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1. Introduction

Let be an irreducible algebraic curve in complex affine planeC2. We say that
has one place at infinity, if the closure of intersects with the∞-line in P2 at

only one point and is locally irreducible at that point .
The problem of finding the canonical models of curves with oneplace at infin-

ity under the polynomial transformations of the coordinates of C2 has been studied by
many mathematicians since Suzuki [17] and Abhyankar-Moh [2] proved independently
that the canonical model of is a line when is non-singular andsimply connected.
Zaidenberg-Lin [19] proved that has the canonical model of type = , where
and are coprime integers> 1, when is singular and simply connected. A’Campo-
Oka [5] studied the case of genus≤ 3 as an application of a resolution tower of
toric modifications. For the case ≤ 4 Neumann [12] studied from the viewpoint
of the link at infinity, and Miyanishi [9] studied from the algebrico-geometric view-
point. Nakazawa-Oka [11] gave the classifications of all thecanonical models for the
case ≤ 7 using the result of A’Campo-Oka, and gave the classifications for the case
≤ 16 without proof. Jaworski [8] studied normal forms of irreducible germs of func-

tions of two variables with given Puiseux pairs. Oka [14, 15]gave the normal form of
plane curves which are locally irreducible at the origin andwith a given sequence of
weight vectors corresponding to the Tschirnhausen-good resolution tower, and showed
that the moduli space of such curves is of the form (C∗) × C . Furthermore, Oka
translated this result to the case of affine curves with one place at infinity.

Also, Abhyankar-Moh [1, 3, 4] investigated properties ofδ-sequenceswhich are
sequences of pole orders ofapproximate rootsof . This result is called Abhyankar-
Moh’s semigroup theorem. Sathaye-Stenerson [16] proved that if a sequence of nat-
ural numbers satisfies Abhyankar-Moh’s condition then there exists a curve with one
place at infinity of theδ-sequence . Suzuki [18] made it clear the relationship be-
tween theδ-sequence and the dual graph of the minimal resolution of thesingularity
of the curve at infinity, and gave an algebrico-geometric proof of semigroup theo-
rem and its inverse theorem due to Sathaye-Stenerson.

In this paper, we develop Suzuki’s result and give an algebrico-geometric proof of
Oka’s result (Theorem 7 and Corollary 1). We shall also give an algorithm to compute
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the normal form and the moduli space of the curve with one place at infinity from a
given δ-sequence1.

Our construction method of normal forms is different from [8, 14, 15] in the fol-
lowing respects. First, this method usesδ-sequences generating semigroups of affine
plane curves with one place at infinity. Second, this method directly generates defin-
ing polynomials at the origin of curves with one place at infinity.

2. Preparations

In this section, we introduce some definitions and facts which is needed to de-
scribe our theorem.

Let be a curve with one place at infinity defined by a polynomialequation
( ) = 0 in the complex affine planeC2. Assume that deg = , deg =

and = gcd( ). By the consideration of the Newton boundary, we can get

( ) = ( + ) +
∑

α+ β<

αβ
α β

where , ∈ C∗, = and = . By a finitely many times of the coordinate
transformations of the form

{
1 =

1 = +

and the exchange of the coordinates and , we can reduce the polynomial into
one of the following two types:
(A) = 1, = 0
(B) = , = , gcd( ) = 1, > > 1.
A curve of type (A) is a line. We call the curve of type (B)non-linearlizable. In this
paper, we shall consider only the curves of the type (B) from now on. The closure
of in the projective planeP2 passes through the intersection point of the∞-line

and the line = 0 by the assumption> .
Let us denote by 0 the (−1)-curve appeared by the blowing-up of the point ,

and continue to denote the proper transform of by the same character . Let be
the natural number satisfying < < ( + 1) . If = 1, then the proper transform
of is tangent to , or else is tangent to0.

1The computer calculation by our algorithm verified the result of Nakazawa-Oka [11].
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blowing-up

0

In case > 1, after further − 1 times of the blowing-ups of the point at infinity
of the curve , the proper transform of is tangent to the (−1)-curve 1 obtained
by the last blowing-up. (In case = 1, we set1 = .)

0 1

blowing-ups

Thus we get a compactification ofC2 with the boundary curve of which the dual
graph is of the following form:

− −1−1 −2−2−2

0 1

By − 1 times of the blowing-downs of the (−1)-curve on the right hand side
from of the above dual graph, we get the following dual graph:

− 0

0 1

.

Let ( 1 0∪ 1) be the compactification ofC2 thus obtained.
The intersection point of 0 and 1 is the indetermination point of . Now, we

blow up from the surface 1 the indetermination points of successively, until the in-
determination points of disappear. Let be the surface thus obtained. We denote
the proper transform in of 0 (resp. 1) by the same character0 (resp. 1). Let

(2 ≤ ≤ ) be the proper transform in of the (−1)-curve obtained by the
( − 1)-th blowing-up. Furthermore, we set =0 ∪ 1 ∪ · · · ∪ .

The following theorem about the compactification ( ) ofC2 is very impor-
tant for the classification problem of the curves with one place at infinity.
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Theorem 1 ([18]). (i) The dual graph ( ) of has the following form:

0

1

1 2

2

(ii) is non-constant only on and has the pole on− .
(iii) The degree of on is1.
(iv) is the unique(−1)-curve in .

Note. There is a small gap in the proof of (i) described in [18]. Let (resp. ,
) be the union of the components of on which = 0 (resp. =∞, =non-

constant). Let be the union of the other components of . From the proof of (i)
described in [18], we know that and are both connected and = . Here, since

is non-zero constant on , does not intersect and . If6= ∅, then inter-
sects only . But since ( = ) is the last (−1)-curve on , the relations of inter-
section among , , and is one of the following two types:

(I) — — (II) — — .
If 6= ∅, then we get the contradiction as it is described in [18]. Thesimilar argument
applies to the case of 6= ∅. Thus we get =∅ and =∅. As a consequence, ( )
has the above form.

In ( ), let 1 2 . . . (resp. 0 1 . . . ) be the indices of the branch ver-
tices (resp. the terminal vertices) from the left hand side,where 0 = 0 and 1 = 1. Let

be the surface obtained by the blowing-down of ,−1 . . . +1 from .
For (0 ≤ ≤ ), we shall continue to denote by the proper transform of
in . Further, we set = 0 ∪ 1 ∪ · · · ∪ . We shall call the pair ( )
the compactification ofC2 obtained by theminimal resolutionof the singularity of
at infinity. We set =

⋃
−1< ≤ for each (1≤ ≤ ) like the following figure,

where 0 = −1.

1 2

1 2

0

1 2
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DEFINITION 1 (δ-sequence). Letδ (0 ≤ ≤ ) be the order of the pole of
on . We shall call the sequence{δ0 δ1 . . . δ } the δ-sequenceof (or of ).

We have the following fact since deg = and deg = .

Fact 1. δ0 = , δ1 = .

DEFINITION 2 (( )-sequence). Now, we assume that the weights of is of
the following form:

−1 +1

− 1− −1−

− 1

− −1

−

We define the natural numbers , , , satisfying

( ) = 1 ( ) = 1 0< < 0< <

= 1−
1

2−
1

3− . . . − 1

and = 1 −
1

2 −
1

3− .. . − 1

We shall call the sequence{( 1 1) ( 2 2) . . . ( )} the ( )-sequenceof
(or of ).

We shall assume that ( ) is monic in . We define approximate roots by
Abhyankar’s definition.

DEFINITION 3 (approximate roots). Let ( ) be the defining polynomial, monic
in , of a curve with one place at infinity. Let{δ0 δ1 . . . δ } be theδ-sequence of .
We set = deg , = gcd{δ0 δ1 . . . δ −1} and = / (1≤ ≤ +1). Then, for
each (1≤ ≤ + 1), a pair of polynomials ( ( )ψ ( )) satisfying the follow-
ing conditions is uniquely determined:
(i) is monic in and deg = ,
(ii) deg ψ < − ,

(iii) = + ψ .
We call this the -th approximate rootof .
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We can easily get the following fact from the definition of approximate roots.

Fact 2. We have

1 = +
⌊ / ⌋∑

=0

+1 =

where ∈ C, = deg / , = deg / , = gcd
{

deg deg
}

and ⌊ / ⌋ is
the maximal integer such that≤ / .

DEFINITION 4 ( -sequence). The sequence of polynomials0 := , 1 . . . +1 is
called the -sequenceof .

Here, we denote by the curve defined by ( ) = 0 inC2. The following
theorem about plays a vital role in the main theorem.

