

Title	Novel protein identification method by observation of metastable ions in matrix- assisted laser desorption ionization mass spectrometry
Author(s)	汪, 洋
Citation	大阪大学, 2016, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/59527
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Novel protein identification method by observation of metastable ions in matrix-assisted laser desorption ionization mass spectrometry

Yang Wang

Department of Chemistry, Graduate School of Science Osaka Unviersity

Abstract

Peptide mass fingerprinting (PMF) is one strategy for protein identification by mass spectrometry (MS) analysis. The input data used in the PMF are mass lists of an enzymatic-digested protein extracted from matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS spectra. The MALDI process can lead to post-source decay (PSD) fragmentation, which occurs after the acceleration region of the ionization source. The PSD corresponds to the fragmentation of metastable ions. Herein, we present an enhanced PMF method by introducing a metastable ion relative C-terminal amino acid truncation of peptides derived from LysN protein digested peptides. In comparison to conventional PMF, highly reliable identification of this new method was verified by using three parameters of C-terminal amino acid sequence, N-terminal Lys and mass for database search. A non-probabilitybased sequence database search algorithm was developed for protein identification, especially for protein mixture, which showed advantageous in a way to common probability-based sequence database search algorithm. Because of its highly desirable property, the novel method could support the conventional PMF to find more applications in the analysis of protein identification.

Acknowledgements

First, I would like to thank Prof. Toshifumi Takao for the supervision and technical help throughout this project. I am grateful to the current members in the Laboratory of Protein Profiling and Functional Proteomics, they are Dr. Masafumi Fukuda, Mr. Tomoshige Ando, Dr. Nobuaki Okumura and Mrs. Mika Yoshida, especially Mrs. Etsuko Nakajima for the technical assistance. I also appreciate the alumni of the lab for their help, they are Dr. Caroline Pereira, Mr. Yoshihito Okamura and Miss Qiuyi Wang. It is my fortune that I spent three years in this harmonious group, this experience will remain in my mind forever.

Second, I would like to express my appreciation to faculty in the Institute for Protein Research, Graduate School of Science and Osaka University. Thanks for the financial support of the OU scholarship and RA at IPR. Thanks for Mr. Yuxi Lin, Mr. Jagadeeswara Bommi, Dr. Challa Kiran and other colleagues in the IPR, the friendship is valuable.

Third, I would like to thank the honorable members of oral defense committee: Prof. Koichi Fukase, Prof. Hironobu Hojo and Prof. Michisato Toyoda. Thanks for your patient guidance on my thesis and oral presentation.

Finally, I would like to thank my family. I always thank my father Weibing and my mother Huimin, thanks for their thirty years selfless support to me, they are my powerful backing. I thank my wife Yin. She accompanied me to spend the hardest period during my PhD program, and supported me to overcome the difficulties. I love my family.

Thank all the people helped me in the past three years.

Contents

- 1 Chapter I: General Introduction and Aims
 - 1.1 Mass Spectrometry
 - 1.1.1 Ion Source
 - 1.1.1.1 MALDI
 - 1.1.1.2 ESI
 - 1.1.2 Analyzer
 - 1.1.2.1 TOF
 - 1.2 Proteomics
 - 1.2.1 Protein Identification
 - 1.2.1.1 Peptide Mass Fingerprinting
 - 1.3 Aims
- 2 Chapter II: C-terminal Fragmentation of Peptides
 - 2.1 Introduction
 - 2.1.1 ISD and PSD
 - 2.1.2 CID
 - 2.2 Materials and Methods
 - 2.2.1 Proteins and Chemicals
 - 2.2.2 Protein in Solution/Gel Digestion
 - 2.2.3 nanoHPLC Separation
 - 2.2.4 MS/MS Measurement (MALDI-TOF/TOF)
 - 2.3 Results
 - 2.3.1 Data Acquisition
 - 2.3.2 Basic Amino Acid
 - 2.3.3 C-terminal Carboxylate
 - 2.3.4 CID and Metastable Suppressor
 - 2.3.5 Protein Digest by Various Proteases
 - 2.4 Discussion

- 2.4.1 b ion and b+18 ion
- 2.4.2 b ion and C-terminal truncated peptide
- 3 Chapter III: Probability-Based Protein Identification Using Mass Spectrometry Data by Searching Sequence Database ("Mascot")
 - 3.1 Introduction
 - 3.1.1 Mascot: a commercially available searching engine
 - 3.2 Results
 - 3.2.1 Protein identification (Mascot) by mass values of all detected peptides.
 - 3.2.2 Protein identification (Mascot) by mass values of all detected peptides and C-terminal amino acids of partial detected peptides.
 - 3.2.3 Protein identification (Mascot) by mass values and C-terminal amino acids of partial detected peptides (excluding the peptides with mass values only).
 - 3.3 Discussion
- 4 Chapter IV: Non-Probability-Based Protein Identification Using Mass Spectrometry Data by Searching Sequence Database I: Computer Simulation.
 - 4.1 Introduction of the algorithm for computer simulation of iD plus.
 - 4.2 Results
 - 4.2.1 Peptides derived from same protein
 - 4.2.2 Peptides derived from different proteins
 - 4.3 Discussion
- 5 Chapter V: Non-Probability-Based Protein Identification Using Mass Spectrometry Data by Searching Sequence Database II: Experimental Practice.
 - 5.1 Introduction of the algorithm for experimental practice of iD plus.
 - 5.2 Results
 - 5.2.1 Single protein identification

5.2.2 Protein mixture identification

- 5.3 Discussion
- 6 Conclusions
- 7 References
- 8 Supplement

1 Chapter I: General Introduction and Aims

1.1 Mass Spectrometry

Mass spectrometry (MS) is an analytical technology that ionizes chemical substances and systematizes the ions based on the mass-to-charge ratio (m/z). MS is applied to many different fields and is acted on pure sample or complex mixtures as well. A mass spectrum is a plot of the intensity of ion signal on the basis of m/z. These spectra are used to identify the masses of particles or molecules, to measure the elements or isotopes, and to illustrate the chemical structures of molecules.

MS was invented by J.J. Thomson at the Cavendish Laboratory in the University of Cambridge. Thomson first used his apparatus to measure m/z of electrons in 1897, and he received the 1906 Nobel Prize in Physics by this work in "discovering" the electron. He established the foundation of the MS field according to his early work on cathode. The first mass spectrometer to measure the m/z of charged atoms was built by Thomson and F. Aston. Mass spectrometers were redesigned by Aston and others in order to improve the resolution in the early decades of the 20th century. Under their efforts on the development of mass spectrometers, elemental isotopes were proved to be existed and separated by MS. Furthermore, MS became a remarkable analytical tool really during the World War II, since the isotopes played significant roles developed by E.O. Lawrence in the Manhattan Project. (Griffiths 2008)

Commercial mass spectrometers were launched in the 1940s, and MS was still dominated by physicists and industrial chemists as a useful technique. K. Biemann made great contributions to apply the MS to chemistry field. He used MS to determine the structure of complex molecules, founded basic regulation for peptide fragmentation; even designed an early peptide sequencing method. Consequently, A. Marshall and M.Comisarow first applied Fourier transform (TF) to ion cyclotron resonance (ICR) MS. FTICR MS is one of the most important technologies for complex mixture analysis since its ultrahigh resolution power. Then, in 1988, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) appeared on the MS field. These ionization techniques revolutionized biological MS and are served as the predominant types of ionization sources for macromolecule at present (Griffiths 2008).

A common mass spectrometer consists of three main modules: ion source, analyzer, and detector (Figure. 1). Ion source is a device to ionize the analyte molecules to form charged ions by laser, electrospray, plasma, etc. As above mentioned, ESI and MALDI are the most common ion sources used in proteomics. Various analyzers can connect to ion sources to assemble the core part of mass spectrometers, such as time-of-fight (TOF), quadrupole (Q), ion trap (IT) and FTICR. The ion source generated charged ions are separated according to their m/z in the analyzer, and the ion intensity at different m/z values are recorded by detector. A visual mass spectrum are output by computer finally.

Figure. 1 Simplest form of MS.

1.1.1 Ion Source

1.1.1.1 Matrix-Assisted Laser Desorption Ionization (MALDI).

Matrix-assisted ultraviolet laser desorption/ionization (MALDI) was prensented by Karas and Hillenkamp in 1984, which can rapidly measure the masses of non-volatile biological compounds with a TOF mass spectrometer (Karas et al. 1987, Karas, Gluckmann & Schafer 2000). It has become a widely used and strong technique to ionize a series molecules including proteins, peptides, DNA, RNA, polymers and large inorganic compounds in the gas-phase. One feature of MALDI to be different with other ionization technique is the use of MALDI matrix, which support the desorption and ionization of MALDI. Note that Tanaka and colleagues firstly acquired large proteins' mass spectra by using a combination of nano-metal particles and glycerol, instead of the MALDI matrix, in laser-desorption ionization TOFMS (Tanaka et al. 1988). The advantages of MALDI are the easy sample preparation, fast speed for data analysis, and a good tolerance to contamination (Stump et al. 2002, Chen, Carroll & Beavis 1998).

As to the full name of MALDI, "matrix" indicates a basic characteristic of MALDI MS, which is the appropriate matrix materials supported ionization on analytes. The success of MALDI ionization depends on good sample preparation, thus the matrix selection and the sample preparation optimization control the quality of the ionization results. Several substances have been measured as MALDI matrices. The wavelength of laser used in the MALDI determines the selection of suitable matrix. Small organic molecules with a wavelength absorption in the range of 266-355 nm are the most frequently used matrices in MALDI. α -Cyano-4-hydroxycinnamic acid (CHCA) is one of the most common matrices for peptides/proteins analysis by MALDI (Beavis, 1992).

The process of MALDI is separated into two steps. There are two ways of the first step, dropping the analyte, which is dissolved in a matrix containing solvent,

on a MALDI plate before analysis till the mixture is dried; or dropping the solution of matrix on the plate first, then dropping the sample compound on the dried matrix. After drying, the analyte-matrix mixture form crystals named "solid solution". The analyte molecules are isolated from each other completed by embedding the matrix all over. In the second step, the majority of the "solid solution" is desorbed by strong laser impulse in the vacuum inside the ion source of MS in a short time (Knochenmuss 2002, Karas, Krüger 2003). The excitation of the matrix leads to the large energy accumulation in the condensed phase, consequently rapid heating of the crystals is induced by irradiation of the laser pulse. Then the matrix is sublimated and expanded into the gas phase caused by the rapid heating, along with the desorption of the surface of crystals. Finally, the analyte is entrained with the gaseous matrix and joins the expanding matrix plume (Dreisewerd 2003).

There are many different pathways, either chemical or physical, to explain the origin of ions generated in MALDI, such as excited state proton transfer, gasphase photo ionization, desorption of performed ions and in-molecule reactions, but is not completed understood yet. (Zenobi, Knochenmuss 1998, Knochenmuss, Zenobi 2003). Proton transfer and gas-phase photoionization are two most widely accepted mechanisms of ion formation in MALDI. The differences between these two mechanisms are the time. The former occurs in the solid phase, and the latter proceeds in the sublimated matrix plume. An electrostatic field supplied by high voltage accelerate the gas-phase ions towards the analyzer (Figure. 2). In comparison to other laser ionization techniques, MALDI is more sensitive and general. The highly increased sensitivity reflects on two points. The first point is the formation of analyte sample clusters are prevented by a huge number of matrix molecules separate the embedded analyte molecules exhaustively. Second, since the matrix absorb most of the energy from the incident laser pulse, the damage to the samples is decreased, and prompt the laser transfer energy to the analyte efficiently. As to the generalizability, there are also two aspects. First, since the matrix molecules absorb the laser pulse, the adjustment of wavelength of laser to match the absorption range of every sample molecules is unnecessary. In the second place, macromolecules with high masses around 100,000 Da can be allowed by MALDI because the ionization process does not depends on the properties of analyte, such as absorption and size (Spengler, Cotter 1990).

Fig. 2 Diagram of the principle of MALDI.

1.1.1.2 Electrospray Ionization (ESI)

ESI was first described by J. B. Fenn and colleagues who showed that the low molecular weight (low to 2000 Th) of multiply charged ions generated from proteins can be measured with instruments (Fenn et al. 1989). In the early stage, ESI was considered to ionize protein for proteomics, then the application field was expanded to the small polar molecules, polymers and biopolymers.

Figure. 3 Diagram of electrospray ionization (ESI)

Figure. 3 describes the structure of ESI. A biomolecules containing solution is pumped through a needle with a very large voltage applied to it (2-5 kC). This forms small, highly charged droplets of solvent upon exit of the needle. As the droplet travels towards the orifice of the mass spectrometer, the solvent evaporates aided by the drying gas, and it shrinks and the surface charge density increase. This causes the droplet to blow apart and the process repeats itself until charged biomolecules emerge.

The peptides containing liquid effluent is electrostatically dispersed by eluting from a syringe or HPLC eluent through a needle with a high voltage (several kV) applied to it. It forms highly charged droplets of solvent departure the needle. The solvent evaporates easily by the aid of drying gas during the droplets travel to the orifice, it increases the surface charge density of the droplets and decreases their size. High electrical fields allow the desorption of analyte ions on the surface of droplet to generate desolvated ions, and repetitive droplet fission, which sustain to each droplet contains only one analyte ion averagely, leads to the formation of tiny droplets.

1.1.2 Analyzer

1.1.2.1 Time-of-Flight (TOF)

The time-of-flight (TOF) analyzer was first come up with in 1946 by W. E. Stephens (Anonymous 1946). The linear TOF mass spectrometer was designed in 1955 and became the first commercial instrument later(Wiley, McLaren 1955). Since the end of 1980s, the development of MALDI settled new applications for both biomolecules and synthetic polymers. The basic principle of separation for TOF analyzer is based on velocities (flight time) of ions.

1.1.2.1.1 Linear Time-of-Flight Mass Spectrometer

lons are separated by the TOF analyzer according to their velocity that depends on their *m/z* ratios when they travel through a free-field region (flight tube), after the electrostatic field induced acceleration followed by their formation during a laser pulse (Figure. 4). One advantage of TOF spectrometer is that it is suitable for soft ionization techniques, such as masses above 300 kDa samples can be observed by MALDI-TOF (Imrie, Pentney & Cottrell 1995, Moniatte et al. 1996), due to there is no limit for the upper mass range of it. Another benefit is the very high sensitivity results from their high transmission efficiency. For example, 10⁻¹⁵ mol of gramicidin (Lange et al. 1986) and 10⁻¹⁶ mol of protein mixture (Onnerfjord et al. 1998) have been detected by TOF analyzers. The third advantage is the analysis speed of TOF is very fast, a spectrum can be obtained in micro-seconds.

Figure. 4 Diagram of Linear TOF

1.1.1.1.2 Reflectron Time-of-Flight Mass Spectrometer

Electrostatic reflector, or reflection, is another way to improve mass resolution of TOF spectrometer. It was first described by Mamyrin (Mamyrin et al. 1973). The basic principle of reflectron is the ions are deflected by an ion mirror (retarding field) and are sent back through the field-free region. The reflectron is set at the end of the flight tube and the detector is set on the opposite side of the reflectron to receive the ions reflected from the reflectron (Figure. 5). The kinetic energy of the ions with the same *m*/*z* are corrected by reflectron thereby they can fly along different pathways in the reflectron. The distance penetrated in the reflectron of ions with less kinetic energy and less velocity is shallower than ions with more kinetic energy. Accordingly, the time cost in the reflectron by slower ions is short than the faster ions, and they arrive at the detector simultaneously.

Figure. 5 Diagram of Reflectron TOF. Ion source 1: MALDI ion source. Ion source 2: re-acceleration cell. TIS: Timed ion selector.

1.2 Proteomics

The Human Genome Project (HGP) aiming to sequence the entire human genome was initiated by the US Department of Energy and National Institute of Health (NIH) from the late 1980 (Venter et al. 2001), and it has been achieved almost in 2003 by sequencing the human complete genome (Dunham et al. 1999). One major objective of HGP is to reveal and understand the linkage between genes and their related proteins by sequencing of the complete human genome. Whenever we mention the features of a protein, always including localization, expression, modification, interaction, domain structure, and activity. For an organism, not all encoded proteins express from genome at any time, and the protein expression changes at different stages of development, while the genome of each cell is almost same. For a single cell, different stimuli may change the dynamic proteome. The word "PROTEOME" is defined as the "total PROTEin complement of a genOME" (Wasinger et al. 1995), and "PROTEOMICS" started to attracted enormous attention after the completion of HGP (Figure. 6). The goal of proteomics is obtaining complete characterization of all proteins, understanding the protein-protein interactions, and illustrating the functions of those proteins. Proteomics is the bridge

connected genomics and biology, the relationship between the proteome to physiological changes under the healthy or diseased conditions became one popular topic in modern biomedical research.

Figure. 6 Proteomics is a study of how the genome is expressed in proteins, and of how these proteins function and interaction.

1.1.2 Protein Identification

Analysis of the protein expression in organisms is one of the tasks of proteomics research. The 2D gel electrophoresis (2DE) is the first analysis tool in proteomics, proteins can be separated along two dimensions according to molecular masses and isoelectric points by gel electrophoresis (Bienvenut et al. 1999). With the development of MS, the 2DE-MS has been used for protein identification. 2DE resolved proteins can be addressed by in-gel digestion or membrane digestion (on immobilized trypsin containing membranes). Trypsin is the most commonly used protease in proteomics research, which cleaves at the C-terminal of lysine (Lys) and arginine (Arg). In additional, other proteases like AspN which cleaves before aspartate (Asp), GluC (V8) which cleave after glutamic acid (Glu) and LysC which cleave after Lys specifically are also used. The results of mass spectrometric analysis depend on the quality of the digestion, the digestion with high specificity and high cleavage efficiency lead to a good identification of protein. The development of newly engineered proteases promotes the improvement of cleavage methods (Willett et al. 1995). Moreover, the protein identification strategies of bottom-up sequencing and topdown sequencing are developed by measurement of intact proteins and peptide fragments together by MS.

1.1.2.1 Peptide Mass Fingerprinting

Peptide mass fingerprinting (PMF) is an analytical technology for protein identification. PMF was developed by many groups independently in 1993 (Henzel et al. 1993, James et al. 1993, Mann, Hojrup & Roepstorff 1993, Pappin, Hojrup & Bleasby 1993, Yates et al. 1993), and it is still the most common way of identifying proteins separated by 2DE or one-dimensional SDS-PAGE. Basically, the unknown proteins of interest are commonly digested by trypsin into smaller peptides, which cleaves at the C-terminal end of Lys and Arg specifically. The experimental data in the PMF based protein identification strategy is the mass list derived from MALDI-TOF or ESI-TOF mass spectrum of the enzymatic-digested protein. The experimental masses of the resulting tryptic peptides from unknown proteins are calculated to compare the theoretical peptide masses of each protein in a database in silico for acquiring a best match. MALDI-TOF is commonly used for PMF since in the spectrum of MALDI-TOF MS, the peptides display as singly charged ions, which is simple to interpret. However, an ESI mass spectrum appears peptides as multiply charged ions, the peptides masses should be deconvoluted for every search (Yates et al. 1993b). It is why ESI spectra is seldom used for PMF, though PMF can be used for protein identification by ESI. Another reason is that as the preferred instrument for PMF, MALDI-TOF has the ability to analyze several proteins in a single MS experiment by its high sample throughput.

Many database search software can be used for PMF searches (Perkins et al. 1999, Zhang, Chait 2000). The outcome output from those software is usually a ranked list of proteins according to the size of database, the size of input experimental data, the abundance of a specific peptide mass derived from a

certain protein, the tolerance to the molecular mass, the allowed number of missed cleavages in one peptide sequence, the expected modifications, and other possible parameters The protein ranks at the first place is the unknown protein in the sample with the highest reliability. On the other hand, the algorithm design is also important for the database search result. Probabilitybased database search algorithm is popular used in many software. The ranking list of proteins can be produced after a series complicated calculation and computational modification.

Figure. 7 Scheme of PMF. 1. Make proteolytic peptide fragments. 2. Measure peptide masses. 3. Match peptide masses to protein or nucleotide sequence database.

1.2 Aims

In the present study, I demonstrate a MALDI-based post-source fragmentation method that allows the C-terminal amino acid sequence in peptide sequences can be inferred for the digested peptides, which are produced by LysN or AspN proteases, to be performed. The data obtained for the constitute peptides are molecular masses, N-terminal amino acid sequences and C-terminal amino acid sequences are unique in the present method. Here I present an enhanced PMF approach based on the new method that employs MALDI-TOF/TOF-MS of protein digest by LysN, and demonstrate to be useful for reliable identification, of either single protein or those in a mixture.

2 Chapter II: C-terminal Fragmentation of Peptides

2.1 Introduction

2.1.1 In-Source Decay (ISD) and Post-Source Decay (PSD)

In the MALDI, the excess energy transfers to the analyte during the ionization desorption process can lead to the ion fragmentation. In MALDI spectra, fragment ions are generated by different types of fragmentations, which are distinguished from the different places they occur.

In general, the types of fragmentation consist of in-source decay (ISD) and post-source decay (PSD). Moreover, ISD contains prompt fragmentation and fast fragmentation. ISD is a kind of fragmentation taking place in the source and can be separated to two steps by time scale. First, the fragmentation occurs is before or during the desorption is prompt fragmentation; secondly, fragmentation occurs in the source after the desorption but before the acceleration is fast fragmentation. PSD is a type of fragmentation that occurs in the field-free region after the acceleration region of the MALDI. It corresponds to the fragmentation of metastable ions. Metastable ions, as the name suggests, are not "stable". They are stable enough to leave the source after ionization like the normal molecule ions, but due to the excess energy they received from laser pulse, they can fragment in the field free region of analyzer (Figure. 8).

Figure. 8 Diagram of the fragmentation of MALDI.

Tandem mass spectrometry (MS/MS) is a type of spectrometer with additional analyzer(s) connect to the first analyzer to measure the fragment ions further. In the MALDI-TOF MS with a linear TOF analyzer, an extra reflectron time-of-flight instruments can be used to construct a MALDI-TOF-TOF MS/MS (Figure. 9). Fragment ions and neutral fragments can be fragmented by acquiring enough internal energy by ions.

Figure. 9 Simplest form of MS/MS

Since the ISD occurs before acceleration in MALDI, the ISD induced fragment ions (ISD fragment ions) have the same kinetic energy to the molecule ions (precursor ions) from the static electric field, thus they have the different velocities according to their m/z ratio. The different velocities allow both of the precursor ions and ISD fragment ions to be analyzed by linear TOF and reflectron TOF respectively. However, if a device named "timed ion selector" (TIS) is equipped, they cannot be analyzed in one experiment because they cannot pass the TIS in the same time.

On the other way, the velocity of the PSD induced fragment ions (PSD ions) and precursor ions are same because the PSD occurs after acceleration, and the kinetic energy of them are different. If the fragment ions have the same velocity to the precursor ions, the kinetic energy of the fragment ions is less than the precursors due to the less masses of the fragment ions. Thus they have the same flight time in TOF 1. Therefore, in TOF1, although the precursor ions and their PSD fragment ions have different kinetic energies, they can pass the TIS at the same time. Consequently, the precursor ions and their TOF 1

produced PSD fragment ions are reaccelerated in Ion Source 2, the kinetic energies of TOF 1 produced PSD fragment ions increase significantly to reach the kinetic energies of precursor ions, thus the velocity of the TOF 1 produced PSD fragment ions become faster than the precursors due to their lower masses. In the following field-free region (TOF 2), PSD occurs on precursor ions again, as well as in TOF 1. The TOF 2 produced PSD fragment ions have the same velocity as their precursor due to their lower kinetic energies and lower masses as mentioned above. The TOF 1 produced PSD fragment ions reach to the reflectron firstly, followed with the precursor ions and TOF 2 produced fragment ions. Since the precursor ions and TOF 1 produced PSD fragment ions are reaccelerated in Ion Source 2 together, they share a similar orbit in reflectron. However, the TOF 2 produced PSD fragment ions with less masses penetrate the reflectron shallower and spend less time than the precursor ions, thus the TOF 2 produced PSD fragment ions reached to the detector before the precursor ions. Because the velocities of TOF 1 produced PSD fragment ions are faster than the precursor ions, the TOF 1 produced PSD fragment ions reach to the detector before the precursor ions too (Figure 10). These ions reach the detector according to their m/z by different time of flight, and due to the reacceleration and refocusing of TOF 1 produced PSD fragment ions, the TOF 1 and TOF 2 produced PSD fragment ions perform as different type of peaks in the mass spectra.

Figure. 10 Diagram of MALDI-TOF/TOF MS.

2.1.2 Collision Induced Dissociation (CID)

MS/MS requires the first analyzer to select fragment ions of precursor ions towards the second analyzer to measure the fragment ions. Collision Induced Dissociation (CID) is a technology to induce ion fragmentation in gas phase (Sleno, Volmer 2004, Mitchell Wells, McLuckey 2005). In a MALDI-TOF-TOF MS/MS, CID is usually equipped between TOF 1 and ion source 2 to increase the probability of ion fragmentation. The gas-phase precursor ions enter the CID cell which is full of collision gas (nitrogen, helium or argon) and then are activated by high electrical potential. Those ions collide with the neutral molecules of the collision gas and fragment to form small fragment ions. These accelerated fragment ions can then be analyzed by TOF 2 (Figure. 11).

Figure. 11 Diagram of CID.

Figure. 12 shows the fragmentation specifies (the Roepstorff–Fohlmann– Biemann nomenclature) on the chemical structure of a peptide backbone by transmitting energy into the molecule (Roepstorff, Fohlman 1984, Biemann 1992). In the mass spectrometers for proteomics research, peptide fragmentation is induced by CID, and bond breakage mainly occurs at the amide bonds, where is the pathway with the lowest energy. If the charge retains on the N-terminal fragment, so called "b ions" are generated; if the charge retains on the C-terminal fragment, another kind of "y ion" are produced.

Fig. 12 Diagram of Roepstorff–Fohlmann–Biemann nomenclature.

2.1.3 C-terminal Rearrangement of Peptides.

Previous reports showed and illustrated a phenomenon of C-terminal rearrangement ions [b_{n-1}+H₂O] (n is the total number of amino acid residues in peptides) are frequently observed from internal Arg-containing peptides in PSD spectra (Takao et al. 1993, Gonzalez et al. 1996, Fang et al. 2000). (Renner, Spiteller 1988, Tang et al. 1988, Grese, Cerny & Gross 1989), Arg may play a similar role as the most basic amino acid residue. Such a C-terminal rearrangement could provide the information of the C-terminal amino acid, and a new idea for enhanced PMF originated from this phenomenon, thus through introducing the confirmed C-terminal amino acid sequences of peptides into the conventional PMF thereby improving the reliability of PMF method.

Figure. 13 Mechanism of C-terminal rearrangement of Arg-containing peptides.

2.2 Materials and Methods

2.2.1 Proteins and Chemicals

Bovine Serum Albumin (BSA), apo-Transferrin from bovine (TF), Cytochrome c (CYC) from equine heart, myoglobin from horse (MB), Myosin from rabbit (MYH), Phosphorylase b from rabbit (PGYM), Carbonic anhydrase from bovine (CA), ammonium bicarbonate, glycine, trifluoroacetic acid (TFA), LC/MS grade distilled water, and acetonitrile were purchased from Sigma-Aldrich (St. Louis, MO, USA). Synthetic peptides were purchased from GL Biochem (Shanghai, China). SDS-PAGE Molecular Weight Standards was purchased from Bio-Rad (Hercules, CA, USA). Sodium lauryl sulfate (SDS), sucrose and bromophenol blue were purchased from Nacalai Tesque (Kyoto, Japan). Tris base, dithiotheitol (DTT) and iodoacetic acid (IAA) were purchased from Wako (Osaka, Japan). LysN protease was purchased from Thermo Scientific (Rockford, IL, USA). Ultrapure water was supplied by a PURIC-MX II system (Organo, Tokyo, Japan).

2.2.2 Protein in Solution/Gel Digestion

10 mg protein was dissolved in 1mL 50mM NH₄HCO₃, 0.1% SDS solution (pH 8.0). Reduction of disulfide bonds was carried out by adding 20.41µL of 1M DTT

into protein solution to a final conc. of 20mM (1:50 dilution) and incubated at 37°C for 45min. Alkylation was carried out by adding 42.52µL of 1M IAA into reduced protein solution to a final conc. of 40mM (1:25 dilute) and incubated at R.T. for15min in dark. The alkylated protein solution has been quenched by adding 10.74µL of 1M DTT to a final conc. of 10mM (1:100 dilution). 2µL of 0.5µ/µL LysN protease was applied to 8.5µL quenched protein solution (80µg) which diluted 10 times to conc. of 1µg/µL by adding 76.5µL 50mM NH₄HCO₃, 0.1% SDS solution, and incubated at 50 °C for 2h for digestion. The digests were stored in -20 °C to stop reaction, and desalted by Bond Elut-C18 (Agilent, Santa Clara, CA, USA). Purified peptides were dried by rotary vacuum micro-concentrator RMC-24 (KPI, Itami, Hyogo, Japan), and dissolved in 5% acetonitrile.

