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Abstract

The ggneral framework to analyze the structure of
two-dimensional quantum field theories with the conformal and
the Kac-Moody invariance is discussed. It is shown that the
stress-energy tensor naturally exhibits the Sugawara form
irrespective of models. The generalization of the
Knizhnik-Zamolodchikov equations for arbitrary symmetry groups
is presented. As applications of the present method, the
solutions of two models are studied. One is the conformally
invariant SU(N) Thirring model. All multipoint correlation
functions of the theory are explicitly obtained by sélving the
corresponding Knizhnik-Zamolodchikov equations. The other is
the SU(N)IxU(1) Wess-Zumino model. This model is studied in
connection with the fermion theory mentioned above. As a
result, the bosonization prescription of the conformally

invariant SU(N) Thirring model is obtained.
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§1. Introduction

One of the most interesting problem in quantum field
theories consists in the study of solvable models. The
investigation into the exact solutions of these models have
presented valuable insights on the structure of quantum field
theories and the exact knowledge on the behavior of each model.
Many efforts in this direction have been devoted, and some
two-dimensional models were exactly solved in practice
0(4)-¢ model [1], Thirring model [2,3] etc. In particular,
the significance of the study of conformally invariant field
theories in two dimensions [4,5]1 has been recently recognized
due to their connections to unified theories and statistical
physics.

Recently, much attention has been paid to (superl)string
theories [6,7] as the candidates for the unified theory of
elementary forces which contain gravity. These theories can be
described as a conformally invariant field theories on the
world-sheet. One can also find some other applications of
conformal theories in statistical physics. Many two-dimensional
statistical systems ( Ising model, three-state Potts model
etc ) at critical temperature can also be interpreted as the
special kind of conformal theories ( see, for example, [8] ).

With the increasing of the physical interests, the method
in the analysis of conformal theories have been developed from
a mathematiéal aspect. Friedan, Qiu and Shenker [9]1 analyzed
these theories as the representation theories of the Virasoro
algebra. They showed that the conformal invariance and the
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unitarity severely limit the possible theories in two
dimensions, and they consequently classified the unitary
theories:

Furthermore, in 1984, it has been shown by Belavin,
Polyakov and Zamolodchikov ( B.P.Z. ) [10] that the bootstrap
approach based on the operator algebra hypothesis is powerful
to solve conformally invariant field theories in two dimensions.
Several authors applied this approach to some models and
obtained successful results: for instance, to string theories
[11,121, and to statistical systems [13-161. Among others,
Knizhnik and Zamolodchikov [17]1 investigated the Wess-Zumino
model [18,19]1 which has a certain internal symmetry ( Kac-Moody
invariance ) besides the conformal symmetry [20]. They found
the anomalous dimensions of the Wess-Zumino fields and showed
that the multipoint correlation functions satisfy special first
order linear differential equations ( K-Z equations ) ( see
also [21,22] ). However their derivations seem to be
model-dependent and the groups of the internal symmetry are
limited to simple ones.

Main purpose of this thesis is to give the general
framework for the investigation of two-dimensional quantum
field theories which have the conformal and the Kac-Moody
invariance. We also study the conformally invariant SU(N)
Thirring model and the SU(NIxU(1) Wess-Zumino model as
applications.

This thesis is organized as follows. 1In section 2, as
preliminary for the present work, we briefly review the
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bootstrap approach to conformally invariant field theories in
two dimensions. This section is devoted to the explanation of
the basic tools and concepts. In section 3, we generally study
two-dimensional quantum field theories which are invariant with
respect to the éction of the conformal and current algebras

( Kac-Moody algebras ) based on the bootstrap approach. It is
shown that the stress-energy tensor exhibits the
current-current form ( Sugawara form [23-26]1 ) irrespective of
models. The genelization of the K-Z equations for arbitrary
symmetry groups is presented. In section 4, we investigate

two dynamical models by applying the general framework
developed in section 3. One is the N-component Dirac theories
[51 which possess the conformal and the SU(N)xU(1) Kac-Moody
invariance. All multipoint correlation functions are
explicitly given as the solutions of the generalized K-Z
equations. The other is the SU(NIxU(1) Wess-Zumino model which
is another realization of the conformal and the SU(NIxU(1)
Kac-Moody invariance. Our attention will be mainly devoted to
studying the relation between this model and the N-component
Dirac theories. As a result, we find the bosonization rules
[20,27-301 of the conformally invariant SU(N) Thirring model.

The last section is devoted to summary.



§2. Conformally invariant field theories

2-1) Operator algebras

In this section we review, according to the paper
(101 by Belavin,.Polyakov and Zamolodchikov, the bootstrap
approach [311 to the conformally invariant field theories in two
dimensions ( see also [321 ).

The bootstrap approach is based on the operator algebra
hypothesis : an infinite set of operators of local fields {Ai}
which contains the identity operator 1 forms a closed and

associative algebra

k(U)’

A (E)A.(0) =5 X (&)a
1 J 1J
k
where & denotes the coordinates (€1,§2) and the structure
constants C?J(ﬁl are single-valued functions ( see also [331 ).
The above relations are understood as an expansion of the

{n+2)-point correlation functions with n arbitrary

<Ai(£)AJ(O)AL1(€1)...Aln(ﬁn)>

— k
= E Cij(§)<Ak(0)AL (51)...AL (En)>.

1 n

2-2) The Conformal invariance and the stress—energy tensor

In quantum field theories, the conformal symmetry take



place provided that the stress-energy tensor is traceless.
The conformal transformations of the coordinates &u

( p=1,...,D with D being the dimension of the space ) are

substitutions

g ? f (g) L) (2 - l )

5 \
+ - = = 0. .
aufv(ﬁl avfu(&) D éuvapfp(i) 0 (2.2)
In two dimension (D=2), since (2.2) are regarded as the
Cauthy-Riemann equations, conformal transformations are

arbitrary analytic substitutions

z » £(z), Z = £(2), (2.3
where z and z are complex coordinates

z = gl + 152, z = 51 - i§2, (2.4)

and f(f) is an analytic function of the single variable z(z).
Hereaftrer we work in the complex space ¢2. Hence we treat

the complex coordinates (2.4) as two independent complex

variables, and also f and f as two unrelated analytic functions.

The infinitesimal forms of the transformations (2.3) are

z 7z + 8(z), zZ= 7z + ¢g(z), (2.5)
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where g£(z) and €(z) are infinitesimal analytic functions.