Theorem 2. For each (0 ≤ ≤ ), is also with one place at infinity. Fur-
ther, its closure in intersects transversely , and does not intersect other
irreducible components of .

Suzuki [18] gave the algebrico-geometric proof of this theorem. We get the fol-
lowing theorem as a corollary of the above theorem.

Theorem 3. For each (0≤ ≤ ), has the pole of orderδ on .

The following lemma about approximate roots will be used in Theorem 6.

Lemma 1. Let be the defining polynomial, monic in , of a curve with one
place at infinity. Let{δ0 δ1 . . . δ } be theδ-sequence of , and 0 1 . . . +1

be the -sequence of . Then, (0≤ ≤ − 1) is also the -th approximate root of
for any with < < + 1.

Proof. For example, see Proposition 2.2 in [5].

3. Intersection matrix and successive blow-up

Let be a non-singular projective algebraic surface over complex number field,
and be an algebraic curve on . We shall assume that1, 2 . . . are irre-
ducible components of , and denote by the intersection matrix (( · )) =1 ...

of . The following lemma about the intersection matrix is well-known by Mumford.

Lemma 2. is an exceptional set if and only if is negative definite.
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Let ′
1 be the (−1)-curve appeared by blowing-up at a point0 on a surface ,

and let 1 be a point on ′
1. For (≥ 1), let ′

+1 be the (−1)-curve appeared by
blowing-up at a point , and let +1 be the point on ′

+1. We get{ } =0 ... and
{ ′} =1 ... by the above finite operations. In this paper we call this finite sequence of
blowing-ups asuccessive blow-up from0. Let ′ be the surface obtained by a suc-
cessive blow-up from 0. For (1 ≤ ≤ ), we shall continue to denote by ′ the
proper transform of ′ in ′. Further, we set ′ =

⋃
=1

′ and ′ = det(− ′ ). We
have the following fact since ′ is invariant under the successive blow-up.

Fact 3. ′ = 1.

The following lemma is Lemma 1 in [18]. Here, we describe it because it is used
many times in the next section.

Lemma 3. Let 1, 2 . . . , +1 be the irreducible components of and as-
sume that the dual graph ( ) is of the following linear type:

1 2 +1

− 1 − 2 −
( ≥ 2).

Assume further that there exists a holomorphic function on aneighborhood of⋃
=1 such that the zero divisor( ) of on is written in the following form:

∑

=1

+ +1 +1∩

Let ( +1) be the coprime integers defined by the following continued fraction:

+1 = −
1

−1 − . . . − 1

1

(1≤ ≤ )

Then, = 1 (1≤ ≤ + 1).

Now, consider a pair of natural numbers ( ) with gcd( ) = 1,> > 0.
We can easily show that there exists a unique pair of natural numbers ( ) with −
− = 1, 0< < , 0< < .
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We consider the following continued fractions for the abovementioned , , , :

= 1−
1

2−
1

3− .. . − 1

= 1−
1

2 −
1

3 − . . . − 1

where ≥ 2 and ≥ 2.
Let ( ) be the local coordinate for the neighborhood of a pointon which

has as the origin. Then,

Lemma 4. we can construct a exceptional curve with the following weights by
a successive blow-up from .

-axis -axis
−1− − −1 − 1 − 1 − −1 −

Proof. We consider the curve defined by + = 0. The resolution graph at
origin of is as follows:

-axis -axis

′ ′
−1

′
1 1 −1

−1− ′ − ′
−1 − ′

1 − ′
1 − ′

−1 − ′

Let be the intersection matrix of the exceptional curve corresponding to
the above dual graph. Here, we set

′

′ = ′
1−

1

′
2− . . . −

1
′

′

′ = ′
1−

1

′
2 − . . . −

1
′

We get det(− ) = ′ ′− ′ ′− ′ ′. On the other hand, is the exceptional curve ob-
tained by a successive blow-up from origin. Therefore, we get det(− ) = 1 by Fact 3.
Thus ′ ′ − ′ ′ − ′ ′ = 1.

As the above dual graph, let (1≤ ≤ ), , ′ (1≤ ≤ ) be the irreducible
components of . We denote byµ (1≤ ≤ ) the zero order of the function on
and byµ the zero order of the function on . Also, we denote byν (1≤ ≤ )
the zero order of the function on ′ and by ν the zero order of the function
on . Since =µ and µ = 1, we get ′ = µ /µ = by Lemma 3. As the same
way, we get = ′. Thus − ′ − ′ = 1. Further, it must be =′, = ′, since
0 < ′ < and 0< ′ < . Therefore, we get = , ′ = (1 ≤ ≤ ), = ,
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′ = (1 ≤ ≤ ) by the uniqueness of the expansion into continued fraction. As
a result, the assertion was proved.

4. Construction of a curve with one place at infinity

We setN = { ∈ Z | ≥ 0} and C∗ = C \ {0}. The following theorem about
δ-sequence and ( )-sequence is called Abhyankar-Moh’s Semigroup Theorem.

Theorem 4 (Abhyankar-Moh). Let be a non-linearlizable affine plane curve
with one place at infinity. Let{δ0 δ1 . . . δ } be the δ-sequence of and
{( 1 1) . . . ( )} be the( )-sequence of . We set = gcd{δ0 δ1 . . . δ −1}
(1≤ ≤ + 1). We have then,
(i) = / +1, +1 = 1 (1≤ ≤ ) ,

(ii) +1 =

{
δ1 ( = 1)

−1δ −1 − δ (2≤ ≤ )
,

(iii) δ ∈ Nδ0 + Nδ1 + · · · + Nδ −1 (1≤ ≤ ) .

The following theorem gives the converse of the above theorem.

Theorem 5 (Sathaye-Stenerson [16]).Let {δ0 δ1 . . . δ } ( ≥ 1) be the se-
quence of + 1 natural numbers. We set = gcd{δ0 δ1 . . . δ −1} (1 ≤ ≤ + 1)
and = / +1 (1 ≤ ≤ ). Furthermore, suppose that the following conditions are
satisfied:
(1) δ0 < δ1,
(2) ≥ 2 (1≤ ≤ ),
(3) +1 = 1,
(4) δ < −1δ −1 (2≤ ≤ ),
(5) δ ∈ Nδ0 + Nδ1 + · · · + Nδ −1 (1≤ ≤ ).

Then, there exists a curve with one place at infinity of theδ-sequence{δ0 δ1 . . .

δ }.

Suzuki [18] gave an algebrico-geometric proof of the above two theorem by
the consideration of the resolution graph at infinity.

DEFINITION 5 (Abhyankar-Moh’s condition). We shall call the conditions (1)–(5)
concerning{δ0 δ1 . . . δ } in Theorem 5Abhyankar-Moh’s condition.

Theorem 6. Let {δ0 δ1 . . . δ } ( ≥ 1) be the sequence of+ 1 natural num-
bers satisfying Abhyankar-Moh’s condition. Set = gcd{δ0 δ1 . . . δ −1} (1 ≤ ≤

+ 1) and = / +1 (1≤ ≤ ). Then,
(i) the defining polynomial , monic in , of a curve with one place at infinity of
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the δ-sequence{δ0 δ1 . . . δ } has the following form using the approximate roots

0 1 . . . of :

= + ᾱ0ᾱ1···ᾱ −1
ᾱ0
0

ᾱ1
1 · · ·

ᾱ −1

−1 +
∑

(α0 α1 ... α )∈
α0α1···α

α0
0

α1
1 · · · α

where ᾱ0ᾱ1···ᾱ −1 ∈ C∗, α0α1···α ∈ C, (ᾱ0 ᾱ1 . . . ᾱ −1) is the sequence of non-
negative integers satisfying

−1∑

=0

ᾱ δ = δ ᾱ < (0< < )

and

=

{
(α0 α1 . . . α ) ∈ N +1

∣∣∣∣∣α < (0< < ) α < − 1
∑

=0

α δ < δ

}

(ii) Conversely, let be the defining polynomial, monic in , of a curve with one
place at infinity of theδ-sequence{δ0/ δ1/ . . . δ −1/ }, and 0, 1 . . . −1

be the approximate roots of . For any non-zero complex numberᾱ0ᾱ1···ᾱ −1 corre-
sponding to the sequence of non-negative integers(ᾱ0 ᾱ1 . . . ᾱ −1) satisfying

−1∑

=0

ᾱ δ = δ ᾱ < (0< < )

and any complex numbersα0α1···α corresponding to the sequences of+ 1 non-
negative integers(α0 α1 . . . α ) satisfying