Gel bands were excised from the Coomassie blue-stained gel carefully, and prepared for in gel digestion. Gel pieces were washed three times with 50% MeOH/50 mM NH₄HCO₃ for 1h to overnight shanking at room temperature, removing the supernatant after each wash. Reduction of disulfide bonds was carried out by adding 0.5 mL of 10 mM DTT/100 mM NH₄HCO₃ into protein solution and incubated at 60°C for 1h. Alkylation was carried out by adding 100 μ L of 50 mM IAA/100 mM NH4HCO3 into reduced protein and incubated at R.T. for 30min in dark. Reduction and alkylation solution were removed after reaction. Alkylated gels were washed by water and ACN twice respectively. 30 μ L of 1 μ g LysN protease were added to a gel band, and incubated at 50 °C for 2h for digestion. 30 μ L of ACN/0.1% TFA was added to the gel digestion to a final conc. of 50% ACN, following with a sonication for 10 min, then supernatant was collected. 100 μ L of 50% ACN/0.1% TFA was added with a following 10 min sonication, supernatant was collected, this step was repeated twice.

2.2.3 nanoHPLC Separation

Analysis of the LysN digest was addressed by offline nanoHPLC/MALDI-TOF/TOF MS, a nanoHPLC system (Ultimate 3000; Thermo Scientific, Idstein, Germany) and an MALDI-TOF/TOF 4700 mass spectrometer (AB Sciex, Foster City, CA, USA) were utilized in the experiments. Chromatographic separation of the peptides was performed by loading 10µL sample onto a trapping column (μ -Precolumn holder, 5 mm, with connecting tubing, 30 μ m internal diameter (i.d.); Dionex, Sunnyvale, CA, USA), and washed with 0.1% TFA at a flow rate of 20 µL/min for 25 min. The trapped peptides were then eluted into the analysis column (IntegraFrit C18, 3 µm, 100 Å, 75 µm i.d. × 100 mm; New Objective, Woburn, MA, USA), which had been equilibrated with 95% solvent A (5% ACN/95% H₂O containing 0.05% TFA). A solvent system contained solvent A and solvent B (100% ACN containing 0.5% TFA) mixed according to the linear gradient of 5-85% solvent B in 60 min, maintenance at 85% solvent B for 20 min, and linear gradient of 100–5% solvent B in 2 min were used for separation of peptides. The flow rate of the column was 200 nL/min. UV absorption at 220 nm and 280 nm was used for signal detection. 156 fractions of the effluent (each of 30 s) were spotted onto an Opti-TOF™ MALDI Plate System (192 spots; AB Sciex, Foster City, CA, USA) using a Probot microfraction collector (Dionex, Sunnyvale, CA, USA) from 20 min to 90 min of the run,.

2.2.4 MS/MS Measurement (MALDI-TOF/TOF)

The MALDI-TOF MS analyses were carried out on a 4700 MALDI TOF/TOF analyzer (Applied Biosystems, Framingham, MA) with a pulsed laser. The MS/MS was set in the positive mode and reflectron mode. The average number of laser shots was set at 800 on each sample well. The accelerating voltage in ion source 1 was 8 keV, and 15 keV in ion source 2. Metastable suppressor was set at "OFF", and CID was "OFF" as well. The 4000 series Explorer Software V3.6 was used to control the MS/MS measurement, and Data Explorer Software version 4.8 (Applied Biosystems, Framingham, MA) was used to process data. The matrixes for MALDI-TOF-TOF MS/MS were 5 mg/ml α -CHCA dissolved in 50% CAN containing 0.1% (v/v) TFA.

2.3 Results

2.3.1 Data Acquisition

It was a manual labor subjected by W.Y. First, the MS/MS was carried out according to *m/z* of precursor between 500 and 4000 by the 4000 series Explorer Software. Second, spectra data was convert to show on Data Explorer Software. On the spectrum, the metastable ion can be shown as a broad peak with low resolution, which could be easily differentiated from other ions. The corresponding fragment in-source ion was usually accompanied with a metastable ion peak, the *m/z* of which was around 3~4 Da smaller than that of the metastable ion. There were two type of metastable ions related which the C-terminal fragmentation: [b_{n-1}] and [b_{n-1}+H₂O] ions. If there was a C-terminal amino acid rearrangement occurred truly on a peptide, the C-terminal amino acid could be inferred from the difference of m/z between a precursor ion and in-source fragment ion (Figure. 14).

Figure. 14 C-terminal amino acid information of a peptide acquired with MS/MS.

2.3.2 Effect of a Basic Amino Acid on the C-terminal Fragmentation As described above, a salt bridge forms between the guanidino group of Arg and the C-terminal carboxylate in one peptide, then the C-terminal rearrangement occurs and the remained sequence can be shown as a broad metastable ion [b_{n-1}+H₂O] peak on the spectrum. Thereby it deduces the basic amino acid containing peptide to possess the capability to generate such Cterminal amino acid-truncated [b_{n-1}+H₂O] ion in MS/MS measurement. In order to demonstrate the contribution of basic amino acid to the C-terminal rearrangement of peptides, we compared the spectra from several synthetic peptides and natural peptides from protein digests (Table 1). The spectra indicate the generation of $[b_{n-1}]$ (abbreviates to [b]) ions are general for all peptide sequences in the PSD spectra, except for $[b_{n-1}+H_2O]$ (abbreviates to [b]) ions which could only be generated by Arg-containing peptide (not at the Cterminus). The Arg-containing peptides can produce [b+18] ions, as in the conclusion of the previous report, otherwise only [b] ions can be observed. Moreover, through replacing the Lys to Ala, both of the spectra of one basic amino acid (Lys) contained peptide and no basic amino acid contained peptides show [b] ion inferred to C-terminal fragmentation. These results indicate that the C-terminal fragmentation relative [b] metastable ions occur generally in any peptide sequences, and the [b+18] ions only occur in the Arg-containing peptides.

Table 1. Types of metastable ions relative to the truncation of C-terminal amino acid generated from different sequences of peptides.

basic amino acid	R (+)	R (-)
metastable ion	b+18	b
sequences	KWCmcAIGHQERT AWCAIGHQERT YSRRHPE	KWCAIGHQEAT KQEPEANECFLSH
	AQEPERNECFLSH	AAEFVEVT

Figure. 15 (A) C-terminal amino acid sequences relative b+18 metastable ions in the spectra of peptides Containing internal Arg. (B) C-terminal amino acid sequences relative b metastable ions in the spectra of peptides containing non-internal Arg.

2.3.3 Effect of the C-terminal Carboxylate on the C-terminal

Fragmentation

On the other hand, according to the previous report, the C-terminal carboxylate contributes to the rearrangement of C-terminus incorporation to Arg. Several peptides synthesized by replacing the C-terminal carboxyl group with an amide group were measured by MS/MS. Figure. 16 shows the spectra of peptides containing no internal Arg and peptide containing Arg with a C-terminal amide group, respectively. It indicates that the generation of [b] ions is not affected by C-terminal amide group, but the existence of Arg may suppress the generation of [b] ion under the condition without the existence of C-terminal amide group of a peptide.

KHGTVVLTALGGIL-NH2 1377.71 b

RPKPQQFFGLM-NH₂ (Substance P) 1347.74 no b

Figure. 16 MS/MS spectra of peptide with C-terminal amide group.

2.3.4 Protein Digest by Various Proteases

Table 2 shows C-terminal relative metastable ions in several peptides derived from BSA digested by trypsin, AspN, GluC and LysN respectively. In order to examine the dependency of the sequence on the C-terminal fragmentation, I prepared peptides with various sequences digested by different proteases, and applied to this analysis. According to the PSD spectra of those peptides (Figure. 15), [b] ions can be observed on most spectra except the peptides contain Arg (not at C-terminus), which show [b+18] ions on their spectra. It indicates that [b] ions occur generally among all the peptide sequences measured by MALDI-TOF/TOF MS, and only the Arg contained peptides (not at C-terminus) can generate [b+18] ions rather than b ions. In the spectra of peptides from trypsin and GluC digest, the known Lys, Arg or Glu can be observed. However, in the spectra of peptides from AspN and LysN digest, the C-terminal rearrangement can be measured and the amino acid at C-terminus can be inferred as well. On the other hand, the Lys or Asp at N-termini of the peptides from LysN or AspN digest are certain. Therefore, as to the peptides from proteins digested by LysN or AspN, three information of the sequences can be known after MALDI-TOF/TOF measurement: molecular mass, N-terminal amino acid and Cterminal amino acid. These findings can provide a new idea for protein identification by PMF, thus through introducing amino acids positioned at both N- and C-termini of peptides from LysN or ApsN digest, rather than the conventional utilizing of C-terminal Lys or Arg of peptides from trypsin digest only, can improve the reliability of PMF. Moreover, according to the characteristic of N-terminal rearrangement of AspN digested peptides can be observed on the PSD spectra (Figure. 15), tandem digestion by LysN and AspN are proposed to apply to this newly enhanced PMF method for increasing the reliability as well.

33

Table 2. Types of metastable ions generated from protein digested by different proteases.

protei	proteas	mis	sequence	mass[M+	ion
n	е	S		H]	type
BSA	Trypsin	1	RHPYFYAPELLYYANK	2044.71	b+18
		1	QEPERNECmcFLSHK	1674.75	b+18
		1	LKECmcCmcDKPLLEK	1534.83	b
		0	HLVDEPQNLIK	1305.94	b
	AspN	0	DKPLLEKSHCmcIAEVEK	1896.95	b/D
		0	DESHAGCmcEKSLHTLFG	1788.72	b/D
		1	DKDVCmcKNYQEAK	1498.82	b/D
		0	DTHKSEIAHRFK	1468.88	b+18/
					D
		0	DVCmcKNYQEAK	1255.83	b/D
		1	DFAEDK	724.86	b/D
	GluC	1	RALKAWSVARLSQKFPKAEF	2560.40	b+18
			VE		
		0	KKFWGKYLYE	1361.61	b
		1	IAHRFKDLGEE	1314.59	b+18
		0	KQIKKQTALVE	1285.76	b
		0	LCmcKVASLRE	1076.70	b+18
		0	YSRRHPE	944.69	b+18
	LysN	0	KVASLRETYGDMADCmcCmc	2006.48	b+18
			E		
		1	KCmcCmcAADDKEACmcFAV	1930.7	b
			EGP		

	1	KPDPNTLCmcDEFKADE	1779.63	b
	0	KQEPERNECmcFLSH	1764.61	b+18
	0	KTCmcVADESHAGCmcE	1465.52	b
	0	KYICmcDNQDTISS	1443.67	b
	1	KECmcCmcDKPLLE	1293.65	b
	0	KAWSVARLSQ	1145.67	b+18
	0	KLVVSTQTALA	1130.87	b
	0	KSHCmcIAEVE	1073.66	b
	0	KQNCmcDQFE	1069.64	b
	0	KAEFVEVT	922.75	b
	0	KATEEQL	818.78	b

DTHKSEIAHRFK 1468.88 b/D

KKFWGKYLYE 1361.61 b

KQEPERNECmcFLSH 1673.74 b+18

Figure. 16 MS/MS spectra of four specific peptides from proteins digested by trypsin, AspN, GluC and LysN.

2.4 Discussion

2.4.1 b lon and b+18 lon

Previous report elucidated the mechanism of the rearrangement on C-terminal of Arg-containing peptides described above, and also verified by us in this project, which act as the basic theoretical fundament of this research. Since the rearrangement can induce the generation of metastable ions, which can be observed as a broad peak in the TOF-MS spectra, derived from the truncated peptide missing the C-terminal amino acid, this observation could be used as a new condition for protein identification by PMF. As we know, for the conventional PMF, trypsin is used commonly for protein digestion, and peptides with a C-terminal Lys or Arg can be generated. According to the mechanism previously reported, only peptides with internal Arg can rearrange at C-termini, trypsin digested peptides cannot. If there is a kind of protease which can cleave the N-terminus of Arg in proteins, the C-terminal amino acids of all peptides digested by such protease could be revealed via the rearrangement of the C-termini. Unfortunately, there is not such proteases at present, but another protease named LysN exists, which can create N-terminal Lys-containing

peptides by protein digestion. According to the previously published report, we proposed the basic amino acid-containing peptide could produce the similar phenomenon, thus Lys may work as well as Arg for the C-terminal rearrangement of peptides. However, by our experiments, not all N-terminal Lys-containing peptides can produce [b+18] metastable ion on the TOF-MS spectra derived from C-terminal amino acid truncated peptides, except the internal Arg-containing ones. After a series of MS measurements of several synthetic peptides, I found that beside the [b+18] metastable ion generated by internal Arg-containing peptide, another kind of ion relative to C-terminal amino acid truncated peptide named [b] metastable ion can be observed from noninternal Arg-containing peptides, even in the peptides without any basic amino acid. On the other hand, we also synthesized peptides by replacing the carboxylate to amide group on the C-terminal amino acid of peptides. The MS spectra show that under the condition of there is not Arg in the peptide, [b] ion can be generated; but under the condition of there is Arg in the peptide, either [b] or [b+18] ion cannot be generated. Those results indicate Arg is not the necessary condition for the generation of b ion, as well as carboxylate; but Arg seems to suppress the generation of b ion if there is not a carboxylate.

2.4.2 Formation of a b ion adjacent to the C terminus

The most common PSD/CID fragment ion types are b and y ions (Spengler 1997). According to the mobile proton model, the proton(s) is usually localized at the most basic site in the peptide before activation, meanwhile it could be adducted to any carbonyl oxygen when there is no basic amino acid. (Wu, Lebrilla 1995, Paizs, Suhai 2004). The fragmentation mechanism involves carbonyl oxygen attack by its nucleophilicity to the neighboring amide carbonyl from the N- or C-terminal site; the carbonyl oxygen attack from the N-terminal site eventually cleaves the amide bond, leading to the proton transfer to the nitrogen atom (Fig. 18a), while the carbonyl oxygen attack from the C-terminal

site does not (Fig. 18b) (Freitas, Hendrickson & Marshall 1999, Wyttenbach, Bowers 1999). Through the former pathway, the b ion, apart from the C-terminal peptide portion, could be formed as an N-protonated oxazolone (Chen, Turecek 2005). In case of a singly protonated molecule, the site of such fragmentation is highly dependent on the location of a proton over the amino acid sequence, which could be, most probably, N -amino group or any carbonyl oxygen of amide bond in the absence of basic amino acids. (Figure. 18).

Figure. 18a Generation of b ion by common PSD/CID fragmentation.

Figure. 18b No generation of b ion by proton transfer.

According to the PSD spectra obtained from MALDI-TOF/TOF MS/MS in the experiments described in this Chapter, the peptides without Arg in the sequence, but for the C terminus, gave the b-type metastable ions, which corresponded to the C-terminally-truncated peptides and were predominant among the metastable ions. The fragmentation at the last amide bond in gaseous phase could be accounted for by the two steps: the first step is decarboxylation at the C terminus; the second step is elimination of the terminal alkyl amine, followed by the formation of the b ion similar to the above fragmentation (Figure. 19). Unlike the formation of b ion at the internal amide bond in Fig. 18, there is a single pathway where the adjacent carbonyl oxygen anion attacks the carbonyl carbon, followed by elimination of the terminal -NHCH₂(R_n) to form bn-1 ion. Thus, the b_{n-1} ion (C-terminally truncated peptide) could be preferentially generated than ordinary b ions in Fig. 18 during the flight in gaseous phase.

Figure. 19 Generation of C-terminally truncated bn-1 ion by PSD fragmentation.

3 Chapter III: Probability-Based Protein Identification by Searching Sequence Database Using Mass Spectrometry Data.

3.1 Introduction

Protein identification is a necessary part in proteomics. A wide range of accurate, effective and efficient algorithms and computer programs for protein identification by searching a sequence database using MS data are developed in the last two decades. There are two main methods for computational identification: Mass-based approaches and Tag-based approaches. The former one uses molecular masses of peptides from a protein digestion by an enzyme, which is represented by PMF; on the other hand, MS/MS data from one or more peptides from the digestion of a protein are used by the latter approaches, just like de novo searching; moreover, still other approaches combine the data of mass and amino acid sequence (sequence query). Among all protein identification methods, the scoring system is the key. Experimental mass data obtained from the MS measurement of unknown protein is compared with theoretical mass data of known proteins in the database, and the score is used to evaluated how well the experimental and theoretical data match to each other. A threshold significance is set in the scoring system. A score above the threshold can be counted as a "hit", and the highest hit usually represents the identification result of the unknown protein. Moreover, "no hits" means there are no scores above the threshold and the protein cannot be identified. Sharedpeak count is a basic scoring system for comparison, which the number of MS peaks shared by the experimental and theoretical spectra is counted. The experimental spectrum with the highest shared-peak number can be treated as the closest match to the theoretical one. Another basic scoring function is termed "coverage". The coverage is the proportion of the unknown protein

covered by matched peptides, which represent peaks in the MS spectrum. In addition, several general statistic methods such as cross correlation (Eng, McCormack & Yates 1994), Bayesian probability (Zhang, Chait 2000), expectation maximization (Nesvizhskii et al. 2003) and machine learning (Gay et al. 2002, Arnold et al. 2006) are applied to the scoring systems. One of the common computer programs named "Mascot" for protein identification will be introduced and applied as follow.

3.1.1 Mascot: a commercially available searching engine

Mascot is a search engine for protein identification involves probability-based scoring, which issued by Matrix Science Ltd., in 1999. It contains three types of search, such as peptide mass fingerprinting, sequence query, and MS/MS ion search. Mascot calculates the distribution of the lengths of tryptic peptide through the whole sequence database by using a scoring system based on the MOWSE algorithm, and the probability for every peak on the spectrum can be calculated. The probability-based scoring system was described to explain how Mascot interpret data generated by itself (Perkins et al. 1999): "The fundamental approach is to calculate the probability that the observed match between the experimental data set and each sequence database entry is a chance event. The match with the lowest probability is reported as the best match. Whether this match is also a significant match depends on the size of the database. To take a simple example, the calculated probability of matching six out of ten peptide masses to a particular sequence might be 10⁻⁵. This may sound like a promising result but, if the real database contains 10⁶ sequences, several scores of this magnitude may be expected by chance. A widely used significance threshold is that the probability of the observed event occurring by chance is less than one in twenty (p<0.05). For a database of 10⁶ entries, this would mean that significant matches were those with probabilities of less than 5×10^{-8} . The probability for a good match is usually a very small number, which

must be expressed in scientific notation. This can be inconvenient, so we have adopted a convention often used in sequence similarity searches, and report a score which is $-10Log_{10}(P)$, where P is the probability. This means that the best match is the one with the highest score, and a significant match is typically a score of the order of 70." It indicates the smaller a protein database is, the lower scores for confidential level. This engine is available for users of the Matrix Science website.

3.2 Methods

Peptide masses data and C-terminal amino acid sequence data are acquired from the spectra according to Chapter II. Examples of the input window and output window are shown as Figure. 20 and Figure. 21.

MASCOT Sequence Query

Your name	kahn20002	Email	kahn20003@gmail.com
Search title	4P 0.5 1miss		
<u>Database(s)</u>	Fungi_EST Environmental_EST SwissProt NCBInr contaminants	Enzyme Allow up to Quantitation	Lys-N ✓ 1 ✓ missed cleavages None
Taxonomy	All entries	~	
Fixed modifications	Carboxymethyl (C)	> <	Acetyl (K) Acetyl (N-term) Acetyl (Protein N-term) Amidated (C-term)
	Display all modifications \Box		Amidated (Protein C-term) Ammonia-loss (N-term C)
Variable modifications	none selected	> <	Biotin (K) Biotin (N-term) Carbamidomethyl (C) Carbamyl (K) Carbamyl (N-term)
Peptide tol. ±	0.5 Da \checkmark # ¹³ C 0 \checkmark	MS/MS tol. ±	0.6 Da ~
Peptide charge	1+ ~	Monoisotopic	• Average O
Query	2858.830078 2755.893311 2441.174561 2429.008057 seq(C-R) 2428.169189 2335.285889 seq(C-S)		~
Instrument	Default \checkmark		
Decoy		Report top	50 V hits
	Start Search		Reset Form

Figure. 20 Mascot input window.

User	: kahn20002
Email	: kahn20003@gmail.com
Search title	: 4P 0.5 1miss
Database	: SwissProt 2016_04 (550960 sequences; 196692942 residues)
Timestamp	: 17 Apr 2016 at 06:31:44 GMT
Top Score	: 91 for MYG_GORBE, Myoglobin OS=Gorilla gorilla beringei GN=MB PE=1 SV=2

Mascot Score Histogram

Protein score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p<0.05).

Concise Protein Summary Report

Form	at As Concise	e Protein Summary \checkmark	H	elp		
	Signifi	icance threshold p	0.05 M	Iax. number of hits 50		
	Preferr	red taxonomy All entr	ries		\sim	
Re-Sea	arch All Se	arch Unmatched				
1.	MYG GORBE	Mass: 17221	Score: 91	Expect: 0.0004	Matches:	21
	Myoglobin	OS=Gorilla goril	la beringei	GN=MB PE=1 SV=2		
	MYG HUMAN	Mass: 17231	Score: 85	Expect: 0.0016	Matches:	20
	Myoglobin	OS=Homo sapiens	GN=MB PE=1 S	SV=2		
	MYG HYLAG	Mass: 17261	Score: 85	Expect: 0.0016	Matches:	20

Figure. 21 Mascot output window.

3.3 Results

3.3.1 Protein identification (Mascot) based on masses (PMF).

Table. 3 shows the Mascot protein identification by peptide masses obtained for seven single proteins. According to the output, the scores of BSA is 46, CYC is 43, MB is 29, CA is 48, and there are no scores of TF, MYH and PYGM. Input data and output data refer to the supplement.

	BSA	TF	CYC	MB	MYH	PYGM	CA
Score	46	/	43	29	/	/	48
Number of false	22	45	43	40	40	37	35
matched proteins							

Table. 3 Results of Mascot single protein identification by masses data of all peptides.

Table. 4 shows the Mascot protein identification by peptide masses obtained for a mixture of four proteins. According to the output, the scores of MB is 27 and there are no scores of BSA, TF and CYC. Input data and output data refer to the supplement.

Table. 4 Results of Mascot protein mixture identification by masses data of all peptides.

	BSA	TF	CYC	MB		
Score	/	/	/	27		
Number of false	42					
matched proteins						

3.3.2 Protein identification (Mascot) based on masses and C-

terminal amino acid sequences of partial detected peptides.

Table. 5 shows the Mascot protein identification by masses of all detected peptides, which are the seme as those used in 3.3.1 and C-terminal amino acid sequences of partial peptides derived from seven single proteins. According to the output, the scores of BSA is 293, TF is 138, CYC is 137, MB is 133, MYH is 134, PYGM is 124 and CA is 126. Input data and output data refer to the supplement.

Table. 5 Results of Mascot single protein identification by masses data of all peptides and C-terminal amino acid sequences of partial peptides.

	BSA	TF	CYC	MB	MYH	PYGM	CA
Score	293	138	137	133	134	124	126
Number of false	45	28	31	15	46	37	44
matched proteins							

Table. 6 shows the Mascot protein identification by masses data of all peptides and C-terminal amino acid sequences of partial peptides derived from a mixture of four proteins. According to the output, the scores of BSA is 64, TF is 48, CYC is 55, MB is 65 Input data and output data refer to the supplement.

Table. 6 Results of Mascot protein mixture identification by masses data of all peptides and C-terminal amino acid sequences of partial peptides.

	BSA	TF	CYC	MB
Score	64	48	55	65
Number of false		1	6	
matched proteins				

3.3.3 Protein identification (Mascot) by masses and C-terminal amino acid sequences of partial detected peptides (excluding the peptides with mass values only).

Table. 7 shows the Mascot protein identification by masses and C-terminal amino acids of partial detected peptides (excluding the peptides with mass values only) derived from seven single proteins. According to the output, the scores of BSA is 364, TF is 175, CYC is 176, MB is 201, MYH is 142, PYGM is 157 and CA is 142. Input data and output data refer to the supplement.

Table. 7 Results of Mascot single protein identification by masses data and C-terminal amino acids of partial detected peptides (excluding the peptides with mass values only)

	BSA	TF	CYC	MB	MYH	PYGM	CA
Score	364	175	176	201	142	157	142
Number of false	36	31	11	2	26	38	37
matched proteins							

Table. 8 shows the Mascot protein identification by masses data and C-terminal amino acids of partial detected peptides (excluding the peptides with mass values only) derived from a mixture of four proteins. According to the output, the scores of BSA is 61, CYC is 66 and MB is 84, but no score of TF. Input data and output data refer to the supplement.

Table. 8 Results of Mascot protein mixture identification by masses data and C-terminal amino acids of partial detected peptides (excluding the peptides with mass values only).

	BSA	TF	CYC	MB
Score	61	/	66	84
Number of false			1	
matched proteins				

3.4 Discussion

According to the above results of single protein identification, the conventional PMF by searching peptide masses could hardly be in use for protein identification. As to the single protein identification, only four proteins can be identified with scores lower than confidential threshold (for example at 70 when the size of a database is 10⁶ sequences) of seven proteins, and other three ones cannot be identified. However, after inputting the additional C-terminal amino acid sequences of the peptides partially observed together with masses, all of the seven proteins can be identified with significant scores above 70, which indicates the additional C-terminal amino acid sequence can increase

the overall probability for a correct match. Moreover, after removing the peptides with masses data only from the input data, the scores of all seven identified protein increase higher than the second searches, it means that reducing the size of input data can decrease the opportunity of random matches to the theoretical data in the database. As well as the single protein identification, the experiments for protein mixture case also demonstrated the effectiveness of additional C-terminal amino acid sequences information in improving the conventional PMF: all of the four proteins in a mixture could be identified by peptides with masses and C-terminal amino acid sequences, meanwhile almost no protein could be identified by conventional PMF. Especially, after adding the C-terminal amino acid sequences of partially observed peptides into the input data, three proteins in a mixture contained four proteins except TF. However, TF could be identified by searching the masses and C-terminal amino acid sequences of partial observed peptides only. It is a significant improvement than the above mentioned case for the single protein digestion, not only reducing the random match by decreasing the amount of input data, but also the unknown protein can be identified. According to the comparison of the number of matches between the search of protein mixture by masses of all detected peptides and C-terminal amino acid sequences of partially detected peptides, and the search of protein mixture by masses and C-terminal amino acid sequences of partially detected peptides (shown in Supplement "4P mass/mass+c" and "4P mass +c"), the number of matches for MYG_HORSE, ALBU_BOVIN and CYC_HORSE decreases from 23 to 7, 31 to 8 and 20 to 5, respectively. Meanwhile, the kinds of protein identified also decreases from 21 to 7. Such a reduction of matched peptides to each protein and the species of identified protein offers a possibility of reducing the interference by noisy random matches, and increasing the accuracy of identification. It indicates an advantage of dealing with a mixture of proteins by introducing C-terminal amino acid sequences in conventional PMF.

4 Chapter IV: Non-Probability-Based Protein Identification by Searching Sequence Database Using Mass Spectrometry Data I: Computer Simulation.

4.1 Introduction of the algorithm for computer simulation of iD plus. A non-probability-based sequence database searching software named "iD plus" was developed by our lab. There are two parts in the computational simulation: peptides from "Same Protein" (SP) and "Different Proteins" (DP) (Figure. 22). In the workflow of "SP" (Figure. 23 (A)), a protein database of LysN digested peptides was established. 1000 proteins were selected from the database randomly, and then four peptides were selected from each protein randomly in the 1000 proteins. The mass of a peptide, and both of the Nterminal (K) and C-terminal amino acids in the sequence of peptide were defined as a "set", and every four sets from a same protein were arranged as a "combination", 1000 combinations among all combinations were selected randomly and input into the database searching. In the results of database searching, if there was only one hit corresponded to a combination (4 peptides set), the result was denoted as "true"; if there was more than one hit corresponded to a combination, the result was denoted as "false". All of the results were merged then output as a form with protein IDs for analysis. Figure 23. (B) shows the workflow of "DP". 1000 proteins were generated randomly selected from the protein database and the LysN digested peptides were randomly generated, and then one peptide was selected from each of 1000 proteins in a random manner. 1000!/4!(1000-4)! combinations were subjected to the database searching, if there was no hit corresponding to any of the combinations, the result was denoted as "true"; if there were hits corresponding to any of the combinations, the result was denoted as "false". All of the results were merged then output as a form with protein IDs for analysis.

