1 and get a unique pair of natural numbedas, (b, ) Wity — angn — br pa
1 0<ay < pp, 0< by < gp. We define{m;};=1..,, {n;};=1.. 5 using the following
expansion into continued fractions by, a, gn bn

.....

P, ! Doy !
ap 1 ' b 1

my — —— ny —

ms3 — | n3 —

1

m, ny

By Lemma 4, we can obtain the following brandt), such tlagt geers
transverselyE;, using the successive blow-up from
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Ej, Ejh
LA f—O0—0----0—O0—0----0—=0
—m, —Nnly_1 —my -1 —ni —Nyg—1 Ny

Let M be the surface thus obtainel, be the total transfornt @ M. We denote
by E; (resp.Cy) the proper transform of; (resp. Cy).

Setd, = gC({(S(), 01, -+, 5/(,1} (1 <k<h+ 1) anqu :dk/dk+1(1 <k < /’l)
By Theorem 3,g; has the pole of ordér on E;, , for eachk (0< k <h —1). Thus
gr has the pole of ordeik on E;, and of ordemSk(: dx) on E;, . On the other hand,
gn has the pole of orde, on E;, . In fact, we can writgg, on a neighborhood ©f
as follows:

gn = LA (non-const)
udn—10n—1
Henceg, has the pole of ordey, thlSh_l) — pn on E;, . This value is equal to,
by the assumption op,

Now, we consider the curv€  defined by =0. Set f —g!" and® =¢/g/".
Since the both ofg/* and has the pole of ordeg,d, on E;,, ® is non-constant or
constantf 0) on E;, .

Let A (resp.B ) be the closure of the connected componerf ofE;, which con-
tains Eo (resp. Ej, ). LetP,, be the pole divisor ¢fy, oM , add be its restriction
to A. Here, letF; be the irreducible component of intersectidy, . Singge has
the pole of order, on E;,, we have D - F;) < 0. Also, since D - E;) = 0 for any
E; with E; # F;, using Proposition 2 in [6], the intersection matrix 4f  isgae
tive definite. Thus it follows thatd is exceptional s@. is drabrphic onA since
ANCj,=(0. On the other hand,

ap

deg, g,°81" &

h h
i=0 i=1

a1 tapqrtasgeqrt - topqn-1--qa

< (g1 —D+@2—Dg1+(q3—Vgegr+---+(gn — Van-1---q1
= gnqp—1---q1—1

< gngn-1---q1 = qnny = deg, gj'".

Therefore, we get de@ < deg, g/" . Hence® =0 orEq. Further,® =0 onA , since
A is compact. As a result, it must be th@t  is non-constanttgn

Let Py be the pole divisor o omM . We denote B, By, ..., B, the ir-
reducible components oB  in order from the component intdirsg E;,. Since ®
has the pole onB; and C,, the support ofPo iSB U C, and we can writePy =
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gnChn + > 1 i Bi (i > 0). By

ng—1—, 1

ni

and Lemma 3, we getiigr, = qn, Where uy is the pole order ofd onB;. Hence,
u1=1. This implies that® is a rational function of degree 1 @ .efHfore,
the curve defined by =1 intersects transverselif;, at only one point. Since the
curve ® =—1 coincides withC, we get

— _ 1 (i = ih)
@5 ={o 21
As a result,C has one place at infinity.

We havef =g/" onA , sinceb =0 oA . Hencg has the pole of the same
order asg" on each irreducible componentAf . In particufar, s the pole of or-
der thk = 0 on eachE; (0< k < h — 1). Since®d is non-constant of;, f
has the pole of the same order g% Bh . Since the value of its qrdier is
gndn, using Lemma 3, it follows thaf has the pole of ordgron E;, . Consequently,
{do, 01, ..., On} is the 5-sequence off .

Finally, we show thatgo, g1, ..., g» are the approximate roots gf . By
deg, ggogin . g;llh

noag +niay t+ -+ npoy

< nmi(gr—1)+naq2 — 1) +- - +np_a1(gn—1— 1) +nu(gn — 2)

= —nytnpgp —np <n—np,
gn 1S h-th approximate root off . Therefore, by Lemmagh, g1, ..., g, are the ap-
proximate roots off . [l

The following theorem is the main theorem in this paper, andlitained by using
Theorem 6 inductively.

