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1. Introduction

In their article “On unions of knots” [15] S.Kinoshita and H. Terasaka studied a
way of connecting knot diagrams which generalizes the operation of connected sum:
an additional two-string tangle with n half-twists is inserted between the two diagrams.
For the case that the two knot diagrams are mirror images of each other they found
that the Alexander polynomial depends only on the parity of » and that the determi-
nant is independent of n.

The results of [15] generalize in a natural way to the case where several twist tan-
gles are inserted. We call such a generalized union of a knot K with its mirror image
K* symmetric union, and K is called the partial knot.

In addition to results on the Alexander polynomial and the determinant, we use
the homology of the double branched coverings and the knot groups to exclude possi-
ble partial knots for a given symmetric union. We prove that a symmetric union with
non-trivial partial knot is itself non-trivial. (This is an analogue of the non-cancellation
theorem for the connected sum of knots.)

Finally, we investigate the relationship between symmetric unions and ribbon
knots. We succeed in finding symmetric diagrams for all but one of the 21 prime rib-
bon knots up to 10 crossings.

2. Symmetric unions

We denote the tangles made of half-twists by integers n € Z and the horizontal
trivial tangle by =< (Fig. 1).

DerINITION 2.1.  Let D be an unoriented knot diagram and D* the diagram D re-
flected at an axis in the plane. If in the symmetric placement of D and D* we replace
the tangles 7; =0, (i =0, ..., k) on the symmetry axis by T; =< for i =0,...,u —1
and T; =n; € Z for i = u, ...,k (with u > 1), we call the result a symmetric union of
D and D* and write DU D*(Ty, ..., Ti). The partial knot K of the symmetric union
is the knot given by the diagram D. See Fig. 1 for an illustration of the case u = 1.
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Fig. 1.

Fig. 2.

REMARK 2.2. a) As seen from the symmetry, p is the number of components
of the symmetric union. See Fig. 2 for a diagram where p is not equal to the number
of components and which is not a symmetric union.

b) Kinoshita and Terasaka [15] call a union with u = 1,k = 1| symmetric if n; is
even and skew-symmetric if n; is odd. If k > 2 they do not go into details and call it
generalized union. Unions of knots were also studied in the articles [6], [7], [9]-[11],
[14], [19] and [20].

c¢) If we assign an orientation to an arc on the left side of the symmetric union,
then the orientation of the corresponding arc on the right side is the opposite of the
mirrored orientation. The mirrored orientation would cause a clash of orientations on
the symmetry plane. Hence the crossings on the symmetry plane are always oriented
from left to right or vice versa, see Fig. 3.

d) The insertion of an odd tangle has the effect that the orientation of a part of the
diagram is reversed. If all n; are even then the orientation of D passes over to the
symmetric union.

Theorem 2.3. The Alexander polynomial of a symmetric union with u > 2 is
zero.
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Proof. We can assume that u = 2 because the cases u > 2 can be deduced
from this by induction, using the skein relation for the Alexander polynomial and part
c) of Remark 2.2. We write down the Alexander matrix for the diagram and delete
the columns for the outer region and the region between the two strings of the tangle
Tp =x. See Fig. 4 for the contributions of each crossing and [1] for more details of
the definition. If the diagram is connected there are an equal number of regions and
crossings left. (If it is not connected, then one component is isolated and the Alexan-
der polynomial of such a split link is zero.) The determinant of the Alexander ma-
trix is the Alexander polynomial of the link. We form the following groups of regions:
there are the regions in the left and right half of the diagram, the regions in the mid-
dle (inside the half-twists) and the regions which extend to both sides. In the same
way there are the crossings in the middle, the left and the right of the diagram. The
reader should check that the Alexander matrix is of the form:

S O ¥

* ok %

N M 0

-N 0 —M

The stars in the first block of rows mean that we do not need the information con-
tained in these entries for our argument. Let ap be the number of left regions. Then
the dimensions of the columns are Zfﬁ(lnil —1), k+1, ap, ap (for middle, both, left
and right regions, respectively) and the dimensions of the rows are Zf:z |n;il, ap + 1,
ap + 1 (for middle, left and right crossings). Adding the second block of rows to the

third annihilates the N, then adding the fourth block of columns to the third gives zero
in the whole third block of rows but the —M in the end. The determinant is zero be-



