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1.

Let 2F4(¢%) be the finite Ree group of typeFf), whereg? = 22"*1, One of the
original motivation of writing this paper is to get infornianis about the Schur indices
of the complex irreducible characters @f4(g?).

Let G¥ be a finite reductive group. That i€ is a connected, ridrdinear
algebraic group over an algebraic closufe  of the prime figJd f characteristicp ,
F is a surjective endomorphism @  such that some polér Fof isFtobenius
endomorphism ofG relative to a rational structure Gn  over #efigubfield of K ,
and GT is the group off -fixed points af  (cf. Carter [3, p. 31]). Mhee say that a
complex irreducible character of G* is regular if it is an irreducible component of a
Gel'fand-Graev character af* and thgtis semisimple if it is the dual character of
a regular character o (up te&rl) in the sense of Curtis and Kawanaka ([4, 11]).
In [15, 16], we obtained some results on the Schur indiceshefregular characters
of Gf and, under the assumption that is a good prime Gor , of theiseple
characters olG” . The first purpose of this paper is to drop dsgtabsumption. Thus,
in particular, we see that any semisimple characteffg?) has the Schur index 1.
(It is clear that any regular character &f4(g?) has the Schur index 1.)

Our second purpose is to give a proof of the following theorghen p = 2.

Theorem (cf. M.J.J. Barry [1]). Any complex irreducible character of the Stein-
berg’s triality group ®D4(¢%) has the Schur indeg.

We note that the theorem is proved by Barry whenz 2 ([1]) and that when
p = 2 R. Gow has determined the Schur indices of the regularactens and the
semisimple characters 6D4(¢%). But the latter results can be also obtained from the
first results of this paper.

Notation. If x is an absolutely irreducible character of a finite group cmeral-
gebraically closed field of characteristic 0 andkif is a fiefdcharacteristic 0, then
my(x) denotes the Schur index gf with respect tok , where we considgras a char-
acter over an algebraically closed extensionkof [ If is a prinumber, thenD, de-
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notes an algebraic closure of tthe -adic number figld

2.

Let K be an algebraic closure of the prime fielg, of characterigt G a
connected, reductive linear algebraic group o¥er F, a sivge@endomorphism of
G such that some poweF¢ of is the Frobenius endomorphisn@ of tivelto
a rational structure oG over a finite subfield &f , a6d the grobtipF-fixed
points of G Let B* be an F -stable Borel subgroup of affid an F -stable max-
imal torus of G contained inB*. Let U* be the unipotent radical oB*. Let R be
the root system ofG with respect t0*, and, fora € R, let U} denote the root
subgroup ofG corresponding to. Let R* = {« € R | U C B*} be the set of
positive roots determined bg*, and letS be the set of corresponding simple roots.
Let p be the permutation orR  given by Uf) = U,,; we havep(R*) = R* and
p(S) =S. Let I be the set of orbits op an S. LetU* be the subgroup ot/* gener-
ated by the root subgrougg corresponding to the non-simple positive roatsThen
we haveU*/U* = [[,esUs = Il Uy where, fori € I, UF = [, Us and
Ut jurt = (U /UnF = [, Ur". Let A be the set of all complex linear char-
acters\ of U*F such thatA\|[U*" = 1, and letA, be the set of all linear characters
Ain A such thatA\|U! # 1 for alli € 1. For A € Ag, let Ty = \¢" = Indgff()\),
which we call a Gel'fand-Graev character 6f° . It is well knowvat any Gel'fand-
Graev character oG is multiplicity-free (Gel'fand-Graggkonuma. Steinberg; see
Deligne and Lusztig [5, Theorem 10.7] and Carter [3, Theo&i3]). We say that
a complex irreducible character @t is regular if it is an dueible component of
a Gel'fand-Graev character @¥” and that a complex irredacdsiaracter ofG7 s
semisimple if it is the dual character of a regular charaofeG” (up to 1) in the
sense of Curtis ([4]) and Kawanaka ([11]) (see Carter§g2]).