Theorem 7. Let {0, d1, ..., 0n} (B > 1) be a sequence of natural numbers sat-
isfying Abhyankar-Moh's conditiorfsee Definition 5). Setd, = gcd{do, 01, ..., 0k—1}
(lSk §h+l) anqu :dk/dk+1(lg k < h)
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(1) We defineg, (0 < k < h +1) as follows

80 = X,
lp/a]
. 01 do
g1=y+ cix!, ¢;eC,p=—,q=—,
; J J d2 d2
giv1 = 8 +aaoaya_180°81 81
+ Caoar--aig(()log?l e 'g:qi’

(0, a1, -y G)EA;
Agoar--a_1 € C, Cagara; €C (1 <0 < h),

where (ag, a1, ..., a;_1) is the sequence af non-negative integers satisfying

|
=

i

CYj(Sj :q,-5,-, O7j <gq;j (0< j< l)

~.
1l
o

and
i

A= (ao,al,...,ai) € Nl+1 aj < gj (O<] < i),Ck,' < q; —1,Zaj5j <qi5,'
Jj=0

Then go, g1,...,&, are approximate roots off (= g,+1), and f is the defin-
ing polynomia] monic in y, of a curve with one place at infinity of th&sequence
{b0, 01, ..., On}.

(2) The defining polynomialf, monic in y, of a curve with one place at infinity of
the 6-sequencedo, 01, ..., oy} is obtained by the procedure ¢f), and the values of
parameters{ag,a,.--a;_+ f1<i<n @nd {Cagas---a; Jo<i<n are uniquely determined fof

The above theorem gives normal forms of defining polynomdadlscurves with
one place at infinity and the method of construction of theifiming polynomials.

Corollary 1. Let {do, d1, ..., 0,} (h > 1) be a sequence of natural numbers sat-
isfying Abhyankar-Moh’s condition. The moduli space of tweve C with one place
at infinity of thed-sequencedo, 61, ..., 0y} is isomorphic to

(€)' xC,

whereb is the total number of parametef8,,q,..., fo<i<n appeared in the defining
polynomial monic iny, of C obtained inTheorem 7

Proof. We consider the defining polynomiél , monicyin , of theve C with
one place at infinity of the-sequence{do, 01, ..., dy}. We denote bya the number
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of non-zero parameters ifi and by the number of others. By rEned, the mod-
uli space ofC is C*)* x Cb. f hash + 2 polynomialg, g1, ..., gn+1. Here, both
of go and g; do not have non-zero parameter. Algg;1 (1 < i < h) has exactly one
non-zero parameter because the sequendge of +1 non-negadgers (o, a1, ..., a;)
with le:o a;d; = q;6; is determined uniquely. As a result, we get A= . [l

By the above results, we can easily get an algorithm gemgraitie defining poly-
nomial and computing the moduli space fromd-aequence. We will introduce them in
the next section.

5. Algorithms

Using Theorem 7, the following algorithm generating the mafi polynomial of
the curve with one place at infinity from &sequence is obtained.

Algorithm 1: generating polynomial

Input: §-sequencedo, 01, ..., On}

Output: the defining polynomialf X, y ) of the curve with one place at iit§irof the
d-sequence{do, 01, --., On}

D — [5/1, 5/1_1, ey 50]
dp — gcd{dp, 01, ..., —1} (L <k <h+1)
O — [qn, -, q1] where g, =di/di+1 (L <k < h)
DL — congD,[])
QL —congQ,[])
m—h+1
while m # 2 do
T — reversécdr(D))
D —[]
while T #[] do
D — congcar(T)/car(Q), D)
T «+ cdr(T)
end
DL «— congD, DL)
Q < cdr(Q)
QL —congQ, QL)
m «— length(D)
end
AL — [x]
D «— car(DL)
[ «+ |car(D)/car(cdr(D))|
g1 v+ Y gep)
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AL «— condg, AL)
while DL #[] do
D «— car(DL)
Q < car(QL)
qo < |car(Q) x car(D)/car(reversgD))| + 1

L — append, [go]) _ _
k —length(D) — 1, i.e., D =P, ..., 0], L=1[qgk,---,q0]

(a0, a1, ..., ¢ 1) < the sequence of non-negative integers with
ZI.C_O Qi =orqr, a; < qi(0<i<k-1),6 e€Dandg; €L
{(ao, al, ..., o)} + the set of sequences of non-negative integers with

Z._Oal& < Orqrs <q, (O<l <k), ax < qr —1,6; € D andg; € L
8k+1 gk T aaan,.. a1 H'—O g, + ano Qg,..., H i=0 gl
AL «— conggy+1, AL)
DL «— cdr(DL)
QL — cdr(QL)
end
return car(AL)

SUPPLEMENTATION:

e[...]:= Alist. (This is a data structure with ordered elements.)

e | p| := The maximal integer such that< p.

e car(L) := The first element of a given non-null ligt

e cdr(L) := The list obtained by removing the first element of a givemn-null list
L.

e congA, L) := The list obtained by adding an elemefit to the top of amilst
L.

e revers€L) := The reversed list of a given lidt

e appendL, L,) := The list obtained by adding all elements in a list according
to the order as it is to the last element in a list.

e length(L) := The number of elements of a given list
« IS @ parameter irC*,
_____ « IS a parameter irC.