∑

=0

α δ < δ α < (0< < ) α < − 1

we consider

= + ᾱ0ᾱ1···ᾱ −1
ᾱ0
0

ᾱ1
1 · · ·

ᾱ −1

−1 +
∑

(α0 α1 ... α )∈
α0α1···α

α0
0

α1
1 · · · α

where

=

{
(α0 α1 . . . α ) ∈ N +1

∣∣∣∣∣α < (0< < ) α < − 1
∑

=0

α δ < δ

}

Then, the curve defined by = 0 is a curve with one place at infinity of the
δ-sequence{δ0 δ1 . . . δ }, and has the approximate roots0, 1 . . . .
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Proof of Theorem 6. We shall prove (i). By the procedure described in the proof
of Proposition 10 in [18], using the approximate roots0, 1 . . . of and the set
of + 1 non-negative integers (α0 α1 . . . α ) with max{∑ =0α δ } = δ , we can
write as follows:

=
∑

α < (1≤ ≤ )

α0α1···α
α0
0

α1
1 · · · α + α0α1···α ∈ C

Here, we suppose = + −1. We have deg −1 = ( − 1) = deg − =
− . But this is a contradiction, since is -th approximate root of . Thus we

get α < − 1. By Theorem 4(iii) and the uniqueness of{α } =0 ... (e.g., Lemma 7
in [18]), we have{ᾱ } =0 ... −1 with

∑ −1
=0 ᾱ δ = δ . As a result, (i) was proved.

We shall prove (ii).

CASE = 1. Setδ0 = and δ1 = . We can write as follows:

= + +
∑

α+ β<

αβ
α β ∈ C∗

αβ ∈ C

The curve defined by = 0 has one place at infinity of theδ-sequence{ } by the
consideration of Newton boundary.

CASE ≥ 2. Setδ / = δ̃ (0≤ ≤ − 1). We denote by the curve defined
by = 0 for each with 0≤ ≤ . Further, we shall denote by (˜ ˜ ) the com-
pactification ofC2 obtained by the minimal resolution of at infinity. Let˜ be the
proper transform of on˜ and ˜ be the irreducible components of˜ . (The way
of numbering about indices is same as Section 2.) By Theorem 2, ˜ has one place at
infinity and intersects transverselỹ (0≤ ≤ − 1).

Let be the intersection point of̃ and ˜
−1. Set = −1δ −1− δ . ( > 0

since Abhyankar-Moh’s condition (4).) We have gcd( ) = 1 fromgcd( δ ) =

+1 = 1 and get a unique pair of natural numbers ( ) with − − =
1 0< < 0 < < . We define{ } =1 ... { } =1 ... using the following
expansion into continued fractions by , , , :

= 1−
1

2−
1

3− . . . − 1

= 1 −
1

2 −
1

3− .. . − 1

By Lemma 4, we can obtain the following branch such that intersects
transversely using the successive blow-up from :
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−1

−1− − −1 − 1 − 1 − −1 −
.

Let be the surface thus obtained, be the total transform of˜ on . We denote
by (resp. ) the proper transform of̃ (resp. ˜ ).

Set = gcd{δ0 δ1 . . . δ −1} (1 ≤ ≤ + 1) and = / +1 (1 ≤ ≤ ).
By Theorem 3, has the pole of orderδ̃ on

−1 for each (0≤ ≤ − 1). Thus
has the pole of order̃δ on and of order δ̃ (= δ ) on . On the other hand,
has the pole of orderδ on . In fact, we can write on a neighborhood of

as follows:

=
−1δ̃ −1

× (non-const)

Hence has the pole of order (−1δ̃ −1) − on . This value is equal toδ
by the assumption of .

Now, we consider the curve defined by = 0. Setφ = − and =φ/ .
Since the both of andφ has the pole of order δ on , is non-constant or
constant(6= 0) on .

Let (resp. ) be the closure of the connected component of− which con-
tains 0 (resp. ). Let be the pole divisor of on , and be its restriction
to . Here, let 1 be the irreducible component of intersecting . Since has
the pole of orderδ on , we have ( · 1) < 0. Also, since ( · ) = 0 for any

with 6= 1, using Proposition 2 in [6], the intersection matrix of is nega-
tive definite. Thus it follows that is exceptional set. is holomorphic on since
∩ = ∅. On the other hand,

deg α0
0

α1
1 · · · α

=
∑

=0

α =
∑

=1

α

= α1 + α2 1 + α3 2 1 + · · · + α −1 · · · 1

< ( 1 − 1) + ( 2− 1) 1 + ( 3− 1) 2 1 + · · · + ( − 1) −1 · · · 1

= −1 · · · 1 − 1

< −1 · · · 1 = = deg

Therefore, we get degφ < deg . Hence, = 0 on 0. Further, = 0 on , since
is compact. As a result, it must be that is non-constant on .

Let be the pole divisor of on . We denote by1, 2 . . . the ir-
reducible components of in order from the component intersecting . Since
has the pole on 1 and , the support of is ∪ and we can write =
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+
∑

=1µ (µ > 0). By

−
1

−1− .. . −
1

1

= ′

and Lemma 3, we getµ1 = , whereµ1 is the pole order of on 1. Hence,
µ1 = 1. This implies that is a rational function of degree 1 on . Therefore,
the curve defined by =−1 intersects transversely at only one point. Since the
curve =−1 coincides with , we get

( · ) =

{
1 ( = )
0 ( 6= )

As a result, has one place at infinity.
We have = on , since = 0 on . Hence, has the pole of the same

order as on each irreducible component of . In particular, has the pole of or-
der δ̃ = δ on each (0≤ ≤ − 1). Since is non-constant on ,
has the pole of the same order as on . Since the value of its poleorder is
δ , using Lemma 3, it follows that has the pole of orderδ on . Consequently,
{δ0 δ1 . . . δ } is the δ-sequence of .

Finally, we show that 0, 1 . . . are the approximate roots of . By

deg α0
0

α1
1 · · · α

= 0α0 + 1α1 + · · · + α

≤ 1( 1− 1) + 2( 2− 1) + · · · + −1( −1 − 1) + ( − 2)

= − 1 + − < −

is -th approximate root of . Therefore, by Lemma 1,0, 1 . . . are the ap-
proximate roots of .

The following theorem is the main theorem in this paper, and is obtained by using
Theorem 6 inductively.

Theorem 7. Let {δ0 δ1 . . . δ } ( ≥ 1) be a sequence of natural numbers sat-
isfying Abhyankar-Moh’s condition(seeDefinition 5). Set = gcd{δ0 δ1 . . . δ −1}
(1≤ ≤ + 1) and = / +1 (1≤ ≤ ).
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(1) We define (0≤ ≤ + 1) as follows:





0 =

1 = +
⌊ / ⌋∑

=0

∈ C =
δ1

2
=
δ0

2

+1 = + ᾱ0ᾱ1···ᾱ −1

ᾱ0
0

ᾱ1
1 · · ·

ᾱ −1

−1

+
∑

(α0 α1 ... α )∈
α0α1···α

α0
0

α1
1 · · · α

ᾱ0ᾱ1···ᾱ −1 ∈ C∗
α0α1···α ∈ C (1≤ ≤ )

where (ᾱ0 ᾱ1 . . . ᾱ −1) is the sequence of non-negative integers satisfying

−1∑

=0

ᾱ δ = δ ᾱ < (0< < )

and

=



(α0 α1 . . . α ) ∈ N +1

∣∣∣∣∣∣
α < (0< < ) α < − 1

∑

=0

α δ < δ





Then, 0, 1 . . . are approximate roots of (= +1), and is the defin-
ing polynomial, monic in , of a curve with one place at infinity of theδ-sequence
{δ0 δ1 . . . δ }.
(2) The defining polynomial , monic in , of a curve with one place at infinity of
the δ-sequence{δ0 δ1 . . . δ } is obtained by the procedure of(1), and the values of
parameters{ ᾱ0ᾱ1···ᾱ −1}1≤ ≤ and { α0α1···α }0≤ ≤ are uniquely determined for .

The above theorem gives normal forms of defining polynomialsof curves with
one place at infinity and the method of construction of their defining polynomials.

Corollary 1. Let {δ0 δ1 . . . δ } ( ≥ 1) be a sequence of natural numbers sat-
isfying Abhyankar-Moh’s condition. The moduli space of thecurve with one place
at infinity of theδ-sequence{δ0 δ1 . . . δ } is isomorphic to

(C∗) × C

where is the total number of parameters{ α0α1···α }0≤ ≤ appeared in the defining
polynomial, monic in , of obtained inTheorem 7.