540 C. LaMMm

Fig. 5.

cause the last ap + 1 rows have non-zero entries only in the last ap columns, hence
they are linearly dependent. U

Theorem 2.4. Let u = 1. Then the Alexander polynomial of a symmetric union
depends only on the parities of the numbers n;: if n; = n; (mod 2) for all i €
{1,...,k} then

A(DUD*(=,ny,...,n)) = A(D U D*(<,n}, ..., n}).

Proof. Smoothing a crossing on the symmetry plane gives a symmetric union
with w =2 which by Theorem 2.3 has vanishing Alexander polynomial. Hence, by the
skein relation, a crossing change on the symmetry plane does not change the Alexan-
der polynomial. The theorem expresses this in terms of the numbers n;. O

REmMARK 2.5. Since the Alexander polynomial of an amphicheiral 2-component
link is zero ([13], Theorem 8.4.1), the proof of Theorem 2.4 is especially easy if k =1
(this is the situation of Kinoshita and Terasaka [15]). In this case we do not need the
Alexander matrix for proving Theorem 2.3.

Theorem 2.6. If i =1 the determinant of a symmetric union is independent of
the numbers n;, and therefore it is the square of the determinant of the partial knot:

det(D U D*(x, ny, ..., ny)) = det(D)>.

Proof. We look at one particular crossing inside a tangle 7; on the symmetry
plane. For a skein quadrupel (L, L_, Lo, L) (see Fig. 5) we have the formula

(det L,)? + (det L_)? = 2[(det Lo)? + (det L )?],

well-known from properties of the Kauffman polynomial (see for instance [17],
p- 101). From the Theorems 2.3 and 2.4 we know detL, = detL_ and detL, = O,
because det L = |Ap(—1)|. Hence the conclusion is det L., = detL, = detL_. If we
use this for all crossings on the symmetry plane the proposition follows. O
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ExampLE 2.7. The knot 1053 and the Kinoshita-Terasaka knot are symmetric
unions of the trivial knot (Fig. 6). Hence they have determinant 1. The Kinoshita-
Terasaka knot has n; =2 and therefore its Alexander polynomial is equal to 1.

Remark 2.8. If K; and K, are symmetric unions, so are K{ and —K, and the
connected sum K fK>.

3. Symmetric unions and their partial knots

3.1. Non-uniqueness of the partial knots Obviously, if K is a partial knot of
the symmetric union K then K* is also a partial knot of K. In Fig. 7 we give an
example of different partial knots for a symmetric union, which are not mirror images
of each other. The left symmetric union has partial knot 5; and the right knot is 4,#4]
with partial knot 4;. Of course, by Theorem 2.6, the determinants of the two partial
knots are equal.

3.2. Homology of the double branched coverings We give a second proof for
Theorem 2.6, using the Goeritz matrix of a diagram of K. If Gk is a Goeritz matrix
of K, then |det(Gg)| = det(K), see [17], p. 99. If the knot diagram D has r + 1 black
regions in the chessboard colouring, then the pre-Goeritz matrix of D is an (r + 1) x
(r + 1) matrix with entries g; ; = Y ¢(c), (for i # j, the sum is over all crossings c,
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where the regions i and j come together) and g;; = — j# &i,j- Deleting one row and

the corresponding column we get a Goeritz matrix of D. The convention for ¢(c) and
an example are shown in Fig. 8.

Second proof of Theorem 2.6. We consider the diagram in Fig. 9. After deleting
the column and row corresponding to ®, the Goeritz matrix belonging to the indi-
cated colouring (with regions ©y, ..., 0, ¥y,..., ¥, O,...,0;, ¥|,..., ¥/ in this
order) has the following form

Gp+A —A
—A —-Gp+A )
The matrix A is a diagonal (k +1[) x (k +/)-matrix with diagonal entries nq, ..., ny and
I zeroes. Gp is the Goeritz matrix of the diagram D. We add the first block of rows

to the second and get
Gp+A —-A
Gp —-Gp/’
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Then we add the second block of columns to the first and the result is

Gp —A

0 -Gp /)~
Since the determinant of this matrix equals (—1)**) det(G p)> we proved Theorem 2.6
again. ]

We can extract even more information out of this simple form of the Goeritz ma-
trix. If K is a knot we denote by M,(K) the double cover of S3 branched over K. The
Goeritz matrix of a knot K is a presentation matrix for the abelian group H;(M»(K)).