The moduli space off is obtained by counting the numberqf. .} and
{¢s.«...x} In f which the above algorithm outputted. But we can compute rtiod-
uli space from aj-sequence without generating the defining polynomial. Tdilewing
algorithm directly compute the moduli space fromy-&equence.

,,,,,,

Algorithm 2: computation of moduli space
Input: §-sequencedg, 01, ..., On}
Output: [M, N] (This means the moduli spac€() x C".)

D — [0n, Op—1, ..., 0]
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di — 9gcd{do, d1, ..., 1} (1 <k <h+1)

Q < [qn, --., g1l where g =di/dy1(L < k < h)
Q < congl, Q)

M —h

N <0

while true do _ _
k «length(D) — 1, i.e., D =[x, ..., d]
D « [6;/car(Q), dx—1/car(Q), ..., do/car(Q)]
Q « cdr(Q)
qo < |car(Q) x car(D)/car(reverséD))| + 1
L — appendQ, [qo]), i-e., L = [gx, - - -, qo] _
n < the number of o, a1, ..., k) With_Zf:0 «;0; < car(Q) x car(D),
;i <q0<i<k-1D,aq<qg—166€eDandg €L
N —N+n
if length(D) = 2 then break
D «— cdr(D)
end
N —N+|[p/q]+1
return [M, N]

6. Polynomial curve

6.1. Abhyankar's question. In this section, we will introduce Abhyankar’s
question.

DeriniTion 6 (planar semigroup). Le{do, d1, ..., dn} (B > 1) be a sequence
of natural numbers satisfying Abhyankar-Moh’s conditigvi.semigroup generated by
{d0, 01, ..., On} is said to bea planar semigroup

Derinimion 7 (polynomial curve). LetC be an algebraic curve defined by
f(x,y) =0, wheref &,y ) is an irreducible polynomial i@[x, y]. We call C a poly-
nomial curve if C has a parametrisation xr () ¥ (), wherer () apnd () are
polynomials inCJ1].

Abhyankar's Question. Let Q be a planar semigroup. Is there a polynomial
curve with §-sequence generating ?

This question is still open. Moh [10] showed that there is nolypomial
curve with §-sequence{6, 8, 3}. But there is a polynomial curvex(y ) =t¥¢%)
with ¢-sequence{3, 8} which generates the same semigroup as above. Sathaye-
Stenerson [16] proved that the semigroup generated{®&y22 17 has no other
d-sequence generating the same semigroup, and proposedllthwirfg conjecture for
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this question.

Sathaye-Stenerson’s Conjecture. There is no polynomial curve having the
0-sequence6, 22, 17.

By Algorithm 1, the defining polynomial of the curve with ondéape at infinity
of the J-sequenceg(6, 22 17 as follows:

_ 2 2 5 4 3 2
f = (g5+az1x°g1) +cso0x” +canox” +caoo0x” +c200¢

+c1,10¢81F c1,008 T Co 108171 €000
where

g1 =yt 03x3 + czx2 + c1x + co,
- 3 11 10 9 8 7
82 = (g7 +awx™ ") +croox™ +cgox” +cgox® + (c7,181+ ¢7.0)x
6 5 4
+(c6,181+ c6,00x° + (c5,181F ¢5,00x° + (4,181 + ca,0)x

3 2
+(c3,181+ €3,0)x° + (c2,181+ c2,0)x° + (c1,181+ c1,0)x + €0,181 + C0,0-

This result gives us a new approach to investigate the cuitle ame place at in-
finity of the §-sequence6, 22 17 using a computer algebra system.

6.2. Computation of moduli space. Suzuki gave an algorithm generating
the list of §-sequences of curves with one place at infinity, and impléettron
a computer. From the list of-sequences obtained by Suzuki, we could get normal
forms and moduli spaces of curves with one place at infinitgefus< 100 by using
the algorithm introduced in previous section. As a resule, eould verify the result
of Nakazawa-Oka [11].

The following is the list of moduli spaces of curves with orlage at infinity for
the cases genus 30.

ExampLE 1. The case
[7,[4,6,11],[2, 15]]
means that the moduli space of the curve with one place atitinfai genus 7 and
the 5-sequence(4, 6, 11} is isomorphic to €*)? x C*°,