Assume that the centrg aF is connected. TH&n TI';=is independent of
A € Ao and any regular or semisimple character @f is expressed @sliaear-
combination of the Deligne-Lusztig virtual characteRé (Deligne and Lusztig [5,
Theorem 10.7]; see also Carter [8.4]). The degree of any semisimple character of
G is coprime top and whenp is a good prime far a complex irredecitiar-
acter of GI' is semisimple if and only if its degree is coprime pto seq Carter [3,
p. 280]).

Let us consider the case that is not necessarily connectegh We still have:

Lemma 1. Assume thatG is defined over a finite subfieldkof and is the
corresponding Frobenius endomorphism @f . hebe a complex irreducible char-
acter of GT . Thenif y is semisimplgits degree is coprime tp . Whem is a good
prime for G, x is semisimple if and only if its degree is coprime o
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Proof. We embed5; in a connected, reductive graep with connected centre
and the same derived group (cf. Deligne and Lusztig [5, $.183t x1, ..., x, be the
G."-conjugates ofy. Then, by Clifford theory, we see that there is a complex-irre
ducible charactef of G1* and a positive integee  such thatG* = e(x1+--- + x;).
According to a result of Lusztig ([14, Proposition 10]), wave e = 1. Assume that
x is semisimple. Then by a result of Digne, Lehrer and Michel (§.15.3)], we see
that one can assume thétis a semisimple character @,”. Since the centre o6,
is connected, the degree 6fis coprime top . Hence the degree pfmust be coprime
to p. Assume thap is a good prime fa¢ and that the degreg ©f coprime top .
Then the degree of is also coprime top so that it must be semisimple. Hence, by
[loc. cit.], x must be semisimple. U

Let J be any subset of . LeP J( ) XB*,U*,|aciiceJ). andL{) =
(T*,U%,U*, |a€i,ieJ). LetU(J) be the unipotent radical af J( ). For a char-
acter\ € Ao, let \(J) = (\ | (U*F N L(J)F)) x 1y, @ linear character im

Let A € Ap, and letA, be the dual (generalized) character Iof. Then by [7,
(2.12.2)], we have

(2.1) Ax =Y (DA,

JCI

where the sum is taken over all the subséts 7of . (In[7], it Buased thatG is de-
fined over a finite subfield ok and is the corresponding Frakeeindomorphism
of G. But (2.12.2) in [7] still holds in our case.) Sindg&, is multiplicity-free, by a
result of Curtis, Alvis and Kawanaka (See Carter [3, TheoBmkl]), we must have

(22) A)\ =exat ot eEmXm,

wherem = (), Ta)gr, & =1 (1 £i < m) and xs, ..., x» are distinct irreducible
(semisimple) characters a@#”

Let H be a finite groupk a field of characteristic O afid an algeblig closed
extension ofk . Let¢ be a generalized character 6f ov€r . Then we say ¢ghat
is virtually realizable ink if it can be written ag&1 + - - - + a,&,, whereas, ..., a,
are rational integers angh, ..., &,, are proper characters df  which are realizable
in k. In this case, ify is an absolutely irreducible character &f  ow€r , then, by
a property of the Schur index, we see thef x) @ivides each multiplicity &, x)u
(1 £i £ n), so thatm, {) divides the inner product{(x)x.

Suppose that is a field of characteristic O such that for amyA, A" s real-
izable ink . Then, by (2.1), we see that, for akye Ag, A, is virtually realizable in
k, so that, by (2.2), we havey, x) =1 for any semisimple character of G*.

Lemma 2 (cf. [15, 16]). Let A € A. Then we have the following
(i) If p=2,then A" is realizable inQ . Assume that # 2,
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(i) Letk = Q(\/(—1)»=9/2p). Then if p = —1 (mod 4),\¢" is realizable ink,
and if p=1 (mod 4),for any finite placev ok ¢ is realizable in the completion
k, of k atv.
(i) Assume thatG is defined over a finite subfield wjth  elements of erewh is
an even power op and’ is the corresponding Frobenius endomsrpofG . Then
for each prime numbeft # p, AG" is realizable in 0.