2	iD plus	_ 🗆 🗙
database更新		^
Search Engine for Protein ID Search-study Freq		
Key_MS error± 0.3		
=====Q8IZX4====	OS= Homo sapiens	Peptide from the same Protein
KHREEMRKERRRIQEQLRRL_2747.555	C_system Cmc 💌	C pentide, from different Protein
KPAVIDAYVRIRTTKDE_1975.098 KDGHGK 641.337	1 set 4 v peptides	
KVFEQGYREEPTFIDPEAI_2268.119	Nandom 1000 sets	 ランダムで取る
KVFEQGYREEPTFIDPEAIKYFRERME_3407.67	Target Protein AA number >= 100	② 書き直す
KAFSNCVPHLIVVTVFLVTGAVAYL_2719.489	Digest C-term of Kr 🗖 don't cut N-term of Pro	
KVLWNVRSSGVMKR_1659.948 KNKDL_617.3622		3 1 - 7
KSALSKVLWNVRSSGVM_1862.032	▼ Digest N-term of k 特定的データベースを作った	
KSSYSDQKPPYSYISLTAMAIQHSAE_2902.393 KPPYSYISI TAMAIQHSAEKMI PI SDIY_3167.61	allow up to 1 👘 miss cleavage	
KGSFWALHPDCGDMFENGSFLRRRKRF_3315		
<	peptide_len 5 - 30	
		u l
	iD plus	- • ×
database#ff Saarch=Study_Exact	iD plus	×
database更新 Search Engine for Protein ID Search-study Freq	iD plus	- ×
database更新 Search Engine for Protein ID Search-study Freq	iD plus	- ×
database更新 Search Engine for Protein ID Search-study Freq 	iD plus	
database更新 Search Engine for Protein ID Search-study Freq Key,MS error± ^{[03} ======Q8IZX4===== C-V 1029.521	iD plus OS= [Hono sepiens]	C peptide from the same Protein
database更新 Search Engine for Protein ID Search-study Freq Key,MS error± 03 =====08IZX4==== C-V_1029.521 C-V_2747.555 C-U_2747.555 C-U_1029.521 C-U_2747.555 C-U_1029.52 C-U_2747.555 C-U_1029.52 C-U_2747.555 C-U_1029.52 C-U_1029.5 C-U_1029.52 C-U_1029.52 C-U_1029.52 C-U_1029.52 C-U_1029.52 C-U_1029.52 C-U_1029.52 C-U_1029.52 C-U_1029.52 C-U_1029.5 C-U_1029.5 C-U_1029.5 C-U_1029.5 C-U_1029.5 C-U_1029.5 C-U_1029.5 C-U_	iD plus OS= Homo sepiens ↓ O_system Omo ↓	peptide from the same Protein peptide from different Protein
	iD plus OS= Homo sepiens ↓ O_system Omc ↓ 1 set ↓ ↓ peptides	peptide from the same Protein C peptide from different Protein
	iD plus OS= Homo sepiens v C_system Onc v I set 4 v peptides Bandom 11000 sets	C peptide from the same Protein
	iD plus OS= Homo sepiens ▼ C_system Omc ▼ 1 set 4 ▼ peptides Random 1000 sets	C peptide from the same Protein C peptide from different Protein ① ランダムで取る
Key_MS error ± 03 #Empire for Protein ID Search-study Freq 04 <	iD plus OS= Homo sepiens ▼ O_system Ome ▼ I set 4 ▼ peptides Random 1000 sets Target Protein AA number >= 1100	 ・ ローン ・ Poptide from the same Protein ・ poptide from different Protein ・ ランダムで取る ・ 含素直す
Key_MS error ± 03 =====08IZX4==== ^ C-V_1029.521 ^ C-L_2747.555 ^ C-E_1375.098 C-K_641.337 =====06UXU4==== ^ C-I_2552.315 C-I_2268.119 C-E_13168.573 C-E_13407.673 =====060K22==== C-L_2719.489 C-I_2719.489 C-I_279.698	iD plus OS= Homo sepiens ▼ O_system Onc ▼ 1 set 4 ▼ peptides Random 1000 sets Target Protein AA number >= 1100 □ Dieest C-term of For ☐ don't cut N-term of Pro	 ・ peptide from the same Protein ・ peptide from different Protein ・ ランダムで取る ● 書き直す
Key,MS error ± 03 error ± 03 03 E====08IZX4==== CV 1029.521 C-L_2747.555 C-E_1375.098 C-K_641.337 C-L_2552.315 C-I_2258.119 C-E_1158.573 C-E_1158.573 C-E_213407.673 =====060XU4==== C-L_2719.489 C-R_1659.948 C-I_617.3622	iD plus OS= Hono sepiens ▼ C_system One ▼ 1 set 4 ▼ peptides Random 1000 sets Target Protein AA number >= 1100 □ Digest C-term of R/2 □ don't cut N-term of Pro	 ・ peptide from the same Protein ・ peptide from the same Protein ・ ランダムで取る」 ・ ランダムで取る」 ・ 登査直す ・ サーチ
Clip database更新 Search Engine for Protein ID Search-study Freq Image: Search Engine for Protein ID Search Engin ID Search Engin ID Search Engine for Prot	iD plus OS= Homo sepiens ▼ C_system One ▼ 1 set ④ ▼ peptides Random 1000 sets Target Protein AA number >= 100 □ Digest O-term of Kr □ don't cut N-term of Pro IP Digest N-term of Kr □ don't cut N-term of Pro	 □ × ○ peptide from the same Protein ○ poptide from different Protein ① ランダムで取る ◎ 書衣直す ◎ サーチ
C) database要新 Search Engine for Protein ID Search-study Freq	iD plus OG= Homo sepiens ・ O_system Ome ・ 1 set ・ peptides Random 1000 sets Target Protein AA number >= 100 Digest O-term of 校正 don't cut N-term of Pro Digest N-term of 校正 don't cut N-term of Pro	 ・ レンジュンマ取る ・ クーローン ・ クーローン ・ クーンジュンマ取る ・ クーンジュンマ取る ・ クーンジュンマ取る ・ クーンジュンマ取る ・ クーンジュンマ取る
C) database要新 Search Engine for Protein ID Search=study Freq	D plus OS= Homo sepiens ▼ O_system Omc ▼ 1 set ● ▼ peptides Random 1000 sets Target Protein AA number >= 100 Digest C-term of V ☐ don't cut N-term of Pro Digest N-term of V ☐ don't cut N-term of Pro Digest N-term of 下 推定的データペースを作った allow up to 丁 ▼ miss cleavage	 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
database更新 Search Engine for Protein ID Search-study Freq =====Q8IZX4==== C-V_1029.521 C-L_2147.555 C-E_1975.098 C-K_641.337 =====Q8UXU4==== C-L_2552.315 C-L_2528.119 C-E_3407.673 ====Q8NG22=== C-L_2719.489 C-L_2719.489 C-L_2719.489 C-L_2719.489 C-M_1862.032 ====GSVYV0==== C-E_202.393 C-Y_3167.616 C-F_3315.605	iD plus OS= Homo sepiens ▼ O_system Ome ▼ 1 set ● ▼ peptides Random 1000 sets Target Protein AA number >= 100 □ Digest C-term of K/ □ don't cut N-term of Pro I Digest N-term of K/ □ don't cut N-term of Pro I Digest N-term of K/ □ don't cut N-term of Pro I Digest N-term of K/ □ don't cut N-term of Pro I Digest N-term of K/ □ don't cut N-term of Pro I Digest N-term of K/ □ don't cut N-term of Pro I Digest N-term of K/ □ don't cut N-term of Pro I Digest N-term of K/ □ don't cut N-term of Pro	 ○ peptide from the same Protein ○ peptide from different Protein ① ランダムで取る ② 書を直す ④ サーチ
database要新 Search Engine for Protein ID Search-study Freq =====Q8IZX4==== C-V_1029.521 C-L_21747.555 C-E_1975.098 C-K_641.337 =====08UXU4==== C-I_2552.315 C-I_2552.315 C-I_2552.315 C-I_2552.315 C-I_219.499 C-I_617.3622 C-M_1862.032 ====05VYV0=== C-F_2903.33 C-F_3315.605	iD plus OS= Homo sepiens ▼ O,system Onc ▼ I set ▼ peptides Random 1000 sets Target Protein AA number >= 100 □ Digest O-term of Kr □ don't cut N-term of Pro I Digest N-term of Kr □ don't cut N-term of Pro I Digest N-term of Kr □ don't cut N-term of Pro I Digest N-term of Kr □ don't cut N-term of Pro I Digest N-term of Kr □ don't cut N-term of Pro I Digest N-term of Kr □ don't cut N-term of Pro I Digest N-term of Kr □ don't cut N-term of Pro I Digest N-term of Kr □ don't cut N-term of Pro I Digest N-term of Kr □ don't cut N-term of Pro	 □ × ○ peptide from the same Protein ○ peptide from different Protein ① ランダムで取る ② 書を直す ③ サーチ
Image: Constraint of the second se	DS= Homo sepiens ▼ C_system Onc ▼ L set ▲ ▼ peptides Random 1000 sets Target Protein AA number >= 100 Digest O-term of 100 don't cut N-term of Pro Digest N-term of 100 don't cut N-term of Pro	 ● peptide from the same Protein ○ peptide from different Protein ① ランダムで取る ② 書き直す ③ サーチ
database更新 Search Engine for Protein ID Search-study Freq ####################################	DS= Homo sepiens ▼ O_system Onc ▼ O_system Onc ▼ I set ▲ ▼ peptides Random 1000 sets Target Protein AA number >= 100 □ Digest O-term of 校 □ don't cut N-term of Pro ♥ Digest N-term of 校 □ don't cut N-term of Pro ■ Digest N-term of ▶ □ 14定的方-Dx-2を作った allow up to 1 ▼ miss cleavage peptide_len 5 = 50	 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
Image: Constraint of the second se	DS= Homo sepiens ▼ O,system Onc ▼ 1 set ▲ ▼ peptides Random 1000 sets Target Protein AA number >= 100 Digest O-term of 100 don't cut N-term of Pro Digest N-term of 100 don't cut N-term of Pro Digest N-term of 100 don't cut N-term of Pro allow up to 1 ▼ miss cleavage peptide_len 5 = 100	 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
database要新 Search Engine for Protein ID Search-study Freq ####################################	D plus OS= Homo sepiens	 ○ peptide from the same Protein ○ peptide from different Protein ① ランダムで取る ② 書か直す ③ サーチ
database要新 Search Engine for Protein ID Search-study Freq #=====Q8IZX4==== C-V_1029.521 C-L_2747.555 C-E 1975.098 C-K_641.337 =====Q8UZ4==== C-I_2552.315 C-I_2552.315 C-I_2552.315 C-I_2252.315 C-I_2252.315 C-I_2219.489 C-K_1618.673 ====Q8UG22=== C-L_2719.489 C-R_1159.948 C-I_617.3622 C-M_1862.032 =====05VY00=== C-F_2302.393 C-F_3315.605 V	D plus OS= Homo sepiens	 ○ peptide from the same Protein ○ peptide from different Protein ① ランガムで取る ② 書称直す ③ サーチ
database要新 Search Engine for Protein ID Search-study Freq #====-Q8IZX4==== C-V_1029.521 C-L_2747.555 C-E 1975.098 C-K_641.337 =====Q8UZ44==== C-I_2552.315 C-I_2252.315 C-I_2258.119 C-E_1158.573 C-E_1158.573 C-E_2119.489 C-R_1159.948 C-I_617.3622 C-M_1862.032 ====-Q5VV00=== C-F_23015.605	ID plus OS= Homo sepiens ↓ C_system Onc ↓ I set ↓ ↓ peptides Random 1000 sets Target Protein AA number >= 100 Digest O-term of № ↑ don't cut N-term of Pro ♥ Digest N-term of № ↑ don't cut N-term of Pro ♥ Digest N-term of № ↑ for its cleavage peptide_len 5 = 50	 □ × ○ peptide from the same Protein ○ peptide from different Protein ① ランヴムで取る ④ 書木直す ④ サーチ

Figure. 22 Windows of iD plus for comuplational simulation. Above: random selection. Bottom: format change.

Figure. 23 Workflows of virtual searching of 1000 combinations of four sets of peptide masses and C-terminal amino acid sequences. (A) module for searching based on four sets from "Same Protein". (B) module for searching based on four sets, each from "Different Proteins".

4.2 Methods

Peptide masses data and C-terminal amino acid sequence data are acquired from the spectra according to Chapter II. Examples of the input data format and results format are shown in the part of supplement.

4.3 Results

Figure. 24 (A-1 & A-2) shows the comparison of searching reliability of peptides with or without C-terminal amino acid in both of "SP" and "DP" digested by LysN in silico. In the "SP", there is around 60% of 11,000 combinations (three peptides) show false positive hits without C-terminal amino acid, whereas, only 0.09% of 11,000 combinations (three peptides) show false positive hits with Cterminal amino acid. "DP" shows a similar result as well. There is around 50% of 10,000 combinations (three peptides) show false positive hits, whereas only 0.04% of 10,000 combinations (three peptides). Figure. 24 (B-1 & B-2) shows the comparison of searching reliability by a combination contains different numbers of peptides in both of "SP" and "DP" digested by LysN in silico. In the "SP", the rates of false positive hits resulted from searching by over 10,000 combinations contain one, two, three and four peptides are around 100%, 17-20%, 0.09% and 0%, respectively. In the "DP", the rates of false positive hits resulted from searching by over 10,000 combinations contain one, two, three and four peptides are around 100%, 3-6%, 0.04% and 0%, respectively. These results clearly indicate the introduction of an additional C-terminal amino acid sequence is critically useful for increasing the reliability of PMF than using only one terminal amino acid information, which is deduced by the enzyme used. The reliability increases over around 100% by setting double-termini for searching than single-terminus for searching.

Figure. 24 Results of database searching using virtual LysN peptides. A-1: The number of false hits by LysN peptides derived from same proteins under the conditions with or without C-terminal amino acid; A-2: The number of false hits by LysN peptides derived from different proteins under the conditions with or without C-terminal amino acid; B-1: The number of false hits by different numbers of LysN peptides derived from same proteins with C-terminal amino acid sequences; B-2: The number of false hits by peptides derived from different proteins with C-terminal amino acid sequences. Each circle represents the result of 1000 combinations of database searching of peptide sets of which are generated in a random selection.

4.4 Discussion

Almost all of the protein identification performed by MS are based on computational database search software, for example the Mascot I described in Chapter III above. Mascot is a probability-based protein identification computer program by searching sequence database using MS data. The probability-based algorithm involves calculating the theoretical fragments for all the peptides in the database. The disadvantages of probability-based identification are relative low reliability and it is difficult to identify proteins mixture. Different with Mascot, the in-house computer program "iD plus" developed in our lab is not a probability based database search software. According to the results of computational simulation, we believe that if four Cterminal truncated peptides from a protein digested by LysN protease, the confident level is at about almost 100%. Such a high confident level can be shown in both of identification for single protein and protein mixture. Moreover, even one peptide is enough to use for protein identification by MS/MS sequencing, while PMF usually requires a dozen of peptide masses for using. The number of observed peptides in mass spectra relative to the amount of protein sample, the larger amount of unknown protein, the more number of peptides derived from the digest can be obtained. So the ability to use fewer peptides for protein identification is important for the sensitivity. The simulation verify at least four peptides are enough for a positive identification, the number is much less than conventional PMF. The examples of experimental practice by iD plus searching would be described in the next chapter and be discussed further.

- 5 Chapter V: Non-Probability-Based Protein Identification by Searching Sequence Database Using Mass Spectrometry Data II: Experimental Practice.
- 5.1 Introduction of the algorithm for experimental practice of iD plus.

Fig. 25 shows the workflow of protein identification based on the peptide masses and C-terminal amino acid sequences of the observed peptides as well as the N-terminal Lys, which was set as the default from the enzyme specificity. The analysis process as divided into four parts: "Combination I" (C1), "Database Searching I" (DS1), "Combination II" (C2) and "Database Searching II" (DS2). In the progress of "C1", based on the total number n of peptides, the combinations of four sets of peptide masses and their C-terminal amino acid sequences were generated n!/4!(n-4)! combinations. Proteins matched to any combinations of four sets were searched in the progress of "DS1". If any combination could match to one protein, the result was denoted as "true", then saved in a tile. If any combination could not match to any protein, the sets in these combinations, m (where m refers to the number of remaining peptides after "DS1") sets were arranged to generate m!/3!(m-3)! Combinations ("C2"), which comprised of three sets of peptide masses and C-terminal amino acid sequences. Proteins matched to any combinations were searched in the progress of "DS2". If any combination could match to one protein, the result was denoted as "semi-true", then added into the "true" results of "DS1"; the remaining combinations of three sets that could not match with any proteins were discarded. Regarding to the merged "true" and "semi-true" results, sequence coverages, which are the percentage of the number of amino acids of the peptides occupied the total number of amino acids of the identified protein were calculated, and used for judgement of the reliability of merged results, in case of multiple hits being obtained for a combination. Finally, protein IDs were output as identification result with the matched peptide masses and C-terminal amino acid sequences.

Fig. 25 Database searching workflow for protein identification by using in-house software "iD plus".

5.2 Methods

Peptide masses data (above Da) and C-terminal amino acid sequence data are acquired from the spectra according to Chapter II. Fig. 26 show the input window of iD plus. Examples of the input data format and results format are shown in the part of supplement. The database searching by iD plus was under the condition of allowing 0.5 Da error and 1 missed cleavage in the matched peptide sequences, and removing the noisy proteins titin (protein IDs of A2ASS6 and Q8WZ42).

2		iD plus	- 🗆 🗙
Search Engine for Pr	rotein ID(ms,c-term) Search B	Engine for Protein ID(1-n any ms) Search Engine for Protein ID(ms) Search-study Freq	^
	error ± 0.3		
Query (m/z, C-term AA)	2429.008057,R ^	Taxonomy All Titinを削除する	
	1929.247437,H		
	1916.212646,H 1687.285645,H	Cys(-SR) Cmc 🔽	
	1674.283813,H 1502.362671,T	Target Protein AA number >= 100	
	1502.362671,B 1486.19397,E		
	1478.277832,E 1473.192627.E	Digest C-term of kr don't cut N-term of Pro	
	1470.390625,N 1454.395996 T		
	1454.395996,B 1411 743286 B	▽ Digest N-term of k 特定的データベースを作った	
	1399.402344,T 1386.3927 T	allow up to 7	
	1350.509644,J	anow up to 2 Thiss bibayage	
	1296.542358,R	peptidejen <u>5</u> – 30	
	1276.564087,R 1229.505371,S		
	1217.599976,H 1165.476563,Y	run	
	VL=J		
	Q/K=B		
<			×

Figure. 26 Window of iD plus for experimental protein identification (searching engine). The range of allowing mass error is multiple, the tolerance for the number of missed cleavages is optional from 0 to 2, and the titin (A2ASS6 and Q8WZ42) can be chosen to keep or remove.

5.3 Results

5.3.1 Verification of algorithm

Before applying the experimental data to iD plus, the verification of algorithm is necessary. The theoretical mass values [M+H⁺] and the C-terminal of the peptides derived from BSA, TF, CYC and MB were input into the iD plus. According to Figure. 23, only the peptides with amino acid length between five and 30 in a database would be picked up by iD plus for database search. Table. 9 summarizes the results of algorithm verification by peptides from digest of four single proteins. All the peptide lengths between 5-30 amino acids could match to the derived proteins entirely, no additional proteins were identified.

Identified	number of peptides	number of peptides	sequence coverage
protein(s)	from digest	matched (5-30 aa)	
BSA	58	46	93.90%
TF	58	46	84.80%
CYC	17	11	86.70%
MB	18	11	87.70%

Table. 9 Results of algorithm verification by theoretical digestion data.

5.3.2 Single protein identification

Based on such a database searching workflow, various authentic proteins were measured and analyzed. BSA, TF, CYC, MB, MYH, PYGM and CA were addressed as the methodology part described in Chapter II, and the masses and C-terminal amino acid sequences of detected peptides were acquired from MALDI-TOF/TOF MS spectra. All the data was input into iD plus for sequence database searching. Table. 9-15 show the identification results by iD plus for BSA, TF, CYC, MB, MYH, PYGM and CA, respectively. For BSA identification, 73 peptide sets were input into iD plus, and 57 sets could assign to 17 proteins. The protein with the most hits (21) and top coverage (35.10%) is BSA (P02769) (Table. 10). For TF identification, 47 peptide sets were input into iD plus, and 24 sets could assign to 5 proteins. The protein with the most hits (11) and top coverage (16.20%) is TF (Q29443) (Table.11). For CYC identification, 34 peptide sets were input into iD plus, and 27 sets could assign to 5 proteins. The protein with the most hits (8) and top coverage (89.50%) is CYC (P00004) (Table.12). For MB identification, 30 peptide sets were input into iD plus, and 17 sets could assign to 6 proteins. The protein with the most hits (8) and top coverage (61.00%) is MB (P68082/P68083) (Table.13). For MYH identification, 75 peptide sets were input into iD plus, and 59 sets could assign to 22 proteins. The protein with the most hits (14) and top coverage (7.40%) is MYH (Q28641) (Table.14). For PYGM identification, 53 peptide sets were input into iD plus, and 36 sets could assign to 9 proteins. The protein with the most hits (9) and top coverage (12.50%) is PYGM (P00489) (Table.15). For CA identification, 29 peptide sets were input into iD plus, and 18 sets could assign to 6 proteins. The protein with the most hits (6) and top coverage (28.10%) is CA (P00921) (Table.16). It indicates for single protein identification, the candidate with the most number of matched peptides and/or highest coverage can be confirmed as target protein.

	BSA	
Number of sets	73	
Number of matched sets	57	
Number of matched proteins by	17	
more than three sets		
Coverage	Number of matched peptides	ID
35.10%	21	P02769
2.20%	5	Q6A078
0.20%	4	Q9I7U4
1.00%	4	Q8IDX6
0.80%	4	Q69Z23
0.80%	4	Q9UFH2
0.70%	4	Q555C6
1.70%	4	Q96RL7
1.40%	3	Q6YXP5
2.60%	3	Q9PQ74
0.80%	3	Q71LX6
2.70%	3	P21421
1.60%	3	P23466
1.50%	3	P0C568
3.30%	3	Q88VX7
0.90%	3	Q4U4S6
5.60%	3	Q46LV3

Table. 10 Identification Results for BSA by iD plus.

TF		
Number of sets	47	
Number of matched sets	24	
Number of matched proteins by	5	
more than three sets		
Coverage	Number of matched peptides	ID
16.20%	11	Q29443
0.80%	4	Q9QYX7
1.00%	3	P09814
1.80%	3	P22082
7.60%	3	Q042P8

Table. 11 Identification Results for TF by iD plus.

Table. 12 Identification Results for CYC by iD plus.

	CYC	
Number of sets	34	
Number of matched sets	27	
Number of matched proteins by	5	
more than three sets		
Coverage	Number of matched peptides	ID
Coverage 89.50%	Number of matched peptides 8	ID P00004
Coverage 89.50% 0.40%	Number of matched peptides 8 4	ID P00004 Q8I3Z1
Coverage 89.50% 0.40% 0.40%	Number of matched peptides 8 4 3	ID P00004 Q8I3Z1 P0C6Y0
Coverage 89.50% 0.40% 0.40% 0.40%	Number of matched peptides 8 4 3 3	ID P00004 Q8I3Z1 P0C6Y0 C6KTB7

MB		
Number of sets	30	
Number of matched sets	17	
Number of matched proteins by	6	
more than three sets		
Coverage	Number of matched peptides	ID
61.00%	8	P68082
61.00%	8	P68083
3.70%	3	P14606
4.50%	3	Q6FKT1
0.50%	3	O68008
0.70%	3	Q4G0P3

Table. 13 Identification Results for MB by iD plus.

Table. 14 Identification Results for MYH by iD plus.

MYH		
Number of sets	75	
Number of matched sets	59	
Number of matched proteins by	22	
more than three sets		
Coverage	Number of matched peptides	ID
7.40%	14	Q28641
7.40%	14	
7.40% 7.60%	14 14	-
7.40% 7.60% 7.60%	14 14 14	homology

7.80%	14	
1.30%	5	P62286
1.00%	5	P0C6U9
0.60%	5	P0C6X8
2.00%	4	A4QKG5
3.90%	4	P02562
1.80%	4	Q6EVK6
3.00%	3	Q54YD8
1.30%	3	Q68RU8
6.10%	3	A4XPN6
1.10%	3	Q8I4R2
6.20%	3	Q3YT49
0.20%	3	Q9I7U4
4.50%	3	P23316
4.90%	3	Q9LS42
3.70%	3	Q8ILT5
1.50%	3	Q00963

Table. 15 Identification Results for PYGM by iD plus.

PYGM		
Number of sets	53	
Number of matched sets	36	
Number of matched proteins by	9	
more than three sets		
Coverage	Number of matched peptides	ID
12.50%	9	P00489
0.40%	4	Q8I3Z1

3.80%	4	Q553B1
4.30%	3	Q5UR75
1.70%	3	Q6FSD2
2.50%	3	P37609
0.90%	3	Q8TDW7
2.30%	3	P49466
7.20%	3	Q5UPN0

Table. 16 Identification Results for CA by iD plus.

	CA	
Number of sets	29	
Number of matched sets	18	
Number of matched proteins by	6	
more than three sets		
Coverage	Number of matched peptides	ID
28.10%	6	P00921
6.80%	4	P17480
6.80%	4	P25976
6.80%	4	P25977
0.50%	3	Q8IID4
0.50%	3	Q09666

5.3.3 Protein mixture identification

As to the protein identification from protein mixture by MS/MS based enhanced PMF, an artificial protein mixture of BSA, CYC and MB is measured by MALDI-TOF/TOF MS. Table.16 shows the identification results by iD plus for Table. 16 shows the searching result of the protein mixture digested LysN, proteins of a

protein mixture of BSA, TF, CYC and MB. For the mixture of four proteins identification, 59 peptide sets were input into iD plus, and 39 sets could assign to 10 proteins. The protein with the 6 hits and 8.1% of coverage can be identified as BSA (P02769), the protein with the 5 hits and 33.8% of coverage can be identified as MB (68082), the protein with the 4 hits and 6.7% of coverage can be identified as TF (Q29443), and the protein with the 4 hits and 31.40% of coverage can be identified as CYC (P00004) (Table.16).

Protien Mixture		
Number of sets	59	
Number of matched sets	39	
Number of matched proteins by more	4	
than three sets		
Coverage	Number of matched peptides	ID
0.081	6	P02769
0.338	5	P68082
0.067	4	Q29443
>0.314	4	P00004

Table. 16 Identification Results for Protein Mixture by iD plus.

5.4 Discussion

The algorithm of iD plus is a non-probability based sequence database search, which is different with Mascot, a probability based sequence database search. The results of Mascot search in Chapter II already demonstrate the significance of C-terminal amino acid sequences deduced from metastable ions in the spectra of peptides derived from LysN digested proteins for protein identification. In this session, the algorithm of iD plus has been verified firstly by theoretical peptide masses from the protein digest list. The result indicates the validity of the algorithm of iD plus. The tolerance conditions of iD plus search allow error of ± 0.5 Da, up to 1 missed cleavage in a peptide sequence and removing the sequence of titin (A2ASS6 and Q8WZ42) from the sequence database. The first two conditions of allowing error of ± 0.5 Da and up to 1 missed cleavage correspond with the conditions of Mascot search described in Chapter III, and the reason of removing A2ASS6 and Q8WZ42 from the sequence database is that the length of the sequence of these two proteins are very long (35,213 aa and 34,350 aa). As we know, the random matches would increase with the increasing of the length of protein. In the single protein identification by iD plus using an entire sequence database, A2ASS6 and Q8WZ42 were always identified as false proteins, and a few of peptide sequence derived from protein digest could be matched to titin because in the LysN digest of titin, many sequences contain the similar masses and C-terminal amino acid sequences to other peptides derived from LysN digest of BSA/TF/CYC/MB. Therefore, A2ASS6 and Q8WZ42 were removed from sequence database to improve the algorithm of iD plus. On another hand, only the peptides with masses above 800 kDa were used for protein identification due to in the mass range below 800 kDa, matrix and other background could be measured by MS and such false input data may increase the false identification by iD plus. Under these conditions, iD plus was run for protein identification by experimental peptides data acquired from MS spectra. For the single protein identification, all the seven proteins can be matched with the most number of peptides input than the number of peptides matched to other false proteins. In addition, the coverage of the identified proteins which the most number of peptides matched to are the highest among all proteins output by iD plus. Those results are similar as Mascot search for single protein using the same input data, but iD plus does not adopt the probability-based algorithm. Whereas, the iD plus can identify protein mixture with fewer number of peptides

better than Mascot does. Chapter III described that Mascot cannot identify all of the four proteins by partial peptides with masses and C-terminal amino acid sequences, though the four proteins can be identified in a mixture by adding more peptide masses without deduced C-terminal amino acid sequence. It indicates that the probability-based algorithm of Mascot cannot address the identification in the situation of fewer number of peptides can be used. However, iD plus can identify all the four proteins using the same data of peptides masses and C-terminal amino acid sequences as Mascot used and a non-probability based algorithm. Only the four proteins of BSA/MB/TF/CYC can be identified by 6, 5, 4, 4 peptides, other few number of false proteins can only match to less than 3 peptides. As to the simulation result described in Chapter IV, the reliability of protein identified by more than 4 peptides is the highest. It means the identification of protein mixture by iD plus is better than Mascot.

Conclusion

In this study, I have investigated the generation of [b] ions and [b+18] ions relative to C-terminal truncated of peptides measured by MALDI-TOF/TOF MS and proposed a new strategy of applying those metastable ions on conventional PMF to increase the reliability for protein identification. We experimentally demonstrated that the [b] ions can be generated by any peptide sequence, besides Arg-contained peptides which can produce [b+18] ions. A scheme of enhanced PMF based on the protein digest by LysN was established and the effect of C-terminal amino acid sequences were verified by Mascot. Furthermore, a non-probability based database searching algorithm "iD plus" was developed in-house. The performance of the experimental workflow and computational database searching was validated using single protein digest and protein mixture digest. The application of iD plus on addressing the identification of protein mixture was better and more reliable than the algorithm of PMF or query search of Mascot. We foresee more promising applications of the iD plus for protein identification.