Proof. We consider the defining polynomial , monic in , of the curve with
one place at infinity of theδ-sequence{δ0 δ1 . . . δ }. We denote by the number
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of non-zero parameters in and by the number of others. By Theorem 7, the mod-
uli space of is (C∗) × C . has + 2 polynomials 0, 1 . . . +1. Here, both
of 0 and 1 do not have non-zero parameter. Also,+1 (1 ≤ ≤ ) has exactly one
non-zero parameter because the sequence of +1 non-negativeintegers (α0 α1 . . . α )
with

∑
=0α δ̃ = δ̃ is determined uniquely. As a result, we get = .

By the above results, we can easily get an algorithm generating the defining poly-
nomial and computing the moduli space from aδ-sequence. We will introduce them in
the next section.

5. Algorithms

Using Theorem 7, the following algorithm generating the defining polynomial of
the curve with one place at infinity from aδ-sequence is obtained.

Algorithm 1 : generating polynomial
Input : δ-sequence{δ0 δ1 . . . δ }
Output : the defining polynomial ( ) of the curve with one place at infinity of the
δ-sequence{δ0 δ1 . . . δ }

← [δ δ −1 . . . δ0]
← gcd{δ0 δ1 . . . δ −1} (1≤ ≤ + 1)
← [ . . . 1] where = / +1 (1≤ ≤ )
← cons( [ ])
← cons( [ ])
← + 1

while 6= 2 do
← reverse(cdr( ))
← [ ]

while 6= [ ] do
← cons(car( )/car( ) )
← cdr( )

end
← cons( )
← cdr( )
← cons( )
← length( )

end
← [ ]
← car( )
← ⌊car( )/car(cdr( ))⌋
1← +

∑
=0
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← cons( 1 )
while 6= [ ] do

← car( )
← car( )

0← ⌊car( )× car( )/car(reverse( ))⌋ + 1
← append( [ 0])
← length( )− 1, i.e., = [̄δ . . . δ̄0], = [ . . . 0].

(ᾱ0 ᾱ1 . . . ᾱ −1)← the sequence of non-negative integers with∑ −1
=0 ᾱ δ̄ = δ̄ ᾱ < (0≤ ≤ − 1) δ̄ ∈ and ∈

{(α0 α1 . . . α )} ← the set of sequences of non-negative integers with∑
=0α δ̄ < δ̄ α < (0≤ < ) α < − 1 δ̄ ∈ and ∈

+1← + ᾱ0 ᾱ1 ... ᾱ −1

∏ −1
=0

ᾱ +
∑

α0 α1 ... α

∏
=0

α

← cons( +1 )
← cdr( )
← cdr( )

end
return car( )

SUPPLEMENTATION:
• [ . . . ] := A list. (This is a data structure with ordered elements.)
• ⌊ ⌋ := The maximal integer such that≤ .
• car( ) := The first element of a given non-null list .
• cdr( ) := The list obtained by removing the first element of a givennon-null list

.
• cons( ) := The list obtained by adding an element to the top of a given list

.
• reverse( ) := The reversed list of a given list .
• append( 1 2) := The list obtained by adding all elements in a list2 according

to the order as it is to the last element in a list1.
• length( ) := The number of elements of a given list .
• ∗ ∗ ... ∗ is a parameter inC∗.
• ∗ ∗ ... ∗ is a parameter inC.

The moduli space of is obtained by counting the numbers of{ ∗ ∗ ... ∗} and
{ ∗ ∗ ... ∗} in which the above algorithm outputted. But we can compute the mod-
uli space from aδ-sequence without generating the defining polynomial. The following
algorithm directly compute the moduli space from aδ-sequence.

Algorithm 2 : computation of moduli space
Input : δ-sequence{δ0 δ1 . . . δ }
Output : [ ] ( This means the moduli space (C∗) × C . )

← [δ δ −1 . . . δ0]
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← gcd{δ0 δ1 . . . δ −1} (1≤ ≤ + 1)
← [ . . . 1] where = / +1 (1≤ ≤ )
← cons(1 )
←
← 0

while true do
← length( )− 1, i.e., = [̄δ . . . δ̄0]
← [δ̄ /car( ) δ̄ −1/car( ) . . . δ̄0/car( )]
← cdr( )

0← ⌊car( )× car( )/car(reverse( ))⌋ + 1
← append( [ 0]), i.e., = [ . . . 0]
← the number of (α0 α1 . . . α ) with

∑
=0α δ̄ < car( )× car( ),

α < (0≤ ≤ − 1) α < − 1 δ̄ ∈ and ∈
← +

if length( ) = 2 then break
← cdr( )

end
← + ⌊ / ⌋ + 1

return [ ]

6. Polynomial curve

6.1. Abhyankar’s question. In this section, we will introduce Abhyankar’s
question.

DEFINITION 6 (planar semigroup). Let{δ0 δ1 . . . δ } ( ≥ 1) be a sequence
of natural numbers satisfying Abhyankar-Moh’s condition.A semigroup generated by
{δ0 δ1 . . . δ } is said to bea planar semigroup.

DEFINITION 7 (polynomial curve). Let be an algebraic curve defined by
( ) = 0, where ( ) is an irreducible polynomial inC[ ]. We call a poly-

nomial curve, if has a parametrisation = ( ), = ( ), where ( ) and ( ) are
polynomials inC[ ].

Abhyankar’s Question. Let be a planar semigroup. Is there a polynomial
curve with δ-sequence generating ?

This question is still open. Moh [10] showed that there is no polynomial
curve with δ-sequence{6 8 3}. But there is a polynomial curve ( ) = (3 8)
with δ-sequence{3 8} which generates the same semigroup as above. Sathaye-
Stenerson [16] proved that the semigroup generated by{6 22 17} has no other
δ-sequence generating the same semigroup, and proposed the following conjecture for
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this question.

Sathaye-Stenerson’s Conjecture. There is no polynomial curve having the
δ-sequence{6 22 17}.

By Algorithm 1, the defining polynomial of the curve with one place at infinity
of the δ-sequence{6 22 17} as follows:

= ( 2
2 + 2 1

2
1) + 5 0 0

5 + 4 0 0
4 + 3 0 0

3 + 2 0 0
2

+ 1 1 0 1 + 1 0 0 + 0 1 0 1 + 0 0 0

where

1 = + 3
3 + 2

2 + 1 + 0

2 = ( 3
1 + 11

11) + 10 0
10 + 9 0

9 + 8 0
8 + ( 7 1 1 + 7 0) 7

+( 6 1 1 + 6 0) 6 + ( 5 1 1 + 5 0) 5 + ( 4 1 1 + 4 0) 4

+( 3 1 1 + 3 0)
3 + ( 2 1 1 + 2 0)

2 + ( 1 1 1 + 1 0) + 0 1 1 + 0 0

This result gives us a new approach to investigate the curve with one place at in-
finity of the δ-sequence{6 22 17} using a computer algebra system.

6.2. Computation of moduli space. Suzuki gave an algorithm generating
the list of δ-sequences of curves with one place at infinity, and implemented on
a computer. From the list ofδ-sequences obtained by Suzuki, we could get normal
forms and moduli spaces of curves with one place at infinity ofgenus≤ 100 by using
the algorithm introduced in previous section. As a result, we could verify the result
of Nakazawa-Oka [11].

The following is the list of moduli spaces of curves with one place at infinity for
the cases genus≤ 30.

EXAMPLE 1. The case
[7,[4,6,11],[2,15]]

means that the moduli space of the curve with one place at infinity of genus 7 and
the δ-sequence{4 6 11} is isomorphic to (C∗)2× C15.