[1,[2,3],[1,5]1, [5,[2 11],[1,17]1, [7,13,8],[1, 1711,
[2,[25],[1,8]1, [5,[4,67],[2 11]], [7,[4,6,11],[2,15]],
[3,[27],[1,11]], [6,[2 13],[1,20]], [7,16,9,5],[2 12]],
[3,[3,4],[1,9]1, [6,[3,7],[1, 15]], [7,[8,12,3],[2,10]],
[3,[4,6,3].[2 711, [6,[4,5],[1, 14]], [7,[10,15,2],[2,9]],
[4,[2,9],[1, 14]], [6,[4,6,9],[2 13]], [7,[4,10,7],[2,13]]
[4,[3,5],[1,11]], [6,[6,94],[2 10]], [7,[6,15,2],[2,10]]
[4,[4,6,5],[2 91, [6,[4, 10,5],[2,11]], [7,[6,8,3],[2 10]],
[4,[6,9,2],[2 71, [7.[2 15],[1,23]], [7,[8,12,6,3],[3,8]],
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[2,17],[1, 26]1, [13,[18,27,6,2],[3,9]], [16,[8,20,10,9],[3,15]],
.[4,10,9],[2,15]], [14,[2,29],[1,44]], [17.[2,35],[1,53]],
,[2,19],11, 2911, [14,[5,8],[1,26]], [17,[10,15,7],[2, 22]],
,[3,10],[1, 21]7, [14,[8,20,5],[2 15]], [17,[8,20,7],[2 19]],
14,71, 11, 1911, [14,[4,14,17],[2, 25]], [17,[14,35,2],[2, 14]],

. [6,9,7],[2,15]1, [14,[4,18,13],[2, 23]], [17,[4,14,23],[2, 31]],
,[10,15,3],[2, 11]], [14,[6,8,17],[2 23]], [17,[10,35,2],[2, 15]],
[4, 10,11].[2 17]]. [14,[6,10,13],[2, 20]], [17,[4,18,19],[2, 29]],
[6, 15, 4],[2 12]], [14,[8,10,5],[2 16]], [17,[4,22,15],[2, 27]],

. [4,14, 7,2, 15]], [14,[8,12, 10, 13],[3,18]], [17.[6,8,23],[2, 2911,
16,8 71,12, 1311, [14,[8,20,10,5],[3,13]], [17,[6,10,19],[2, 26]],
,[6,10,3],[2,12]1, [15,[2, 31],[1,47]], [17,[8,12, 10, 19],[3, 24] ],
,[8,12,6,7],[3,11]1, [15,[3,16],[1,33]], [17,[8,12, 14, 15],[3, 21]],
[2,21],11,32]], [15,[4,11],[1,29]], [17,[8,20,14,7],[3,15]],
. [3,11],[1,23]], [15,[6,7],[1, 2711, [18,[2 37],[1,56]],

. [5,6],[1,20]1, [15,[6,9, 13],[2, 25]], [18,[3,19],[1,39]],
.[6,9,8],[2 171, [15,[10, 15,6],[2, 19]] [18,[4,13],[1,34]],
,[8,12,5],[2,14]], [15,[16,24,3],[2, 15]] [18,[6,9, 16],[2, 30]],
[14,21,2],[2,11]], [15,[6,15,10],[2, 21]], [18,[6,15,13],[2, 26]],
.[4,10,13],[2,19]], [15,[4,14,19],[2,27]] [18,[4,14,25],[2, 33]],
.[6,15,5],[2,13]], [15,[6,21,7],[2 18]], [18,[6,21,10],[2, 22]],
[4,14,9],[2,17]]. [15,[4,18,15],[2, 25]], [18,[4,18,21],[2 31]],

. [6,21,2],[2,13]], [15,[6,27,4],[2 18]], [18,[4,22,17],[2 29]],

. [6,8,9],[2 15]], [15,[4,22,11],[2, 23]], [18,[6,33,4],[2 21]],
.[6,10,5],[2,13]], [15,[6,8, 19],[2, 25]], [18,[4,26,13],[2, 27]],
.[8,12,6,9],[3,13]], [15,[9,12,7],[2 16]], [18,[9,12,10],[2,20]],
.[8,12,10,5],[3,11]], [15,[12,16,3],[2 12]], [18,[6,10,21],[2, 28]],
[2,23],11,35]], [15,[6,10,15],[2, 22]], [18,[6,14,13],[2, 22]],
,[10,15,4],[2, 14]], [15,[6,14,7],[2 18]], [18,[6,16,9],[2 21]],
,[4,10,15],[2, 21]], [15,[6,16,3],[2 18]], [18,[8,10,13],[2, 21]],
[4,14,11],[2,19]], [15,[12,18,9,7],[3,14]], [18,[12, 18,9, 10],[3,18]],
.[6,8,11],[2,17]]. [15, [ 16,24, 12,3],[3,10]] [18,[8,12,14,17],[3,23]],
.[8,12,6,11],[3,15]], [15,[8,12, 10, 15],[3,20]] [18,[12, 18,21, 4],[3,13]],
[2,25],[1,38]], [15,[12, 18, 15,4],[3,11]], [18,[8, 12,18, 13],[3,20]],
. [3,13], 11,2711, [15,[8, 12,14, 11],[3,17]] [18,[12, 18, 10,9],[3,15]],
14,9111, 2417, [15,[18,27,6,4],[3,11]], [18,[12, 18,8, 13],[3,17]],
05, 71,01, 2311, [15,[16,24,6,3],[3,11]], [18,[16,24,6,9],[3,14]],
,[6,9,10],[2,20]], [15,[12,16,6,3],[3,11]], [18,[8, 20,10, 13],[3, 18]],
. [4,10,17],[2, 23]], [15,[16,24,12,6,3],[4,9]], [18,[12,16,6,9],[3,14]],
.[6,15,7],[2,16]], [16,[2 33],[1,50]], [18,[16,24,12,6,9],[4,12]],
,[10,25,2],[2,12]], [16,[3,17],[1,35]], [19,[2 39],[1,59]],
[4,14,13],[2, 21]], [16,[5,9],[1,29]], [19,[3,20],[1,41]],
,[6,21,4],[2, 15]], [16,[6,9, 14],[2 27]], [19,[6,9, 17],[2 32]],