References

- Anonymous 1946, "Proceedings of the American Physical Society", *Phys.Rev.*, vol. 69, no. 11-12, pp. 674-674.
- Arnold, R.J., Jayasankar, N., Aggarwal, D., Tang, H. & Radivojac, P. 2006, "A machine learning approach to predicting peptide fragmentation spectra", *Pacific Symposium on Biocomputing.Pacific Symposium on Biocomputing*, pp. 219-230.
- Biemann, K. 1992, "Mass spectrometry of peptides and proteins", *Annual Review of Biochemistry*, vol. 61, pp. 977-1010.
- Bienvenut, W.V., Sanchez, J., Karmime, A., Rouge, V., Rose, K., Binz, P. & Hochstrasser, D.F. 1999, "Toward a Clinical Molecular Scanner for Proteome Research:  Parallel Protein Chemical Processing before and during Western Blot", *Analytical Chemistry*, vol. 71, no. 21, pp. 4800-4807.
- Chen, X. & Turecek, F. 2005, "Simple b ions have cyclic oxazolone structures. A neutralization-reionization mass spectrometric and computational study of oxazolone radicals", *Journal of the American Society for Mass Spectrometry*, vol. 16, no. 12, pp. 1941-1956.
- Chen, X., Carroll, J.A. & Beavis, R.C. 1998, "Near-ultraviolet-induced matrixassisted laser desorption/ionization as a function of wavelength", *Journal of the American Society for Mass Spectrometry,* vol. 9, no. 9, pp. 885-891.
- Dreisewerd, K. 2003, "The Desorption Process in MALDI", *Chemical reviews,* vol. 103, no. 2, pp. 395-426.
- Dunham, I., Shimizu, N., Roe, B.A., Chissoe, S., Hunt, A.R., Collins, J.E., Bruskiewich, R., Beare, D.M., Clamp, M., Smink, L.J., Ainscough, R., Almeida, J.P., Babbage, A., Bagguley, C., Bailey, J., Barlow, K., Bates, K.N., Beasley, O., Bird, C.P., Blakey, S., Bridgeman, A.M., Buck, D., Burgess, J., Burrill, W.D. & O'Brien, K.P. 1999, "The DNA sequence of human chromosome 22", *Nature*, vol. 402, no. 6761, pp. 489-495.
- Eng, J.K., McCormack, A.L. & Yates, J.R. 1994, "An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database", *Journal of the American Society for Mass Spectrometry*, vol. 5, no. 11, pp. 976-989.

- Fang, S., Takao, T., Satomi, Y., Mo, W. & Shimonishi, Y. 2000, "Novel rearranged ions observed for protonated peptides via metastable decomposition in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry", *Journal of the American Society for Mass Spectrometry*, vol. 11, no. 4, pp. 345-351.
- Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. & Whitehouse, C.M. 1989, "Electrospray ionization for mass spectrometry of large biomolecules", *Science (New York, N.Y.)*, vol. 246, no. 4926, pp. 64-71.
- Freitas, M.A., Hendrickson, C.L. & Marshall, A.G. 1999, "Gas phase activation energy for unimolecular dissociation of biomolecular ions determined by focused RAdiation for gaseous multiphoton ENergy transfer (FRAGMENT)", *Rapid communications in mass spectrometry : RCM*, vol. 13, no. 15, pp. 1639-1642.
- Gay, S., Binz, P.A., Hochstrasser, D.F. & Appel, R.D. 2002, "Peptide mass fingerprinting peak intensity prediction: extracting knowledge from spectra", *Proteomics*, vol. 2, no. 10, pp. 1374-1391.
- Gonzalez, J., Besada, V., Garay, H., Reyes, O., Padron, G., Tambara, Y., Takao, T. & Shimonishi, Y. 1996, "Effect of the position of a basic amino acid on C-terminal rearrangement of protonated peptides upon collisioninduced dissociation", *Journal of mass spectrometry : JMS*, vol. 31, no. 2, pp. 150-158.
- Grese, R.P., Cerny, R.L. & Gross, M.L. 1989, "Metal ion-peptide interactions in the gas phase: a tandem mass spectrometry study of alkali metal cationized peptides", *Journal of the American Chemical Society*, vol. 111, no. 8, pp. 2835-2842.
- Griffiths, J. 2008, "A Brief History of Mass Spectrometry", *Analytical Chemistry*, vol. 80, no. 15, pp. 5678-5683.
- Henzel, W.J., Billeci, T.M., Stults, J.T., Wong, S.C., Grimley, C. & Watanabe, C. 1993, "Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases", *Proceedings of the National Academy of Sciences of the United States of America,* vol. 90, no. 11, pp. 5011-5015.
- Imrie, D.C., Pentney, J.M. & Cottrell, J.S. 1995, "A Faraday cup detector for high-mass ions in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry", *Rapid Communications in Mass Spectrometry*, vol. 9, no. 13, pp. 1293-1296.

- James, P., Quadroni, M., Carafoli, E. & Gonnet, G. 1993, "Protein identification by mass profile fingerprinting", *Biochemical and biophysical research communications,* vol. 195, no. 1, pp. 58-64.
- Karas, M., Bachmann, D., Bahr, U. & Hillenkamp, F. 1987, "Matrix-assisted ultraviolet laser desorption of non-volatile compounds", *International Journal of Mass Spectrometry and Ion Processes*, vol. 78, pp. 53-68.
- Karas, M., Gluckmann, M. & Schafer, J. 2000, "Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors", *Journal of mass spectrometry : JMS*, vol. 35, no. 1, pp. 1-12.
- Karas, M. & Krüger, R. 2003, "Ion Formation in MALDI:  The Cluster Ionization Mechanism", *Chemical reviews*, vol. 103, no. 2, pp. 427-440.
- Knochenmuss, R. 2002, "A quantitative model of ultraviolet matrix-assisted laser desorption/ionization", *Journal of Mass Spectrometry*, vol. 37, no. 8, pp. 867-877.
- Knochenmuss, R. & Zenobi, R. 2003, "MALDI Ionization:  The Role of In-Plume Processes", *Chemical reviews,* vol. 103, no. 2, pp. 441-452.
- Lange, W., Greifendorf, D., van Leyen, D., Niehuis, E. & Benninghoven, A. 1986, "Analytical applications of high-performance TOF-SIMS", *Springer Proc. Phys*, vol. 9, pp. 67.
- Mamyrin, B.A., Karataev, V.I., Shmikk, D.V. & Zagulin, V.A. 1973, "The massreflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution", *Journal of Experimental and Theoretical Physics*, vol. 37, no. 1, pp. 45.
- Mann, M., Hojrup, P. & Roepstorff, P. 1993, "Use of mass spectrometric molecular weight information to identify proteins in sequence databases", *Biological mass spectrometry*, vol. 22, no. 6, pp. 338-345.

Mitchell Wells, J. & McLuckey, S.A. 2005, "Collision-Induced Dissociation

(CID) of Peptides and Proteins", *Methods in enzymology*, vol. 402, pp. 148-185.

Moniatte, M., van der Goot, F.G., Buckley, J.T., Pattus, F. & van Dorsselaer, A. 1996, "Characterisation of the heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry", *FEBS letters*, vol. 384, no. 3, pp. 269-272.
- Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. 2003, "A statistical model for identifying proteins by tandem mass spectrometry", *Analytical Chemistry*, vol. 75, no. 17, pp. 4646-4658.
- Onnerfjord, P., Nilsson, J., Wallman, L., Laurell, T. & Marko-Varga, G. 1998, "Picoliter sample preparation in MALDI-TOF MS using a micromachined silicon flow-through dispenser", *Analytical Chemistry*, vol. 70, no. 22, pp. 4755-4760.
- Paizs, B. & Suhai, S. 2004, "Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage", *Journal of the American Society for Mass Spectrometry*, vol. 15, no. 1, pp. 103-113.
- Pappin, D.J., Hojrup, P. & Bleasby, A.J. 1993, "Rapid identification of proteins by peptide-mass fingerprinting", *Current biology : CB*, vol. 3, no. 6, pp. 327-332.
- Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. 1999, "Probabilitybased protein identification by searching sequence databases using mass spectrometry data", *Electrophoresis*, vol. 20, no. 18, pp. 3551-3567.
- Renner, D. & Spiteller, G. 1988, "Linked scan investigation of peptide degradation initiated by liquid secondary ion mass spectrometry", *Biological mass spectrometry*, vol. 15, no. 2, pp. 75-77.
- Roepstorff, P. & Fohlman, J. 1984, "Proposal for a common nomenclature for sequence ions in mass spectra of peptides", *Biomedical mass spectrometry*, vol. 11, no. 11, pp. 601.
- Sleno, L. & Volmer, D.A. 2004, "Ion activation methods for tandem mass spectrometry", *Journal of Mass Spectrometry*, vol. 39, no. 10, pp. 1091-1112.
- Spengler, B. 1997, "Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules", *Journal of Mass Spectrometry*, vol. 32, no. 10, pp. 1019-1036.
- Spengler, B. & Cotter, R.J. 1990, "Ultraviolet laser desorption/ionization mass spectrometry of proteins above 100,000 daltons by pulsed ion extraction time-of-flight analysis", *Analytical Chemistry*, vol. 62, no. 8, pp. 793-796.
- Stump, M.J., Fleming, R.C., Gong, W., Jaber, A.J., Jones, J.J., Surber, C.W. & Wilkins, C.L. 2002, "MATRIX-ASSISTED LASER DESORPTION MASS

SPECTROMETRY", *Applied Spectroscopy Reviews,* vol. 37, no. 3, pp. 275-303.

- Takao, T., Gonzalez, J., Yoshidome, K., Sato, K., Asada, T., Kammei, Y. & Shimonishi, Y. 1993, "Automatic precursor-ion switching in a four-sector tandem mass spectrometer and its application to acquisition of the MS/MS product ions derived from a partially (18)O-labeled peptide for their facile assignments", *Analytical Chemistry*, vol. 65, no. 17, pp. 2394-2399.
- Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T. & Matsuo, T. 1988, "Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry", *Rapid Communications in Mass Spectrometry*, vol. 2, no. 8, pp. 151-153.
- Tang, X.J., Ens, W., Standing, K.G. & Westmore, J.B. 1988, "Daughter ion mass spectra from cationized molecules of small oligopeptides in a reflecting time-of-flight mass spectrometer", *Analytical Chemistry*, vol. 60, no. 17, pp. 1791-1799.
- Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., Gocayne, J.D., Amanatides, P., Ballew, R.M., Huson, D.H., Wortman, J.R., Zhang, Q., Kodira, C.D., Zheng, X.H., Chen, L., Skupski, M., Subramanian, G., Thomas, P.D., Zhang, J., Gabor Miklos, G.L., Nelson, C., Broder, S., Clark, A.G., Nadeau, J., McKusick, V.A., Zinder, N., Levine, A.J., Roberts, R.J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A.E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T.J., Higgins, M.E., Ji, R.R., Ke, Z., Ketchum, K.A., Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G.V., Milshina, N., Moore, H.M., Naik, A.K., Narayan, V.A., Neelam, B., Nusskern, D., Rusch, D.B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao, C., Yan, C., Yao, A., Ye, J., Zhan, M., Zhang, W., Zhang, H., Zhao, Q., Zheng, L., Zhong, F., Zhong, W., Zhu, S., Zhao, S., Gilbert, D., Baumhueter, S., Spier, G., Carter, C., Cravchik, A., Woodage, T., Ali, F., An, H., Awe, A., Baldwin, D., Baden, H., Barnstead, M., Barrow, I., Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M.L., Curry, L., Danaher, S., Davenport, L., Desilets, R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes, J., Haynes, C.,

Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love, A., Mann, F., May, D., McCawley, S., McIntosh, T., McMullen, I., Moy, M., Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi, H., Reardon, M., Rodriguez, R., Rogers, Y.H., Romblad, D., Ruhfel, B., Scott, R., Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., Tint, N.N., Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor, S., Winn-Deen, E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J.F., Guigo, R., Campbell, M.J., Sjolander, K.V., Karlak, B., Kejariwal, A., Mi, H., Lazareva, B., Hatton, T., Narechania, A., Diemer, K., Muruganujan, A., Guo, N., Sato, S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz, B., Yooseph, S., Allen, D., Basu, A., Baxendale, J., Blick, L., Caminha, M., Carnes-Stine, J., Caulk, P., Chiang, Y.H., Coyne, M., Dahlke, C., Mays, A., Dombroski, M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire, H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Gropman, B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., Jordan, J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X., Lopez, J., Ma, D., Majoros, W., McDaniel, J., Murphy, S., Newman, M., Nguyen, T., Nguyen, N., Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W., Sanders, R., Scott, J., Simpson, M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E., Wang, M., Wen, M., Wu, D., Wu, M., Xia, A., Zandieh, A. & Zhu, X. 2001, "The sequence of the human genome", Science (New York, N.Y.), vol. 291, no. 5507, pp. 1304-1351.

- Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A., Yan, J.X., Gooley, A.A.,
 Wilkins, M.R., Duncan, M.W., Harris, R., Williams, K.L. & HumpherySmith, I. 1995, "Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium", *Electrophoresis*, vol. 16, no. 1, pp. 1090-1094.
- Wiley, W.C. & McLaren, I.H. 1955, "Time-of-Flight Mass Spectrometer with Improved Resolution", *Review of Scientific Instruments,* vol. 26, no. 12, pp. 1150-1157.
- Willett, W.S., Gillmor, S.A., Perona, J.J., Fletterick, R.J. & Craik, C.S. 1995, "Engineered Metal Regulation of Trypsin Specificity", *Biochemistry*, vol. 34, no. 7, pp. 2172-2180.
- Wu, J. & Lebrilla, C.B. 1995, "Intrinsic basicity of oligomeric peptides that contain glycine, alanine, and valine-The effects of the alkyl side chain on proton transfer reactions", *Journal of the American Society for Mass Spectrometry*, vol. 6, no. 2, pp. 91-101.

- Wyttenbach, T. & Bowers, M.T. Gas phase conformations of biological molecules: the hydrogen/deuterium exchange mechanism.
- Yates, J.R., 3rd, Speicher, S., Griffin, P.R. & Hunkapiller, T. 1993a, "Peptide mass maps: a highly informative approach to protein identification", *Analytical Biochemistry*, vol. 214, no. 2, pp. 397-408.
- Zenobi, R. & Knochenmuss, R. 1998, "Ion formation in MALDI mass spectrometry", *Mass spectrometry reviews,* vol. 17, no. 5, pp. 337-366.
- Zhang, W. & Chait, B.T. 2000, "ProFound: an expert system for protein identification using mass spectrometric peptide mapping information", *Analytical Chemistry*, vol. 72, no. 11, pp. 2482-2489.

Supplement

Mascot input data format and iD plus input data (mass+c)

BSA

mass

2816.559814	1930.019165	1709.743408	1534.556763	1428.553345
2757.61377	1928.910522	1701.800903	1530.647583	1423.299072
2402.151123	1916.98645	1697.773682	1526.865356	1415.714722
2348.163574	1913.897705	1695.796753	1521.573975	1415.546875
2335.06958	1908.93457	1688.775146	1517.621826	1409.759277
2291.082031	1900.386353	1688.636475	1510.609009	1408.634766
2290.119385	1897.131348	1687.77771	1508.575317	1407.602539
2277.043213	1897.12793	1686.717285	1505.53772	1399.751709
2264.008789	1879.860352	1683.722656	1500.598999	1399.734863
2261.196777	1876.000244	1674.760864	1499.684937	1394.594238
2248.214111	1872.000977	1673.685425	1497.787476	1386.591187
2185.056396	1868.916504	1664.747192	1497.610229	1381.533325
2131.121826	1855.890259	1661.783203	1492.604858	1364.618042
2111.269775	1854.371948	1651.729858	1491.740234	1363.728271
2086.207764	1842.828857	1640.772827	1491.636475	1352.668579
2073.023193	1829.799927	1639.934814	1488.49292	1351.731201
2069.644531	1817.948853	1634.843262	1486.564331	1350.632935
2056.537598	1804.835693	1629.727783	1478.589722	1349.602295
2049.024658	1803.816162	1607.896851	1476.546265	1347.531006
2035.952393	1792.851929	1599.665894	1475.4375	1341.718994
2032.958496	1775.778564	1586.113892	1473.558472	1336.573486
2032.930298	1770.917114	1582.740112	1470.057373	1335.641724
2028.16687	1763.842529	1578.574585	1467.684937	1321.675903
2028.157227	1762.757935	1564.614014	1465.576538	1305.719971
2011.620117	1759.820557	1559.727173	1463.697754	1294.662964
1987.214722	1750.812256	1554.206299	1457.703735	1293.702759
1986.862549	1749.715088	1550.602417	1448.838013	1283.698242
1984.921509	1746.820313	1548.595337	1445.566528	1281.62854
1975.004639	1745.822754	1547.707397	1444.638428	1279.054443
1971.915527	1734.723755	1539.786621	1439.839355	1263.674927
1966.901123	1734.707153	1537.570923	1439.827393	1258.775879
1956.033936	1732.776978	1536.624512	1433.767212	1247.759521
1955.143799	1731.88855	1536.591919	1433.609863	1244.603882
1947.345703	1722.773926	1534.581177	1430.494385	1244.578613

1239.652344	1075.625732	1015.083008	959.4957275	877.1182251
1222.046753	1075.51001	1014.657776	956.5006104	877.1004028
1221.66687	1069.486206	1009.5578	956.4837646	876.506897
1221.564819	1067.554565	1006.456116	950.5360107	872.56073
1216.69043	1064.524536	1004.593506	944.5249634	871.5302734
1214.560059	1064.46167	1002.522644	940.5581055	869.5291748
1203.718994	1063.54895	1001.476868	938.5315552	861.5379028
1203.681274	1062.593262	1001.116943	930.5982666	860.6416626
1199.574951	1057.559082	998.5465088	929.5328979	860.322876
1177.654907	1055.644409	996.526123	928.5023193	858.5506592
1163.658813	1055.637329	994.5374756	927.5256958	857.5164185
1162.638062	1055.631592	993.5001831	925.5374146	854.3765259
1157.663452	1054.526489	991.6455688	924.543335	844.4613647
1149.611816	1047.638672	991.4567261	922.5431519	841.586731
1145.716797	1045.564941	989.6400757	922.5410767	841.3504639
1145.670044	1044.11438	988.5450439	920.621582	840.994873
1144.590088	1043.588135	988.444458	920.5342407	840.5909424
1140.523682	1042.328613	987.5665283	918.4827881	840.5871582
1138.581299	1038.425171	985.5232544	916.5518188	840.5560913
1135.473633	1035.466553	983.4944458	915.5038452	836.3427734
1127.492432	1033.495605	980.5427246	912.6148071	835.5682373
1126.598022	1032.499268	977.4946899	908.4659424	835.550354
1125.565918	1029.55835	975.138916	907.208374	835.5477905
1114.63208	1028.548828	974.5033569	906.5491943	832.5363159
1113.623169	1028.474609	973.5120239	906.5374146	820.5339966
1092.52832	1027.588257	970.6124878	904.5445557	818.4763184
1086.586182	1025.549927	964.5478516	891.5142212	816.6785889
1082.520142	1021.55481	964.53302	886.4848022	815.7810059
1077.621826	1019.492432	962.5443115	881.5235596	
1077.498413	1017.62323	959.6359863	878.5324707	

BSA

mass/mass+c

2816.559814	1897.131348 seq(C-G)	1651.729858
2757.61377	1897.12793	1640.772827
2402.151123	1879.860352	1639.934814
2348.163574	1876.000244	1634.843262
2335.06958	1872.000977 seq(C-T)	1629.727783
2291.082031	1868.916504	1607.896851
2290.119385	1855.890259	1599.665894
2277.043213	1854.371948	1586.113892
2264.008789	1842.828857	1582.740112 seq(C-H)
2261.196777	1829.799927	1578.574585
2248.214111	1817.948853	1564.614014
2185.056396	1804.835693	1559.727173
2131.121826	1803.816162	1554.206299
2111.269775	1792.851929 seq(C-F)	1550.602417
2086.207764	1775.778564	1548.595337
2073.023193	1770.917114	1547.707397
2069.644531	1763.842529	1539.786621
2056.537598	1762.757935	1537.570923
2049.024658	1759.820557	1536.624512
2035.952393	1750.812256	1536.591919
2032.958496	1749.715088 seq(C-D)	1534.581177 seq(C-E)
2032.930298 seq(C-E)	1746.820313	1534.556763
2028.16687 seq(C-R)	1745.822754	1530.647583
2028.157227	1734.723755	1526.865356 seq(C-S)
2011.620117	1734.707153	1521.573975
1987.214722	1732.776978	1517.621826
1986.862549	1731.88855	1510.609009
1984.921509	1722.773926	1508.575317
1975.004639 seq(С-К)	1709.743408	1505.53772
1975.004639 seq(C-Q)	1701.800903	1500.598999
1971.915527	1697.773682	1499.684937
1966.901123	1695.796753	1497.787476
1956.033936	1688.775146	1497.610229
1955.143799	1688.636475	1492.604858
1947.345703	1687.7771 seq(C-H)	1491.740234
1930.019165	1686.717285	1491.636475
1928.910522	1683.722656	1488.49292
1916.98645 seq(C-N)	1674.760864 seq(C-H)	1486.564331
1913.897705	1673.685425	1478.589722
1908.93457	1664.747192	1476.546265
1900.386353	1661.783203	1475.4375

1473.558472	1283.698242 seq(C-L)	1064.46167
1470.057373	1281.62854	1063.54895
1467.684937	1279.054443	1062.593262
1465.576538	1263.674927 seq(C-W)	1057.559082
1463.697754 seq(C-I)	1258.775879	1055.644409
1463.697754 seq(C-L)	1247.759521	1055.637329
1457.703735	1244.603882	1055.631592
1448.838013	1244.578613	1054.526489
1445.566528	1239.652344	1047.638672 seq(С-К)
1444.638428 seq(C-S)	1222.046753	1047.638672 seq(C-Q)
1439.839355	1221.66687	1045.564941 seq(C-F)
1439.827393	1221.564819	1044.11438
1433.767212	1216.69043	1043.588135
1433.609863	1214.560059	1042.328613
1430.494385	1203.718994	1038.425171
1428.553345	1203.681274	1035.466553
1423.299072	1199.574951	1033.495605
1415.714722	1177.654907	1032.499268
1415.546875	1163.658813 seq(C-A)	1029.55835
1409.759277	1162.638062 seq(C-F)	1028.548828
1408.634766	1157.663452	1028.474609
1407.602539	1149.611816	1027.588257
1399.751709	1145.716797	1025.549927
1399.734863 seq(C-D)	1145.670044 seq(С-К)	1021.55481
1394.594238	1145.670044 seq(C-Q)	1019.492432
1386.591187	1144.590088	1017.62323
1381.533325	1140.523682	1015.083008
1364.618042	1138.581299	1014.657776 seq(C-I)
1363.728271 seq(C-M)	1135.473633	1014.657776 seq(C-L)
1352.668579	1127.492432	1009.5578 seq(C-T)
1351.731201	1126.598022 seq(C-A)	1006.456116
1350.632935 seq(C-F)	1125.565918	1004.593506
1349.602295	1114.63208	1002.522644
1347.531006	1113.623169	1001.476868
1341.718994	1092.52832	1001.116943
1336.573486 seq(C-F)	1086.586182 seq(C-F)	998.5465088
1335.641724	1082.520142 seq(C-F)	996.526123 seq(C-T)
1321.675903	1077.621826 seq(C-R)	994.5374756
1305.719971 seq(C-M)	1077.498413	993.5001831
1305.719971 seq(C-I)	1075.625732	991.6455688 seq(C-R)
1305.719971 seq(C-L)	1075.51001	991.4567261
1294.662964	1069.486206 seq(C-E)	989.6400757 seq(C-K)
1293.702759	1067.554565 seq(C-T)	989.6400757 seq(C-Q)
1283.698242 seq(C-I)	1064.524536	988.5450439

988.444458	925.5374146	869.5291748
987.5665283 seq(C-F)	924.543335	861.5379028
985.5232544	922.5431519	860.6416626
983.4944458 seq(C-T)	922.5410767 seq(C-T)	860.322876
980.5427246	920.621582 seq(C-R)	858.5506592 seq(C-E)
977.4946899	920.5342407	857.5164185 seq(C-Y)
975.138916	918.4827881	854.3765259
974.5033569 seq(C-F)	916.5518188	844.4613647
973.5120239	915.5038452 seq(C-Y)	841.586731 seq(C-D)
970.6124878	912.6148071	841.3504639
964.5478516	908.4659424 seq(C-P)	840.994873 seq(C-I)
964.53302	907.208374	840.994873 seq(C-L)
962.5443115	906.5491943 seq(C-E)	840.5909424
959.6359863	906.5374146	840.5871582
959.4957275	904.5445557	840.5560913
956.5006104	891.5142212	836.3427734
956.4837646	886.4848022 seq(C-P)	835.5682373
950.5360107	881.5235596 seq(C-I)	835.550354
944.5249634	881.5235596 seq(C-L)	835.5477905
940.5581055 seq(C-E)	878.5324707 seq(C-I)	832.5363159
938.5315552	878.5324707 seq(C-L)	820.5339966 seq(C-I)
930.5982666 seq(C-I)	877.1182251	820.5339966 seq(C-L)
930.5982666 seq(C-L)	877.1004028	818.4763184 seq(C-I)
929.5328979	876.506897	818.4763184 seq(C-L)
928.5023193	872.56073	816.6785889
927.5256958 seq(C-E)	871.5302734	815.7810059

BSA mass+c

> 940.5581055 seq(C-E) 930.5982666 seq(C-I) 930.5982666 seq(C-L) 927.5256958 seq(C-E) 922.5410767 seq(C-T) 920.621582 seq(C-R) 915.5038452 seq(C-Y) 908.4659424 seq(C-P) 906.5491943 seq(C-E) 886.4848022 seq(C-P) 881.5235596 seq(C-I) 881.5235596 seq(C-L) 878.5324707 seq(C-I) 878.5324707 seq(C-L) 858.5506592 seq(C-E) 857.5164185 seq(C-Y) 841.586731 seq(C-D) 840.994873 seq(C-I) 840.994873 seq(C-L) 820.5339966 seq(C-I) 820.5339966 seq(C-L) 818.4763184 seq(C-I) 818.4763184 seq(C-L)

1263.674927 seq(C-W) 1163.658813 seq(C-A) 1162.638062 seq(C-F) 1145.670044 seq(C-K) 1145.670044 seq(C-Q) 1126.598022 seq(C-A) 1086.586182 seq(C-F) 1082.520142 seq(C-F) 1077.621826 seq(C-R) 1069.486206 seq(C-E) 1067.554565 seq(C-T) 1047.638672 seq(C-K) 1047.638672 seq(C-Q) 1045.564941 seq(C-F) 1014.657776 seq(C-I) 1014.657776 seq(C-L) 1009.5578 seq(C-T) 996.526123 seq(C-T) 991.6455688 seq(C-R) 989.6400757 seq(C-K) 989.6400757 seq(C-Q) 987.5665283 seq(C-F) 983.4944458 seq(C-T) 974.5033569 seq(C-F)

1283.698242 seq(C-L)

2032.930298 seq(C-E) 2028.16687 seq(C-R) 1975.004639 seq(C-K) 1975.004639 seq(C-Q) 1916.98645 seq(C-N) 1897.131348 seq(C-G) 1872.000977 seq(C-T) 1792.851929 seq(C-F) 1749.715088 seq(C-D) 1687.7771 seq(C-H) 1674.760864 seq(C-H) 1582.740112 seq(C-H) 1534.581177 seq(C-E) 1526.865356 seq(C-S) 1463.697754 seq(C-I) 1463.697754 seq(C-L) 1444.638428 seq(C-S) 1399.734863 seq(C-D) 1363.728271 seq(C-M) 1350.632935 seq(C-F) 1336.573486 seq(C-F) 1305.719971 seq(C-M) 1305.719971 seq(C-I) 1305.719971 seq(C-L) 1283.698242 seq(C-I)

TF mass

2/8/.893/99	1768.255737	1421.370361	1216.51355	1022.460693
2756.018311	1768.227783	1420.278809	1208.533569	1021.49884
2600.849121	1757.267212	1418.359375	1200.519531	1016.566467
2499.160156	1757.263672	1416.320679	1200.517334	1015.646545
2442.123047	1750.207764	1411.354248	1184.458252	1015.493042
2441.175781	1630.24939	1403.467896	1174.503052	1011.573364
2429.053955	1629.220947	1401.382568	1165.481934	1007.589966
2428.179932	1601.392212	1400.309204	1165.445068	1005.510681
2424.589355	1594.345825	1399.338257	1163.586548	1002.558838
2289.401855	1581.384033	1396.356323	1152.56189	1002.492737
2225.970947	1572.28064	1394.668945	1150.567993	1001.531067
2181.977295	1559.270142	1393.489502	1148.008057	999.5855103
2169.23999	1554.287964	1391.36853	1147.477661	994.5588989
2154.973877	1530.366577	1389.368774	1147.092041	986.6143188
2115.066895	1515.317261	1386.34314	1142.501831	982.5477905
2085.210449	1514.29541	1377.420166	1134.080078	973.6696777
2080.073486	1510.292969	1376.465942	1123.83313	969.5861206
2072.190918	1503.25061	1368.440674	1121.507446	966.0836182
2063.027344	1502.285278	1364.448608	1116.545044	965.5883179
2022.076416	1497.366333	1362.408081	1114.526245	964.5358887
2009.052124	1497.27124	1352.380737	1111.507324	959.5706177
1994.150269	1496.312866	1340.298706	1109.882813	957.5469971
1988.324219	1492.364502	1334.513916	1104.490967	955.5853271
1987.167236	1483.255127	1328.362915	1098.495728	951.5214233
1974.17749	1479.314209	1302.488647	1097.452637	944.5355225
1958.199341	1475.289673	1297.440796	1092.613525	939.5337524
1942.103516	1474.312256	1294.499512	1088.494263	936.6418457
1935.133301	1470.358765	1294.427979	1088.491577	933.6541748
1929.204956	1467.336914	1287.42688	1087.553345	931.5875854
1917.074707	1457.342529	1279.507935	1084.540283	931.5586548
1916.20874	1453.421021	1276.558228	1076.119385	919.6888428
1915.169434	1444.310303	1272.509888	1072.495972	915.6105347
1894.182007	1439.447144	1260.054932	1072.473511	911.6262207
1881.158447	1435.375	1250.996216	1070.520874	901.6019897
1830.206421	1434.39502	1248.535522	1063.520996	895.5405884
1827.675049	1433.367554	1242.417236	1060.516968	890.5458984
1826.240112	1433.30896	1235.790649	1057.526733	887.6663208
1824.234375	1432.318481	1229.467041	1052.512695	877.2188721
1815.24585	1431.378052	1223.437256	1049.502686	869.6452637
1792.08606	1429.404175	1221.55127	1040.535522	861.2653809
1782.233398	1422.404419	1221.514648	1029.587769	861.2609253