[1,[2,3],[1,5]],
[2,[2,5],[1,8]],
[3,[2,7],[1,11]],
[3,[3,4],[1,9]],
[3,[4,6,3],[2,7]],
[4,[2,9],[1,14]],
[4,[3,5],[1,11]],
[4,[4,6,5],[2,9]],
[4,[6,9,2],[2,7]],

[5,[2,11],[1,17]],
[5,[4,6,7],[2,11]],
[6,[2,13],[1,20]],
[6,[3,7],[1,15]],
[6,[4,5],[1,14]],
[6,[4,6,9],[2,13]],
[6,[6,9,4],[2,10]],
[6,[4,10,5],[2,11]],
[7,[2,15],[1,23]],

[7,[3,8],[1,17]],
[7,[4,6,11],[2,15]],
[7,[6,9,5],[2,12]],
[7,[8,12,3],[2,10]],
[7,[10,15,2],[2,9]],
[7,[4,10,7],[2,13]],
[7,[6,15,2],[2,10]],
[7,[6,8,3],[2,10]],
[7,[8,12,6,3],[3,8]],
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[8,[2,17],[1,26]],
[8,[4,10,9],[2,15]],
[9,[2,19],[1,29]],
[9,[3,10],[1,21]],
[9,[4,7],[1,19]],
[9,[6,9,7],[2,15]],
[9,[10,15,3],[2,11]],
[9,[4,10,11],[2,17]],
[9,[6,15,4],[2,12]],
[9,[4,14,7],[2,15]],
[9,[6,8,7],[2,13]],
[9,[6,10,3],[2,12]],
[9,[8,12,6,7],[3,11]],
[10,[2,21],[1,32]],
[10,[3,11],[1,23]],
[10,[5,6],[1,20]],
[10,[6,9,8],[2,17]],
[10,[8,12,5],[2,14]],
[10,[14,21,2],[2,11]],
[10,[4,10,13],[2,19]],
[10,[6,15,5],[2,13]],
[10,[4,14,9],[2,17]],
[10,[6,21,2],[2,13]],
[10,[6,8,9],[2,15]],
[10,[6,10,5],[2,13]],
[10,[8,12,6,9],[3,13]],
[10,[8,12,10,5],[3,11]],
[11,[2,23],[1,35]],
[11,[10,15,4],[2,14]],
[11,[4,10,15],[2,21]],
[11,[4,14,11],[2,19]],
[11,[6,8,11],[2,17]],
[11,[8,12,6,11],[3,15]],
[12,[2,25],[1,38]],
[12,[3,13],[1,27]],
[12,[4,9],[1,24]],
[12,[5,7],[1,23]],
[12,[6,9,10],[2,20]],
[12,[4,10,17],[2,23]],
[12,[6,15,7],[2,16]],
[12,[10,25,2],[2,12]],
[12,[4,14,13],[2,21]],
[12,[6,21,4],[2,15]],
[12,[4,18,9],[2,19]],
[12,[6,8,13],[2,19]],
[12,[9,12,4],[2,12]],
[12,[6,10,9],[2,16]],
[12,[12,18,9,4],[3,10]],
[12,[8,12,10,9],[3,14]],
[12,[12,18,4,9],[3,12]],
[13,[2,27],[1,41]],
[13,[3,14],[1,29]],
[13,[6,9,11],[2,22]],
[13,[8,12,7],[2,19]],
[13,[14,21,3],[2,14]],
[13,[18,27,2],[2,13]],
[13,[4,10,19],[2,25]],
[13,[6,15,8],[2,18]],
[13,[4,14,15],[2,23]],
[13,[4,18,11],[2,21]],
[13,[6,27,2],[2,16]],
[13,[6,8,15],[2,21]],
[13,[6,10,11],[2,18]],
[13,[6,14,3],[2,16]],
[13,[8,12,10,11],[3,16]],
[13,[8,12,14,7],[3,14]],
[13,[12,18,4,11],[3,14]],

[13,[18,27,6,2],[3,9]],
[14,[2,29],[1,44]],
[14,[5,8],[1,26]],
[14,[8,20,5],[2,15]],
[14,[4,14,17],[2,25]],
[14,[4,18,13],[2,23]],
[14,[6,8,17],[2,23]],
[14,[6,10,13],[2,20]],
[14,[8,10,5],[2,16]],
[14,[8,12,10,13],[3,18]],
[14,[8,20,10,5],[3,13]],
[15,[2,31],[1,47]],
[15,[3,16],[1,33]],
[15,[4,11],[1,29]],
[15,[6,7],[1,27]],
[15,[6,9,13],[2,25]],
[15,[10,15,6],[2,19]],
[15,[16,24,3],[2,15]],
[15,[6,15,10],[2,21]],
[15,[4,14,19],[2,27]],
[15,[6,21,7],[2,18]],
[15,[4,18,15],[2,25]],
[15,[6,27,4],[2,18]],
[15,[4,22,11],[2,23]],
[15,[6,8,19],[2,25]],
[15,[9,12,7],[2,16]],
[15,[12,16,3],[2,12]],
[15,[6,10,15],[2,22]],
[15,[6,14,7],[2,18]],
[15,[6,16,3],[2,18]],
[15,[12,18,9,7],[3,14]],
[15,[16,24,12,3],[3,10]],
[15,[8,12,10,15],[3,20]],
[15,[12,18,15,4],[3,11]],
[15,[8,12,14,11],[3,17]],
[15,[18,27,6,4],[3,11]],
[15,[16,24,6,3],[3,11]],
[15,[12,16,6,3],[3,11]],
[15,[16,24,12,6,3],[4,9]],
[16,[2,33],[1,50]],
[16,[3,17],[1,35]],
[16,[5,9],[1,29]],
[16,[6,9,14],[2,27]],
[16,[8,12,9],[2,23]],
[16,[12,18,5],[2,19]],
[16,[14,21,4],[2,17]],
[16,[22,33,2],[2,15]],
[16,[6,15,11],[2,23]],
[16,[10,25,4],[2,15]],
[16,[4,14,21],[2,29]],
[16,[6,21,8],[2,19]],
[16,[4,18,17],[2,27]],
[16,[4,22,13],[2,25]],
[16,[6,33,2],[2,19]],
[16,[6,8,21],[2,27]],
[16,[9,12,8],[2,17]],
[16,[6,10,17],[2,24]],
[16,[9,15,5],[2,15]],
[16,[6,14,9],[2,19]],
[16,[8,10,9],[2,18]],
[16,[12,18,9,8],[3,15]],
[16,[8,12,10,17],[3,22]],
[16,[12,18,15,5],[3,12]],
[16,[8,12,14,13],[3,19]],
[16,[8,12,18,9],[3,17]],
[16,[12,18,10,5],[3,13]],
[16,[12,18,8,9],[3,14]],