Assume thatZ is connected.
(iv) For each prime numbet # p, AS" is realizable inQ; .
(v) Assume thatz” s trivial or thaG is defined and split over a firstebfield of
K and F is the corresponding Frobenius endomorphisnGof . Tkiénis realizable

in Q.

SinceU*F/U,*F is an elementary abeliap -group,is realizable inQ ¢,), where
¢p Is a primitive p -th root of unity. Thus, ifp = 2 is realizable inQ , henca®" is
realizable inQ ((i)). Assume thgpt # 2. Then (ii) is proved in [16] and (iv), (v) are
proved in [15]. (i) is proved in [16] whet; is defined over a finsubfield ofK and
F is the corresponding Frobenius endomorphismGof . Therdforemains to prove

Lemma 3 (cf. [16, Lemma 2]). Assume thapp # 2. Let v be a generator of the
cyclic group F,*. Then there is an elememt ifi*" such thats"~! = 1 (possibly
tP=/2 = 1) and «a(r) = 2 for all simple rootsa.

Proof. We repeat the proof of Lemma 2 in [16].

Firstly, we observe that it suffices to prove the lemma for degived groupG’
of G. Let 7: G — G’ be the simply-connected covering 6f. Then, by [20, 9.16],
we see that there exists a unique isogefieyG — G such thatr o F = F o . We
see that ifF¢ is the Frobenius endomorphism@f corresponding to a rational struc-
ture on G’ over a finite subfieldr, ofK , ther ¢ is the Frobenius endomorphism
of G corresponding to a rational structure 6h over F, (cf. Satake [18, Remark 5,
p. 63]). Then, by the argument in the proof of Lemma 2 in [16§ van be reduced
to the case thaG is a simply connected simple algebraic gridu@ is defined over
a finite subfield ofK andr is the corresponding Frobenius endphism of G , then
Lemma 3 is just Lemma 2 in [16]. Therefore, sinpe# 2, it remains to treat the case
wherep =3,G =G, and F is an exceptional isogeney such ti&tis the Frobenius
endomorphism ofG corresponding to a rational structureGon er avfinite subfield
of K with 32"*1 elements (i.eG" 2Go(¢?)). But, in this easeG is an adjoint group,
so the assertion is proved in [15] (this case is also impiitiGow [10, Thearem 9]).

O

By Lemma 2, we get
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Theorem 1 (cf. [15, 16]). Let y be a complex irreducible character @¥”  such

that (/\GF, X)gr = 1 for someX € A (e.g. x is regular) or thaty is semisimple. Then
we have the following
(i) If p=2,then we havengy(x) =1
(i) Letk = Q(\/(-1)—V/2p). Then if p = —1 (mod 4),we havem(x) = 1, and
If p =1 (mod 4),for any finite placev ofk, we havem,, (x) = 1. Thus we have
mo(x) < 2.
(i) Assume thatG is defined over a subfield wjth  elements of wheran éven
power of p andF is the corresponding Frobenius endomorphisi@.ofhen for each
prime numberl 7 p, we havem,(x) = L.

Assume thatZ is connected.

(iv) For each prime numbef # p, we havemg,(x) = 1.
(v) Assume thaZ? is trivial or thaG is defined and split over a firstéfield ofK
and F is the corresponding Frobenius endomorphisnGof . Thetavem(x) = 1.

RemARK. Let x be a semisimple character 6f° . Then, in [15, 16], Theorem 1
is proved by a different method under the assumption that dsad prime forG .

ExampLe. By Theorem 1, we see that any regular or semisimple charattthe
Ree group?F4(g?) of type (F4) has the Schur index 1. We can also determine the lo-
cal Schur indices of any unipotent character?df,(¢2). There is just one unipotent
charactery of 2F4(¢?) such thatmg {) = mg,(x) = 2 andmy, ) = 1 for each prime
number/ # 2. This character has the property that it occurs with evedtiplicity
in each Deligne-Lusztig virtual characté} (cf. [13]). Other unipotent characters of
2F4(¢?) have the Schur index 1.