861.2212524	852.609314	846.6148682	829.7114868
857.6543579	851.6665649	837.5820923	825.6693726
857.6361084	849.5739136	832.5866699	

ΤF

mass/mass+c

2787.893799	1768.255737	1421.370361
2756.018311	1768.227783 seq(C-R)	1420.278809
2600.849121	1757.267212 seq(C-G)	1418.359375
2499.160156	1757.263672	1416.320679
2442.123047	1750.207764	1411.354248
2441.175781	1630.24939	1403.467896
2429.053955 seq(C-R)	1629.220947	1401.382568
2428.179932	1601.392212	1400.309204
2424.589355	1594.345825	1399.338257 seq(C-T)
2289.401855	1581.384033	1396.356323 seq(C-V)
2225.970947	1572.28064	1394.668945
2181.977295	1559.270142	1393.489502
2169.23999	1554.287964	1391.36853
2154.973877	1530.366577	1389.368774 seq(C-I)
2115.066895	1515.317261	1389.368774 seq(C-L)
2085.210449	1514.29541	1386.34314 seq(C-T)
2080.073486	1510.292969	1377.420166 seq(C-V)
2072.190918 seq(C-N)	1503.25061	1376.465942
2063.027344	1502.285278	1368.440674
2022.076416	1497.366333	1364.448608 seq(C-V)
2009.052124	1497.27124	1362.408081
1994.150269	1496.312866	1352.380737
1988.324219	1492.364502	1340.298706
1987.167236 seq(C-H)	1483.255127	1334.513916 seq(C-R)
1974.17749 seq(C-H)	1479.314209	1328.362915 seq(C-V)
1958.199341	1475.289673	1302.488647
1942.103516	1474.312256	1297.440796
1935.133301	1470.358765	1294.499512
1929.204956	1467.336914	1294.427979 seq(C-V)
1917.074707	1457.342529	1287.42688
1916.20874 seq(C-H)	1453.421021	1279.507935 seq(C-R)
1915.169434	1444.310303 seq(C-T)	1276.558228 seq(C-R)
1894.182007	1439.447144	1272.509888
1881.158447	1435.375 seq(C-G)	1260.054932
1830.206421 seq(C-G)	1434.39502	1250.996216
1827.675049	1433.367554	1248.535522
1826.240112	1433.30896 seq(C-M)	1242.417236
1824.234375 seq(C-H)	1432.318481	1235.790649
1815.24585	1431.378052	1229.467041
1792.08606 seq(C-H)	1429.404175	1223.437256
1782.233398	1422.404419	1221.55127 seq(C-R)

1221.514648	1072.473511	951.5214233 seq(C-G)
1216.51355	1070.520874	944.5355225
1208.533569	1063.520996	939.5337524
1200.519531	1060.516968	936.6418457
1200.517334	1057.526733	933.6541748
1184.458252	1052.512695	931.5875854
1174.503052	1049.502686 seq(C-H)	931.5586548
1165.481934	1040.535522	919.6888428 seq(C-V)
1165.445068	1029.587769	915.6105347
1163.586548 seq(C-R)	1022.460693 seq(C-D)	911.6262207 seq(C-V)
1152.56189	1021.49884	901.6019897
1150.567993 seq(C-R)	1016.566467	895.5405884
1148.008057	1015.646545	890.5458984
1147.477661	1015.493042	887.6663208 seq(C-G)
1147.092041	1011.573364	877.2188721
1142.501831	1007.589966	869.6452637
1134.080078	1005.510681	861.2653809
1123.83313	1002.558838 seq(C-S)	861.2609253
1121.507446	1002.492737	861.2212524
1116.545044 seq(C-S)	1001.531067	857.6543579
1114.526245	999.5855103	857.6361084
1111.507324	994.5588989	852.609314 seq(C-I)
1109.882813	986.6143188	852.609314 seq(C-L)
1104.490967	982.5477905	851.6665649
1098.495728	973.6696777	849.5739136
1097.452637 seq(C-F)	969.5861206	846.6148682
1092.613525 seq(C-R)	966.0836182	837.5820923 seq(C-G)
1088.494263	965.5883179	832.5866699
1088.491577	964.5358887	829.7114868 seq(C-G)
1087.553345	959.5706177	825.6693726
1084.540283 seq(C-T)	957.5469971 seq(C-K)	
1076.119385 seq(C-R)	957.5469971 seq(C-Q)	
1072.495972 seq(C-D)	955.5853271	

TF mass+c

1389.368774 seq(C-L)

2429.053955 seq(C-R) 1386.34314 seq(C-T) 1049.502686 seq(C-H) 2072.190918 seq(C-N) 1377.420166 seq(C-V) 1022.460693 seq(C-D) 1987.167236 seq(C-H) 1364.448608 seq(C-V) 1002.558838 seq(C-S) 1974.17749 seq(C-H) 957.5469971 seq(C-K) 1334.513916 seq(C-R) 1916.20874 seq(C-H) 1328.362915 seq(C-V) 957.5469971 seq(C-Q) 1830.206421 seq(C-G) 1294.427979 seq(C-V) 951.5214233 seq(C-G) 1824.234375 seq(C-H) 1279.507935 seq(C-R) 919.6888428 seq(C-V) 1792.08606 seq(C-H) 1276.558228 seq(C-R) 911.6262207 seq(C-V) 1768.227783 seq(C-R) 1221.55127 seq(C-R) 887.6663208 seq(C-G) 1757.267212 seq(C-G) 1163.586548 seq(C-R) 852.609314 seq(C-I) 1150.567993 seq(C-R) 1444.310303 seq(C-T) 852.609314 seq(C-L) 1435.375 seq(C-G) 1116.545044 seq(C-S) 837.5820923 seq(C-G) 1433.30896 seq(C-M) 829.7114868 seq(C-G) 1097.452637 seq(C-F) 1399.338257 seq(C-T) 1092.613525 seq(C-R) 1396.356323 seq(C-V) 1084.540283 seq(C-T) 1076.119385 seq(C-R) 1389.368774 seq(C-I)

1072.495972 seq(C-D)

86

CYC mass

2818.575928	1511.766357	1338.278076	1237.787842	1032.715454
2805.641846	1511.67334	1332.779053	1219.820923	1016.734375
2788.53125	1505.717163	1332.6073	1205.61853	999.270813
2756.63501	1495.694824	1331.176514	1198.774536	992.8366089
1828.680054	1492.697144	1330.782471	1192.643311	985.7077637
1770.707153	1486.702881	1328.766479	1192.592896	981.8184204
1735.76355	1478.821289	1328.743042	1171.952148	942.6929932
1712.708618	1470.755127	1327.240845	1166.619995	923.8566895
1697.674194	1466.724609	1326.118896	1160.673706	917.8746338
1684.708618	1456.72583	1312.817749	1152.776123	907.8817749
1677.781494	1454.194702	1312.760376	1151.663208	907.8779907
1664.830811	1452.641235	1312.084229	1147.643799	879.7843018
1639.707764	1449.660156	1310.785645	1140.814941	877.4345093
1633.736938	1447.764038	1308.773193	1134.692505	877.3891602
1626.693726	1425.623291	1306.801392	1132.673462	872.6737671
1623.753296	1424.84436	1296.846191	1096.666138	864.8381958
1619.796265	1422.750244	1286.69812	1083.80835	861.6489868
1598.723145	1412.785522	1286.640381	1076.676025	861.4703369
1594.791016	1412.733032	1280.296265	1076.658936	859.9046021
1594.724121	1408.764526	1278.798096	1074.698242	856.7492065
1577.62085	1399.841431	1277.773193	1070.636597	832.8203735
1575.772339	1383.79187	1274.756714	1067.861084	828.838562
1569.707886	1366.76709	1274.643799	1063.769653	828.7350464
1553.657227	1364.785034	1273.191895	1057.733521	820.9054565
1536.810547	1354.822266	1256.74707	1051.725586	
1533.718262	1354.776733	1255.626709	1048.658936	
1528.708374	1350.802979	1240.681763	1042.687866	
1524.693237	1344.671631	1239.635132	1038.696411	

CYC mass/mass+c

2818.575928	1466.724609 seq(C-L)	1280.296265
2805.641846	1456.72583	1278.798096
2788.53125	1454.194702	1277.773193
2756.63501	1452.641235	1274.756714
1828.680054	1449.660156	1274.643799 seq(C-F)
1770.707153	1447.764038 seq(C-D)	1273.191895
1735.76355	1425.623291	1256.74707
1712.708618 seq(C-N)	1424.84436 seq(С-К)	1255.626709
1697.674194	1424.84436 seq(C-Q)	1240.681763
1684.708618	1422.750244	1239.635132
1677.781494 seq(C-W)	1412.785522	1237.787842
1664.830811	1412.733032	1219.820923
1639.707764	1408.764526 seq(C-I)	1205.61853
1633.736938	1408.764526 seq(C-L)	1198.774536
1626.693726	1399.841431	1192.643311
1623.753296	1383.79187	1192.592896
1619.796265	1366.76709	1171.952148
1598.723145	1364.785034	1166.619995
1594.791016 seq(C-I)	1354.822266	1160.673706
1594.791016 seq(C-L)	1354.776733 seq(C-N)	1152.776123
1594.724121	1350.802979 seq(C-I)	1151.663208
1577.62085	1350.802979 seq(C-L)	1147.643799
1575.772339 seq(С-К)	1344.671631	1140.814941
1575.772339 seq(C-Q)	1338.278076	1134.692505 seq(C-E)
1569.707886	1332.779053	1132.673462
1553.657227	1332.6073	1096.666138
1536.810547 seq(C-I)	1331.176514	1083.80835
1536.810547 seq(C-L)	1330.782471	1076.676025
1533.718262 seq(C-D)	1328.766479	1076.658936
1528.708374	1328.743042	1074.698242
1524.693237	1327.240845	1070.636597
1511.766357	1326.118896	1067.861084
1511.67334	1312.817749	1063.769653
1505.717163	1312.760376	1057.733521
1495.694824 seq(C-P)	1312.084229	1051.725586
1492.697144	1310.785645	1048.658936
1486.702881	1308.773193	1042.687866
1478.821289 seq(C-I)	1306.801392	1038.696411 seq(C-F)
1478.821289 seq(C-L)	1296.846191 seq(C-R)	1032.715454
1470.755127 seq(C-N)	1286.69812 seq(C-F)	1016.734375 seq(C-F)
1466.724609 seq(C-I)	1286.640381	999.270813

992.8366089 seq(C-I)	907.8817749 seq(C-Q)	861.4703369
992.8366089 seq(C-L)	907.8779907	859.9046021
985.7077637	879.7843018	856.7492065
981.8184204	877.4345093	832.8203735
942.6929932	877.3891602	828.838562 seq(C-T)
923.8566895	872.6737671	828.7350464
917.8746338	864.8381958	820.9054565
907.8817749 seq(С-К)	861.6489868	

CYC mass+c

1286.69812 seq(C-F) 1712.708618 seq(C-N) 1470.755127 seq(C-N) 1677.781494 seq(C-W) 1466.724609 seq(C-I) 1274.643799 seq(C-F) 1594.791016 seq(C-I) 1466.724609 seq(C-L) 1134.692505 seq(C-E) 1594.791016 seq(C-L) 1447.764038 seq(C-D) 1038.696411 seq(C-F) 1575.772339 seq(C-K) 1424.84436 seq(C-K) 1016.734375 seq(C-F) 1575.772339 seq(C-Q) 1424.84436 seq(C-Q) 992.8366089 seq(C-I) 1536.810547 seq(C-I) 1408.764526 seq(C-I) 992.8366089 seq(C-L) 1536.810547 seq(C-L) 1408.764526 seq(C-L) 907.8817749 seq(C-K) 1533.718262 seq(C-D) 1354.776733 seq(C-N) 907.8817749 seq(C-Q) 1495.694824 seq(C-P) 1350.802979 seq(C-I) 828.838562 seq(C-T) 1478.821289 seq(C-I) 1350.802979 seq(C-L) 1478.821289 seq(C-L) 1296.846191 seq(C-R)

MB

mass

2916.69043	1641.531128	1467.598267	1275.761841	978.7528076
2858.678467	1636.68457	1456.561157	1256.923218	978.7514648
2788.373535	1636.676514	1456.535767	1251.69812	978.7258911
2762.398682	1636.657715	1454.654541	1251.163696	976.7574463
2756.530762	1633.609375	1452.119263	1245.790649	964.8300781
2747.404297	1632.714722	1451.142578	1240.594849	962.8031006
2421.462402	1629.546631	1451.081055	1233.71875	962.7414551
2401.42334	1623.609131	1447.753906	1231.742188	960.7418213
2384.718262	1618.713257	1436.875244	1222.660156	955.8084717
2353.448242	1618.571899	1436.633545	1217.793213	954.7598877
2277.583008	1592.699463	1430.403076	1214.737305	952.8307495
2213.567871	1578.761108	1418.736206	1198.736572	952.8256836
2108.438965	1578.747437	1416.824951	1185.718628	950.8102417
2052.675781	1576.605347	1415.710815	1180.6604	942.7434082
1994.717407	1564.815063	1411.994019	1173.678955	937.8259277
1969.622192	1561.240234	1391.685791	1164.705444	935.3672485
1942.774902	1560.745605	1379.168701	1153.681152	934.8109131
1912.630371	1560.599243	1378.891479	1127.751099	934.7915039
1911.655884	1560.5979	1371.657471	1122.013062	930.7698364
1884.789185	1546.580688	1363.709839	1106.76123	920.7705688
1805.586426	1534.590942	1361.768188	1106.735107	906.8527832
1797.713745	1534.532227	1360.771606	1094.672852	895.6907349
1760.618408	1524.575439	1357.722656	1092.68811	894.7489624
1747.600952	1518.633667	1357.715454	1068.754761	887.3797607
1741.528931	1515.556274	1350.720337	1066.747925	885.3963013
1734.714966	1514.577759	1342.750488	1063.733276	883.7411499
1725.566284	1512.626709	1333.732056	1057.718018	877.3989868
1722.532837	1502.618042	1333.724609	1048.805786	876.8439331
1717.632324	1500.602905	1331.707153	1048.795166	874.8886108
1710.699707	1499.566528	1330.166138	1048.781982	873.697937
1709.578003	1497.587524	1315.708984	1043.764526	861.4491577
1699.660645	1494.805664	1313.681641	1036.694214	854.8812256
1694.656128	1484.573608	1303.760498	1014.725037	854.8062744
1689.696655	1483.578491	1299.754272	1010.798523	848.8024292
1687.662109	1479.588379	1297.696289	1008.778748	836.8319092
1670.630249	1479.58728	1297.65625	1006.725952	836.7806396
1661.505859	1470.617432	1296.722412	1001.666443	832.7191772
1659.592407	1469.967163	1293.691528	993.7507935	
1647.577148	1467.651245	1283.180298	992.7733154	

MB

mass/mass+c

2916.69043	1636.676514	1454.654541 seq(С-К)
2858.678467 seq(C-E)	1636.657715	1454.654541 seq(C-Q)
2788.373535	1633.609375	1452.119263
2762.398682	1632.714722	1451.142578
2756.530762	1629.546631	1451.081055
2747.404297	1623.609131	1447.753906
2421.462402	1618.713257	1436.875244 seq(C-M)
2401.42334	1618.571899	1436.633545
2384.718262	1592.699463	1430.403076
2353.448242	1578.761108	1418.736206
2277.583008	1578.747437 seq(C-M)	1416.824951
2213.567871	1576.605347 seq(C-M)	1415.710815
2108.438965	1564.815063 seq(C-M)	1411.994019
2052.675781	1561.240234	1391.685791
1994.717407	1560.745605 seq(C-I)	1379.168701
1969.622192	1560.745605 seq(C-L)	1378.891479 seq(C-I)
1942.774902	1560.599243	1378.891479 seq(C-L)
1912.630371	1560.5979	1371.657471
1911.655884	1546.580688	1363.709839
1884.789185 seq(C-S)	1534.590942	1361.768188
1805.586426	1534.532227	1360.771606 seq(C-A)
1797.713745	1524.575439	1357.722656
1760.618408	1518.633667	1357.715454
1747.600952 seq(C-D)	1515.556274	1350.720337
1741.528931	1514.577759	1342.750488
1734.714966	1512.626709	1333.732056
1725.566284	1502.618042 seq(C-T)	1333.724609
1722.532837	1500.602905	1331.707153
1717.632324	1499.566528	1330.166138
1710.699707	1497.587524	1315.708984
1709.578003	1494.805664	1313.681641
1699.660645	1484.573608	1303.760498
1694.656128 seq(C-M)	1483.578491	1299.754272 seq(C-E)
1689.696655	1479.588379	1297.696289
1687.662109 seq(C-G)	1479.58728	1297.65625
1670.630249	1470.617432	1296.722412
1661.505859	1469.967163	1293.691528
1659.592407	1467.651245	1283.180298
1647.577148	1467.598267 seq(C-S)	1275.761841
1641.531128	1456.561157	1256.923218
1636.68457 seq(C-M)	1456.535767	1251.69812

1251.163696	1048.781982 seq(C-I)	937.8259277
1245.790649	1048.781982 seq(C-L)	935.3672485
1240.594849	1043.764526	934.8109131
1233.71875	1036.694214	934.7915039
1231.742188 seq(C-M)	1014.725037	930.7698364
1222.660156	1010.798523	920.7705688 seq(C-I)
1217.793213 seq(C-H)	1008.778748 seq(C-Y)	920.7705688 seq(C-L)
1214.737305	1006.725952	906.8527832
1198.736572	1001.666443	895.6907349
1185.718628	993.7507935	894.7489624
1180.6604	992.7733154	887.3797607
1173.678955	978.7528076 seq(C-I)	885.3963013
1164.705444	978.7528076 seq(C-L)	883.7411499
1153.681152	978.7514648	877.3989868
1127.751099	978.7258911	876.8439331
1122.013062	976.7574463	874.8886108
1106.76123	964.8300781	873.697937
1106.735107	962.8031006	861.4491577
1094.672852	962.7414551	854.8812256
1092.68811	960.7418213	854.8062744
1068.754761	955.8084717	848.8024292
1066.747925	954.7598877	836.8319092
1063.733276	952.8307495 seq(C-T)	836.7806396
1057.718018	952.8256836	832.7191772
1048.805786	950.8102417	
1048.795166	942.7434082	

MB mass+c

2858.678467 seq(C-E) 1502.618042 seq(C-T) 1048.781982 seq(C-I) 1884.789185 seq(C-S) 1467.598267 seq(C-S) 1048.781982 seq(C-L) 1747.600952 seq(C-D) 1454.654541 seq(C-K) 1008.778748 seq(C-Y) 1694.656128 seq(C-M) 1454.654541 seq(C-Q) 978.7528076 seq(C-I) 1687.662109 seq(C-G) 1436.875244 seq(C-M) 978.7528076 seq(C-L) 1636.68457 seq(C-M) 1378.891479 seq(C-I) 952.8307495 seq(C-T) 1578.747437 seq(C-M) 1378.891479 seq(C-L) 920.7705688 seq(C-I) 1576.605347 seq(C-M) 1360.771606 seq(C-A) 920.7705688 seq(C-L) 1564.815063 seq(C-M) 1299.754272 seq(C-E) 1560.745605 seq(C-I) 1231.742188 seq(C-M) 1560.745605 seq(C-L) 1217.793213 seq(C-H)

MYH

mass

2790.51123	1575.621704	1311.596191	1080.829224	956.9020996
2788.46582	1574.722168	1310.604614	1064.777832	955.8689575
2772.569092	1535.662231	1306.693848	1063.768555	953.9066772
2757.561035	1534.679077	1305.783325	1057.768066	952.8338623
2757.535889	1526.692871	1304.68042	1055.848022	949.8082275
2746.507813	1525.699707	1296.753174	1054.777954	946.774292
2442.633545	1515.696655	1282.782349	1053.846802	942.7722778
2421.503174	1510.748657	1276.85791	1049.829346	939.8803101
2417.520752	1499.701782	1271.822754	1049.764282	938.8510132
2402.516846	1497.699585	1256.834229	1048.834351	930.7926025
2401.548828	1483.715576	1250.779053	1044.807007	927.8724976
2384.778076	1479.701294	1243.868774	1043.847046	924.8688965
2295.589355	1475.755615	1230.706543	1033.786987	922.8248291
2108.483887	1467.731201	1229.761841	1033.765625	916.7764282
1925.617798	1460.733643	1229.7052	1032.853027	908.8015137
1924.614136	1452.672485	1228.72644	1032.839844	907.7966309
1912.693359	1451.196411	1222.817871	1008.787537	906.8320923
1857.61499	1428.637817	1216.752319	1001.770447	905.8363037
1845.682983	1425.72876	1210.797974	998.8146362	900.8047485
1832.632935	1418.744873	1207.752319	995.791687	897.8425293
1831.647095	1413.814941	1203.717529	992.7546387	889.8115234
1818.594482	1412.699829	1190.754028	988.8284302	883.7246704
1816.581299	1411.705811	1189.788574	987.8497925	877.4474487
1802.557007	1398.643799	1180.750244	987.8343506	877.4467163
1801.559082	1381.729492	1162.77124	987.8249512	876.8532715
1783.564087	1380.731079	1158.769775	985.7678833	867.8869019
1760.662842	1379.693237	1157.838013	984.8272705	865.8723755
1737.797852	1379.209473	1153.76355	981.7717285	865.7950439
1722.606079	1364.224976	1148.714111	980.8398438	861.4850464
1712.726196	1361.765503	1147.851807	980.8132935	857.8754272
1693.668335	1359.730225	1145.614624	979.7949219	857.8071289
1692.659302	1347.75415	1124.693359	978.9077759	856.8398438
1661.636719	1346.75769	1119.796753	976.7911987	836.8388062
1659.651245	1335.748047	1113.836914	969.8065796	829.8153687
1630.573975	1334.753296	1105.820923	965.8393555	825.8765869
1629.667236	1332.739258	1092.724609	963.8600464	825.8381958
1596.695557	1324.639526	1085.702881	962.760437	822.8399048
1580.723999	1312.836914	1084.789917	960.7718506	

MYH

mass/mass+c

2790.51123 2788.46582 2772.569092 2757.561035 2757.535889 2746.507813 2442.633545 2421.503174 seq(C-K) 2421.503174 seq(C-Q) 2417.520752 2402.516846 2401.548828 2384.778076 2295.589355 2108.483887 1925.617798 seq(C-A) 1924.614136 seq(C-A) 1912.693359 1857.61499 1845.682983 seq(C-S) 1832.632935 seq(C-G) 1831.647095 seq(C-M) 1831.647095 seq(C-I) 1831.647095 seq(C-L) 1831.647095 seq(C-S) 1818.594482 1816.581299 1802.557007 seq(C-D) 1801.559082 seq(C-D) 1783.564087 1760.662842 1737.797852 1722.606079 seq(C-S) 1712.726196 1693.668335 1692.659302 1661.636719 1659.651245 1630.573975 1629.667236 seq(C-S) 1596.695557 seq(C-S)

1580.723999 1575.621704 1574.722168 1535.662231 1534.679077 seq(C-K) 1534.679077 seq(C-Q) 1526.692871 1525.699707 1515.696655 1510.748657 1499.701782 seq(C-S) 1497.699585 1483.715576 1479.701294 1475.755615 1467.731201 seq(C-S) 1460.733643 1452.672485 1451.196411 1428.637817 seq(C-T) 1425.72876 1418.744873 seq(C-V) 1413.814941 seq(C-F) 1412.699829 1411.705811 seq(C-R) 1398.643799 1381.729492 1380.731079 1379.693237 1379.209473 1364.224976 1361.765503 seq(C-S) 1359.730225 1347.75415 seq(C-R) 1346.75769 seq(C-R) 1335.748047 1334.753296 1332.739258 1324.639526 1312.836914 seq(C-D) 1311.596191

1310.604614 seq(C-A) 1306.693848 seq(C-T) 1305.783325 seq(C-T) 1304.68042 1296.753174 seq(C-F) 1282.782349 seq(C-F) 1276.85791 1271.822754 seq(C-F) 1256.834229 1250.779053 1243.868774 seq(C-G) 1230.706543 1229.761841 1229.7052 seq(C-D) 1228.72644 1222.817871 seq(C-F) 1216.752319 1210.797974 1207.752319 1203.717529 1190.754028 seq(C-R) 1189.788574 seq(C-V) 1180.750244 seq(C-Y) 1162.77124 1158.769775 1157.838013 1153.76355 1148.714111 1147.851807 1145.614624 1124.693359 1119.796753 1113.836914 1105.820923 seq(C-R) 1092.724609 1085.702881 1084.789917 1080.829224 1064.777832 1063.768555 1057.768066 seq(C-A)

1055.848022	980.8132935	907.7966309 seq(C-Q)
1054.777954 seq(C-D)	979.7949219	906.8320923
1053.846802	978.9077759 seq(C-I)	905.8363037
1049.829346	978.9077759 seq(C-L)	900.8047485
1049.764282	976.7911987 seq(C-T)	897.8425293 seq(C-F)
1048.834351	969.8065796	889.8115234
1044.807007 seq(C-I)	965.8393555	883.7246704
1044.807007 seq(C-L)	963.8600464	877.4474487
1043.847046 seq(C-K)	962.760437	877.4467163
1043.847046 seq(C-Q)	960.7718506	876.8532715
1033.786987	956.9020996	867.8869019
1033.765625	955.8689575	865.8723755 seq(C-K)
1032.853027	953.9066772 seq(C-F)	865.8723755 seq(C-Q)
1032.839844 seq(C-T)	953.9066772 seq(C-E)	865.7950439
1008.787537	952.8338623	861.4850464
1001.770447	949.8082275 seq(C-S)	857.8754272 seq(C-I)
998.8146362	946.774292	857.8754272 seq(C-L)
995.791687	942.7722778	857.8071289 seq(C-Y)
992.7546387 seq(C-T)	939.8803101	856.8398438 seq(C-T)
988.8284302 seq(C-N)	938.8510132	836.8388062 seq(C-Y)
987.8497925 seq(C-G)	930.7926025	829.8153687
987.8343506 seq(C-N)	927.8724976	825.8765869 seq(C-V)
987.8249512 seq(C-T)	924.8688965 seq(C-E)	825.8381958
985.7678833	922.8248291	822.8399048 seq(C-F)
984.8272705 seq(C-F)	916.7764282 seq(C-V)	
981.7717285	908.8015137 seq(C-E)	
980.8398438 seq(C-V)	907.7966309 seq(С-К)	

MYH mass+c

2421.503174 seq(C-K) 2421.503174 seq(C-Q) 1925.617798 seq(C-A) 1924.614136 seq(C-A) 1845.682983 seq(C-S) 1832.632935 seq(C-G) 1831.647095 seq(C-M) 1831.647095 seq(C-I) 1831.647095 seq(C-L) 1831.647095 seq(C-S) 1802.557007 seq(C-D) 1801.559082 seq(C-D) 1722.606079 seq(C-S) 1629.667236 seq(C-S) 1596.695557 seq(C-S) 1534.679077 seq(C-K) 1534.679077 seq(C-Q) 1499.701782 seq(C-S) 1467.731201 seq(C-S) 1428.637817 seq(C-T) 1418.744873 seq(C-V) 1413.814941 seq(C-F) 1411.705811 seq(C-R) 1361.765503 seq(C-S) 1347.75415 seq(C-R) 1346.75769 seq(C-R) 1312.836914 seq(C-D) 1310.604614 seq(C-A) 1306.693848 seq(C-T) 1305.783325 seq(C-T) 1296.753174 seq(C-F) 1282.782349 seq(C-F) 1271.822754 seq(C-F) 1243.868774 seq(C-G) 1229.7052 seq(C-D) 1222.817871 seq(C-F) 1190.754028 seq(C-R) 1189.788574 seq(C-V) 1180.750244 seq(C-Y) 1105.820923 seq(C-R) 1057.768066 seq(C-A)

```
1054.777954 seq(C-D)
1044.807007 seq(C-I)
1044.807007 seq(C-L)
1043.847046 seq(C-K)
1043.847046 seq(C-Q)
1032.839844 seq(C-T)
992.7546387 seq(C-T)
988.8284302 seq(C-N)
987.8497925 seq(C-G)
987.8343506 seq(C-N)
987.8249512 seq(C-T)
984.8272705 seq(C-F)
980.8398438 seq(C-V)
978.9077759 seq(C-I)
978.9077759 seq(C-L)
976.7911987 seq(C-T)
953.9066772 seq(C-F)
953.9066772 seq(C-E)
949.8082275 seq(C-S)
924.8688965 seq(C-E)
916.7764282 seq(C-V)
908.8015137 seq(C-E)
907.7966309 seq(C-K)
907.7966309 seq(C-Q)
897.8425293 seq(C-F)
865.8723755 seq(C-K)
865.8723755 seq(C-Q)
857.8754272 seq(C-I)
857.8754272 seq(C-L)
857.8071289 seq(C-Y)
856.8398438 seq(C-T)
836.8388062 seq(C-Y)
825.8765869 seq(C-V)
822.8399048 seq(C-F)
```