[16,[8,20,10,9],[3,15]],
[17,[2,35],[1,53]],
[17,[10,15,7],[2,22]],
[17,[8,20,7],[2,19]],
[17,[14,35,2],[2,14]],
[17,[4,14,23],[2,31]],
[17,[10,35,2],[2,15]],
[17,[4,18,19],[2,29]],
[17,[4,22,15],[2,27]],
[17,[6,8,23],[2,29]],
[17,[6,10,19],[2,26]],
[17,[8,12,10,19],[3,24]],
[17,[8,12,14,15],[3,21]],
[17,[8,20,14,7],[3,15]],
[18,[2,37],[1,56]],
[18,[3,19],[1,39]],
[18,[4,13],[1,34]],
[18,[6,9,16],[2,30]],
[18,[6,15,13],[2,26]],
[18,[4,14,25],[2,33]],
[18,[6,21,10],[2,22]],
[18,[4,18,21],[2,31]],
[18,[4,22,17],[2,29]],
[18,[6,33,4],[2,21]],
[18,[4,26,13],[2,27]],
[18,[9,12,10],[2,20]],
[18,[6,10,21],[2,28]],
[18,[6,14,13],[2,22]],
[18,[6,16,9],[2,21]],
[18,[8,10,13],[2,21]],
[18,[12,18,9,10],[3,18]],
[18,[8,12,14,17],[3,23]],
[18,[12,18,21,4],[3,13]],
[18,[8,12,18,13],[3,20]],
[18,[12,18,10,9],[3,15]],
[18,[12,18,8,13],[3,17]],
[18,[16,24,6,9],[3,14]],
[18,[8,20,10,13],[3,18]],
[18,[12,16,6,9],[3,14]],
[18,[16,24,12,6,9],[4,12]],
[19,[2,39],[1,59]],
[19,[3,20],[1,41]],
[19,[6,9,17],[2,32]],
[19,[8,12,11],[2,28]],
[19,[10,15,8],[2,25]],
[19,[14,21,5],[2,21]],
[19,[20,30,3],[2,18]],
[19,[26,39,2],[2,17]],
[19,[6,15,14],[2,28]],
[19,[4,14,27],[2,35]],
[19,[6,21,11],[2,24]],
[19,[4,18,23],[2,33]],
[19,[6,27,8],[2,21]],
[19,[4,22,19],[2,31]],
[19,[4,26,15],[2,29]],
[19,[6,39,2],[2,22]],
[19,[9,12,11],[2,22]],
[19,[15,20,3],[2,13]],
[19,[6,10,23],[2,30]],
[19,[9,15,8],[2,18]],
[19,[12,20,3],[2,14]],
[19,[6,14,15],[2,24]],
[19,[6,16,11],[2,22]],
[19,[6,20,3],[2,22]],
[19,[8,10,15],[2,23]],
[19,[12,18,9,11],[3,20]],
[19,[20,30,15,3],[3,11]],
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[19,[12,18,15,8],[3,16]],
[19,[8,12,14,19],[3,25]],
[19,[8,12,18,15],[3,22]],
[19,[8,12,22,11],[3,20]],
[19,[18,27,6,8],[3,14]],
[19,[12,18,10,11],[3,17]],
[19,[12,18,8,15],[3,19]],
[19,[16,24,6,11],[3,15]],
[19,[20,30,6,3],[3,12]],
[19,[8,20,10,15],[3,20]],
[19,[8,20,14,11],[3,18]],
[19,[12,16,6,11],[3,15]],
[19,[12,20,6,3],[3,13]],
[19,[16,24,12,6,11],[4,13]],
[20,[2,41],[1,62]],
[20,[5,11],[1,35]],
[20,[8,20,9],[2,23]],
[20,[10,25,6],[2,19]],
[20,[4,18,25],[2,35]],
[20,[4,22,21],[2,33]],
[20,[4,26,17],[2,31]],
[20,[6,10,25],[2,32]],
[20,[6,14,17],[2,26]],
[20,[8,10,17],[2,25]],
[20,[8,12,14,21],[3,27]],
[20,[8,12,18,17],[3,24]],
[20,[12,18,8,17],[3,21]],
[20,[8,20,10,17],[3,22]],
[20,[8,20,18,9],[3,18]],
[21,[2,43],[1,65]],
[21,[3,22],[1,45]],
[21,[4,15],[1,39]],
[21,[7,8],[1,35]],
[21,[10,15,9],[2,28]],
[21,[12,18,7],[2,25]],
[21,[18,27,4],[2,21]],
[21,[22,33,3],[2,19]],
[21,[6,15,16],[2,31]],
[21,[6,21,13],[2,27]],
[21,[8,28,7],[2,20]],
[21,[10,35,4],[2,18]],
[21,[4,18,27],[2,37]],
[21,[6,27,10],[2,24]],
[21,[4,22,23],[2,35]],
[21,[4,26,19],[2,33]],
[21,[6,39,4],[2,24]],
[21,[4,30,15],[2,31]],
[21,[9,12,13],[2,25]],
[21,[12,16,7],[2,18]],
[21,[15,20,4],[2,15]],
[21,[6,10,27],[2,34]],
[21,[9,15,10],[2,21]],
[21,[6,14,19],[2,28]],
[21,[6,16,15],[2,25]],
[21,[6,22,3],[2,24]],
[21,[8,10,19],[2,27]],
[21,[12,15,4],[2,16]],
[21,[8,14,7],[2,21]],
[21,[12,18,9,13],[3,23]],
[21,[16,24,12,7],[3,16]],
[21,[20,30,15,4],[3,13]],
[21,[12,18,15,10],[3,19]],
[21,[8,12,14,23],[3,29]],
[21,[12,18,21,7],[3,16]],
[21,[8,12,18,19],[3,26]],
[21,[12,18,27,4],[3,15]],
[21,[8,12,22,15],[3,23]],

[21,[18,27,6,10],[3,17]],
[21,[12,18,10,15],[3,20]],
[21,[12,18,8,19],[3,23]],
[21,[18,27,12,4],[3,12]],
[21,[12,18,14,7],[3,17]],
[21,[16,24,6,15],[3,18]],
[21,[20,30,4,15],[3,17]],
[21,[8,20,10,19],[3,24]],
[21,[12,30,15,4],[3,13]],
[21,[8,20,14,15],[3,21]],
[21,[8,28,14,7],[3,17]],
[21,[12,16,14,7],[3,15]],
[21,[16,24,12,14,7],[4,13]],
[22,[2,45],[1,68]],
[22,[3,23],[1,47]],
[22,[5,12],[1,38]],
[22,[8,12,13],[2,32]],
[22,[14,21,6],[2,25]],
[22,[16,24,5],[2,23]],
[22,[30,45,2],[2,19]],
[22,[6,15,17],[2,33]],
[22,[10,25,7],[2,22]],
[22,[12,30,5],[2,19]],
[22,[18,45,2],[2,16]],
[22,[6,21,14],[2,29]],
[22,[4,18,29],[2,39]],
[22,[6,27,11],[2,25]],
[22,[10,45,2],[2,18]],
[22,[4,22,25],[2,37]],
[22,[6,33,8],[2,24]],
[22,[4,26,21],[2,35]],
[22,[4,30,17],[2,33]],
[22,[6,45,2],[2,25]],
[22,[9,12,14],[2,27]],
[22,[6,10,29],[2,36]],
[22,[9,15,11],[2,22]],
[22,[12,20,5],[2,16]],
[22,[6,14,21],[2,30]],
[22,[6,16,17],[2,27]],
[22,[6,20,9],[2,24]],
[22,[8,10,21],[2,29]],
[22,[12,15,5],[2,17]],
[22,[10,12,5],[2,21]],
[22,[12,18,9,14],[3,25]],
[22,[12,18,15,11],[3,20]],
[22,[16,24,20,5],[3,13]],
[22,[8,12,14,25],[3,31]],
[22,[12,18,21,8],[3,17]],
[22,[8,12,18,21],[3,28]],
[22,[8,12,22,17],[3,25]],
[22,[18,27,6,11],[3,18]],
[22,[30,45,10,2],[3,11]],
[22,[12,18,10,17],[3,22]],
[22,[12,18,8,21],[3,25]],
[22,[12,18,14,9],[3,18]],
[22,[16,24,6,17],[3,20]],
[22,[16,24,10,5],[3,15]],
[22,[20,30,6,9],[3,14]],
[22,[20,30,4,17],[3,19]],
[22,[30,45,6,2],[3,11]],
[22,[12,30,15,5],[3,14]],
[22,[8,20,14,17],[3,23]],
[22,[8,20,18,13],[3,21]],
[22,[12,30,10,5],[3,14]],
[22,[18,45,6,2],[3,12]],
[22,[12,20,10,5],[3,14]],
[22,[12,20,6,9],[3,15]],