Theorem 3.1. If the knot K is a symmetric union with partial knot K, then
H\(M(K)) is a subgroup of H,(M(K)).

Proof. As shown in the second proof of Theorem 2.6 the Goeritz matrix Gg of
the diagram D U D*(x, ny, ..., n;) can be transformed by row and column operations
, _[(Gg *
totheformGK—-( 0 —G;
We consider G’; and G as matrices representing linear mappings in such a way
that the images of the standard generators are the columns of the respective matrix.
Assume that Gy consists of m rows and columns. Then we have H,(Mz(f( ) =
Z" ImGg, Hi(My(K)) = Z*"/ImG’. We define f : Z"/ImGy — Z*" /ImG', by

) , where G is the Goeritz matrix of D.

mapping the standard generators e¢; +— e; for i = 1,...,m. This is well-defined be-
cause f(ImGg) C ImGY%. Since |det(—G)| = ldet(f()l # 0, from f(x) € InGy we
conclude x € ImGg, hence f is injective. [

ExampLE 3.2. We do not know if the knot 10g7; is a symmetric union. To ex-
clude possible partial knots we use the Theorems 2.6 and 3.1. Since the determinant of
10g7 is 81, a partial knot K must have determinant 9 and H1(M2(IA( )) must be a sub-
group of H;(M»(10g7)) = Z/s1. The knots with determinant 9 (up to nine crossings)
are 3143y, 31437, 61, 820, 91 and 946. Since

Hi(My(K))=7/3 ®Z/5 for K = 3,43, 3,43*, 946 and

H](Mz(f())=Z/9 for f( =61, 820 and 91,
out of these 6 knots only 6;, 8 and 9; could be partial knots of 10g;.

3.3. Knot groups If K is a symmetric union with partial knot K, we consider
the knot group m(K) with meridian-longitude pair (m,[) and the knot group 7(K )
with meridian 7. Let #(K) := m(K)/(m?) be the knot group with the additional re-
lations that all meridians have order two. We denote by [m] and [/] the images of the
meridian and the longitude.
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-1 -1 151,
X'y zy X'y zy Xyz
Fig. 11.

Theorem 3.3 (M. Eisermann). Suppose that K is a symmetric union with partial
knot K. If all n; are even, there is a surjection (w(K),m,l) — (n(f(),ﬁz, 1), and in
the general case there is a surjection (7(K), [m], [[]) — (ﬁ(f(), [m], 1).

Proof. First, we assume that all n; are even. In this case an orientation of D is
compatible with the induced orientation of D U D*(x, ny,...,n;) (Fig. 10). Hence,
if we map the generators of the Wirtinger presentation of mw(K) to the correspond-
ing generators of w(K), the relations are satisfied (see Fig. 11). Therefore the map is
well-defined and surjective. For the longitude we use a curve in the diagram which is
parallel to the knot. We insert before or after each undercrossing a full twist of op-
posite sign so that the linking number between / and K is zero. This longitude [ is
mapped to 1 in n(k ) because the contributions of the symmetric undercrossings can-

cel. In the example illustrated in Fig. 12 the longitude is mapped to ---y~lxy-y~'y-
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Fig. 12.
y~!x~'y...=1. This proves the first part of the theorem. In the general case the ori-
entation of D can differ locally from the orientation of D U D*(x, ny, ..., ng). If we

set m?2 = m? = 1 for the meridians, then the relations at the crossings are independent
of the orientations of the arcs. The mapping is defined in the same way as in the first
case, it is well-defined and surjective and the theorem is proved. O

REMARK 3.4. As the proof shows, the theorem remains valid when the twist tan-
gles are replaced by arbitrary tangles.