PYGM

mass

3254.551514	1625.582397	1411.229248	1106.755615	930.772644
2790.556396	1609.710449	1396.674316	1104.834106	925.829834
2788.436279	1608.716431	1388.757568	1104.754517	923.8497314
2772.476563	1604.789063	1386.75769	1092.72876	918.8183594
2757.483643	1579.653809	1386.71936	1063.765503	916.8471069
2756.526123	1576.773071	1377.737915	1059.798706	912.8253784
2747.481689	1542.800171	1373.69519	1057.757446	910.7963867
2746.456787	1538.670288	1364.695801	1053.843018	903.8121338
2442.572021	1533.79248	1357.651733	1041.756592	901.8586426
2422.481689	1525.763916	1356.740723	1037.329102	901.6080322
2421.506836	1517.736084	1332.778931	1033.839722	900.8648071
2402.529785	1515.691895	1319.871826	1022.854004	899.6054077
2401.530029	1511.691284	1316.708496	1001.762817	895.7163086
2295.573486	1510.671021	1315.7146	993.8158569	894.7789307
2271.54248	1500.721924	1305.766357	993.7835693	887.8449707
2233.507568	1499.689087	1303.81958	989.8299561	877.4468384
2056.559814	1499.662231	1289.781006	985.7603149	877.4179077
2042.551514	1497.697388	1289.755737	984.819519	872.8095703
1954.059692	1483.689209	1279.67981	977.7871704	867.8820801
1912.723755	1479.689087	1278.754761	976.7912598	867.8735962
1853.691162	1471.683716	1278.671265	974.7440186	864.8464355
1828.713745	1471.650513	1262.715576	973.751709	861.4810791
1812.779419	1470.679077	1257.748047	968.3094482	861.460144
1784.696899	1467.719849	1244.779663	963.8005371	859.8748169
1735.706177	1459.748779	1237.746094	962.8030396	857.8131104
1722.591919	1459.728271	1233.775146	962.7404785	855.9136963
1712.69519	1457.737061	1216.79248	961.7963257	854.3198242
1706.738525	1452.658569	1212.810913	960.762207	845.8710938
1706.071411	1451.179688	1204.757202	956.8988037	845.8451538
1690.195801	1444.685181	1203.707886	954.8301392	837.8336792
1687.694092	1443.699951	1181.774048	953.8131104	832.8786011
1677.738281	1428.739014	1180.733521	952.7982788	831.8587036
1677.70166	1428.659302	1177.73584	947.8063354	831.8585815
1665.794434	1428.646362	1158.766602	943.7611694	829.8762817
1661.758423	1427.758789	1145.799438	942.7630005	825.8621216
1656.794312	1427.745972	1136.817505	934.9040527	822.859375
1644.741577	1423.701294	1128.335327	932.7985229	
1640.310669	1423.686035	1122.76123	931.8108521	
1629.668823	1423.649536	1118.743408	930.833252	
1628.236572	1418.81897	1106.798096	930.7840576	

PYGM mass/mass+c

3254.551514 1628.236572 1411.229248 2790.556396 1625.582397 1396.674316 seq(C-I) 2788.436279 1609.710449 seq(C-P) 1396.674316 seq(C-L) 2772.476563 1608.716431 seq(C-P) 1388.757568 2757.483643 1386.75769 1604.789063 seq(C-Y) 2756.526123 1579.653809 seq(C-E) 1386.71936 2747.481689 1576.773071 1377.737915 2746.456787 1542.800171 seq(C-R) 1373.69519 2442.572021 1538.670288 1364.695801 2422.481689 seq(C-K) 1533.79248 1357.651733 2422.481689 seq(C-Q) 1525.763916 seq(C-V) 1356.740723 seq(C-K) 2421.506836 1517.736084 1356.740723 seq(C-Q) 2402.529785 1332.778931 1515.691895 2401.530029 1511.691284 1319.871826 2295.573486 1510.671021 1316.708496 2271.54248 1500.721924 1315.7146 seq(C-Y) 2233.507568 1499.689087 1305.766357 seq(C-Y) 2056.559814 1499.662231 seq(C-A) 1303.81958 2042.551514 seq(C-D) 1497.697388 1289.781006 seq(C-Y) 1954.059692 1483.689209 1289.755737 1912.723755 1479.689087 1279.67981 seq(C-D) 1278.754761 seq(C-D) 1853.691162 seq(C-A) 1471.683716 1828.713745 1471.650513 1278.671265 1812.779419 seq(C-I) 1470.679077 1262.715576 seq(C-V) 1257.748047 1812.779419 seq(C-L) 1467.719849 seq(C-S) 1784.696899 1459.748779 1244.779663 1735.706177 1459.728271 1237.746094 1722.591919 1457.737061 1233.775146 1216.79248 seq(C-R) 1712.69519 1452.658569 1212.810913 1706.738525 seq(C-R) 1451.179688 1706.071411 1444.685181 1204.757202 1690.195801 1443.699951 1203.707886 1687.694092 1428.739014 seq(C-E) 1181.774048 1677.738281 1428.659302 1180.733521 1677.70166 1428.646362 1177.73584 seq(C-H) 1665.794434 1427.758789 1158.766602 1661.758423 1427.745972 1145.799438 seq(C-R) 1656.794312 seq(C-R) 1423.701294 1136.817505 seq(C-V) 1644.741577 1423.686035 1128.335327 1640.310669 1423.649536 1122.76123 1629.668823 1118.743408 1418.81897 seq(C-V)

1106.798096	960.762207	895.7163086
1106.755615	956.8988037	894.7789307
1104.834106	954.8301392	887.8449707
1104.754517	953.8131104	877.4468384
1092.72876	952.7982788	877.4179077
1063.765503 seq(C-T)	947.8063354 seq(C-I)	872.8095703 seq(C-Y)
1059.798706	947.8063354 seq(C-L)	867.8820801
1057.757446 seq(C-A)	943.7611694 seq(C-Y)	867.8735962 seq(C-I)
1053.843018 seq(C-Y)	942.7630005	867.8735962 seq(C-L)
1041.756592	934.9040527	864.8464355
1037.329102	932.7985229	861.4810791
1033.839722	931.8108521	861.460144
1022.854004 seq(C-V)	930.833252	859.8748169
1001.762817	930.7840576	857.8131104
993.8158569	930.772644	855.9136963 seq(C-I)
993.7835693	925.829834	855.9136963 seq(C-L)
989.8299561	923.8497314 seq(C-I)	854.3198242
985.7603149	923.8497314 seq(C-L)	845.8710938
984.819519 seq(C-A)	918.8183594 seq(C-I)	845.8451538 seq(C-Y)
977.7871704	918.8183594 seq(C-L)	837.8336792
976.7912598	916.8471069	832.8786011
974.7440186 seq(C-E)	912.8253784	831.8587036
973.751709	910.7963867	831.8585815
968.3094482	903.8121338	829.8762817
963.8005371	901.8586426	825.8621216
962.8030396	901.6080322	822.859375 seq(C-A)
962.7404785	900.8648071 seq(C-P)	
961.7963257	899.6054077	

PYGM mass+c

2422.481689 seq(С-К)	1396.674316 seq(C-I)	984.819519 seq(C-A)
2422.481689 seq(C-Q)	1396.674316 seq(C-L)	974.7440186 seq(C-E)
2042.551514 seq(C-D)	1356.740723 seq(C-K)	947.8063354 seq(C-I)
1853.691162 seq(C-A)	1356.740723 seq(C-Q)	947.8063354 seq(C-L)
1812.779419 seq(C-I)	1315.7146 seq(C-Y)	943.7611694 seq(C-Y)
1812.779419 seq(C-L)	1305.766357 seq(C-Y)	923.8497314 seq(C-I)
1706.738525 seq(C-R)	1289.781006 seq(C-Y)	923.8497314 seq(C-L)
1656.794312 seq(C-R)	1279.67981 seq(C-D)	918.8183594 seq(C-I)
1609.710449 seq(C-P)	1278.754761 seq(C-D)	918.8183594 seq(C-L)
1608.716431 seq(C-P)	1262.715576 seq(C-V)	900.8648071 seq(C-P)
1604.789063 seq(C-Y)	1216.79248 seq(C-R)	872.8095703 seq(C-Y)
1579.653809 seq(C-E)	1177.73584 seq(C-H)	867.8735962 seq(C-I)
1542.800171 seq(C-R)	1145.799438 seq(C-R)	867.8735962 seq(C-L)
1525.763916 seq(C-V)	1136.817505 seq(C-V)	855.9136963 seq(C-I)
1499.662231 seq(C-A)	1063.765503 seq(C-T)	855.9136963 seq(C-L)
1467.719849 seq(C-S)	1057.757446 seq(C-A)	845.8451538 seq(C-Y)
1428.739014 seq(C-E)	1053.843018 seq(C-Y)	822.859375 seq(C-A)
1418.81897 seq(C-V)	1022.854004 seq(C-V)	

CA mass

2790.38623	1497.610229	1145.641846	1029.670166	939.774231
2788.311035	1490.501587	1144.641724	1027.764038	938.7394409
2786.393555	1483.614746	1143.629761	1014.737976	930.7400513
2758.630371	1479.605591	1142.670166	1013.782654	925.7869263
2756.45752	1467.635986	1141.669189	1012.766052	917.6460571
2739.391846	1428.558228	1139.686035	1011.693848	917.6258545
2421.411865	1404.716797	1123.793823	1004.822876	914.2317505
2401.35791	1397.625977	1107.766602	1001.731628	901.6860962
2384.532715	1371.089966	1106.581299	998.737854	900.7536621
2237.273926	1346.555054	1102.817749	995.767334	900.7512207
2142.331299	1251.643799	1102.80896	995.7175903	900.732666
2126.29126	1248.750122	1102.740845	993.7227783	898.1929321
2096.271484	1234.687012	1101.816406	982.7697144	885.6591187
2081.077148	1224.656616	1101.798706	976.7338257	884.765625
2080.059326	1219.67981	1086.229492	973.742981	882.7706299
2002.52356	1203.645874	1085.727905	973.7310181	881.6503906
2001.523193	1201.5979	1085.310913	971.75	877.3825073
1912.55127	1199.655518	1078.668701	971.7416382	873.7632446
1759.567749	1180.671265	1077.678589	969.7683105	872.772644
1758.575195	1180.606567	1070.671753	962.7674561	868.7807617
1722.485474	1173.65332	1069.715332	962.7055054	867.8433228
1709.589111	1173.633545	1066.763184	960.7127686	859.7891235
1661.527466	1172.564575	1063.707764	955.7654419	859.6968384
1629.558472	1171.596924	1061.032837	952.7410278	858.8569946
1613.535156	1169.677002	1057.702759	951.7171021	857.8775635
1597.574707	1158.666382	1053.758423	946.8077393	843.7684937
1581.577515	1157.677856	1052.710571	943.7659912	825.8242798
1499.604004	1154.204468	1049.640625	942.7114258	

CA mass/mass+c

2790.38623	1234.687012	1053.758423 seq(C-I)
2788.311035	1224.656616	1053.758423 seq(C-L)
2786.393555	1219.67981	1052.710571
2758.630371	1203.645874	1049.640625
2756.45752	1201.5979	1029.670166
2739.391846	1199.655518	1027.764038
2421.411865 seq(C-K)	1180.671265	1014.737976
2421.411865 seq(C-Q)	1180.606567	1013.782654
2401.35791 seq(C-Y)	1173.65332	1012.766052 seq(C-K)
2384.532715	1173.633545	1012.766052 seq(C-Q)
2237.273926	1172.564575	1011.693848
2142.331299	1171.596924	1004.822876
2126.29126	1169.677002	1001.731628
2096.271484 seq(C-R)	1158.666382	998.737854
2081.077148	1157.677856 seq(C-H)	995.767334
2080.059326	1154.204468	995.7175903
2002.52356 seq(C-T)	1145.641846	993.7227783
2001.523193 seq(C-T)	1144.641724	982.7697144
1912.55127	1143.629761	976.7338257
1759.567749 seq(C-T)	1142.670166	973.742981
1758.575195	1141.669189 seq(C-H)	973.7310181 seq(C-P)
1722.485474	1139.686035	971.75
1709.589111 seq(C-T)	1123.793823	971.7416382
1661.527466	1107.766602	969.7683105
1629.558472	1106.581299	962.7674561
1613.535156	1102.817749	962.7055054
1597.574707	1102.80896	960.7127686
1581.577515 seq(C-T)	1102.740845	955.7654419 seq(C-P)
1499.604004 seq(C-S)	1101.816406 seq(C-P)	952.7410278
1497.610229	1101.798706	951.7171021 seq(C-Y)
1490.501587	1086.229492	946.8077393
1483.614746	1085.727905	943.7659912
1479.605591	1085.310913	942.7114258
1467.635986 seq(C-S)	1078.668701	939.774231 seq(C-P)
1428.558228	1077.678589	938.7394409 seq(C-P)
1404.716797	1070.671753	930.7400513
1397.625977	1069.715332	925.7869263
1371.089966	1066.763184	917.6460571
1346.555054	1063.707764 seq(C-T)	917.6258545
1251.643799	1061.032837	914.2317505
1248.750122	1057.702759 seq(C-A)	901.6860962

900.7536621	881.6503906	859.6968384
900.7512207	877.3825073	858.8569946
900.732666	873.7632446	857.8775635
898.1929321	872.772644 seq(C-P)	843.7684937
885.6591187 seq(C-E)	868.7807617 seq(C-P)	825.8242798
884.765625	867.8433228	
882.7706299	859.7891235 seq(C-P)	

CA mass+c

2421.411865 seq(С-К)	1467.635986 seq(C-S)	973.7310181 seq(C-P)
2421.411865 seq(C-Q)	1157.677856 seq(C-H)	955.7654419 seq(C-P)
2401.35791 seq(C-Y)	1141.669189 seq(C-H)	951.7171021 seq(C-Y)
2096.271484 seq(C-R)	1101.816406 seq(C-P)	939.774231 seq(C-P)
2002.52356 seq(C-T)	1063.707764 seq(C-T)	938.7394409 seq(C-P)
2001.523193 seq(C-T)	1057.702759 seq(C-A)	885.6591187 seq(C-E)
1759.567749 seq(C-T)	1053.758423 seq(C-I)	872.772644 seq(C-P)
1709.589111 seq(C-T)	1053.758423 seq(C-L)	868.7807617 seq(C-P)
1581.577515 seq(C-T)	1012.766052 seq(С-К)	859.7891235 seq(C-P)
1499.604004 seq(C-S)	1012.766052 seq(C-Q)	
4 Protein Mixture (BSA/TF/CYC/MB) mass

2858.830078	1842.182739	1439.434082	1069.440918	920.7224121
2755.893311	1829.182007	1436.360718	1067.547485	920.6032104
2441.174561	1802.217285	1434.442993	1063.619629	920.5969238
2429.008057	1768.286133	1433.317261	1057.524048	911.6362915
2428.169189	1768.237671	1411.743286	1057.38562	906.6486206
2335.285889	1757.30188	1408.452393	1057.364502	906.6211548
2275.971924	1721.274048	1399.402344	1055.629395	904.640625
2262.945801	1709.266968	1386.3927	1055.601685	894.6185303
2260.138428	1688.268799	1362.428711	1048.594604	887.5177612
2168.071777	1687.378052	1360.533203	1048.594482	879.6194458
2155.034912	1687.285645	1360.528687	1035.459351	877.2085571
2085.22998	1687.281494	1354.498169	1019.489746	862.5372925
2085.106934	1674.283813	1350.509644	1017.631958	861.6519775
2072.093018	1670.793945	1350.489502	1016.501648	861.2481689
2064.188232	1578.452515	1349.36084	1010.564697	859.7211914
2035.098389	1578.427124	1333.510986	1009.585449	858.6847534
2032.00647	1578.411499	1299.461182	1008.587769	857.6600952
2028.285889	1578.343506	1296.551514	1006.469543	857.6257324
2028.250488	1575.335938	1296.542358	1002.55072	848.4562988
2027.303833	1553.853027	1294.450317	1001.13623	840.675293
2027.286133	1534.167114	1280.014648	996.5701294	837.5790405
2018.996338	1534.164185	1276.564087	993.0845947	832.6393433
2010.745605	1502.362671	1275.550903	989.6818237	829.7223511
1988.251343	1502.351074	1229.505371	987.6402588	829.7144165
1986.092285	1502.310181	1222.025391	987.6281738	828.6903076
1984.153931	1496.365967	1217.599976	987.6243896	825.3522949
1975.24585	1491.300293	1214.55127	983.5397949	820.7094727
1971.144409	1486.19397	1165.476563	974.5701294	820.7059937
1942.275024	1483.284302	1163.590332	967.5471191	820.7037964
1929.247437	1478.454102	1145.653076	957.555481	818.651062
1916.263916	1478.277832	1145.602905	952.6633301	815.9371338
1916.225464	1473.192627	1145.593628	952.6484985	806.7282715
1916.212646	1470.390625	1145.570923	943.1465454	805.5353394
1906.255615	1470.383057	1106.55188	942.5209961	804.5267944
1896.402222	1470.3479	1092.625244	940.6450806	790.697998
1896.335327	1467.356445	1087.371582	938.6039429	778.6956177
1884.322876	1465.216064	1086.538086	936.6383667	778.6812134
1875.428223	1456.381958	1084.595703	935.2019043	778.6808472
1871.318115	1454.395996	1082.475098	927.6098633	777.5285645
1868.191406	1447.391968	1079.485352	927.5964355	774.6795654
1855.1875	1439.477173	1076.133179	922.6243896	772.6639404

764.7042236	693.5146484	635.6629639	593.5908203	543.6234131
762.7720337	691.6974487	634.7706909	591.614624	543.6165771
760.713562	690.7011719	634.6541748	591.6079102	543.6021118
752.6557007	689.727356	630.7432251	591.5903931	543.5968018
749.6796875	684.5674438	626.6011353	591.5834961	534.6274414
749.6495972	684.5653687	626.5933228	589.5926514	534.6171875
748.6766968	676.7047729	626.5783691	589.5844116	534.6018677
736.6586304	672.3896484	626.5765381	589.5794678	534.5982056
735.6555786	672.3764648	626.5748901	587.5913086	531.7810669
733.6660767	668.6647339	625.6652222	587.5877686	526.6208496
732.5480957	667.5982666	624.6031494	587.5831299	524.6251221
730.5621338	666.3869629	624.5754395	587.5632935	524.6210327
725.6123657	665.7178955	622.5947266	585.7533569	524.6184082
724.5513916	661.6223145	622.5750732	585.6912231	524.6057739
721.6623535	660.7211304	620.6148682	583.6907349	522.6140137
720.7516479	659.7144165	620.6102295	580.6774292	522.598999
720.7410889	656.4310913	620.6001587	572.786499	520.6282959
720.7365112	656.428772	620.5884399	568.5828857	520.6279907
718.5739136	656.4207153	612.6273193	568.578064	520.6220093
718.5714722	655.6417236	612.6194458	568.5750732	520.6114502
712.6657104	651.7087402	612.6015625	568.56427	518.6223145
708.6532593	650.4429932	612.598938	561.6227417	517.7458496
706.5772705	649.585083	610.5945435	561.6199951	517.6523438
706.569519	649.5685425	609.6723633	561.6160889	517.6411743
706.545105	648.6061401	607.6520386	561.598999	517.6312866
706.5449829	646.6802368	604.7440796	550.5879517	516.6307983
706.5339355	642.5888672	603.6010132	550.5861206	516.6146851
697.586731	642.5884399	603.5826416	550.5775146	516.6135864
697.5727539	642.5767822	602.6186523	550.5664673	516.6091309
697.5658569	642.5634766	602.6038208	547.2503662	515.670166
693.5597534	640.6028442	601.6777344	546.5980835	514.6893921
693.5458984	639.6082764	599.7808838	545.6574097	514.6833496
693.5427856	636.7107544	593.7172241	544.5971069	
693.52771	636.6674194	593.6969604	544.5949707	

4 Protein Mixture (BSA/TF/CYC/MB) mass/mass+c

2858.830078	1842.182739	1454.395996 seq(C-K)
2755.893311	1829.182007	1454.395996 seq(C-Q)
2441.174561	1802.217285	1447.391968
2429.008057 seq(C-R)	1768.286133	1439.477173
2428.169189	1768.237671	1439.434082
2335.285889 seq(C-S)	1757.30188	1436.360718
2275.971924	1721.274048	1434.442993
2262.945801	1709.266968	1433.317261
2260.138428	1688.268799	1411.743286 seq(C-K)
2168.071777	1687.378052	1411.743286 seq(C-Q)
2155.034912	1687.285645 seq(C-H)	1408.452393
2085.22998	1687.281494	1399.402344 seq(C-T)
2085.106934	1674.283813 seq(C-H)	1386.3927 seq(C-T)
2072.093018	1670.793945	1362.428711
2064.188232	1578.452515	1360.533203
2035.098389	1578.427124	1360.528687
2032.00647	1578.411499	1354.498169
2028.285889	1578.343506	1350.509644 seq(C-I)
2028.250488	1575.335938	1350.509644 seq(C-L)
2027.303833	1553.853027	1350.489502
2027.286133	1534.167114	1349.36084
2018.996338	1534.164185	1333.510986 seq(C-H)
2010.745605	1502.362671 seq(C-E)	1299.461182
1988.251343	1502.362671 seq(С-К)	1296.551514
1986.092285	1502.362671 seq(C-Q)	1296.542358 seq(C-R)
1984.153931	1502.351074	1294.450317
1975.24585	1502.310181	1280.014648
1971.144409	1496.365967	1276.564087 seq(C-R)
1942.275024	1491.300293	1275.550903
1929.247437 seq(C-H)	1486.19397 seq(C-T)	1229.505371 seq(C-S)
1916.263916	1483.284302	1222.025391
1916.225464	1478.45410	1217.599976 seq(C-H)
1916.212646 seq(C-H)	1478.277832 seq(C-E)	1214.55127
1906.255615	1473.192627 seq(C-E)	1165.476563 seq(C-Y)
1896.402222	1470.390625 seq(C-N)	1163.590332 seq(C-R)
1896.335327	1470.383057	1145.653076 seq(C-R)
1884.322876	1470.3479	1145.602905
1875.428223	1467.356445	1145.593628
1871.318115	1465.216064	1145.570923
1868.191406	1456.381958	1106.55188 seq(C-E)
1855.1875	1454.395996 seq(C-T)	1092.625244 seq(C-R)

1087.371582 1086.538086 seq(C-F) 1084.595703 1082.475098 1079.485352 1076.133179 1069.440918 seq(C-I) 1069.440918 seq(C-L) 1067.547485 1063.619629 1057.524048 1057.38562 1057.364502 1055.629395 1055.601685 1048.594604 1048.594482 seq(C-I) 1048.594482 seq(C-L) 1035.459351 1019.489746 seq(C-Y) 1017.631958 seq(C-S) 1017.631958 seq(C-K) 1017.631958 seq(C-Q) 1016.501648 seq(C-F) 1010.564697 1009.585449 seq(C-T) 1008.587769 1006.469543 seq(C-Y) 1002.55072 seq(C-S) 1001.13623 996.5701294 seq(C-T) 993.0845947 989.6818237 seq(C-K) 989.6818237 seq(C-Q) 987.6402588 987.6281738 seq(C-F) 987.6243896 983.5397949 974.5701294 967.5471191 957.555481 952.6633301 seq(C-T) 952.6484985 943.1465454

942.5209961 940.6450806 938.6039429 936.6383667 seq(C-S) 935.2019043 927.6098633 927.5964355 922.6243896 920.7224121 seq(C-R) 920.6032104 920.5969238 seq(C-I) 920.5969238 seq(C-L) 911.6362915 seq(C-T) 906.6486206 seq(C-E) 906.6211548 seq(C-E) 904.640625 894.6185303 887.5177612 879.6194458 seq(C-E) 877.2085571 862.5372925 861.6519775 seq(C-K) 861.6519775 seq(C-Q) 861.2481689 859.7211914 858.6847534 seq(C-E) 857.6600952 857.6257324 seq(C-Y) 848.4562988 840.675293 837.5790405 seq(C-G) 832.6393433 seq(C-N) 829.7223511 829.7144165 seq(C-G) 828.6903076 825.3522949 820.7094727 820.7059937 seq(C-I) 820.7059937 seq(C-L) 820.7037964 818.651062 seq(C-I) 818.651062 seq(C-L) 815.9371338 806.7282715 seq(C-T)

805.5353394 804.5267944 790.697998 seq(C-K) 790.697998 seq(C-Q) 778.6956177 778.6812134 778.6808472 777.5285645 774.6795654 seq(C-K) 774.6795654 seq(C-Q) 772.6639404 764.7042236 seq(C-H) 762.7720337 760.713562 seq(C-K) 760.713562 seq(C-Q) 752.6557007 seq(C-A) 749.6796875 749.6495972 748.6766968 seq(C-K) 748.6766968 seq(C-Q) 736.6586304 735.6555786 733.6660767 732.5480957 730.5621338 seq(C-M) 725.6123657 724.5513916 721.6623535 seq(C-Y) 720.7516479 720.7410889 720.7365112 718.5739136 718.5714722 712.6657104 708.6532593 seq(C-M) 706.5772705 706.569519 706.545105 706.5449829 706.5339355 697.586731 697.5727539 697.5658569 693.5597534

693.5458984	626.5933228	583.6907349
693.5427856	626.5783691	580.6774292
693.52771	626.5765381	572.786499 seq(C-I)
693.5146484	626.5748901	572.786499 seq(C-L)
691.6974487	625.6652222 seq(C-F)	568.5828857
690.7011719 seq(C-E)	624.6031494	568.578064
689.727356 seq(C-S)	624.5754395	568.5750732
684.5674438	622.5947266	568.56427
684.5653687	622.5750732	561.6227417
676.7047729	620.6148682	561.6199951
672.3896484	620.6102295	561.6160889
672.3764648	620.6001587	561.598999
668.6647339 seq(C-F)	620.5884399	550.5879517
667.5982666	612.6273193	550.5861206
666.3869629	612.6194458	550.5775146
665.7178955	612.6015625	550.5664673
661.6223145 seq(C-P)	612.598938	547.2503662
660.7211304 seq(C-K)	610.5945435	546.5980835 seq(C-P)
660.7211304 seq(C-Q)	609.6723633 seq(C-E)	545.6574097
659.7144165 seq(C-A)	607.6520386	544.5971069
656.4310913	604.7440796	544.5949707
656.428772	603.6010132	543.6234131
656.4207153	603.5826416	543.6165771
655.6417236	602.6186523	543.6021118
651.7087402	602.6038208	543.5968018
650.4429932	601.6777344	534.6274414
649.585083	599.7808838	534.6171875
649.5685425	593.7172241 seq(C-H)	534.6018677
648.6061401 seq(C-P)	593.6969604	534.5982056
646.6802368	593.5908203	531.7810669
642.5888672	591.614624	526.6208496
642.5884399	591.6079102	524.6251221
642.5767822	591.5903931	524.6210327
642.5634766	591.5834961	524.6184082
640.6028442	589.5926514	524.6057739
639.6082764	589.5844116	522.6140137
636.7107544	589.5794678	522.598999
636.6674194	587.5913086	520.6282959
635.6629639	587.5877686	520.6279907
634.7706909	587.5831299	520.6220093
634.6541748	587.5632935	520.6114502
630.7432251 seq(C-I)	585.7533569 seq(C-I)	518.6223145
630.7432251 seq(C-L)	585.7533569 seq(C-L)	517.7458496
626.6011353	585.6912231	517.6523438

517.6411743	516.6135864
517.6312866	516.6091309
516.6307983	515.670166
516.6146851	514.6893921

514.6833496

4 Protein Mixture (BSA/TF/CYC/MB) mass+c

> 1016.501648 seq(C-F) 708.6532593 seq(C-M) 1009.585449 seq(C-T) 690.7011719 seq(C-E) 1006.469543 seq(C-Y) 689.727356 seq(C-S) 1002.55072 seq(C-S) 668.6647339 seq(C-F) 996.5701294 seq(C-T) 661.6223145 seq(C-P) 989.6818237 seq(C-K) 660.7211304 seq(C-K) 989.6818237 seq(C-Q) 660.7211304 seq(C-Q) 987.6281738 seq(C-F) 659.7144165 seq(C-A) 952.6633301 seq(C-T) 648.6061401 seq(C-P) 936.6383667 seq(C-S) 630.7432251 seq(C-I) 920.7224121 seq(C-R) 630.7432251 seq(C-L) 920.5969238 seq(C-I) 625.6652222 seq(C-F) 609.6723633 seq(C-E) 920.5969238 seq(C-L) 911.6362915 seq(C-T) 593.7172241 seq(C-H) 906.6486206 seq(C-E) 585.7533569 seq(C-I) 906.6211548 seq(C-E) 585.7533569 seq(C-L) 572.786499 seq(C-I) 879.6194458 seq(C-E) 861.6519775 seq(C-K) 572.786499 seq(C-L) 861.6519775 seq(C-Q) 546.5980835 seq(C-P) 858.6847534 seq(C-E) 857.6257324 seq(C-Y) 837.5790405 seq(C-G) 832.6393433 seq(C-N) 829.7144165 seq(C-G) 820.7059937 seq(C-I) 820.7059937 seq(C-L) 818.651062 seq(C-I)