The variation of a certain local field Ai(ﬁ) under the
infinitesimal transformation (2.5) is a linear combination of
the function g(z) and a finite number of its derivatives taken

at the point z

V.
i k
5 A, (z,Z) = 3 B;k—l)(z.i) 4 ez, (2.6)
k=0 dz
where B§k~1) are local fields belonging to the set {A,} and v,

is a certain integer ( similarly for z ; the treatment of the
left and right variable z and z is completely analogous, and we
will usually present only the left part of equations ).
Remembering the transformation properties of local fields under
infinitesimal translations and dilatations [34] , one finds
(-1)

B.

i A.(z,z) (2.7a)

Q)I(D
N
b—

(z,z2) =

g0’

i (z,z) = AiAi(Z’Z), (2.7h)

where Ai is called the left conformal dimension of the field Ai
( we‘use 51 for the right conformal dimension ).

In the conformally invariant field theories, the
transformations (2.6) are denerated by the symmetric and
traceless stress-energy tensor T(z) ( =T“—iT12 )
+iT ) for right transformations ) of the

( T(z) ( =T

11 12
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Consider a correlation function of some local fields,

<X> = <A1(ZI,ZI)...An(Zn,Zn)>. (2.8)

Then the conformal Ward identities [35,36]1 of the theory are
written as

_ |
<58X> = ShT f dg e(8IKT(EIX>, (2.9)
C

where the contour C encloses all the points zl,...,zn. For a

single field we can then write the transformation law as

- 1 -
BSAi(Z,Z) = 3% f dg e(g)T(grA(zZz,2). | (2.10)
C

Taking account of the tensorial property of the field
T(z), one can write down the most general expression [4] for the

variations 58T and 5§T

lo

g'''(z), (2.113)

88T(z) e(z)T'(z) + 28" (zZ)T(z) + T

(3]

(2.11b)

0]
[ow]

5éT(Z)

Let us introduce the operators Ln and En (n=0,x1,x2,.. )
as the coefficients of the Laurant expansions ( see also

Appendix A )



T(z) = S n_ (2.12a)
Ne - Zn+2

TGy - 3 L,

T(z) = 1 (2.12b)
N= - £n+2

It follows from (2.11a) that the operator Ln satisfy the

commutation relations ( Virasoro algebra [37,38]1 )
r.. , L 1=1(n ~ m)Ln+m + B (n- - n)an+m 9 (2.13)
The same relations are satisfied by En's, with the operators Ln

and ﬁm being commutative.

2-3> Conformal families

Let us recall the equation (2.8)

V.
_ i _ _ k
8 .A(2,2) = 3 B§k D27 ‘QE e(z). (2.6)
k=0 dz
It is evident that the dimension of the field ng"l) is equal
to
Al,(k—1)=A1+l —k9 k=09190..9vio (2-14)

In physically stable theories the dimensions of all the fields

Ai should satisfy the inequality
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Ai =2 0. (2.15)

In what follows we assume that the only field with zero
dimensions A=A=0 is the identity operator I. From the
condition (2.15), we see that the sum in (2.6) contains a

finite number of terms

v, < A, + 1. (2.16)

The spectrum of dimensions {Ai} in any two-dimensional

conformal quantum field theory consists of infinite series

(k) _ i}
A% = Al bk, K=0,1,... , (2.17)

where Ap denotes the minimal dimension of each series, whereas

the index p labels the series ( the same is valid fbr the

dimensions Ai ).

Let ¢p be the field with the dimensions Ap and Zp . The

variation of this field has the form

2

S ¢ (z,z) = g(z) 3% e (z)¢p(z,z). (2.18)

,Z) +
@p(z Z) Ap

This formula is equivalent to the commutation relation

= _ M+l 3 = m
L L mp(z,z) 1 =7z 37 mp(z,z) + Ap(m+1)z ¢p(z).(2.19)



We shall call the operators mp having the transformation
property (2.18) primary fields.

The conformal Ward identities for the primary fields are

<T(Z)®1(Zl)...¢n(zn)>

n
= E { + - 37 @B (z). .0 (Z >, (2.20)

where Al”"’An are the left conformal dimensions of the fields

] ’Qn respectively.

10

The primary fields themselves cannot form a closed operator
algebra. From (2.17), there are infinite many other fields
associated with each of the primary fields mp . We shall refer
to these fields as to the sebondary fields with respect to the
primary fields ®p

The secondary fields associated with the primary field ¢p

are defined as

ptRIKY o oy L (z)...L . (2L = (2L = (2D _(Z,2).
P —k1 -k -k -k P
n 1 m
(2.21)
for
{k} = ( kl""’kn )}, {k} = ( kl,...,km ), (2.22)
where ki,Ej >1 (¢ i=1,...,n, j=1,...,m, with n and m taking all

natural numbers ), and



fd;i T(s (8, - 7y K+ (2.23a)
C

N
n

(2.23b)

(ul]
[}
N
n
A—>

o

wyl
=3
wel
el
N

The integration contours C associated with each of the operators
L-k (E—R ) in (2.23) enclose the point z (z) as well as the

i J
points §i+1 (§J+1)""’§n (§m). The operators Ln introduced in

(2.12) are no other than Ln(O). The dimensions of the fields

(2.21) are
{k} _
Ap = Ap + k1 + ... + kn s (2.24a)
(kY _ = T =
Ap = Ap + k1 + ... + km . {2.24b)

An infinite set of the fields (2.21) constitutes the

conformal family [@p].