[22,[16,24,20,10,5],[4,12]],
[23,[2,47],[1,71]],
[23,[8,20,11],[2,28]],
[23,[14,35,4],[2,18]],
[23,[4,18,31],[2,41]],
[23,[4,22,27],[2,39]],
[23,[4,26,23],[2,37]],
[23,[4,30,19],[2,35]],
[23,[6,14,23],[2,32]],
[23,[6,16,19],[2,29]],
[23,[8,10,23],[2,31]],
[23,[8,14,11],[2,23]],
[23,[8,12,14,27],[3,33]],
[23,[8,12,18,23],[3,30]],
[23,[8,12,22,19],[3,27]],
[23,[12,18,10,19],[3,24]],
[23,[12,18,8,23],[3,27]],
[23,[16,24,6,19],[3,22]],
[23,[20,30,4,19],[3,21]],
[23,[8,20,14,19],[3,25]],
[23,[8,20,22,11],[3,21]],
[23,[8,28,14,11],[3,19]],
[24,[2,49],[1,74]],
[24,[3,25],[1,51]],
[24,[4,17],[1,44]],
[24,[5,13],[1,41]],
[24,[7,9],[1,39]],
[24,[6,15,19],[2,36]],
[24,[10,25,8],[2,24]],
[24,[6,21,16],[2,32]],
[24,[8,28,9],[2,24]],
[24,[14,49,2],[2,17]],
[24,[4,18,33],[2,43]],
[24,[6,27,13],[2,28]],
[24,[4,22,29],[2,41]],
[24,[6,33,10],[2,26]],
[24,[4,26,25],[2,39]],
[24,[4,30,21],[2,37]],
[24,[6,45,4],[2,27]],
[24,[4,34,17],[2,35]],
[24,[9,12,16],[2,30]],
[24,[12,16,9],[2,22]],
[24,[9,15,13],[2,25]],
[24,[15,25,3],[2,15]],
[24,[6,14,25],[2,34]],
[24,[9,21,7],[2,20]],
[24,[6,16,21],[2,31]],
[24,[6,20,13],[2,27]],
[24,[6,22,9],[2,26]],
[24,[8,10,25],[2,33]],
[24,[12,18,9,16],[3,28]],
[24,[16,24,12,9],[3,20]],
[24,[12,18,15,13],[3,23]],
[24,[12,18,21,10],[3,19]],
[24,[8,12,18,25],[3,32]],
[24,[8,12,22,21],[3,29]],
[24,[12,18,33,4],[3,17]],
[24,[18,27,6,13],[3,21]],
[24,[12,18,10,21],[3,26]],
[24,[12,18,14,13],[3,20]],
[24,[12,18,16,9],[3,20]],
[24,[16,24,6,21],[3,24]],
[24,[20,30,6,13],[3,17]],
[24,[30,45,6,4],[3,13]],
[24,[8,20,14,21],[3,27]],
[24,[12,30,21,4],[3,15]],
[24,[8,20,18,17],[3,24]],
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[24,[18,45,6,4],[3,14]],
[24,[8,28,18,9],[3,20]],
[24,[12,16,14,13],[3,18]],
[24,[12,16,18,9],[3,18]],
[24,[16,24,12,18,9],[4,16]],
[24,[16,24,12,14,13],[4,16]],
[25,[2,51],[1,77]],
[25,[3,26],[1,53]],
[25,[6,11],[1,41]],
[25,[8,12,15],[2,37]],
[25,[10,15,11],[2,33]],
[25,[18,27,5],[2,25]],
[25,[26,39,3],[2,22]],
[25,[34,51,2],[2,21]],
[25,[6,15,20],[2,38]],
[25,[6,21,17],[2,34]],
[25,[10,35,6],[2,21]],
[25,[4,18,35],[2,45]],
[25,[6,27,14],[2,30]],
[25,[4,22,31],[2,43]],
[25,[6,33,11],[2,27]],
[25,[4,26,27],[2,41]],
[25,[6,39,8],[2,27]],
[25,[4,30,23],[2,39]],
[25,[4,34,19],[2,37]],
[25,[6,51,2],[2,28]],
[25,[9,12,17],[2,32]],
[25,[15,20,6],[2,18]],
[25,[9,15,14],[2,27]],
[25,[6,14,27],[2,36]],
[25,[6,16,23],[2,33]],
[25,[6,20,15],[2,28]],
[25,[6,22,11],[2,27]],
[25,[6,26,3],[2,28]],
[25,[8,10,27],[2,35]],
[25,[12,15,8],[2,20]],
[25,[8,14,15],[2,26]],
[25,[10,12,11],[2,24]],
[25,[12,18,9,17],[3,30]],
[25,[20,30,15,6],[3,16]],
[25,[12,18,15,14],[3,25]],
[25,[12,18,21,11],[3,21]],
[25,[8,12,18,27],[3,34]],
[25,[12,18,27,8],[3,18]],
[25,[8,12,22,23],[3,31]],
[25,[18,27,6,14],[3,23]],
[25,[12,18,10,23],[3,28]],
[25,[18,27,15,5],[3,14]],
[25,[18,27,12,8],[3,15]],
[25,[12,18,14,15],[3,22]],
[25,[16,24,6,23],[3,26]],
[25,[20,30,6,15],[3,18]],
[25,[12,30,15,8],[3,17]],
[25,[8,20,14,23],[3,29]],
[25,[8,20,18,19],[3,26]],
[25,[8,20,22,15],[3,24]],
[25,[12,30,10,11],[3,17]],
[25,[12,30,8,15],[3,19]],
[25,[8,28,14,15],[3,22]],
[25,[12,16,14,15],[3,20]],
[25,[12,20,10,11],[3,17]],
[25,[16,24,12,14,15],[4,18]],
[26,[2,53],[1,80]],
[26,[5,14],[1,44]],
[26,[22,33,4],[2,24]],
[26,[8,20,13],[2,32]],
[26,[10,25,9],[2,27]],

[26,[14,35,5],[2,21]],
[26,[10,45,4],[2,21]],
[26,[4,22,33],[2,45]],
[26,[4,26,29],[2,43]],
[26,[4,30,25],[2,41]],
[26,[4,34,21],[2,39]],
[26,[6,14,29],[2,38]],
[26,[6,16,25],[2,35]],
[26,[8,10,29],[2,37]],
[26,[10,14,5],[2,24]],
[26,[20,30,25,4],[3,13]],
[26,[8,12,18,29],[3,36]],
[26,[8,12,22,25],[3,33]],
[26,[30,45,10,4],[3,14]],
[26,[12,18,10,25],[3,30]],
[26,[16,24,10,13],[3,19]],
[26,[8,20,14,25],[3,31]],
[26,[8,20,18,21],[3,28]],
[26,[8,20,26,13],[3,24]],
[26,[8,28,18,13],[3,22]],
[26,[16,24,20,10,13],[4,16]],
[27,[2,55],[1,83]],
[27,[3,28],[1,57]],
[27,[4,19],[1,49]],
[27,[7,10],[1,43]],
[27,[10,15,12],[2,36]],
[27,[28,42,3],[2,23]],
[27,[6,15,22],[2,41]],
[27,[12,30,7],[2,24]],
[27,[22,55,2],[2,18]],
[27,[6,21,19],[2,37]],
[27,[8,28,11],[2,28]],
[27,[10,35,7],[2,23]],
[27,[6,27,16],[2,33]],
[27,[4,22,35],[2,47]],
[27,[6,33,13],[2,30]],
[27,[10,55,2],[2,21]],
[27,[4,26,31],[2,45]],
[27,[6,39,10],[2,29]],
[27,[4,30,27],[2,43]],
[27,[4,34,23],[2,41]],
[27,[6,51,4],[2,30]],
[27,[4,38,19],[2,39]],
[27,[9,12,19],[2,35]],
[27,[12,16,11],[2,26]],
[27,[15,20,7],[2,20]],
[27,[21,28,3],[2,15]],
[27,[9,15,16],[2,30]],
[27,[6,14,31],[2,40]],
[27,[9,21,10],[2,23]],
[27,[12,28,3],[2,18]],
[27,[6,16,27],[2,37]],
[27,[6,20,19],[2,31]],
[27,[6,22,15],[2,30]],
[27,[6,28,3],[2,30]],
[27,[8,10,31],[2,39]],
[27,[12,15,10],[2,22]],
[27,[8,14,19],[2,29]],
[27,[10,12,15],[2,26]],
[27,[10,14,7],[2,25]],
[27,[16,24,12,11],[3,24]],
[27,[20,30,15,7],[3,18]],
[27,[28,42,21,3],[3,13]],
[27,[12,18,15,16],[3,28]],
[27,[12,18,21,13],[3,24]],
[27,[8,12,18,31],[3,38]],
[27,[12,18,27,10],[3,21]],