2429.008057 seq(C-R) 2335.285889 seq(C-S) 1929.247437 seq(C-H) 1916.212646 seq(C-H) 1687.285645 seq(C-H) 1674.283813 seq(C-H) 1502.362671 seq(C-T) 1502.362671 seq(C-K) 1502.362671 seq(C-Q) 1486.19397 seq(C-E) 1478.277832 seq(C-E) 1473.192627 seq(C-E) 1470.390625 seq(C-N) 1454.395996 seq(C-T) 1454.395996 seq(C-K) 1454.395996 seq(C-Q) 1411.743286 seq(C-K) 1411.743286 seq(C-Q) 1399.402344 seq(C-T) 1386.3927 seq(C-T) 1350.509644 seq(C-I) 1350.509644 seq(C-L) 1333.510986 seq(C-H) 1296.542358 seq(C-R) 1276.564087 seq(C-R) 1229.505371 seq(C-S) 1217.599976 seq(C-H) 1165.476563 seq(C-Y) 818.651062 seq(C-L) 1163.590332 seq(C-R) 806.7282715 seq(C-T) 1145.653076 seq(C-R) 790.697998 seq(C-K) 1106.55188 seq(C-E) 790.697998 seq(C-Q) 1092.625244 seq(C-R) 774.6795654 seq(C-K) 1086.538086 seq(C-F) 774.6795654 seq(C-Q) 1069.440918 seq(C-I) 764.7042236 seq(C-H) 1069.440918 seq(C-L) 760.713562 seq(C-K) 1048.594482 seq(C-I) 760.713562 seq(C-Q) 1048.594482 seq(C-L) 752.6557007 seq(C-A) 1019.489746 seq(C-Y) 748.6766968 seq(C-K) 1017.631958 seq(C-S) 748.6766968 seq(C-Q) 1017.631958 seq(C-K) 730.5621338 seq(C-M) 1017.631958 seq(C-Q) 721.6623535 seq(C-Y)

Mascot Output Format

BSA mass

A SC	ATRIX Mascot Search Results
User Email Searc Datab Times Top S	: Y Wang h title : swissProt 2016.03 (550740 sequences; 196582750 residues) tamp : 14 Apr 2016.at 05:17:39 GMT tamp : 14 Apr 2016.at 05:17:39 GMT core : 46 for ALUB_09/NN. Serum albumin 05=Bos taurus GM=ALB PE=1 SV=4
Maso	ot Score Histogram
Protei Protei	n score is =104Log(P), where P is the probability that the observed match is a random event. n scores greater than 70 are significant (p<0.05).
Number of Hits - 5	23 32 35 40 44 Protein Sort
Cond	ise Protein Summary Report
Form	at As Concise Protein Summary V Help
	Preferred taxonomy All entries
Re-S	earch All Search Unmatched
1.	<u>ALEU BOVIN</u> Mass: 71279 Score: 46 Expect: 13 Matches: 41 Serum albumin OS=Bos taurus GN=ALB PE=1 SV=4
2.	<u>SPJI SOPPO</u> Mass: 42821 Score: 40 Expect: 62 Matches: 15
2.	<u>SPJI 300+P0</u> Mass: 42821 Score: 40 Expect: 62 Matches: 15 DnaJ-related protein spji OS=Schizosaccharomyces pombe (strain 972 / ATOC 24843) GN=spji FE=2 SV=2
3.	<u>RUC2_LINU</u> Mass: 21025 Score: 39 Expect: 71 Matches: 10 Cytokinim-beta-slucosidase 2 CG=Linaria vulgaris GN=ROLC2 PE=3 SV=1
4.	<mark>DR93_FEA Mass:</mark> 16795 Score: 88 Expect: 98 Matches: 14 Disease resistance response protein P149 05=Pisum sativum GM=DRN49A PE=2 SV=1
5.	<u>PSAMA_WATH</u> Mass: 27574 Score: 37 Expect: 1.2e+002 Matches: 11 Proteasome subunit alpha type-4+A OS=Arabidopsis thaliana GM=PACI PE=1 SV=1
6.	KMD_FSEPG Mass: 23308 Score: 37 Expect: 1.2e+002 Matches: 10 Aderviate kinase 05-Pseudomonas putida (strain 08-1) DWadk FE-3 SV=1 Expect: 1.2e+002 Matches: 10 Aderviate kinase 05-Pseudomonas putida (strain 18-1) DWadk FE-3 SV=1 Expect: 1.2e+002 Matches: 10 Aderviate kinase 05-Pseudomonas putida (strain 18-19) DWadk FE-3 SV=1 Expect: 1.2e+002 Matches: 10
7.	RS10 FRAP2 Mass: 9104 Score: 36 Expect: 1.4e+002 Matches: 10 305 Fibocomal protein S16 05=Francise La philomiragia subse, philomiragia (strain ATOC 25017) (DN=rpsP FE=3 SV=1 RS10=FRAIL 805 FIAIL Mass: 9076 Score: 36 Expect: 1.4e+002 Matches: 10 305 Fibocomal protein S16 05=Francise La tularensis subse, tularensis (strain ATOC 25017) (DN=rpsP FE=3 SV=1 RS10=FRAIL Mass: 9076 Score: 36 Expect: 1.4e+002 Matches: 10 305 Fibocomal protein S16 05=Francise La tularensis subse, tularensis (strain FSC147) GN=rpsP FE=3 SV=1 RS10=FRAIL Mass: 9076 Score: 36 Expect: 1.4e+002 Matches: 10 305 Fibocomal protein S16 05=Francise La tularensis subse, newlicidia (strain FSC147) GN=rpsP FE=3 SV=1 Score: 36 Expect: 1.4e+002 Matches: 10 305 Fibocomal protein S16 05=Francise La tularensis subse, rovicida (strain UI12) GN=rpsP FE=3 SV=1 Score: 36 Expect: 1.4e+002 Matches: 10 305 Fibocomal protein S16 05=Francise La tularensis subse, tularensis (strain UI12) GN=rpsP FE=3 SV=1 Score: 36 Expect: 1.4e+002 Matches: 10 305 Fibocomal protein S16 05=Francise La tularensis subse, tularensis (strain UI12) GN=rpsP FE=3 SV=1 Score: 36 Expect: 1.4e+002 Matches: 10 305 Fibocomal protein S16 05=Francise La tularensis subse, tularensis (strain UI02) MAtches: 10
8.	<u>RU23_AERS4</u> Maass: 11156 Score: 34 Expect: 2e+002 Matches: 12 50S ribosomal protein L23 OS=Aeromonas salmonicida (strain A449) GN=rp1W PE=3 SV=1
9.	<u>RLILAOLA</u> Mass: 24035 Score: 34 Expect: 2.5e+002 Matches: 14 505 ribosomal protein L1 08=Lactococcus lactis subsp. lactis (strain IL1403) GN≒rpIA PE=3 SV=1
10.	<u>QLPB WOLSU</u> Mass: 96049 Score: 33 Expect: 2,6e4002 Matches: 31 Chaperone protein ClpB 05=Wollinella succinogenes (strain ATOC 29543 / DSM 1740 / LMG 7466 / NCTC 11488 / FDC 602W) GN=clpB PE=3 SV=1
11. 11.	SUCC_GRAFK Mass: 43448 Score: 33 Expect: 2.9e+002 Matches: 18 SUCC_GRAFK Mass: 43448 Score: 33 Expect: 2.9e+002 Matches: 18
12.	Succinv1-CoA ligase [ADP-forming] subunit beta 05:Gramella forsetii (strain KT0003) 0N=succ PE=3 SV=1 KAD_PSEFSMass: 23309Score: 32 Expect: 3.8e+002Matches: 8
13.	Adenylate kinase USP-seudomonas fluorescens (strain 588/29) UMPadk PE-3 SV=1 <u>Y144.RICPR</u> Mass: 16582 Score: 31 Expect: 4.4e+002 Matches: 14
14.	Undhanzderized protein HP144 USHYIckettsia prowazekii Istrain Madrid EJ GNEHP144 FE:4 SVFI <u>RSS_FRHVE</u> Mass: 16746 Score: 31 Expect: 4.5e+002 Matches: 10 <u>OSD: 14.5.5.5.00 OSD: 6.5.5.5.00 Expect: 4.5.6.4002 Natches: 10 </u>
15.	EIBS_BPUX Mass: 28766 Score: 31 Expect: 4.5e+002 Matches: 10 Long tail fiber protein p37 (Frament) 05-Therbacters have M (04:57 PE-3 SY=1 EIBS_BPUX Mass: 28176 Score: 31 Expect: 4.5e+002 Matches: 10 Long tail fiber protein p37 (Frament) 05-Therbacters have 0.2 (04:57 PE-3 SY=1
16.	<u>PN0 FEC45</u> Mass: 45288 Score: 30 Expect: 5e+002 Matches: 16 Enclase 05-Pectobacterium atrosecticum (strain SDR1 1043 / ATOS RA4-672) (91-ano PE-3 SV-1
17.	RES MUSAC Mass: 20845 Score: 30 Expect: 5.1e+002 Matches: 13 Ribulose bischosphate carboxylase small chain, chloroplastic 05=Musa acuminata QN=RBCS1 PE=2 SV=1
18.	KMD_PSEP1 Mass: 23324 Score: 30 Expect: 5.4e+002 Matches: 8 Aderylate kinase 05-Pseudomonas putida (strain FI / ATO2 700007) (Mradk FE-3 SV=1 Mass: 2332 Score: 30 Expect: 5.4e+002 Matches: 8 Aderylate kinase 05-Pseudomonas putida (strain KI / AHO2 (Mradk FE-3 SV=1 Mass: 23324 Score: 30 Expect: 5.4e+002 Matches: 8 Aderylate kinase 05-Pseudomonas putida (Strain KI2440) (Mradk FE-3 SV=1 Matches: 8 Aderylate kinase 05-Pseudomonas putida (Strain KI2440) Matches: 8 Aderylate kinase 05-Pseudomonas putida (Strain KI2440) Matches: 8 Aderylate kinase 05-Pseudomonas putida (Strain KI2440) Matches: 8
19.	HEC_CAIMO_ Mass: 18852 Score: 30 Expect: 5.5e+002 Matches: 8 Hemoglobin subunit essilon OS=Cairina moschata GN=HBE PE=2 SV=2
20.	<u>Y335 METUA</u> Mass: 27921 Score: 30 Expect: 5.8e+002 Matches: 13 Uncharacterized protein MJ0335 OS=Methanocaldococcus jannaschij (strain ATOC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NERC 100440) GN=MJ0335 PE=4 SV=1
21.	P <u>FC8 CALMO</u> Mass: 13880 Score: 29 Expect: 6.5e+002 Matches: 9 Prefoldin subunit beta 05=Caldivirga maquilingensis (strain ATOC 700844 / DSM 13496 / JCM 10307 / IC-167) GN⊨pfdB FE=3 SV=1

22. KAD_BURM7 Mass: 24213 Score: 29 Expect: 6.6e+002 Matches: 11

22.	K4D EMW Mass: 24213 Score: 23 Expect: 6.6e+002 Matches: 11 Aderviate kinases (5+Burkholderia mallei (strain NUC: 1023) Object=5.5e+002 Matches: 11 Aderviate kinases (5+Burkholderia mallei (strain NUC: 1023) Object=5.5e+002 Matches: 11 Aderviate kinases (5+Burkholderia mallei (strain NUC: 1023) Object=5.5e+002 Matches: 11 Aderviate kinase (5+Burkholderia mallei (strain NUC: 1023) Object=5.5e+002 Matches: 11 Aderviate kinase (5+Burkholderia mallei (strain SWP) Object=5.5e+002 Matches: 11 Aderviate kinase (5+Burkholderia mallei (strain SWP) Object=6.5e+002 Matches: 11 Aderviate kinase (5+Burkholderia mallei (strain SWP) Object=6.5e+002 Matches: 11 Aderviate kinase (5+Burkholderia mallei (strain SWP) Object=6.5e+002 Matches: 11 Aderviate kinase (5+Burkholderia mallei (strain 105a) Object=7.5e+002 Matches: 11 Aderviate kinase (5+Burkholderia strain 105a) Object=7.5e+002 Matches: 11 Aderviate kinase (5+Burkholderia score: 23 Expect: 6.6e+002 Matches: 11 Aderviate kinase (5+Burkholderia score: 24 Expect: 6.6e+002 Matches: 11 Aderviate kinase (5+Burkholderia score: 24 Expect: 6.6e+002 Matches: 11
23.	Average Value Kindse Co-doubtroller is peachain (eff CSF and hours) Execution (eff CSF and hours) ATP-dependent professe short His VIC-State/viceoccus aures (strain M3 / ATCC 700698) OREs(V FE-3 SV=1 ATP-dependent professe short His VIC-State/viceoccus aures (strain M1) OREs(V FE-3 SV=1 ASV STAD Mass: 19818 Score: 20 ATP-dependent professe short His VIC-State/viceoccus aures (strain M3 / ATCC 700698) OREs(V FE-3 SV=1 ASV STAD Mass: 19818 Score: 20 ATP-dependent professe short His VIC-State/viceoccus aures (strain N200 QHeFsIV PE-3 SV=1 ASV STAD Mass: 19818 Score: 20 ASV STAD Mass: 19818 Score: 20 ATP-dependent professe short His VIC-State/viceoccus aures (strain N200 AVICES) Score: 20 ATP-dependent professe short His VIC-State/viceoccus aures (strain N200 AVICES) Score: 20 ATP-dependent professe short His VIC-State/viceoccus aures (st

Search Parameters	
Search Parameters Type of search Farameters Type of search Farameters Hass values Protein Mass Protein Mass Tolerance: Protein Mass Tolerance: Nax Missed Cleavages Mass Tolerance: Max Missed Cleavages Mass Tolerance Max Missed Cleavages Cleavage	
adery20 (077.1102,117.	

BSA mass/mass+c

MATRIX SCIENCE Mascot Search Results

User Email Search titl	: Y Wang : Kahn20003@gmail.com
Jatabase Timestamp	SwissProt 2016_03 (550740 sequences; 196582750 residues) : 14 Apr 2016 at 06:45:07 GMT
Top Score	: 233 for ALBU_BUVIN, Serum albumin US=Bos taurus UN=ALB PE=1 SV=4
Mascot Score	Histogram
Protein score is -1	OHLOG(P). Where P is the probability that the observed match is a random event.
notein scores gre	ater den zolare agninant (procos).
111 10 models	200 - 200 -
Concise Prote	in Summary Report
Format As Conc Signi	ise interest summary v rego ficance threshold pc (0.05 Mex. number of hits 200 ment taxopomy all entries
Re-Search All	Search Urmatched
1. <u>ALBU_BOVI</u>	N Mass: 71279 Score: 283 Expect: 2.8e-024 Matches: 40
Serum alb	Junin 05:Bos taurus GNFALB FE=1 SV-4
2. <u>ALBU_SHEE</u>	⊉ Mass: 71174 Score: 103 Expect: 2.8e-005 Matches: 28
2. <u>ALBU_SHEE</u>	⊉ Mass: 71174 Score: 103 Expect: 2.8e-005 Matches: 28
Serum alb	umin CS=0vis aries GN=ALB PE=1 SV=1
3. MPAP1_PHL	PR Mass: 28845 Score: 53 Expect: 2.6 Matches: 11
Pollen al	Terzen Philp 1 05:Phileum pratense GN-PHLPI PE:1 SV-1
4. <u>\$2541_B0\</u>	/IN Mass: 38953 Score: 51 Expect: 4.8 Matches: 7
Solute ca	arrier family 25 member 41 05:Bos taurus 04:5LC25A41 PE=2 SV=1
5. <u>ALBU_FELC</u>	/ Mass: 70645 Score: 47 Expect: 12 Matches: 17
Serum alb	Junin 05:Felis catus ON+ALB PE=1 SV=1
6. <u>SYT_PROM</u>	Mass: 74347 Score: 43 Expect: 29 Matches: 20
Threening	=-tRMA lisase USProchlorococcus marinus (strain NATL2A) GM-thrS PE-3 SV-1
7. <u>CE57L_XEN</u> Cent roson	- IR Mass: 55003 Score: 42 Expect: 31 Matches: 17 nal protein ces5/11 08∋Kennous tropicalis (M+ces5/11 PE=2 SV=1
8. <u>CAPSD_OL</u>	M Mass: 30401 Score: 39 Expect: 68 Matches: 7 rotein 05=Xfrican cassava mosaic virus (isolate West Kenvan 844) GN=ARI PE=3 SV=1
9. <u>EXPB1_OR</u>	SJ Mass: 29130 Score: 37 Expect: 1e+002 Matches: 9 ⊞T 05=0ryza sativa subsp. japonica GN=EXPENT FE-T SV=2
10. <u>ACP_GEMA1</u> Acyl carr	Mass: 8745 Score: 37 Expect: 1.2e+002 Matches: 7 rier protein 05-Gemmatimonas aurantiaca (strain T-27 / DSM 14586 / JCM 11422 / NBRC 100505) GN=acpP PE-3 SV=1
11. RHG24_HUM	WN Mass: 84843 Score: 86 Expect: 1.5e+002 Matches: 17
Rho GTPas	se-activating protein 24 OS+Nomo sapiens GN+ZRHG#24 FE=1 SV=2
12. <u>Y209_RIC1</u>	∑ Mass: 94149 Score: 36 Expect: 1.6e+002 Matches: 9
Uncharact	erized glycosyltransferase RT0209 0S-Rickettsia tychi (strain ATCC VR-144 / Wilmington) QN+RT0209 FE=3 SV=1
13. <u>VXIS_BPAR</u>	% Mass: 14686 Score: 35 Expect: 1.6e+002 Matches: 8
Probable	excisionase 0S=Acyrthosiphon pisum secondary endosymbiont phage 1 GN=40 PE=3 SV=1
14. DNAJL_MYC	PN Mass: 37109 Score: 35 Expect: 1.7e+002 Matches: 12
DnaJ-Tike	protein MG002 homolog 05=Mycoplasma preumoniae (strain ATCC 29342 / M129) QN=MPNL002 PE=3 SV=1
15. PSD_DINS	Mass: 24440 Score: 35 Expect: 1.8e+002 Matches: 5
15. PSD_DINSP	! Mass: 24440 Score: 35 Expect: 1.8e+002 Matches: 5
Phosphat i	dv!serine decarboxy!ase proenzyme DS=Dinorosedbacter shibae (strain DSM 16493 / NC1MB 14021 / DFL 12) GN=psd PE=3 SV=1
16. RL3_BLOPE	ł Mass: 23822 – Score: 35 – Expect: 1.8e+002 Matches: 7
50S ribos	somal protein L3 08=Blochmannia pernszlvanicus (strain BFBNU GN=rpIC PE=3 SV=1
17. AROB_CAM	<mark>© Mass:</mark> 38914 Score: 35 Expect: 1.9e+002 Matches: 16
3-dehvdro	yauinate synthase 05-Campylobacter hominis (strain ATOC BAA-381 / LMG 19568 / NCTC 13146 / OH001A) GN=aroB PE=3 SV=1
18. HBB_LEIX/	y Mass: 18342 Score: 35 Expect: 1.9e+002 Matches: 4
Hemoglobi	in subunit beta CS=Leiostomus xanthurus GN=hbb PE=1 SY=1
19. <u>CACB2_RAE</u>	<u>ATT</u> Mass: 71249 Score: 34 Expect: 2.1e+002 Matches: 19
Voltage-c	Masendent L-type calcium channel subunit beta-2 OS=0ryctolagus cuniculus GN=CACNB2 PE=1 SV=1
20. ADD_CLOBH	; Mass: 38130 Score: 34 Expect: 2.2e+002 Matches: 9
Adenosine	deaminase 0S=Clostridium botulinum (strain 0kra / Type B1) 0N≈add PE=3 SV=1
ADD_CLOBH	(Mass: 38154 Score: 32 Expect: 8.8e+000 Matches: 8
Adenosine	deaminase 0S=Clostridium botulinum (strain Loch Maree / Type A3) GN≈add PE=3 SV=1
21. <u>PSAH2_AR/</u>	<mark>1]H Mass:</mark> 15264 Score: 34 Expect: 2.5e+002 Matches: 5
Photosyst	tem I reaction center subunit VI-2, chloroplastic OS-Arabidoesis thaliana GN+PS4H2 PE=2 SV=1
22. KAD_BURM1	Mass: 24270 Score: 33 Expect: 2.6e+002 Matches: 8
Adenylate	kinase 05-Burkholderia multivorans (strain ATOC 17616 / 249) GN=adk PE=3 SV=1
23. <u>SYFA_BACP</u> Phenylala <u>SYFA_BACP</u> Phenylala	N Mass: 98982 Score: 33 Expect: 2.6e+002 Matches: 7 minetRW ligase alpha subunit OS=Bacteroides fragilis (strain ATCC 25285 / DSM 2151 / JOM 11019 / NCTC 9343) GN=pheS PE=3 SV=1 R Mass: 88982 Score: 33 Expect: 2.6e+002 Matches: 7 mine-rtRW ligase alpha subunit OS=Bacteroides fragilis (strain YCM46) ON=pheS PE=3 SV=1
24. <u>CH603_BR/</u>	98 Mass: 57447 Score: 33 Expect: 2.6e+002 Matches: 8
60 kDa cH	ageronin 3 05=Bradyrhizobium sp. (strain BTAil / ATOC BA-1182) QH≭arol3 FE=3 SV=1
25. <u>YBEY_EXIS</u> Endoriber	Mass: 18423 Score: 33 Expect: 2.0e+002 Matches: 7 ucleases YbeY (05-Exizuadcaterium sibiricum (train DSM 1720) JOM 13490 / 255-15) GN=vbeY PF=3: SV=1
26. KAD_BURPF	Mass: 24612 Score: 33 Expect: 2.7ef002 Matches: 8 bioses 0789 Workslaria et al. (1990) 1242 (2.7ef002 Matches: 8 bioses 0789 Workslaria et al. (1990) 1242 (2.7ef002 Matches: 8
Adeny late	

	Adenylate kinase US-burkholderla prytotirmans (strain DSM 17430 7 rSJN) UN-adk PE-3 SY-1
27.	ATPE CLONN Mass: 14963 Score: 32 Expect: 3.1e+002 Matches: 7 ATP synthase epsilon chain 05=Clostridium novyi (strain NT) GN=atpC PE=3 SV=1
28.	<u>RH224.MCUSE</u> Mass: 84685 Score: 32 Expect: 3.2e+002 Matches: 14 Rho GTPase-activating protein 24 OS=Mus musculus QN=Arhgap24 PE=1 SV=2
29.	<u>Y218 RIOPR</u> Mass: 34113 Score: 32 Expect: 3.2e+002 Matches: 8 Uncharacterized glycosyltransferase RP128 05=Rickettsia prowazekii (strain Madrid E) GN=RP218 PE=3 SV=1
30.	<u>RS17_BMOOR</u> Mass: 10188 Score: 32 Expect: 3.3e+002 Matches: 6 30S ribosomal protein S17 OS=Bacillus cereus (strain ATOC 14579 / DSM 31 / JOM 2152 / NBRC 15305 / NCIMB 9373 / NBRL B-3711) GN≐rps0 PE=3 SV=1
31.	<u>TIG.WULTR</u> Mass: 51462 Score: 32 Expect: 3.4e+002 Matches: 9 Trigger factor 0S=Wolbachia sp. subsp. Brugia malayi (strain TRS) GN=tig PE=3 SV=1
32.	<u>KAD BLRAA</u> Mass: 24200 Score: 32 Expect: 3.4e+002 Matches: 8 Aderylate kinase 05=Burkholderia ambifaria (strain ML40+6) NHadk FE-3 SV=1 <u>KAD BLROM</u> Mass: 24200 Score: 32 Expect: 3.7e+002 Matches: 8 Aderylate kinase 05=Burkholderia ambifaria (strain ATCC BAA-244 / AMMD) GN=adk FE-3 SV=1
33.	N <u>NOM METJA</u> Mass: 19597 Score: 32 Expect: 3.4e+002 Matches: 5 Nicotinamide-nucleotide adenvlyltransferase OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NERC 100440) QN=MAU0541 PE=1 SV=3
34.	<u>RS14_EXIS2</u> Mass: 10114 Score: 32 Expect: 3.6e+002 Matches: 2 305 ribosomal protein S14 OS=Exiguedaacterium sibiricum (strain DSM 17290 / JCM 13490 / 255-15) GN=rpsN PE=3 SV=1
35.	<mark>NSS LDCPR Mass</mark> : 36011 Score: 32 Expect: 3.7e+002 Matches: 8 Non-structural protein 5 0S=Lymantria dispar cycovirus 1 (isolate Rao) QN=S9 PE=4 SV=1
36.	<u>GR_E0027</u> Mass: 15763 Score: 32 Expect: 3.7e*002 Matches: 4 Sigma factor=binding protein CrI 05:Escherichia coli 01271#6 (strain E2348/68 / EPEC) QN-crI PE=3 SV=1 GR_E0021 Mass: 15768 Score: 32 Expect: 3.7e*002 Matches: 4 Sigma factor=binding protein CrI 05:Escherichia coli 07:KI (strain 1A138 / ExPEC) QN-crI PE=3 SV=1 GR_E0026 Mass: 15806 Score: 32 Expect: 3.7e*002 Matches: 4 Sigma factor=binding protein CrI 05:Escherichia coli 06:HI (strain CFI073 / ATCC 700928 / UPEC) QN-crI PE=3 SV=3 GR_E0026 Mass: 15768 Score: 32 Expect: 3.7e*002 Matches: 4 Sigma factor=binding protein CrI 05:Escherichia coli 07:K52:H18 (strain UM026 / ExPEC) QN-crI PE=3 SV=1
37.	<u>UL24 ELHWK</u> Mass: 26729 Score: 31 Expect: 4e+002 Matches: 11
37.	<u>UL24 ELHM</u> Mass: 26729 Score: 31 Expect: 4e+002 Matches: 11 Protein UL24 homolog 0S=Elephantid herpesvirus 1 (isolate Asian elephant/Berlin/Kiba/1998) PE=2 SV=1
38.	R <mark>NL_DROME Mass:</mark> 24839 Score: 31 Expect: 4e+002 Matches: 11 GTP-binding nuclear protein Ran-like OS=Drosophila melanogaster GN=Ran-like PE=1 SV=1
39.	<u>MSH3_MOUSE</u> Mass: 124331 Score: 31 Expect: 4.2e+002 Matches: 17 DNA mismatch resair protein Msh3 OS=Mus musculus ON=Msh3 FE=2 SV=3
40.	BRE5_YEAST Mass: 57813 Score: 31 Expect: 4.2e+002 Matches: 15 UBP3-associated protein BRE5_0S=Saccharomyces cerevisiae (strain ATOC 204508 / S288c) GN=BRE5_FE=1_SV=1
41.	<u>SFSA_FPOM5</u> Mass: 28564 Score: 31 Expect: 4.3e+002 Matches: 12 Susar fermentation stimulation protein homolog OS=Prochlorococcus marinus (strain MIT 9515) GN=sfsA PE=3 SV=1
42.	RL26_BRACM Mass: 16885 Score: 31 Expect: 4.5e+002 Matches: 6 60S ribosomal protein L26 OS-Brassica campestris ON-EPC26 PE=2 SV=1
43.	M <u>RC BNOCN</u> Mass: 49574 Score: 31 Expect: 4.6e+002 Matches: 8 UDP-N-acetylmuramateL-alanine ligase OS-Bacillus cytotoxicus (strain DSM 22905 / CIP 110041 / 391-98 / NMH 391-98) GN=murC PE=3 SV=1
44.	RS17_BACSU Mass: 10193 Score: 31 Expect: 4.7e+002 Matches: 4 305 ribosomal protein S17 05=Bacillus subtilis (strain 168) GM=rpsB PE=1 SV=3

Type of search :	Sequence Query
nzyme :	Lys-N
ixed modifications :	Carboxymethyl (C)
lass values :	Monoisotopic
rotein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
ragment Mass Tolerance:	± 0.6 Da
ax Missed Cleavages :	1
Instrument type :	Default
Querv1 (815.7810.1+):	<no title=""></no>
Query2 (816.6786.1+);	<no title=""></no>
Querv3 (818,4763,1+);	<no title=""></no>
	seg(C-1)
Querv4 (818 4763.1+):	(no title)
	sea(C-L)
· · · · · · · · · · · · · · · · · · ·	00400 L/