2-4) Conformal properties of operator algebras
Consider the product of two primary fields @n(g)mm(O). The

operator product expansion can be represented as



® (z,2)0 (0,00 =3 3 3 Cg;k}{k}
p {k){k}

AP_An_Am+2ki—Ap_An—Am+zki

% z = Q{k}{k}

p (0,0). (2.25)

Both sides of (2.25) should exhibit the same conformal
properties. The transformation law of the left-hand side is
determined by (2.18), and that of the right-hand side can be
derived from (2.21). The requirement of the conformal

invariance of (2.25) leads to the relations among the numerical

constants Cg;k}{k} with different {k}'s but with the same
indeces p, n and m. These relations can be solved in the

factorized form

p{k}{k} _ ~p ,p{k}zp{k?
Crm = Comfrm Pom (2.26)

where the conditions Biéo}= Bﬁ;O}= ] is implied ( see Appendix

B ). Thus the expression (2.25) can be written as

A A -A A _-A_-A
- _ P_"P “n “m="p “n “m -
mn(z,z)Qm(0,0) = E Cnmz z Wp(z,ZIU,O),
(2.27)

where

oy 2k, k. {k¥{k}
5 pP{KIgPik} 1", (0,0). (2.28)

TP(Z,ZIO,O) = am nm p

{k¥{k}



ca A - . .
30. Quanium field theories with the conformal and the

Kac~Moody iny i
t UL Enyariance
{391

3-1) The conformal and the Kac-Moody invariance

Knizhnik and.Zamolodchikov [17] investigated the Wess-Zumino
model which has a certain internal symmetry ( Kac-Moody
invariance ) besides the conformal symmetry. They found the
anomalous dimensions of the Wess-Zumino fields and showed that
the multipoint correlation functions satisfy some special first
order linear differential equations ( K-Z equatiions ). However
their dérivations seem to be model-dependent and the groups of
internal symmetries are limited to simple ones.

In this section, we generally study two-dimensional quantum
field theories which is invariant with respect to the action of
the conformal and also arbitrary current algebras ( Kac—Moody
algebras ), irrespective of models. Our investigations are
based on the bootstrap approach developed by B.P.Z. ( reviewed
in sec.2 ). The generalization of the current-current form
( Sugawara form ) of the stress-energy tensor and K-Z
equations are found for arbitrary groups which may not be
simple.

Recalling the equation (2.27) in the previous section,
operator algebras in conformally invariant theories are

expressed in terms of conformal families [Qn] as

A -A -A  A_-A_-A
= _ P _°p °n “m="pP “n “m
Qn(z,z)mm(0,0) = > Cnmz z

P
- 13 -



(0,0). (3.1)

N Sk. Sk. =
5 S BP{k}BP{k}Z iz lm{k}{k}

(ky{ky M oW P

Left conformal transformations for the primary field @n are
generated by the traceless stress-energy tensor T(z) ( T(z) for

right transformations )

I}

- 1 -
58®n(z,z) TR I dg T(§)8(§)¢n(z,z)
C

E(Z)SZQH(Z,Z) + Ans (Z)@n(z,z). (3.2)

and internal transformations are generated by the conserved

currents Jg :

5wa¢n(z,z) f dg Ja(g)wa(g)Q (z,z)
C

= tg 0o (2)0 (2.2)  for a = l.....M, (3.3)
where we consider a group G=G1x...xGM, and tgn are the left
representation matrices of the algebra of Ga for @n ( we
use E;n as the right representation matrices ). The
transformation prorperties of the generators themselves for the
conformal and the internal group have the following forms
for conformal transformations,

58T(z) = g(zZ)T'(z) + 28'(2)T(z) + T% g'''(z), (3.4)

- 14 -



- a, + a
BSJa(Z) = S(Z)Ja (z) + ¢ (Z)Ja(Z)’ (3.5)

and for internal transformations,

_ &, a
5waT(Z) = @ (z)Ja(z), (3.86)
5 J3z) = £3PC,P(1y 5%y - Ko 0 (2) (3.7)
0, o o o o 2 o i *
where fzbc are structure constants of the group Ga ., and ka is

called the central charge of the Ga Kac-Moody algebra (3.7).
The variations &g and 87 of the fields T and J are given by the
same equations, whereas the variations 65 (58) and 56 (6m)of T
(TYy and J (J) vanish. The equations (3.2)~(3.7) can be

rewritten in the form of operator product expansions :

A
' =y - n - 1 -
T(z )¢n(z.z) = — @n(z,z) t oo azmn(z,z)
(z'-2)
+ regular terms, (3.8)
a
a, . - tan =

Ja(z )¢n(z,z) = mn(z,z) + regular terms, (3,9)
T(z')T(z) = St —E s T(@) ¢ T @)

2(z'-2) (z'-2)

+ regular terms, (3.10)



a 1 a 1 a
T(z')Jd (z) = ————= J (Z2) + ———= J_"'(Z)
o (z'—z)2 o z'-z "«
+ regular terms, (3.11)
a .. - 1 a
Jo(z'")T(z) = J-(z) + regular terms, (3.12)
o . 2 o
(z'-z2) :
ab abc
k 3§ f
iz = - 22— - 2 3S(z)
2(z'=-2)
+ regular terms. (3.13)

3-2) The Sugawara form of the stress—energy tensor
We first derive the Sugawara form of the stress-energy
tensor for the group G=G1><...><GM . Consider a linear

combination of the operator expansions (3.13)

a,_,, <4 a,.,41a A,_.+, 18
JI(Z )Jl(Z) + X2J2(Z )J2(z) + ... + XMJM(Z )JM(Z)

k,D, + x, kD, + ... + x,.,k,,D '
N 22 2 5 MMM + regular terms, (3.14)
2(z'-2)

where the constants XoseeeaXy are determined soon later, and Da
is the dimension bf the group Ga . Since the equation (3.14)
is regarded as an operator algebra of (3.1), one can know that
the zeroth order's in (z'-z) of the regular part contains T(z)
which belongs to the conformal family of the identity operator.

In fact, by applying the method explained in Appendix B , we

- 16 -



obtain the equations

0€{1y _ L0{1,1} _ 0<2y _ 2

which mean

a,_,, -a a,_, -4 a,_,, -a
JI(Z )Jl(z) + X2J2(Z )Jz(z) + ... + XMJM(Z )JM(z)
_ lel + x2k2D2 + ... + XMkMDM
2(z'-7)2
k,D. + x,k, D, + ... + XxX.,K,,D
S 22 2 c M MM T{(z) + regular terms.(3.16)

Here we show that one can consitently determine the constants
x2,...,xM and the central charge c¢ setting other zeroth order's
of the regular part zero. Comparison of the transformation

properties of both sides of (3.16) yields some algebraic

equations for the constants X2"°"XM as well as the central
charge ¢
o ek o KDy XoKoDy ¥ * XyKuPu
Vi 1 c *
(e e k) = lel + x2k2D2 + + kaMDM
8" -VB B C ’
for 8 = 2, ... M, (3.17)



where CVa (e =1,...,M )is defined as

abc . bcd - 5ab . (3.18)

Cyp * Xy
XB = E——_‘_—}(— . for B = 2, PR gM v (3.19)
V8 8
M k.D
c=2C°“jfk (3.20)
=1 Vo o