. [4,18,9],[2,19]] [16,[8,12,9],[2 23]], [19,[8, 12,11],[2, 28]],
.[6,8,13],[2,19]], [16,[12,18,5],[2,19]] [19,[10,15,8],[2 25]],
19,12, 4], [2,12]] [16, [14,21,4],[2 17]] [19,[14,21,5],[2 21]],
,[6,10,9],[2,16]] [16,[22,33,2],[2 15]], [19,[20,30,3],[2 18]],

. [12,18,9,4],[3,10]], [16,[6,15,11],[2,23]], [19,[26,39,2],[2 17]],
.[8,12,10,9],[3,14]], [16,[10, 25,4],[2, 15]] [19,[6,15,14],[2, 28]],

. [12,18,4,9],[3,12]], [16,[4,14,21],[2, 29]] [19,[4,14,27],[2, 35]],
2,271,711, 41]1, [16,[6,21,8],[2 19]], [19,[6,21,11],[2, 24]],
[3,14],[1,29]1, [16,[4,18,17],[2 2711, [19,[4,18,23],[2 33]],

. [6,9,11],[2,22]], [16,[4,22,13],[2, 25]], [19,[6,27,8],[2 2111,

. [8,12,7],[2,19]], [16,[6,33,2],[2 19]], [19,[4,22,19],[2, 31]],
,[14,21,3],[2, 14]], [16,[6,8, 21],[2 27]], [19,[4,26,15],[2, 29]],

. [18,27,2],[2, 13]], [16,[9,12,8],[2 17]], [19,[6,39,2],[2 22]],
,[4,10,19],[2, 25]], [16,[6,10,17],[2, 24]], [19,[9, 12,11],[2, 22]],
.[6,15,8],[2,18]], [16,[9,15,5],[2 15]], [19,[15,20,3],[2 13]],

. [4,14,15],[2,23]], [16,[6,14,9],[2 19]], [19,[6,10,23],[2, 30]],

. [4,18,11],[2, 21]], [16,[8,10,9],[2 18]], [19,[9,15,8],[2 18]],

. [6,27,2],[2, 16]]. [16,[12,18,9,8],[3,15]], [19,[12,20,3],[2, 14]],
,[6,8,15],[2,21]], [16,[8,12,10,17],[3, 22]1, [19,[6, 14, 15],[2, 24]],
.[6,10,11],[2,18]], [16,[12, 18, 15,5],[3,12]], [19,[6,16,11],[2, 22]],
.[6,14,3],[2,16]], [16,[8, 12,14, 13],[3,19]], [19,[6,20,3],[2, 2211,
,[8,12,10,11],[3, 1617, [16.[8 12.18.9],[3, 17]], [19,[8,10,15],[2, 23]],