By the proof of Lemma 2 in [15, 16] and by Schur's lemma, we get

Proposition 1. Assume thalp # 2. Let x be as inTheorem land assume that
x is trivial on Z¥. Letk = Q(1/(-=1)*=Y/2p). Then we haveni(x) = 1. If Z is
connected or ifG is defined over a finite with elementskof  wlers ani even
power of p andF is the corresponding Frobenius endomorphisre ofhen we have

mo(x) =1
By Lemma 4 of [16], we get

Theorem 2. Assume thatp # 2 and let x be as inTheorem 1Let G be such
that G/Z is a simple algebraic group of any one of the following typds with
2|r or ordy(r + 1) > ordp(p — 1); 24, with 2|r; B, with 4|r(r + 1); D, with either
(@) 4r(r —1) or (b) orch(r —1)=1and p= -1 (mod 4);2D, with 4|r(r — 1); 3Dy;
Es; 2Es. Then we haveny(y) = 1.
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3.

In this section we shall give a proof of the following theorevhen p = 2.

Theorem 3 (cf. Barry [1] for p # 2). Any complex irreducible character of
3D4(¢°%) has the Schur indeg over Q.

Let ¢ be a power of any fixed prime number . L6t be a connectedjcred
tive algebraic group, defined over the subfidigl wjth  elemeftk (an algebraic
closure of F,, ), with Frobenius endomorphism  such tBgtZ is a simple algebraic
group of type tD,).

Firstly, by Theorems 1, 2, we see that any regular or semisiroparacter ofG"
has the Schur index 1 ovap (in the case whére  3Ix(¢%) with ¢ even, the
rationality of the semisimple characters Gf' has been ayredderved by Gow; see
below).

Next, we treat the unipotent characters@f . L&t T* be as in§2. Let W =
Ng(T*)/T* be the Weyl group ofG , wher&vg T() is the normalizer of’* in G.
Let X be the variety of all Borel subgroups &f . LeEt be any fixedner number
different from p . Let wew € W, and letw be an element d¥; T() such thatwT* =
w in W. Then, for B, B’ € X, we write B 2> B’ if there is an elemeng ofy
such thatB =gB*g~! and B’ = gwB*w g~ L. Let X(w) be the subvariety of
which consists of allB € X such thatB = F(B). Then X ) is smooth and purely
of dimension! v ), wherd () denotes the length function W&n wdhpect to the
simple reflections determined bB* (see Deligne and Lusztig [5, 1.4  acts on
X(w) by conjugation, saG* acts on each 4th -adic cohomology gmeitp compact
support H: (v ) Q; ) ofX () (0= i < 2/(w)). For 0< i < 2/(w), let H: (X w)) =
HI(X(w), 0)) = HA(X(w), 01) @y, 05, and let

2l (w)

RY(w) =) (1) H! (X (w))

i=0

(an element of the Grothendieck group of representation&ofover Q,). Then the
character ofR'(w) has rational integeral values, independent/ of ([5, {3.8o we

can regardR*(w) as a generalized complex character®f . We say that a cample
irreducible characteg of G' is unipotent if ®R*(w), x)gr 7 O for somew € W ([5,
7.8)).

Let w € W, and, for 0< i < 2/(w), let &(w) be the character of the” -module
H!(X(w)). Then & (w) is clearly realizable inQ, so that the generalized characte
RY(w) is virtually realizable inQ, . Therefore, for any unipotecharactery of GF,
mg,(x) divides ®*(w). X)gr-

By [5, Proposition 7.10], we see that in order to investigdte rationality prop-
erties of the unipotent characters 6f we may assume ¢hat  imples adjoint
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group.