Consequently we find the Sugawara type formula in the form of

operator algebra

M
T(z) = - S -(—:——-i—k— J2z13% )
=1 “Va& o
C B
- —=S - oz'-2), (3.21)
2(z'-2)

where ¢ is given by the equation (3.20). This equation can be

expressed as

M
T(z) = - S E_I—+T : 332)3% ()
a=1 “Vuo o
M K D
= -3 —l7 limr dznaie v —2E g,
a=1 “Vo o Z'=Z 2(z'=-z)

(3.22)



3-3) The generalization of Knizhnik-Zamolodchikov equations
Next,‘in the same way, taking account of the conformal
properties of the operator algebras (3.9), one can consistently

set the following expression

3,97 (200 (z.2) + y 8 a5z (z,2) + ... o+ ytlodg(z e (2,2)
. Cip * y2Z??Z+ R T mn(z,i)
_n’? y2c22A+ T g (2.3) 4 0z'-z). (3.23)
<8n Z hn
where Con ( a=1,...,M }is defined as
tgntgn = - cqnl . (3.24)

In fact, comparison of the transformation properties of both

sides of (3.23) yields algebraic equations for the constants

Yoe... ¥y as well as the conformal dimension A, of the primary
field o,

o+ g = oin* Y2%on * * YuCun

Vi 1 by ’

c + y.C + + v,,C
_ “1In 272n M~Mn
for 8 =2, ... M. (3.25)



The solution for these equations is given by the formulas

Cy; * Ky
Vs T o for B = 2, M, (3.26)
VB B
M c
an
A =S (3.27)
n =1 CVa * ka

Therefore the

left and the right operator equations for the

primary field On are
a
M t
9. (z,z) = =2 3 an__ 3z _(z,2)
zZ h a=1 CVa + ka o n
1 = '
2An =% mn(z,z) + 0(z'-2), (3.28a)
-a
M t
8=0 _(z,z) = -2 3 4 33 (z0_(z,2)
Zn o=1 Cva + kcx o n
- 28 —L o z.2) + 0 -2, (3.28b)
z'-z
The equations (3.28) can be expressed in the forms
a
M t
o b _(z,z) = -2 3 an J2(z)10_(z.2)
Zn o=1 Cyu + ka o n
a a
M t t
=-23 — e lim I 38z) - 22 10 (2,2), (3.29a)
=1 "V o z'-z

- 20 -



: Mot
90 _(z,z) = -2 3 &1 32z, (z,2)
Z'n =1 Sva ¥ Ku o n
ra 7a
M t t 3
= -2 3 — = lim [ 35(2) - =221 0 (2,2). (3.29b)
o=1 Ve o z'=z

Substitute the above equation (3.28a) into the Ward

identity for the internal symmetries

a - -
<Ja(z)¢1(zl,zl)...mN(zN,zN)>

Nty - .
=i§1 oy <Py (zhz ). bz, Z\ ), (3.30)
and one obtains the generalization of K-Z equations
a ,a
M .t ’
1 ol oj 1
{ =z @ + 2 > }
2 7z =i a=1 Sva t Ky 2772
X <¢1(zl,zl)...®N(zN,zN)> =0 . (3.31)

Of course the left part corresponding to the equation (3.31)

has the same form.
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84. Solutions to some models in two dimensions [42]

4-1) The Conformally invanant SUNN} Thirring model

Dashen and Frishman showed in their pioneering work [51 that
N-component Dirac theories with SU(N) and U(1) current-current
interactions are conformally invariant in two dimensions only
for a special value of SU(N) coupling constant ( the value
of U(1) coupling constant remains arbitrary ). They derive
this result by imposing the locality requirement, which is
explained later, on the conformally invariant four-point
correlation functions.

In this subsection, we study conformally invariant
N-component Dirac theories according to the general framework
developred in the previous section. Above result of Dashen and
Frishman appears, when we apply the equations (3.29) to Dirac
Fermions. The anomalous dimensions of Dirac fields are found
simply applying the formula (3.27) and all multipoint
correlation functions are explicitly obtained as the solutions
of the generalized K-Z equations.

Let us start with the definition of the theories.

The basic fields are N-component Dirac fermions
¥
¥y = s for o =1, ... N . (4.1)
o

These fields Wl and ?2 are assumed to be primary fields with

conformal dimensions (Al,Bl) and (A2,32) respectively. These

_22_



conformal dimensions will be determined later.

We now consider the model which exactly maintain the left
and right SU(NIxU(1) Kac-Moody invariance as well as the
conformal invariance. Therefore there are left and right
consefved SU(N) (U(1)) currents which are denoted here by J2z)
(J(z)) and 3%(Z) (J(Z)) respectively.

The Jacobi identities severely constrains the SU(N)
transformation properties of fields. Especially, in a case
that the basic spinor field ¥ transforms as the fundamental
representation of SU(N), only two types of SU(N)

transformation properties of Tl and T2 are compatible with the

Jacobi identity

__l a a -
8,¥,(z,2) = 5 (1+e)t7e™(2)¥ (2,2), (4.2a)
5-¥. (z,7) = L (1-8)t%3(2)Y. (2,2) (4.2b)

o 1 = 2 | R ’ :
S W . (z,7) = 1 (1-e1t%¥¥,(2.2) (4.20)
@2 2 D el :
§5-% (z,2) = 4 (1+e)t%B N Z)¥, (z,2) (4.2d)
m29 2 2’9 Y

where g=x1 and ta are the N X N antihermitian matrices
representing the algebra of the group SU(N).

The left and the right U(1) transformations of the fields

are generally written as

50W1(z,2) = q m(Z)Wl(Z,E), _ (4.3a)
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8-¥,(z.2) = q 0(2)¥, (z,2), . (4.3b)
8, ¥,(z,2) = q 0(2)¥,(2,2), (4.3c)
3-¥,(z.2) = q 0(2)¥,(Z.2), (4.3d)

where g and q are the left (right) and the right (left) pure
imaginary U(1) charges of Wl (Tz) respectively.

However we do not go into the expliéit structure of these
currents in terms of the basic fields. For the purpose of
solving models exactly, it is not appropriate ( except the free
theory ) to define the currents as the normal ordering of
fermion bilinear forms. These definitions are relevant for

perturbation study.