. [8,12,14,7],[3,14]], [16, [12, 18, 10, 5],[3, 13]1, [19,[12,18,9,11],[3,20]],
[12,18,4,11],[3,14]], [16,[12,18,8,9],[3,14]], [ 19, [20, 30, 15, 3], [3, 11]],
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[24,[18,45,6,4],[3,14]], [26,[14,35,5],[2 21]],
[24,[8,28,18,9],[3,20]], [26,[10,45,4],[2, 21]],
[24,[12, 16, 14,13],[3,18]], [26,[4,22,33],[2, 45]],
[24,[12, 16, 18,9],[3, 18]], [26,[4,26,29],[2 43]],
[24,[16,24,12,18,9],[4,16]], [26,[4,30,25],[2, 41]],
[24,[16,24,12,14,13],[4,16]],[26, [4, 34, 21] ,[2, 39]],
[25,[2 51],[1,77]], [26,[6,14,29],[2, 38]],
[25,[3,26],[1,53]], [26,[6,16,25],[2 35]],
[25, 6, 11],[1,41]], [26,[8,10,29],[2 3711,
[25,[8,12,15],[2,37]], [26,[10,14,5],[2, 24]],
[25,[10,15,11],[2, 33]], [ 26, [ 20, 30, 25, 4], [3,13]],
[25,[18,27,5],[2 25]], [26,[8,12,18,29],[3,36]],
[25,[26,39,3],[2 22]], [26,[8,12, 22, 25],[3,33]],
[25,[34,51,2],[2 21]], [ 26, [ 30, 45, 10, 4], [ 3, 14] ],
[25,[6,15,20],[2, 38]], [ 26, [12, 18, 10, 25] , [ 3, 30] ]
[25,[6,21,17],[2, 34]], [ 26, [16, 24, 10, 13] , [ 3, 19]
[25,[10,35,6],[2 21]], [ 26, 8,20, 14, 25],[3, 31]],
[25,[4,18,35],[2 45]], [ 26, [8,20,18,21],[3,28]],
[25,[6,27,14],[2, 30]], [ 26, 8,20, 26, 13],[3, 24]],
[25,[4,22, 31],[2 43]], [26,[8,28,18,13],[3,22]],
[25,[6,33,11],[2, 27]], [ 26, [ 16, 24, 20, 10, 13] , [ 4,
[25,[4,26,27],[2 41]], [27,[2 55],[1,83]],
[25,[6,39,8,[2 2711, [27,[3,28],[1,57]],
[25,[4,30,23],[2 39], [27,[4,19],[1,49]],
[25,[4,34,19],[2 37]], [27,[7,10],[1,43]],
[25,[6,51,2],[2 28], [27,[10,15,12],[2, 36]],
[25,[9, 12,17],[2, 32]] [27,[28,42,3],[2 23]],

[ 25, [15,20,6],[2, 18]] [27,16,15,22],[2, 41]],
[25,[9, 15,14],[2, 27]], [27,[12,30,7],[2 24]],
[25,[6,14,27],[2, 36]], [27,[22,55,2],[2 18]],
[25,[6,16,23],[2 33]], [27,[6,21,19],[2, 37]],
[25,[6,20,15],[2, 28], [27,[8,28,11],[2, 28]],
[25,[6, 22, 11],[2, 27]], [27,[10,35,7],[2 23]],
[25,[6,26,3],[2 28], [27,16,27,16],[2,33]],
[25,[8,10,27],[2 35]], [27,[4,22,35],[2 47]],
[25,[12, 15,8],[2, 20]], [27,[6,33,13],[2, 30]],
[25,[8,14,15],[2, 26]], [27,[10,55,2],[2 21]],
[25,[10, 12, 11],[2, 24]], [27,[4,26,31],[2 45]],
[25,[12, 18,9, 17],[3,30]], [27,16,39,10],[2,29]],

[ 25, [ 20, 30, 15, 6], [ 3, 16]], [27,[4,30,27],[2 43]],
[25,[12, 18, 15,14],[3,25]], [27,[4, 34,23],[2 41]],
[25,[12,18,21,11],[3,21]], [27,[6,51,4],[2 30]],
[25,[8,12, 18, 27],[3, 34]], [27,[4,38,19],[2 39]],
[25,[12, 18,27,8],[3,18]], [27,19,12,19],[2,35]],
[25,[8,12,22,23],[3, 31]], [27,[12, 16,11],[2, 26]],

[ 25, [18, 27,6, 14],[3, 23]], [27,[15,20,7],[2 20]],
[25,[12, 18,10, 23],[3,28]], [27,[21,28,3],[2 15]],
[25,[18,27,15,5],[3, 14]], [27,19, 15, 16],[2,30]],
[25,[18,27,12,8],[3, 15]], [27,[6,14,31],[2, 40]],
[25,[12, 18, 14,15],[3,22]], [27,[9,21,10],[2, 23]],

[ 25, [ 16, 24, 6, 23], [ 3, 26]], [27,[12,28,3],[2 18]],

[ 25, [ 20, 30, 6, 15], [ 3, 18]], [27,16,16,27],[2 3711,
[25,[12,30,15,8],[3,17]], [27,16,20,19],[2, 31]],
[25,[8,20,14,23],[3,29]], [27,16,22,15],[2,30]],
[25,[8,20,18,19],[3, 26]], [27,16,28,3],[2 30]],
[25,[8,20,22,15],[3, 24]], [27,[8,10,31],[2, 39]],
[25,[12,30,10,11],[3,17]1], [27,[12,15,10],[2, 22]]
[25,[12, 30,8, 15],[3,19]], [27,[8, 14,19],[2,29]],
[25,[8,28, 14, 15],[3, 22]], [27,[10,12,15],[2, 26]],
[25,[12, 16, 14,15],[3,20]], [27,[10,14,7],[2, 25]],
[25,[12,20,10,11],[3,17]1], [27,[16,24,12,11],[3, 24]
[ 25, [ 16, 24, 12, 14, 15], [ 4, 18] ], [ 27, [ 20, 30, 15, 7] , [ 3, 18] ]
[26,[2 53],[1,80]], [27,[28,42,21,3],[3, 13]]
[26,[5, 14],[1,44]], [27,[12, 18, 15, 16], [ 3, 28] ]
[ 26, [22,33,4],[2, 24]], [27,[12, 18, 21,13], [ 3, 24] ]
[26,[8,20,13],[2 32]], [27,[8,12,18,31],[3,38]],
[26,[10,25,9],[2 27]], [27,[12, 18, 27,10],[3, 21]],
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[27,