[27,[8,12,22,27],[3,35]],
[27,[18,27,6,16],[3,26]],
[27,[12,18,10,27],[3,32]],
[27,[18,27,12,10],[3,18]],
[27,[12,18,14,19],[3,25]],
[27,[12,18,16,15],[3,23]],
[27,[16,24,10,15],[3,20]],
[27,[20,30,6,19],[3,21]],
[27,[28,42,6,3],[3,15]],
[27,[12,30,15,10],[3,19]],
[27,[8,20,14,27],[3,33]],
[27,[12,30,21,7],[3,17]],
[27,[8,20,18,23],[3,30]],
[27,[12,30,27,4],[3,17]],
[27,[8,20,22,19],[3,27]],
[27,[12,30,10,15],[3,19]],
[27,[12,30,14,7],[3,18]],
[27,[12,30,8,19],[3,22]],
[27,[8,28,14,19],[3,25]],
[27,[8,28,22,11],[3,22]],
[27,[12,16,14,19],[3,23]],
[27,[12,16,22,11],[3,20]],
[27,[12,16,18,15],[3,21]],
[27,[12,20,10,15],[3,19]],
[27,[12,28,6,3],[3,17]],
[27,[16,24,12,18,15],[4,19]],
[27,[16,24,12,14,19],[4,21]],
[27,[16,24,12,22,11],[4,18]],
[27,[16,24,20,10,15],[4,17]],
[28,[2,57],[1,86]],
[28,[3,29],[1,59]],
[28,[8,9],[1,44]],
[28,[8,12,17],[2,41]],
[28,[14,21,8],[2,32]],
[28,[38,57,2],[2,23]],
[28,[6,15,23],[2,43]],
[28,[6,21,20],[2,39]],
[28,[6,27,17],[2,35]],
[28,[8,36,9],[2,26]],
[28,[4,22,37],[2,49]],
[28,[6,33,14],[2,31]],
[28,[4,26,33],[2,47]],
[28,[4,30,29],[2,45]],
[28,[6,45,8],[2,30]],
[28,[4,34,25],[2,43]],
[28,[4,38,21],[2,41]],
[28,[6,57,2],[2,31]],
[28,[9,12,20],[2,37]],
[28,[9,15,17],[2,32]],
[28,[12,20,9],[2,22]],
[28,[6,14,33],[2,42]],
[28,[6,16,29],[2,39]],
[28,[9,24,8],[2,22]],
[28,[6,20,21],[2,33]],
[28,[6,22,17],[2,31]],
[28,[6,26,9],[2,30]],
[28,[8,10,33],[2,41]],
[28,[8,14,21],[2,31]],
[28,[8,18,9],[2,27]],
[28,[10,12,17],[2,28]],
[28,[12,18,15,17],[3,30]],
[28,[16,24,20,9],[3,20]],
[28,[12,18,21,14],[3,25]],
[28,[8,12,18,33],[3,40]],
[28,[8,12,22,29],[3,37]],
[28,[12,18,33,8],[3,20]],
[28,[18,27,6,17],[3,28]],
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[28,[24,36,8,9],[3,19]],
[28,[12,18,10,29],[3,34]],
[28,[12,18,14,21],[3,27]],
[28,[12,18,16,17],[3,25]],
[28,[12,18,20,9],[3,22]],
[28,[24,36,9,8],[3,15]],
[28,[16,24,10,17],[3,22]],
[28,[20,30,6,21],[3,23]],
[28,[30,45,6,8],[3,16]],
[28,[12,30,21,8],[3,18]],
[28,[8,20,18,25],[3,32]],
[28,[8,20,22,21],[3,29]],
[28,[8,20,26,17],[3,27]],
[28,[12,30,10,17],[3,21]],
[28,[18,45,6,8],[3,17]],
[28,[12,30,8,21],[3,24]],
[28,[8,28,14,21],[3,27]],
[28,[8,28,18,17],[3,25]],
[28,[8,36,18,9],[3,22]],
[28,[18,24,9,8],[3,15]],
[28,[12,16,14,21],[3,25]],
[28,[12,16,18,17],[3,23]],
[28,[18,24,8,9],[3,15]],
[28,[12,20,10,17],[3,21]],
[28,[12,20,18,9],[3,18]],
[28,[24,36,18,9,8],[4,13]],
[28,[16,24,12,18,17],[4,21]],
[28,[16,24,12,14,21],[4,23]],
[28,[24,36,18,8,9],[4,13]],
[28,[16,24,20,10,17],[4,19]],
[28,[16,24,20,18,9],[4,16]],
[28,[24,36,8,18,9],[4,15]],
[29,[2,59],[1,89]],
[29,[10,15,13],[2,39]],
[29,[16,24,7],[2,32]],
[29,[8,20,15],[2,37]],
[29,[14,35,6],[2,24]],
[29,[10,35,8],[2,25]],
[29,[4,22,39],[2,51]],
[29,[4,26,35],[2,49]],
[29,[4,30,31],[2,47]],
[29,[4,34,27],[2,45]],
[29,[4,38,23],[2,43]],
[29,[15,20,8],[2,23]],
[29,[6,14,35],[2,44]],
[29,[6,16,31],[2,41]],
[29,[6,20,23],[2,35]],
[29,[8,10,35],[2,43]],
[29,[8,14,23],[2,33]],
[29,[20,30,15,8],[3,21]],
[29,[16,24,28,7],[3,17]],
[29,[8,12,18,35],[3,42]],
[29,[8,12,22,31],[3,39]],
[29,[12,18,14,23],[3,29]],

[29,[16,24,14,7],[3,20]],
[29,[20,30,6,23],[3,25]],
[29,[20,30,8,15],[3,20]],
[29,[8,20,18,27],[3,34]],
[29,[8,20,22,23],[3,31]],
[29,[8,20,30,15],[3,27]],
[29,[12,30,8,23],[3,26]],
[29,[8,28,14,23],[3,29]],
[29,[8,28,22,15],[3,25]],
[29,[12,16,14,23],[3,27]],
[29,[16,24,12,14,23],[4,25]],
[29,[16,24,28,14,7],[4,15]],
[30,[2,61],[1,92]],
[30,[3,31],[1,63]],
[30,[4,21],[1,54]],
[30,[5,16],[1,50]],
[30,[6,13],[1,48]],
[30,[7,11],[1,47]],
[30,[6,15,25],[2,46]],
[30,[10,25,11],[2,32]],
[30,[16,40,5],[2,22]],
[30,[18,45,4],[2,21]],
[30,[6,21,22],[2,42]],
[30,[8,28,13],[2,32]],
[30,[14,49,4],[2,21]],
[30,[6,27,19],[2,38]],
[30,[10,45,6],[2,24]],
[30,[4,22,41],[2,53]],
[30,[6,33,16],[2,34]],
[30,[4,26,37],[2,51]],
[30,[6,39,13],[2,32]],
[30,[4,30,33],[2,49]],
[30,[6,45,10],[2,32]],
[30,[4,34,29],[2,47]],
[30,[4,38,25],[2,45]],
[30,[6,57,4],[2,33]],
[30,[4,42,21],[2,43]],
[30,[9,12,22],[2,40]],
[30,[12,16,13],[2,30]],
[30,[21,28,4],[2,17]],
[30,[9,15,19],[2,35]],
[30,[15,25,6],[2,19]],
[30,[6,14,37],[2,46]],
[30,[9,21,13],[2,26]],
[30,[6,16,33],[2,43]],
[30,[6,20,25],[2,37]],
[30,[6,22,21],[2,34]],
[30,[6,26,13],[2,32]],
[30,[6,28,9],[2,32]],
[30,[8,10,37],[2,45]],
[30,[12,15,13],[2,25]],
[30,[16,20,5],[2,18]],
[30,[8,14,25],[2,35]],
[30,[12,21,4],[2,21]],

[30,[8,18,13],[2,29]],
[30,[10,12,21],[2,31]],
[30,[10,16,5],[2,27]],
[30,[16,24,12,13],[3,28]],
[30,[28,42,21,4],[3,15]],
[30,[12,18,15,19],[3,33]],
[30,[20,30,25,6],[3,16]],
[30,[12,18,21,16],[3,28]],
[30,[12,18,27,13],[3,24]],
[30,[8,12,22,33],[3,41]],
[30,[12,18,33,10],[3,22]],
[30,[30,45,10,6],[3,17]],
[30,[18,27,15,10],[3,19]],
[30,[18,27,12,13],[3,21]],
[30,[12,18,14,25],[3,31]],
[30,[12,18,16,21],[3,28]],
[30,[12,18,22,9],[3,24]],
[30,[16,24,10,21],[3,25]],
[30,[20,30,6,25],[3,27]],
[30,[30,45,6,10],[3,18]],
[30,[28,42,6,9],[3,17]],
[30,[28,42,4,21],[3,22]],
[30,[12,30,15,13],[3,22]],
[30,[16,40,20,5],[3,15]],
[30,[12,30,21,10],[3,19]],
[30,[8,20,18,29],[3,36]],
[30,[8,20,22,25],[3,33]],
[30,[12,30,33,4],[3,19]],
[30,[8,20,26,21],[3,30]],
[30,[12,30,10,21],[3,24]],
[30,[18,45,6,10],[3,19]],
[30,[12,30,14,13],[3,20]],
[30,[18,45,12,4],[3,14]],
[30,[16,40,10,5],[3,16]],
[30,[8,28,14,25],[3,31]],
[30,[12,42,21,4],[3,17]],
[30,[8,28,18,21],[3,28]],
[30,[8,28,26,13],[3,25]],
[30,[8,36,18,13],[3,24]],
[30,[12,16,14,25],[3,29]],
[30,[12,16,22,17],[3,24]],
[30,[12,16,18,21],[3,26]],
[30,[12,16,26,13],[3,23]],
[30,[18,24,8,13],[3,17]],
[30,[12,28,6,9],[3,19]],
[30,[16,20,10,5],[3,17]],
[30,[16,24,12,18,21],[4,24]],
[30,[16,24,12,14,25],[4,27]],
[30,[16,24,12,22,17],[4,22]],
[30,[24,36,18,8,13],[4,15]],
[30,[24,36,8,18,13],[4,17]],
[30,[16,40,20,10,5],[4,14]]
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