Kac-Moody algebras of the currents are

5,0%z) = £3PC by 5C 2y - % 0 (2), (4.423)
5-7%(z) = §abCIb(Z33C 2y - % o2 (2), (4.4b)
5 Jiz) = - £ o) (4.4¢)
@ 2 i
5-J(z) = - £ 5 () | (4.4d)
® 2 ’

where fabC are structure constants of the group SU(N), and k and
k' are the central charges for SU(N) and U(1) respectively. At
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this stage we have no idea of determining the value of k, since
we do not .specify the explicit form of the currents.

Dashen and Frishman showed that the locality requirement of the
four-point correlation function fix the value of k to be unity
both in the free and interacting cases. Afterward we will
return to this point. On the other hand, the U(1) central
charge k' itself remains arbitrary, since it just serves as the
normalizations of the currents J and J.

Various results come from the applications of the general
formulas, developed in the previous section, to the case with
G=SU(N)xU(1). The only thing one has to do is to substitute the
charge assignments (4.2) and (4.3) into the formulas.

First of all, from the equations (3.29), we obtain

a
- _ _ t% . =a,z -
ale(z,z) = (1-8) Tk - J(z2I¥ (z,2)
-23 32w, z,2) s, (4.5a)
k 1
- ta a
82W2(z,z) = - (1-8) N+k J (Z)Tz(z,z)
59 . :
2 Ak J(z)Tz(z,z) s, (4.5b)
- £ @ a -
SZTI(Z,Z) = - (1+8) N+k J (Z)Wl(z,z)
-2 %. DIV (2,2) t, (4.6a)
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- ta -3, = -
82?2(2,2) = - (1+g) Ntk J (Z)lPZ(ZgZ)
- a . 3z >y e
2 ko * J(Z)IP2(Z,Z) LY (4-6b)

The equations (4.5) are regarded as the field equations for the
basic fields, while the equations (4.6) are not. That is the
reason why the case with g=1 and g=0 corresponds to the free
theory, and the case with g=-1 corresponds to the SU(N) Thirring
model. Hereafter we concentrate on the case with g=0 for
simplicity, which means vanishing of the U(1) coupling constant.
The conformal dimensions of the fields Tl and W2 are given

from the formula (3.27) and its right-handed version as

2 2 2
_ 1+g N~-1 lal + _ 1-g N--1
A7 TN T kT 0 A1 T T N (4.7a)
2 2 2
- 1-g N -1 - _ l+g N°-1 lql
b2 T T3 IN(N+R) %2 T Tz NNk F TR (4,7b)

The combinations d=A1+A1=A2+A2 and s=A1—A1=—(A2—A2) are the

anomalous dimension and the spin of the basic spinor fields ¥

respectively. Setting the natural condition s=1/2 , the ratio
2

{ql“/k*' and therefore the value of A's are fixed
for g = 1,
2
fql“ _ Nk+1
KT IN(NRD (4.8a)
A, =L, K =0 (4.8b)
1 2 £ 1 b .
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AL =0, A= % , (4.8¢)

~and for g = -1,
1a1® _ 2N%+kN-1 -
K SNIN+K) .
2 2
_ 2N7+KkN-1 - _  N°-1
A1 % NN+ 81 T aNONRO (4.8e)
2 2
= N -1 T - 2NT+KkN-1
A2 = NW+RY ¢ %2 T ToNON+R) (4.8f)

Any multipoint correlation function for arbitrary primary
fields @n(z,i) satisfies the following first order linear
differential equations

ama
TiTy, %%,

{ 9 + 2> I + ; — }
zi =i N+k k zi zj

X <¢1(zl,zl)...®n(zn,zn)> = 0 , (4,9a)
TSTS R.Q
o +23 gty 21—
i J&i Z.-Z.
_ i =g
X <& (zl,zl)...¢n(zn,zn)> =0 , ‘ (4.9b)

1

where T? (T?) are the left (right) representation matrices

of the SU(N) algebra for ¢, and, Q; (@i) is the left (right)
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U(1) charge of mi . The propagators of the basic fields Tl and
Wz are easily obtained from the equations (4.9) and the charge

assignments (4.2) and (4.3)

for g = 1,
¥ ¥ Bzy> = A 88 (zezy ! (4.10a)
1104 1 o i *
S B sy 2 B 5 s -1
Fo ¥, 2> = a8l 2zt (4.10b)

and for g = -1,
_ rg _ 8 -28, _ _ -28,
<W1a(z,z)T1 (z',z')> = B 5a (z-z") (z-z2') , (4.11a)
o _ -2A, _ _  -2A
<w2a(z.z)w26(z',z')> - B 52 (z-2')  2(z-2') 2, (4.11b)

where A and B are normalizations. Any other two-point
functions are vanishing.

In general, the 2(n+m)-point correlation functions

- By - - by -
<T1a1(x1,x1)W1 (yl,yl)...‘Pmn(xn,xn)T1 (y_,y.)

(u_,u )W*am( ) (4.12)
i ug %, My v 0> .12

Y. (u..G )?*61( 7).,
X 27 Ulgul > Vlg 1 PR 2?

1

are decomposed into the forms

<Y



= <P, (X, ,X%,) W*Bn( v XY, (u,.u,) W*am( VoD
T e, XpoXgdeoe ¥y Wy ¥y 2v, UpsUydeeoo AV VR o2
(4.13)

Let us solve the generalized K-Z equations (4.9) for the
four-point function
B *82

- 71 - - -
<T1al(zl,zl)T1 (22,22)W1a2(23sz3)?1 (24,24)>. (4.14)

which is decomposed into the form

- 1By By 85 _ By By _
<T1a (zl,zl)...‘P1 (24,24)> = aa sa Fl(z,z) + aa 5& F2(z,z)
1 1 72 1 72
Bi.Bo - B, By _
= 5a15a2G1(Z)H1(Z) + 5a 5a2G2(z)H2(z). (4.15)

Substituting (4.15) into (4.9a) and (4.9b) with i=1, we obtain

the following equations

for g = 1,
ailHl = 0, (4.173)
9£1H2 = 0, (4.17b)
9, Fy Tz iz CFp o+ Nik Fo )
1 1 =2
1 1 K o1 X
Yz, (wx Fot mex Fr z, -z, Nek Fpe (4-18)