Theorem 3.5. If the partial knot of a symmetric union K is non-trivial, then K
is non-trivial.

Proof. In the article [3] the group 7(K) is called the m-orbifold group of K. It
fits in the exact sequence

1 - m(My(K)) > 7(K) > Zp; —> 1.

By the proof of the Smith conjecture [18] we have 7(K) = Z, if and only if K is the
trivial knot (cf. [3], proof of Proposition 3.2). Hence Theorem 3.3 implies Theorem
3.5. U

Homomorphisms on finite groups Let G be a finite group and g € G be an
element of order two. We count the colourings of a knot with elements of G. More
precisely let

c(K) = tHom(((K), [m]), (G, g)) and
ci(K) = ¢ Hom((7 (K), [m], [I]), (G, g, 1)).

Then, by Theorem 3.3, each colouring of K yields a colouring of K with trivial lon-
gitude:
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Corollary 3.6. If K is a symmetric union with partial knot K, then ¢,(K) >
c(K).

ExampLE 3.7. Let G be the symmetric group on eight letters and let g be the
involution (12)(34)(56). Then c¢(10g7) = c(820) = 201 and ¢;(10g7) = c1(82) = 105. If
10g7 is a symmetric union, the knot 8,y cannot be a partial knot of it (compare with
Example 3.2).

4. Braided symmetric unions

DEerINITION 4.1. A symmetric union which is a closed braid with respect to an
axis in between D and D* is called a braided symmetric union. See Fig. 13 for the
case u = 1.

REMARK 4.2. Our interest in symmetric unions stems from cylinder factor knots
(see [16])—which are closed braids. In addition, the characterization of symmetric
unions (Homfly polynomial etc.) could profit from the next theorem.

Theorem 4.3. Every symmetric union is also a braided symmetric union.
Proof. As in the standard proof of Alexander’s theorem ([2], p.42) we take

polygonal knots and eliminate negative edges. First we push the crossings at the sym-
metry plane over the braid axis to a place where both edges are positive. Then we
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Fig. 15.

treat the negative edges away from the symmetry plane. If an edge is negative in D
then its mirror image in D* is also negative, because the orientation is mirrored and
inversed. The procedure of inserting saw-teeth can be done symmetrically and at each
step the diagram is still a symmetric union (Fig. 14). The result is a braided symmet-
ric union. O

REMARK 4.4. Let u = 1. We write the parts D and D* of the diagram of
a braided symmetric union as « € B, and a«~! € B, where B is the s-string
braid group. Let B, be a braid word of the form o;*'of'...0*! for even s and
oif'lof!...0%. for odd s. Then a braided symmetric union has the braid word
Bs—2a Bsa~! for even s and Bya B a~! for odd s. Theorem 2.4 can be applied: the
Alexander polynomial is independent of the crossing signs on the symmetry plane,
e. g. the exponents of the o; above.

5. Symmetrization of ribbon knots

In this section we discuss the relationship between symmetric unions and ribbon
knots and links. For the definition of ribbon links see [8].

Theorem 5.1. All symmetric unions are ribbon links.

We do not give a detailed proof of this, but just remark that the idea is the same
as for connected sums K f(—K™*), only with additional half-twists of the ribbons on the
symmetry plane.

REMARK 5.2. Theorem 2.3 can be deduced from the general result that A(t) =0
for all ribbon links with 2 or more components (see [12] and [4]). We included our
proof because it is especially easy.
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QUESTION 5.3. Are all ribbon links symmetric unions? Are all ribbon knots
symmetric unions?

Fig. 16 contains the result of our attempt to find symmetric diagrams for all prime
ribbon knots with minimal crossing number < 10. Some of them belong to the Fox-
Milnor family [5] (6;, 820, 946, 10149), the Kanenobu family [9] (8, 89, 10129, 1037,
10y55) and the Kinoshita-Terasaka family (10;s3). These three families are shown in
Fig. 15. We do not know if 10g; is a symmetric union.

ACKNOWLEDGEMENT. I thank Michael Eisermann for his help and his contribution
in Section 3.3.
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