[ 27,
[27,
[27,
[ 27,
[ 27,
[ 27,
[27,
[27,
[27,
[ 27,
[27,
[27,
[27,
[ 27,
[ 27,
[27,
[27,
[27,
[27,

127,
[27,
[27,
[ 27,
[ 27,
[ 27,
[27,
[27,
[27,]
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[28,[
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,

[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,
[ 28,

[8, 12,22, 27],[
[18,27,6,16], [
[12, 18,
[ 18, 27,
[12,18,
[12,18,
[ 16, 24,
[ 20, 30, 6,
[28, 42,6,
[12, 30, 15, 10]
[8, 20,14, 271, [

[12,30,21,7],[

(8,20, 18, 23], [3 30
[12, 30,27, 4], [

[8, 20,22 19],[

[12, 30, 10, 15]
[12,30,14,7],[3
[12,30,8,19], [
(8,28, 14, 19], [
[8, 28,22 11],[
[12, 16,
[12, 16,
[12, 16,
[12, 20,
[12, 28,
[ 16, 24,
[ 16, 24,
[ 16, 24,
16, 24,
[2 57],[1,
[3,29],[1,
[8,9],[1,44]]
[8,12,17],

3

3

2

2
[10,12,17],[2,
[12, 18, 15, 17],
[ 16, 24,20, 9], [
[12, 18, 21, 14]
[8, 12,18, 33],[
[8, 12,22, 29], [
[12, 18,33, 8], [
[18,27,6,17],[
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. [24,36,8,9],[3,19]], [29,[16,24,14,7],[3,20]] [30,[8, 18, 13] [2, 2917,
,[12,18,10,29],[3,34]], [29,[20,30,6,23],[3, 25]] [30,[10,12,21],[2, 31]],
,[12,18, 14, 21],[3,27]], [29,[20, 30,8, 15],[3,20]] [30,[10,16,5],[2 2711,
,[12,18,16,17],[3,25]], [29,[8,20,18,27],[3,34]] [30,[16, 24,12, 13],[3,28]],
,[12,18,20,9],[3,22]], [29,[8, 20,22, 23],[3,31]] [30,[28,42, 21,4],[3,15]],
.[24,36,9,8],[3,15]], [29,[8,20,30,15],[3,27]] [30,[12,18,15,19],[3,33]],
,[16,24,10,17],[3,22]], [29,[12,30,8,23],[3,26]] [30, [ 20, 30, 25, 6], [ 3, 16] ],
,[20, 30, 6,21],[3,23]1], [29,[8, 28,14, 23], [ 3, 29] ] [30,[12, 18, 21, 16], [3, 28] ],
,[30,45,6,8],[3,16]], [29,[8, 28,22 15],[3,25]], [30,[12, 18,27, 13],[3, 24]],
,[12,30,21,8],[3,18]], [29,[12, 16,14, 23],[3,27]], [30,[8,12,22,33],[3,41]],
[8,20,18,25],[3,32]], [29,[16, 24,12, 14, 23],[4, 25]],[30, [ 12, 18, 33, 10], [ 3, 22]],
[8, 20,22, 21],[3,29]], [ 29, [16 24,28,14,7],[4,15]], [30,[30, 45,10, 6],[3,17]],
[8,20,26,17],[3, 2711, [30,[2, 61].[L 92]], [30,[18,27,15,10],[3,19]],
[12,30,10,17],[3,21]], [30,[3,31],[1,63]], [30,[18,27,12,13],[3,21]],
.[18,45,6,8],[3,17]], [30,[4,21],[1,54]], [30,[12, 18, 14, 25],[3,31]],
,[12,30,8,21],[3,24]], [30,[5,16],[1,50]], [30,[12, 18,16, 21],[3, 28] ],
,[8,28,14,21],[3,27]1, [30,[6,13],[1,48]], [30,[12,18,22,9],[3,24]],
,[8,28,18,17],[3,25] ], [30,[7,11],[1, 4711, [ 30,16, 24, 10, 21], [3, 25] ],
.[8,36,18,9],[3,22]], [30,[6,15,25], 2, 46]], [30,[ 20,30, 6, 25],[3, 2711,
,[18,24,9,8],[3,15]], [30,[10,25,11],[2, 32]], [30, 30,45, 6,10],[3,18]],