_ 1 1
z.-z. (Fo vt g Fy O (4.18Db)
1724
and for g = -1,
1 1 1
9, Gy = -28; ( >— - )G, ., (4.19a)
Zq 1 1 Z1-25 z, Zg z,-2, 1
9, Gy = +24, ( 5 EZ -z fz P )G, (4.19b)
1 17%2 1723 %17%4
8- F, = - —— (23, F, + == F_ )
g 1 = "1 7 N+k "2
Z,-Z
17Z2
1 l 1 1 1
EEE 5 e I (S I -z NOWKY C1°
1 73 1”44
(4.20a)
- 1 1 1 1 _ 1
alez o T Fe o (e B T oo B
2172 Z,-Z
17%2 1723
- —l— (2R F, + g Fy ) (4.20b)
. Fo* mer F1 - .
Zl-Z4

Other equations with i=2,3 and 4 are given by the following
change 0of the arguments in the equations (4.17)~(4.20) : for i=2

zl(zl)»z2(22) and 23(23)924(24), for i=3 zl(z1)923(z3) and
22(22)az4(z4), and for i=4 zltzl)ez4(z4) and 22(22)923(23).
Equations (4.17) and (4.19) can be easily solved
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2
H, = H, = A°, for g = 1 , (4.21)

-2A

[ (21—22 )(zl-z4 )(22—23)(23—24) 1

1

2A1
£ (21—23)(22—24) 1 . for €

1l
|
—

-

(4.22)

X

where constants A and B are same ones appeared in two-point
functions (4.10) and (4.11). These equations (4.21) and (4.22)

combined with (4.18) and (4.20) yvield the following equations:

for g = 1,
9, G = - % fz (G + ﬁ%i G, )
| 7%
| q | 1 1
p G, 6 - e, w23
1723 1724
1k 1 1 k
9, Gy = - 77~ Wk G2 * 7=z ( Wk 61t wek G2 )
1 1729 1"Z3 |
D S e SN S NI T (4.23Db)
Z.,-Z 2 N+k 1 °° *
1724
and for g = -1,
_ - _ 1 x 1
A Ul L B I
Z,~Z
1729
1 1 _ 1 1 !
fr o (R e )t oo woe P
1723 1724
(4.24a)
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1

— (mx - v H

)

2

). (4.24b)

For the free theory (g=1), we know the four-point function:

P, (z..2.) W*th Z >
tet, eyl ty 12y 7y

B, B
-1 -1 2. 2.1
) ) (23 24) + A 5a15a2(zl—z4

-1 -1
} (22-23) .

(4.25)
This equation is consistent with the equations (4.23) if and
only if we set k=1. Also for the interacting theory (8=¥1),

the locality demands that as zl—>z2 and 23»24 the four-point
g, B

function tends to 5a15a2 times a product of two-point functions
1 72
Bo By
in (zl—zz) and (23—24), and as zl—>z4 and 22423 to Salsaz times

a product of two-point functions in (21—24) and (22—23). This
requirement is compatible with the equations (4.24) only in the
case with k=1 ( see ref.[5]1 for detail ).

In the case with k=1, demanding the boundary conditions
which are indicated by the locality requirement, the solution of

the equations (4.24) is given as
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H1-= (21_22) (21—23) (21_24)
X (Z.-% )ﬁ(z 5y %(z 5 5% (4.26a)
2723 272y 37%4 ’ '
H, = (Z,-Z )ﬁti 5y %(2 -7 )_251
2 172 1723 1724
X (Z.-% )_251(2 5y %(2 _z )ﬁ (4.26b)
27%3 2723 37240 - -2

One can easily covert the solution for WI into the four-point

function for ¥, by the change Al(El)aA2(52) and z~z

Now let us give the explicit forms of general 2(n+ml-point
functions (4.12) for g=-1 . For the purpose, it is sufficient
to solve the differential equations (4.8) for the 2n-point
function for ?1

w8

- 1 - - T
<W1a1(31,x1)wl (yl,yl)...‘{’mn(xn,xn)‘{’1 n

This function can be decomposed into the form

= 8n . S Bil Bin
<Y (X,,%X,)...% (y vy 1> = 3 el d F. .
lal 1 1 1 n'’n P al an 11...1n
B . B
11 ln - -
= 3 8y veBy G i (X.yIH; { (XD, (4.28)
P 1 n 1*°"'n 1°°" " "n

- 33 -



where (il"“’in) denote permutations P(1....,n),

is taken over the all permutations. Substituting (4.28)

(4.9a) and (4.9b), one obtains

n
1 1
9. G. .= =2A, { 2 -2 = }G,
Yi 11. 1n 1 i=1 xi-xj =i xi xj 11
§ 1 s 1
5. G. .= -2A, - )G,
Vi lp---dp Dogse Y%y 5= Yi7Y5 0 4
8; Fy i %72 — 24/F, i
k "1°"""n X"V 1*° " n
1
K
¥ N%l 2 OFy g i il i 7
SRS EEE VST R R ERER IR SIS MNP INEE S

12k %, -%. tpecdgopipiyeqecigogixipeg -

P {2_1_ -Z_l_ }Fi i
i=k Xk_yiL 1=K Xk—xl 1 n

IR PR SPR PR SWERES PEPE IS FPRES I

1 1
+ > — F. ) .. . ..
N+1sz §k_yL 11"1k—1111k+1"ll—llk1L+1"

_34_

.

n

9

and the sum

into

(4.29a)

(4.29b)

(4.303)



1 1 1
o { > — - S ——— 1}F, ., (4.30b)
N(N+1) 12K §k'x‘ 12K V. - R ™
IL k71
The equations for arbitrary Fi i are obtained from the

1o 1y
equations for F1 n : change the indices of F and the

arguments y(x) according to the permutation

P(l,...,n)=(il,...,in) in both sides of the equations

(4.30a) ( (4.30b) ) for F1 n Like (4.22) for the four-point

function, with a conventional normlization, the solution of

(4.298) is
n —EAI 2A1
Gi i = BV 1 :xj—yJ: m [(xi-x.)(yi—y.)] . (4.313a)
1 -1p i, i< j J J
where
xl—yj: = xi—yj, if i< J,
:Xi—yj: = yj—xi, if 1 > 3J. (4.31b)

Using this solution and the definition of H (4.28), the

equations (4.30) reduce to the equations for Hi
1°°"n

H. . o : o )
I SERR ISP VR UPIEE PP 9S PIRRRS I

1
+ T2
N+1L¢k
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differential equations for the n!

conditions for Hi

1 1 1
o {3 -3 MH. .
N(N+1) - = - = i, ..i
1=k xk—yil 1=k Xk—xl 1 n
95 Hy i ST C — ¢ 24 H; i
k "1"""'n V=X 1°°""n
1k
¥ N%T 2 Hy oy ii, i i !
2k 1 'k-1titkerocti-1'kte+r oo in

1 1
* NEI > H.