Assume therefore thaG is a simple adjoint group. Theh is @ptic to
3D4(¢°). Following the notation of Spaltenstein [19], the unipdteharacters ofG*
are [1] = 1+ , E1l, [2], [€] = StG, [pal, [p2], 3Da[—1] and 3D4[1]. The first six char-
acters are the irreducible components gtf-ff, so that, by a result of Benson and
Curtis [2], we see that they are realizable ¢h . By a result aédtig ([12, (7.6)],
we see that the charactéb,[—1] is also realizable inQ . And, by an argument simi-
lar to that in the proof of the theorem in [17], we can provet tie charactef D4[1]
is realizable inQ .

In the case wherep = 2, we can also argue as follows. Assumeptha® and
G =3D4(g®. ThenG* contains exactly'®+¢*? — ¢* — 1 involutions and this num-
ber is equal to the sum of the degrees of the irreducible ctersaof G minus 1
(Gow’s observation). Thus all irreducible characters@f e agal-valued and have
the Schur index 1 oveR (a theorem of Frobenius and Schur [8});y be any unipo-
tent character oG” . Then we see from [19] thats of rational-valued and that there
is somew € W such that RX(w), x)gr = £1. Therefore we haveiy, x§ = 1 for any
prime numberl # 2 andmpg ) = 1. Therefore, by Hasse’s sum formula, we must have
mo,(x) = 1. Hencem, §) = 1. We also note that, since all irreducible characters of
G are real, by the Baruer-Speiser theorem, we see that they thavSchur indices
at most two overQ , so that, since any semisimple characteG’of as aud degree,
we see that it has the Schur index 1 ovgr

Assume thatp =2 andi’ 2D4(¢®). Then, in view of the table an page 53 of
Deriziotis and Michler [6], we find that the remaining chaeas arexs,, and xg 4.

We use the notation of [19] freely. Let '{xB(t)XQ(tq)xlo(tqz) | t € Fg},
an elementary abelian 2-subgroup 6f | of ordgr For ¢+ # 0, the element
x8(t))C9(tq)x10(tq2) belongs to the classA3. Let i be any non-principal complex linear
character ofA . Ther,qu is clearly realizable inQ . We have

F
(MG ,X4,q,v)GF = (1, Xags | A)a

= q—l?’{X4,qx (l) - X4,51S(3A1)}

=q®—q®+2°+q" -2 +q*+q - 1
£0 (mod 2)

and
(MGF, x9-qf’)(;f- =q®— P =25+ +2%+¢q*—g—1#£0  (mod 2)
Therefore, by the property of the Schur index, we find that x4 ,() andmg ((o.¢s)

are relatively prime to 2. On the other hand, since these wvies of characters are
real valued, they have the Schur indices at most two a@¥er refbe we conclude



1018 J. CHOMORI

that mo (X4.q5) = mQ(Xg,qs’) =1
This completes the proof of Theorem 3 when is even.

Remark. There is an alternative proof of Theorem 3 when is odd. Asstimat
p # 2 and thatG is an adjoint simple algebraic group, defined @ygrof type €Dy)
and F is the corresponding Frobenius endomorphisnézof . Thesegefrom results
of Geck [9], that, for any complex irreducible characteof G*, the greatest common
divisor of the multiplicities ofy in the generalized Gel'fand-Graev charactersGdf is
equal to one. On the other hand, we can prove that each geeer&elfand-Graev
character ofG” is realizable i@ . Therefore, by the propertyhef Schur index, we
can conclude thatzy () = 1 for any complex irreducible charactgrof G*.

By the same argument, we can prove that any complex irrelduciaracter of
GL,(F,) (¢ is a power of any prime numbgr ) has the Schur index 1 @@erhis (t
is a well known result of Zelevinsky [21]).

Added in the proof (26 Aug. 2003): After this paper had beecepted for pub-
lication, | knew the existence of the following paper:
M. Geck: Character valuesSchur indicates and character sheav&epresen-
tation Theory7 (2003), 19-55, An Electronic Journal of the American Math-
ematical Society (Print form in 2001).
In it, it is established the existence of the unipotent repngation of?F4(¢?) of the
Schur index 2.
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