. [12,16, 14, 21],[3,25]], [30,[16,40,5],[2,22]], [30,[28,42,6,9],[3,17]],
,[12,16,18,17],[3,23]], [30,[18,45,4],[2, 21]], [30,[28,42 4,21],[3,22]],
,[18,24,8,9],[3,15]], [30,[6,21,22],[2 42]], [30,[12, 30,15, 13], [3, 22]],
,[12,20,10,17],[3,21]], [30,[8,28,13],[2,32]], [30,[ 16, 40, 20, 5], [ 3, 15] ],
,[12,20,18,9],[3,18]], [30,[14, 49, 4],[2 21]], [30,[12,30,21,10],[3,19]],
.[24,36,18,9,8],[4,13]], [30,[6,27,19],[2 38]], [30.[8, 20, 18, 29] , [ 3, 36] ],
,[16, 24,12, 18,17] , [ 4, 21]], [ 30, [ 10, 45, 6], [ 2, 24] ], [30,[8, 20,22, 25],[3,33]],
,[16, 24,12, 14,21] , [ 4, 23]],[30, [ 4, 22, 41], [ 2, 53] ], [30,[12,30,33,4],[3,19]],
.[24,36,18,8,9],[4,13]], [30,[6,33,16],[2,34]], [30,[8, 20, 26,21],[3,30]],
,[16, 24, 20, 10,17] , [ 4,19]1,[ 30, [4, 26,37],[2,51]], [30,[12, 30,10, 21],[3, 24] ],
,[16, 24, 20, 18,9],[4, 16]], [30,[6,39,13],[2,32]], [30,[18,45,6,10],[3,19]],
,[24,36,8,18,9],[4, 15]], [30,[4,30,33],[2 49]], [30,[12, 30, 14, 13], [3, 20] ],
,[2,59],[1, 891, [30,[6,45,10],[2, 32]], [30, [ 18,45, 12, 4], [ 3, 14] ],
,[10,15,13],[2,39]1, [30,[4,34,29],[2 47]], [ 30,16, 40, 10, 5], [ 3, 16] ],
[16,24,7],[2 32]], [30,[4,38,25],[2 45]], [30,[8, 28,14, 25],[3,31]],
[8,20,15],[2 3711, [30,[6,57,4],[2 33]], [30,[12, 42,21, 4],[3,17]],
[14,35,6],[2, 24]], [30,[4,42,21],[2, 43]], [30,[8,28,18,21],[3,28]],
[10,35,8],[2, 25]], [30,[9,12,22],[2, 40]], [30,[8,28,26,13],[3,25]],
[4,22,39],[2 51]], [30,[12,16,13],[2, 30]], [30,[8,36,18,13],[3, 24]],
[4,26,35],[2 49]], [30,[21,28,4],[2 17]], [30,[12, 16, 14, 25], [3,29]],
[4,30,31],[2 4711, [30,[9,15,19],[2 35]], [30,[12, 16,22, 17],[3, 24]],
[4,34,27],[2 45]], [ 30, [15,25,6],[2 19]], [30,[12, 16, 18, 21],[3, 26]],
[4,38,23],[2 43]], [30,[6,14,37],[2, 46]], [30,[12, 16, 26, 13], [3, 23] ],
[15,20,8],[2, 23]], [30,[9,21,13],[2 26]], [30,[18,24,8,13],[3,17]],
[6,14,35],[2 44]], [30,[6,16,33],[2 43]], [30,[12,28,6,9],[3,19]],
[6,16,31],[2 41]], [30,[6,20,25],[2 37]], [ 30,16, 20, 10, 5], [ 3, 17]],
[6,20,23],[2 35]], [30,[6,22,21],[2 34]], [30,[16, 24,12, 18, 21], [ 4, 24] ],
[8,10,35],[2 43]], [30,[6,26,13],[2 32]], [30,[16, 24,12, 14, 25], [ 4, 27]],
[8,14,23],[2 33]], [30,[6,28,9],[2 32]], [30,[16,24,12,22,17],[4, 22]],
[ 20, 30,15, 8], [3, 21]], [30,[8,10,37],[2 45]], [ 30,24, 36, 18, 8,13], [ 4, 15] ],
[16,24,28,7],[3,17]], [30,[12,15,13],[2, 25]], [30,[24,36,8,18,13],[4, 17]],
[8,12,18,35],[3,42]], [30,[16,20,5],[2 18]], [ 30, [ 16, 40, 20, 10, 5], [ 4, 14] ]
[8,12, 22, 31],[3,39], [30,[8, 14, 25],[2, 35]],

[12,18,14,23],[3,29]], [30,[12, 21,4],[2, 21]],
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