1 1 1
+ o { 2 -2 YH. )
N({N+1) - = - _S | I N
L=k yk Xil 1=k yk Yy 1 n

There are 2n x n!

functions Hi

i , the solution of
1 1p

uniquely determined.

Here we prove that the functions
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Ly Ty o g Il gy

1
if we impose the locality requirement which yields n!

.1

n

independent first order linear

.1n

(4.323a)

(4.32b)

Thus,

boundary

(4.32) must be



no__ -24 - % _ .- %
H. . = 0. M oix, -y T (X, -X,) (y,-y,)
i, 1 Pre-y Tk 71y ey K k 71
L
X n Py iy .N
PXpmVy ot (4.33)
kZl l

are the solution of (4.32). Here the symbol op is the

signiture of the permutation (1,...,n)*(11,...,in), and n 1is

taken to be

n = -1, if cardinal numbers of the set
{ (k,ik)l k > ik k=1,...,n } is odd.
n = +1, otherwise. (4.34)

It is important to note that the functions (4.33) satisfy the
following relations
for k # 1,

(xk-yik)(xz—y. JH. o = _(Xk_yi )(xz—y. )

X H,

Ppeelpqipigage-igoqigipeg--ige (4-35)

which simplify the -equations (4.32):
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X Tp-edp %o~y Llpeeely
k 1k
1 1 1
+ g < 2 -2 — YH, | (4.36a)
1%k xk—yiL 1=k Xk—xl 1 n
85 Hy 1 = T T 2AH
yk 1 n yk—x. 1 h
1
K
Pa s ——-3 - L h, o (4.36D)
17k yk-xil 1=K yk—yl 1 n

These equations combined with the locality requirement indeed

have the solution (4.33).

Finally let us consider the operator algebras

- - - - -
¥, (z,z)¥ B(z‘,z’) = const.(z—z')K(z'-z‘)A[ @B(z’,z') + ... ]
1o 2 o
(4.37a}
- - > Y . -
W2B(z,z)w1“(z',z') = const.(z-z") %z -z mg(z',z') o]
(4.37b)

as the preliminary for the next subsection. We will derive the
fusion rules for the products (4.37) by the method used by
B.P.Z. for degenerate primary fields [10]. Substituting each
side of (4.37a) into the correlation functions of (4.9) and

then comparing the most singular terms at z-»z' and z-z' ,
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one obtains

kK = x = 0. (4.38)

In the same way, one also obtains

28

K=2xX=0 (4.39)
Therefore we conclude
- - - - \ -
mi(z.z) ~ :Tla(z.z)ng(z,z): = lim_  _ Tla(z,z)wog(z‘,z'),
Z'=»Z,Z2'-Z -
(4.40a)
~ - - - - f -
%(z,2) ~ 1W26(Z,Z)TIQ(Z,Z)3 = lim_ ¥ (Z,Z)Wla(z‘,z'),

B AR VAVARY

(4.40b)
We will return to these results in the next subsection in order to

discuss non-abelian bosonizations.

4=2) The SUWMNN) x U{1) Wess-Zumino model and non-abelian

bosonizations

In this subsection we study the SU(NIXU(1l) Wess-Zumino
model which is another realization of the conformal and the

SU(N)Y x U(l) Kac-Moody algebras.
The basic fields are the U(l)-valued field gl and the

SU(N)-valued matrix field 95 - The dynamics of these fields is

governed by the action
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= .41)
‘Sa,k(gl’g2) Sa(gl) + Sk(g2)' . (4

Here Sa is defined as

- 2 -1 (4.42)
Sa(g) = Ton f d°E a“g Sug s
and Sk is the Wess-Zumino action
S. (g) = k{ —— I %t tr.@.9 a9y  + T(e) 3, (4.43)
k9 167 L9 m

where the Wess-Zumino term I'lg) is defined by the integral over
the three-dimensional ball with two-dimensional space being the

boundary

_ 1 3 oy -1 -1 -1
Mig) = San f d°X ¢ tr. (g aag g 889 g ayg). (4.44)

The action (4.41) has the coformal invariance, and also is

invariant under the transformations
g,(8) - Qltz)gltg)ﬁl‘lti), (4.45)

= -1, -
92(€) - 92(2)92(5)92 (z), (4.486)
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where Q, () (QI(E)) and Q,(z) (ﬁzti)) are arbitrary S(N) and
Utl)-valued functions respectively, and depend only on z=%,+i§,
( £=£1—i€2 ). The corresponding conserved currehts are the

following ones : for U(l) transformations

J(z) = it @ glgll, (4.473)

Cy
N
[

I

() = iq 8- gllgl , (4.47b)

and for SU(N) transformations,

J3(z) = k tr.(taazgzg_l), (4.48a)

2

=a,= a -1
J (z) k tr.(t 8292 92). (4.48b)

These currents satisfy the following relations [20]

{ J(z),d(z") } 2ned ' (z-2"), (4.49a)

{ J(z),J(z*') } = 2nad' (z-2'), (4.49b)

ab

¢ 3%z, 3 = e3P (s (z-2') + kns®Ps(z-z'),
(4.50a)

 322),3P:z 0 3 = -onf¥PCI%2rs(z-20) + kns®Ps(z-z21,
(4.50Db)
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and

{ J(z),gl(z',i') } o= 2n1g1(z,£)a(z—z'), (4.51a)
{ 3(2),g1(z{,£') } o= —2nigl(z,£)6(2-2‘), (4.51b)
€ 3%z, 9,020,2") ) = 2nt®y,(z,2)8(z-2"), (4.52a)
€ 302 9,(z".2") ) = -2n9,(z,2)t%(2-2), (4.52a)

where { } denote Poisson brackets.
We postulate that the theory maintain the conformal and
the Kac-Moody invariance at full quantum level. At the same

time, Poisson brackets (4.49)~(4.52) must be read in the

operator language as

émJ(z) = - 0'{z), (4.533)
553(21 = -ot 0'(2Z), (4.53b)
5,0%2) = £%%P2)3%2) - £ o? (@), (4.54a)
5-3%2) = 12P%P) 3% - ¥ 6% @, (4.54b)
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and

awgl(z,i) = im(z)gltz,i), (4.55a)
8-9,(z,2) = -l0(2)9,(2,2), (4.55b)
85 g.(z,2) = t%%z)9.(2,2) (4.56a)
w-2 preneds y
§-g.(z,2) = - aXZ)g.(z,z)t2. (4.56b)
w2 2= *

Here we will devote our attention to studying the relation
between the SUINIXU(1) Wess-Zumino model and N-component Dirac
theories studied in the previous subsection rather than to
obtaining the general forms of the multipoint correlation

functions for arbitrary k and «c.

I1f we set
k=1, (4.57)
and
« = §'= N, for & = 1, (4.58a)
_k'_ _N_ = -
X =3 = 3p-70 for € 1, (4.58b)

{ see (4.8a) and (4.8d) ), the current algebras (4.53) and

(4.54) equal to ones for N-component Dirac theories. Therefore

the K~Z equations are given by (4.9).
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Let us consider the operator algebras

il = B . —0 - - L) o —_-v p B ’ —'
91 (z,z)g2a(z ,Z'y) = const.(z-z') (z-z')" L gta {(z',z'")y + ... 1
{4,59a)
g “leee z)g+1 z',) = const.(z-z' )N( E‘)B[ g-la(z'.i') +
2 B8 1 ’ i + B '

(4.58b)

Substituting each side of (4.5%a) into the correlation function

of (4.9) and comparing'the most singular term at z—=z' and

z»Z'. one obtains

c = p = 0. (4.60)

In the same way, one also obtains

o =p=0. (4.61)

Therefore we conclude

1 - £ - :1 - B , -

B +
(z,Z) ~ g, {z.,2)g, (z,Zz) : = lim (z,z)g, (z',z")
ia 1 2 757,77 1 2
(4,623)
gllg(z,i) ~ gzlg(z z)gfl(z z) : = lim g2lg(z z)gfltz'
- Z'>7,2'~Z

(4.62b)

Both sides of the following equations have the same

transformation properties under SU(N)I)xU(1) transformations
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B B -l o _ _

9t ‘Qa v 94 8 QB , for g =1, (4.63a}
B =B -l | za -

I_& @a v 9 g QB , for g = -1, (4.63b)

B

where Qa and 58

o are defined as (4.40). It is clear that the

composite fields in both sides of (4.683) have the same
correlation functions. These facts visualize Witten's
non-abelian bosonizations both of the free N-component Dirac

theory and the conformally invariant SU(N) Thirring model.
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§5. Summary

In this thesis, the general framework to analyze the
structure of two-dimensional quantum field theories with the
conformal and the Kac-Moody invariance was discussed based on
the bootstrap apbroach. It was shown that the stress-energy
tensor naturally exhibits the Sugawara form (3.22) irrespective
of models. The generalization of the K-Z equations (3.31) for
arbitrary symmetry groups was presented. As applications of
the present method, the solutions of two models have been
studied. One is the conformally invariant SU(N) Thirring model.
All multipoint correlation functions of the theory were
explicitly obtained as (4.31) and (4.33) by solving the
corresponding K-Z equations. The other is the SU(NIXU(1)
Wess-Zumino model. We studied this model from the point of
view of non-abelian bosonizations. The non-abelian
bosonization prescriptions of two-dimensional free fermion
theories were originally presented by Witten in ref.[20]1. He
pointed out the significance of the investigation in view of
the representation theory of the Kac-Moody algebra. In this
thesis, we visualized this concept of bosonizations from the
entirely physical aspect. As a result, we extended the
bosonization rules to an interacting theory, the conformally
invariant SU(N) Thirring model ( see (4.63) ).

Some problems are left unsolved. The systematic analysis of
the operator algebra, on which the bootstrap apprach depends,
will be valuable for the more detailed investigation of the
bosonization problem. In this regard, the introduction of
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flavor groups into the theories mentioned above is also
important to solve the open question whether the Wess-Zumino
fields can be regarded as the Goldstone bosons of a certain

fermion theory [1,43-451.
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Appedix A

The Virasoro algebra contains a subgroup s1(2,0), generated
by the operators L_,(L_,), Lg(Ly) and L (L), In particular,
the operator L_I(E_l) generates the translations whereas LO(EO)
generates the dilatations of the coordinates z(z).

1t is convenient to introduce the coordinates ¢ and t by

z = exp( tT+io ), z = exp( T-ioc ), (A1)
and to regard T as "time" while regarding ¢ as "space". The
operator

H = L0 + LO (A2)

is the generator of "time" shifts, and it play the role of the
hamiltonian. Note that the "infinite past" t—=-« and the
"infinite future" t-« correspond to the points z=0 and z=«
respectively.

Let the vacuum be the ground state of the hamiltonian (A2).
For the manifestation of the conformal invariance, the

in-vacuum must satisfies the equations

g, if nx> -1. (A3)

L 10>

Appendix B

Here we demonstrate that the coefficients Bﬁék} and Eg;k}
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in (2.28) are completely determined by the requirement of the
conformally covariant properties of the expansions (2.25).
Applying both sides of (2.27) to the vacuum state, one
obtains the equation
A A _-A -A

A_~-A -~
@n(z,i)lm> =3 Cﬁm z P D Wz P M oo ye(2) P>, (B1)

P

where |Im(p)>=d (0,0)10>, and the operator ¢(z) is given by

mip)
the series

2K,
i,pP{k}
2z Bom Lox. ---L . (B2)

p(z) =
{k} 1 N

The same formula with the substitutions z-»z, 8-8 and L-L holds

for @(z).

Let us consider the state

lz.p> = @e(z)|p>. (B3)

It can be represented as the power series

lz,p> =S zVIN,p>, (B4)
N=0

where the vectors (N,p)> satisfy the equations

- B} -



To compute these vectors, let us apply the operators Lr

( r2l ) to both sides of (Bl). This leads to the equations

r+l d r

[ z - + A, *ra - A Jz" 1lz,p> = L.lz,p>. (B&)

Substituting the power series (B4), one obtains
LrIN,p> = 0, if 0 £ N< r, {(B7)
and

Lr|N+r,p> = [ N + AP + rAn - Am 1IN,P>. | (B8)

Solving these equations, one can compute the power series

(B4} order by order.
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