BSA mass+c

MATRIX Mascot Search Results

User Email Sect	: Y Wang I : kahn20003@gmail.com b title :
Datab Times	arctice sase : SwissProt 2016.03 (550740 sequences; 196582750 residues) stamp : 14 Apr 2016 at 06:45:13 GMT
Masc	xcore : 304 for Albu_buyin, serum albumin us-bos taurus um-alb rz-1 5y-4 cot Score Histogram
Proteir Proteir	in score is $-104L_{0g}(P)$, where P is the probability that the observed match is a random event. In scores greater than 70 are significant (x/0.05).
5 30 -	
iH 25-	
N 15-	
5 0	
Conc	rise Protein Surmany Report
Form	nat As Concise Protein Summary Help
	Significance threshold pC 0.05 Max number of hits 200 Preferred taxonomy All entries
Re-Se	earch All Search Unmatched
1.	<u>ALBU_BOVIN</u> Mass: 71279 Score: 864 Expect: 2.2e-031 Matches: 21 Serum albumin DS=Bos taurus DN+ALB FE=1 SV=4
2.	<u>ALBU_SHEEP</u> Mass: 71174 Score: 111 Expect: 4.4e-006 Matches: 9
2.	<u>ALGU_SHEEP</u> Mass: 71174 Score: 111 Expect: 4.4e-006 Matches: 9 Serum albumin OS=Ovis aries GN=ALB PE=1 SV=1
3.	MPJP1PHLPR Mass: 28845 Score: 57 Expect: 1.2 Matches: 4 Pollen allersen Phl p 1 05=Phleum pratense GNEPHLP1 FE=1 SV=1
4.	<u>\$2541_BOVIN</u> Mass: 38953 Score: 49 Expect: 7.4 Matches: 3 Solute carrier family 25 member 41 OS-Bos taurus ON-SLI25A41 PE=2 SV=1
5.	<u>ALBUJFE.CA</u> Mass: 70645 Score: 48 Expect: 7.8 Matches: 4 Serum albumin OS=Felis catus ON=3LB PE=1 SV=1
6.	U <u>LAI SCHPO</u> Mass: 60053 Score: 44 Expect: 22 Matches: 3 NEED8-activatins enzome El resulatory subunit OS-Schizosaccharomyces pombe (strain 972 / ATOC 24843) GN=uba5 PE=3 SV=2
7.	<mark>SYR BUCCC Mass:</mark> 67906 Score: 42 Expect: 37 Matches: 4 ArgininetRWA ligase CS-Buchnera aphidicola subsp. Cinara cedri (strain Cc) GN=argS PE=3 SV=1
8.	AT <mark>F CLON Mass:</mark> 14963 Score: 41 Expect: 48 Matches: 3 ATP synthase epsilon chain 069-Clostridium novyi (strain NT) GN=atoC PE=3 SV=1
9.	H <u>HB8,LETXA</u> Maass: 16342 Score: 37 Expect: 1.1e+002 Matches: 2 Hemosiobin subunit beta OS=Leiostomus xanthurus GN=Hbb PE=1 SV=1
10.	<u>RS14 EXIS2</u> Mass: 10114 Score: 36 Expect: 1.2e+002 Matches: 2 305 ribosomal protein S14 05=Exiguobacterium sibiricum (strain DSM 17290 / JOM 13490 / 255-15) GN=rpsN PE=3 SV=1
11.	GTSELHAMMN Masss: 77120 Score: 36 Expect: 1.3e+002 Matches: 3 G2 and S phase-expressed protein 1.0S=Homo sapiens 0N=GTSELPE=1.SV=3
12.	C <u>APSD_CLWK</u> Mass: 30401 Score: 36 Expect: 1.4e-402 Matches: 2 Capsid protein 05=African cassava mosaic virus (isolate Hest Kerwan 844) GN=ARI FE:3 SV=1
13.	T <u>RFD_DICTD</u> Mass: 37085 Score: 38 Expect: 1.4e+002 Matches: 3 Anthranilate phosohoribosyltransferase OS=Dictycelomus turzidum (strain Z-1310 / DSM 6724) GN=trpD PE=3 SV=1
14.	<mark>SYA_BACMF Mass:</mark> 97031 Score: 38 Expect: 1.5e+002 Matches: 3 Alanine-+tRNA ligase 08=Bacillus methylotrophicus (strain DSM 23117 / BGSC 1046 / FZB42) GN=alaS PE=3 SV=1
15.	OUT_EHCJ Mass: 16662 Score: 36 Expect: 1.5=+002 Matches: 2
15.	<u>UUT_EHRS</u> Mass: 16662 Score: 36 Expect: 1.5e+002 Matches: 2 Deoxyuridine 5'-triphosphate nucleotidohydrolase OS=Ehrlichia canis (strain Jake) GN=dut PE=3 SV=1
16.	<u>CITD_ENTFA</u> Mass: 11426 Score: 35 Expect: 1.6e-002 Matches: 2 Citrate Jvase acyl carrier protein OS-Enterococcus faecalis (strain ATCC 700802 / V583) GN=citD PE=3 SV=1
17.	N <mark>SH3 MOLSE</mark> Mass: 124331 Score: 35 Expect: 1.7e+002 Matches: 3 DNA mismatch repair protein Msk3 OS=Mus musculus DN-Msk3 PE-2 SV-3
18.	M <u>ED9_D[CD]</u> Mass: 22221 Score: 35 Expect: 1.7e+002 Matches: 3 Putative mediator of RNA polymerase II transcription subunit 9 OS=Dictyostelium discoideum GN=med9 PE=3 SV=1
19.	<u>RS14 BAREK</u> Maass: 11762 Score: 35 Expect: 1.8e+002 Matches: 2 305 ribosomal protein S14 OS=Bartonella bacilliformis (strain ATOC 35685 / KO583) GN=rpsN FE=3 SV=1
20.	<u>ACP GENAT</u> Mass: 8745 Score: 85 Expect: 1.8e+002 Matches: 2 Acyl carrier protein 08=Gemmatimonas aurantiaca (strain T-27 / DSM 14586 / JCM 11422 / NBRC 100505) GN=accP PE=3 SV=1
21.	E <u>128B_BOVIN</u> Masss: 30002 Score: 55 Expect: 1.9e+002 Matches: 2 Translation initiation factor eIF-2B suburit beta 06=Bos taurus QN=EIF2B2 FE=2 SV=1 E <u>128B HLMAN</u> Masss: 3019 Score: 35 Expect: 1.9e+002 Matches: 2 Translation initiation factor eIF-2B suburit beta 06=Homo sapiens QN=EIF2B2 FE=1 SV=3
22.	<u>SYT_PROMT</u> Mass: 74347 Score: 35 Expect: 1.9e+002 Matches: 3 ThreoninetRMA ligase OS=Prochlorococcus marinus (strain NATL2A) QN=thrS PE=3 SV=1
23.	<u>R13 MYDPE</u> Mass: 34151 Score: 34 Expect: 2e+002 Matches: 3 505 ribosomal protein L3 05=Moccolasma penetrans (strain HF-2) GN=rp1C FE=3 SV=2
24.	CE57L_XENTE Mass: 55003 Score: 34 Expect: 2.1e+002 Matches: 3 Centrosomal protein ces5711 05=Xencous tropicalis GN=cee5711 PE=2 SV=1
25.	PSD_DINSH Mmass: 24440 Score: 34 Expect: 2.1e+002 Mmatches: 2 Phosphatidylserine decarboxylase proenzyme 06=Dinoroseobacter shibae (strain DSM 16493 / NC1MB 14021 / DFL 12) GN=psd PE=3 SV=1
26.	RS2_ACICJ Mass: 28151 Score: 34 Expect: 2.4e+002 Matches: 2

27. <u>PS442_4691H</u> Mass: 15264 Score: 33 Expect: 2.5e+002 Matches: 2 Photosystem I reaction center subunit VI-2, chloroplastic OS-Arabidopsis thaliana GN=PS442_PE=2_SV=1

2	Horizonata in action center suburit VI-2, chloroplastic OS=Arabidowsis thaliana GNEPSAH2 PE=2 SV=1
28.	RL26_BRACM Mass: 16885 Score: 33 Expect: 2.5e+002 Matches: 2 60S ribosomal protein L26 OS=Brassica campestris ON=FPL26 PE=2 SV=1
29.	<u>ALBU-P16</u> Mass: 71677 Score: 33 Expect: 2.6e+002 Matches: 3 Serum albumin 03=Sus scrofa GN=ALB PE=1 SV=2
30.	<u>SYCLELXX</u> Mass: 51978 Score: 33 Expect: 2.6e+002 Matches: 2 CysteinetRNA ligase 05=Leifsonia xyli subsp. xyli (strain CTCB07) GN=cysS PE=3 SV=1
31.	<u>RIFK CANGA</u> Mass: 21357 Score: 33 Expect: 2.7e+002 Matches: 2 Riboflavin kinase OS=Candida glabrata (strain ATCC 2001 / CBS 138 / JCM 3761 / NBRC 0622 / NBRL Y-65) GN=FMNI PE=3 SV=2
32.	QR_E002 Mass: 15763 Score: 33 Expect: 2.7e+002 Matches: 2 Sigma factor-binding protein CrI 05:Escherichia coli 01271H6 (strain E2446/89 / EPEC) QN=crI PE=3 SV=1 GR_E001 Mass: 15763 Score: 33 Expect: 2.7e+002 Matches: 2 Sigma factor-binding protein CrI 05:Escherichia coli 07:K1 (strain L2446/89 / EPEC) QN=crI PE=3 SV=1 GR_E001 Mass: 1506 Score: 33 Expect: 2.7e+002 Matches: 2 Sigma factor-binding protein CrI 05:Escherichia coli 06:H1 (strain CF1073 / ATCC 700928 / UPEC) QN=crI PE=3 SV=1 GR_E004 Mass: 15078 Score: 33 Expect: 2.7e+002 Matches: 2 Sigma factor-binding protein CrI 05:Escherichia coli 07:K52:H18 (strain UM028 / ExFEC) QN=crI PE=3 SV=3 GR_E004 Mass: 15778 Score: 33 Expect: 2.7e+002 Matches: 2 Sigma factor-binding protein CrI 05:Escherichia coli 07:K52:H18 (strain UM028 / ExFEC) QN=crI PE=3 SV=1 SV=1 SV=1
33.	R <u>EX LESAP</u> Mass: 23612 Score: 33 Expect: 2.3e+002 Matches: 2 Redox-sensing transcriptional repressor Rex OS-Desulforudis audavviator (strain MP104C) GN=rex PE=3 SV=1
34.	N <u>NOM METJA</u> Mass: 19597 Score: 32 Expect: 3.1e+002 Matches: 2 Nicotinamide-nucleotide adenvlyltransferase OS-Methanocaldococcus jannaschii (strain ATOC 43067 / DSM 2661 / JAL-1 / JOM 10045 / NERC 100440) GN=MAU641 PE=1 SV=3
35.	M <u>IAALAOLM</u> Mass: 33483 Score: 32 Expect: 3.1e+002 Matches: 2 tRNA dimethylallyltransferase OS=Lactococcous lactis subsp. cremoris (strain MG1363) ON=miaA FE=3 SV=1
36.	<u>R98_RICR5</u> Mass: 14951 Score: 32 Expect: 3.2e+002 Matches: 2 305 ribosomal protein S8 05=Rickettsia rickettsii (strain Sheila Smith) GN=rpsH PE=3 SV=1
37.	LUIS SHLA4 Mass: 19470 Score: 32 Expect: 3.2e4002 Matches: 2 Srinbosylhomozeteine Jvase GS-Salmonel Ja azera (strain SL48) GH=Luis FE-3 SV=1 LUIS SHL24 Mass: 19470 Score: 32 Expect: 3.2e4002 Matches: 2 Srinbosylhomozeteine Jvase GS-Salmonel Ja cholerasauis (strain SL48) GH=Luis FE-3 SV=1 LUIS SHL24 Mass: 19470 Score: 32 Expect: 3.2e4002 Matches: 2 Srinbosylhomozeteine Jvase GS-Salmonel Ja cholerasauis (strain SC-602) Matches: 2 Score: 32 Srinbosylhomozeteine Jvase GS-Salmonel Ja cholerasauis (strain SC-602) Matches: 2 Score: 32 Srinbosylhomozeteine Jvase GS-Salmonel Ja enteriticijs FT4 (strain F125109) GH=Luis FE-3 SV=1 LUIS SHL2 Score: 32 Expect: 3.2e4002 Matches: 2 Srinbosylhomozeteine Jvase GS-Salmonel Ja enteriticijs FT4 (strain F125109) GH=Luis FE-3 SV=1 LUIS SHL2 Score: 32 Expect: 3.2e4002 Matches: 2 Srinbosylhomozeteine Jvase GS-Salmonel Ja enteriticijs FT4 (strain F125109) GH=Luis FE-3 SV=1 LUIS SHL2 Score: 32 Expect: 3.2e4002 Matches: 2 Srinbosylhomozeteine Jvase GS-Salmonel Ja e

Type of search :	Sequence Query
Enzyme :	Lys-N
Fixed modifications :	Carboxymethyl (C)
Mass values :	Monoisotopic
Protein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
Fragment Mass Tolerance:	± 0.6 Da
Max Missed Cleavages :	1
Instrument type :	Default
Query1 (818,4763,1+):	<no title=""></no>
	seq(C-I)
Query2 (818.4763,1+):	<no title=""></no>
:	seq(C-L)
Query3 (820.5340,1+):	<no title=""></no>
:	seq(C-I)
Query4 (820.5340,1+):	<no title=""></no>
:	seq(C-L)
Querv5 (840,9949,1+):	<no title=""></no>
	seq(C-L)
Query6 (840,9949,1+):	<no title=""></no>
	seg(C-I)
Querv7 (841.5867.1+);	<no title=""></no>
	cog((-D)

TF mass

MATRIX Mascot Search Results

User : Y Wang Email : kahr20003@gmail.com Search tite : Database : SwirsBrot 2016.03 (550740 sequences; 196582750 residues) Timestamp : 14 Apr 2016 at 05:29:40 GWT Top Score : 41 for ATPF_CANGA, ATP synthase subunit 4, mitochondrial OS=Candida glabrata (strain ATCC 2001 / CBS 138 / JCM 3761 / NBRC 0622 / NRRL Y-65) GN=ATP4 PE=3 SY=

Mascot Score Histogram

Protein score is -10+Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p(0.05).

Concise Protein Summary Report

Format As	Concise Protein Summa	ry v	Help	
	Significance threshold	i p< 0.05	Max number of hits 200	
	Preferred taxonomy	All entries		

Re-Search All Search Unmatched

ATFF_CNNGA Mass: 26612 Score: 41 Expect: 43 Matches: 10 ATP synthase subunit 4, mitochondrial OS=Candida glabrata (strain ATOC 2001 / OBS 138 / JCM 3761 / NBRC 0622 / NRRL Y-65) GN=ATP4 FE=3 SV=1 1.

	AIP synthase subunit 4, mitochondrial US=Uandida glabrata (strain AUU 2001 / UBS 138 / JUM 3761 / MBRU 0622 / NBRU Y-65) UR=AIP4 PE=3 SV=1
2.	<u>PS82_THEGJ</u> Mass: 22006 Score: 41 Expect: 43 Matches: 8 Proteasome subunit beta 2 OS=Thermococcus gammatolerans (strain DSM 15229 / JCM 11827 / EJ3) QN⊨psmB2 PE=3 SV=1
3.	<mark>RUME PROMP Mass:</mark> 39939 Score: 37 Expect: 1e+002 Matches: 12 Holliday junction ATP-dependent DNA helicase RuxB OS=Prochlorococcus marinus subsp. pastoris (strain COMP1986 / MED4) GN=ruxB FE=3 SV=1
4.	R <mark>1MM_BACNF Mass:</mark> 19855 Score: 36 Expect: 1.3e+002 Matches: 10 Ribosome maturation factor RimM 0S=Bacillus methylotrophicus (strain DSM 23117 / BS3C 1046 / FZB42) GN=rimM PE=3 SV=1
5.	<u>SERE_STRT2</u> Mass: 23583 Score: 36 Expect: 1.5e+002 Matches: 10 Phosphoserine phosphatase OS=Streptococcus thermophilus (strain ATOC BAA-250 / LMG 18311) GN=serB PE=1 SV=1
6.	<u>COR13_ARATH</u> Mass: 47415 Score: 35 Expect: 1.6e+002 Matches: 15 Cystime Tyase COR13 OS=Arabidopsis thatiana QN=COR13 PE=1 SV=1
7.	<u>003H_BURM4</u> Mass: 13263 Score: 35 Expect: 1.9e+002 Matches: 6 Glycine cleavage system H protein OS-Burkholderia ambifaria (strain MC40-6) GN⊧gcvH FE=3 SV=1
8.	<u>RS8_THEAC</u> Masss: 14516 Score: 34 Expect: 2e+002 Matches: 9 30S ribosomal ⊭rotein S8 0S=Thermoplasma acidophilum (strain ATCC 25905 / DSM 1728 / JOM 9062 / NBRC 15155 / AMRC-C165) GN=rps8 PE=3 SV=1
9.	Y <u>1512_SULAC</u> Mass: 25892 Score: 34 Expect: 2.4e+002 Matches: 10 UPF0173 metal-dependent hydrolase Saci_1512 OS=Sulfoldous acidocaldarius (strain ATOC 33909 / DSM 639 / JCM 9929 / NBRC 15157 / NCINB 11770) GN=Saci_1512 PE=3 SV=2
10.	RL <u>7_STAED</u> Masss: 12643 Score: 33 Expect: 3e+002 Matches: 11 505 ribosomal protein L7/L12 OS=Stambylococcus epidemnidis (strain ATOC 35984 / RP62A) GN=rpIL PE=3 SV=1 RL <u>7_STAES</u> Mass: 12643 Score: 33 Expect: 3e+002 Matches: 11 505 ribosomal protein L7/L12 OS=Stambylococcus epidemnidis (strain ATOC 12228) GN=rpIL PE=3 SV=1
11.	<u>Y275 ME138</u> Mass: 11924 Score: 33 Expect: 3e+002 Matches: 7 Nucleoid+associated protein Msil_0275 0S≒Methylocella silvestris (strain BL2 / DSM 15510 / NCIMB 13906) GN≒Msil_0275 PE=3 SV=1
12.	<u>IPYR HAEDU</u> Mass: 19470 Score: 33 Expect: 3e+002 Matches: 7 Inorganic pyrophosphatase 05=Haemophilus ducreyi (strain 35000HP / ATOC 700724) GN=ppa PE=3 SV=1
13.	RL20_AZ0/0 Mass: 13385 Score: 32 Expect: 3.1e+002 Matches: 3 50S ribosomal protein L20_05=Azotobacter vinelandii (strain DJ / ATOC BAA-1303) GN=rp1T PE=3 SV=1 RL20_AZ0/1 Mass: 13428 Score: 32 Expect: 3.1e+002 Matches: 8
	uno monomana protein Lou os-konomacter vinetanti (strain ov / allo bav-toso) qu-tpitre-s sv-t <u>R20.4271</u> Mass: 1449 Score: 32 Expect 3.1cHol00. Matches: 8 505 ribosomal protein L20 05=Azotobacter vinetandii QH=rpITPE=3 SV=1
14.	Open of the second se
15.	<u>AMF_DMYFE</u> Masss 24843 Score: 31 Expect: 4.4e+002 Matches: 11 Antigenic membrane protein 05=Onion yellows phytoplasma (strain 0Y-M) GN=amp PE=1 SV=3
16.	<u>RL28 J2000</u> Mass: 9075 Score: 31 Expect: 4.5e+002 Matches: 5 505 ribosomal protein L28 OS=Azotobacter vinelandii (strain DJ / ATOC BAA-1303) GN=rpmB PE=3 SV=1
17.	E <u>FF_HULH_</u> Mass: 21088 Score: 31 Expect: 4.6e+002 Matches: 9 Elongation factor P 0S+Halorhodospira halophila (strain DSM 244 / 3L1) QN≥efp PE=3 SV=1
18.	DNAJLACRO Mass: 42068 Score: 31 Expect: 4.8e+002 Matches: 11 Chaperone protein DnaJ OS=Lactobacillus reuteri (strain DSM 20016) GH-dmaJ PE=3 SV=1 <u>NMJLACR</u> Mass: 42068 Score: 31 Expect: 4.8e+002 Matches: 11 Chaperone protein DnaJ OS=Lactobacillus reuteri (strain JOM 1112) GN=dmaJ PE=3 SV=1
19.	<u>ITH10_R8ATH</u> Mass: 17882 Score: 30 Expect: 4.9e+002 Matches: 7 Putative thioredoxin H10 05=Arabiddopsis thaliana GN=Ar3g56420 PE=3 SV=2
20.	ATP0_PSEA6 Mass: 19396 Score: 30 Expect: 4.9e+002 Matches: 8 ATP synthase subunit delta 06=Pseudoalteromonas atlantica (strain T6c / ATOC BAA-1087) GN=atpH PE=3 SV=1
21.	SYR HELP Mass: 62505 Score: 30 Expect: 5.6e+002 Matches: 14 ArgininetRNA ligase 05-Helicobacter hepaticus (strain ATOC 51449 / 381) GN-argS PE-3 SV-1
22.	Y <u>717_DESRM</u> Mass: 10302 Score: 30 Expect: 5.6e+002 Matches: 8 UFF0235 protein Dred_0717 0S=Desulfotomaculum reducens (strain MI-1) QN=Dred_0717 PE=3 SV=1
23.	DX.RMT Mass: 30735 Score: 30 Expect: 5.6e+002 Matches: 10 Decoxycytidine kinase 0S=Rattus norvegicus GN=Dck FE=1 SV=1

24. <u>BOH2_APATH</u> Mass: 33871 Score: 30 Expect: 5.9e+002 Matches: 9 Beta-carotene 3-hydroxylase 2, chloroplastic 0S=Arabidopsis thaliana GN=BETA-OHASE 2 PE=2 SV=1

24.	Beta-carotene S-hodrow Use 2, chloroplastic OS-Arabidopsis thaliana OH/EETA-OH/EE 2 PE=2 SV=1
25.	<u>RL14E_THESM</u> Mass: 9004 Score: 30 Expect: 6e+002 Matches: 7 50S ribosomal protein L14e 0S=Thermococcus sibiricus (strain MM 739 / DSM 12597) GN=rp114e PE=3 SV=1
26.	<u>7/1727 H.MAN</u> Mass: 60196 Score: 30 Expect: 6.2∉902 Matches: 19 Putative zinc finger protein 727 0S=Homo sapiens ON=2NF727 PE=5 SV=3
27.	<mark>PSAH_BRACM Mass:</mark> 15400 Score: 29 Expect: 6.3e+002 Matches: 7 Photosystem I reaction center subunit VI, chloroplastic OS+Brassica campestris QN+PSAH FE=2 SV=1
28.	U <mark>FE3_CHRSD Mass:</mark> 11020 Score: 29 Expect: 8.5e+002 Matches: 7 Urease subunit zamma QS=Chromohalobacter salexizens (strain DSM 3043 / ATCC BAA-138 / NCIMB 13768) GN=ureA PE=3 SV=1
29.	<u>RL6_MANSM</u> Mass: 19027 Score: 29 Expect: 6.6e+002 Matches: 7 50S ribosomal protein L6 0S=Mannheimia succiniciproducens (strain MBEL55E) GN=rp1F PE=3 SV=1
30.	<u>MINE_NITEU</u> Mass: 11560 Score: 29 Expect: 6.9e+002 Matches: 6 Cell division topological specificity factor OS=Nitrosomonas europaea (strain ATCC 19718 / NERC 14298) GN⊨minE PE=3 SV=1
31.	HISO BAOLD Mass: 27423 Score: 29 Expect: 8.9e+002 Matches: 8 Imidazole glycerol phosphate synthase suburit HisF 05-Bacillus licheniformis (strain ATOC 14580 / DSM 13 / JGM 2505 / NERC 12200 / NCIMB 9375 / NERL NES-1264 / Gibson 46) GN=hisF PE=3 SV=1
32.	<u>Y2210 ARGFU</u> Mass: 8957 Score: 29 Expect: 6.9e+002 Matches: 6 Uncharacterized protein AF_2210 OS=Archaeoglobus fulgiolus (strain ATCC 49558 / VC-16 / DSM 4304 / JCM 9628 / NBRC 100126) GN=AF_2210 PE=4 SV=1
33.	A <u>UH3 GEOSE</u> Mass: 36837 Score: 29 Expect: 7.3e+002 Matches: 11 Alcohol dehydrogenase 0S=Geobacillus stearothermophilus PE=1 SV=1
34.	U <u>RE3_TOLAT</u> Mass: 11055 Score: 29 Expect: 7.6e+002 Matches: 8 Urease subunit gamma OS=Tolumonas auensis (strain DSM 9187 / TA4) QN=ureA FE=3 SV=1
35.	<u>ATFD HYPNA</u> Mass: 19615 Score: 28 Expect: 7.8e+002 Matches: 8 ATP synthase subunit delta 05=Hyphomonas neptunium (strain ATOC 15444) QN=atpH PE=3 SV=1
36.	ALFXB_DANFE Mass: 37213 Score: 28 Expect: 7.8e+002 Matches: 8 Aurora kinase B 0S=Danio rerio GN=aurkb PE=2 SV=1
37.	<u>IHFA.PSYIN</u> Mass: 11032 Score: 28 Expect: 7.8e+002 Matches: 8 Internation boet factor subunit aleba (NSEBsurbrowonas inerabamii (strain 37) GNEibfà PE=3 SV=1
37.	I <mark>HFA_PSYIN Mass:</mark> 11032 Score: 28 Expect: 7.8e+002 Matches: 8 Integration host factor subunit alpha OS=Psychromonas ingrahamii (strain 37) GN=ihfA PE=3 SV=1
38.	<u>KAR YEAST</u> Mass: 35596 Score: 28 Expect: 8.1e+002 Matches: 11 NMDPH-dependent alpha-keto amide reductase OS-Saccharomyces cerevisiae (strain ATOC 204508 / S288c) GN=YDL124W FE=1 SV=1
39.	R <u>ASF4 MCUSE</u> Mass: 37201 Score: 28 Expect: 8.1e+002 Matches: 10 Ras association domain-containing protein 4 OS=Mus musculus GN=Rassf4 PE=1 SV=1
40.	MSDL MOLEE Mass: 41279 Score: 28 Expect: 8.1e+002 Matches: 11 Mb/SWMT-Tike DNA-binding domain-containing protein 4 (0=Mus musculus ONHesant44 PE=2 SV=1 Mb/SWMT-Tike DNA-binding domain-containing protein 4 (0=Rattus norvegicus GN=Msant44 PE=1 SV=1
41.	MUCEN_RAT Mass: 26616 Score: 28 Expect: 8.1e+002 Matches: 8 Endomucin OS=Rattus norvegicus GN=Emon PE=2 SV=1
42.	<u>QCST_CLOBJ</u> Mass: 41806 Score: 28 Expect: 8.3e+002 Matches: 13 Aminomethyltransferase OS=Clostridium botulinum (strain Kyoto / Type A2) QN=gcvT PE=3 SV=1
43.	CMC26_KULA Mass: 30726 Score: 28 Expect: 8.7e*002 Matches: 14 Pre-mRMA-solicing factor CMC26 08=Kluwveromovces lactis (strain ATOC 8585 / CBS 2359 / DSM 70799 / NBRC 1267 / NBRL Y-1140 / MM87) GN=CMC26 PE=3 SV=1
44.	<u>RMP1_D1001</u> Mass: 57004 Score: 28 Expect: 8.7e+002 Matches: 17 Ribosomal RNA processing protein 1 homolog OS=Dictyostelium discoideum GN=rrp1 PE=3 SV=1
45.	IEX0_MULE Mass: 25595 Score: 28 Expect: 9.7e+002 Matches: 10 Testis-expressed sequence 30 protein OS=Mus musculus GN=Tex30 PE=1 SV=1
_	

Search Parameters
Type of search
Enzyme
Eixed modifications
Fixed modifications
Composition
Fraces
Protein Mass Tolerance:
Composition
Fracement Mass Tolerance:
Composition
Cleavages
I
Instrument type
Eugenation
Eugenati

TF mass/mass+c

MATRIX Mascot Search Results

User : Y Wang Email : kahn200030gmail.com Search title : Database : SwissProt 2016.03 (550740 sequences; 196582750 residues) Timestamp : 14 Apr 2016 at 07:11:56 GMT Top Score : 138 for TRFE_BOVIN, Serotransferrin 0S=Bos taurus GN=TF PE=2 SV=1 Mascot Score Histogram

Protein score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p(0.05).

Concise Protein Summary Report

Format As	Concise Protein Summary V	Help
	Significance threshold p< 0.05	Max number of hits 200
	Preferred taxonomy All entries	~

Re-Search All Search Unmatched

1.	<u>INFE_BOVIN</u> Mass: 79907 Score: 138 Expect: 8.7e-009 Matches: 15 Serotransferrin OS=Bos taurus GN=TF PE=2 SV=1
2.	POK_CORDI Mass: 42755 Score: 42 Expect: 35 Matches: 7
2.	<u>PGK_CORDI</u> Mass: 42755 Score: 42 Expect: 35 Matches: 7 Phosphoglycerate kinase OS=Corynebacterium diphtheriae (strain ATCC 700971 / NCTC 13129 / Biotype gravis) GN=pgk PE=3 SV=1
3.	<u>PURA (LD88</u> Mass: 47525 Score: 41 Expect: 40 Matches: 9 Adenvilosuccinate synthetase 0S≑Clostridium beijerinckii (strain ATOC 51743 / NCIMB 8052) GN≔purA PE=3 SV=1
4.	H <u>FRT FEBPA</u> Mass: 20256 Score: 40 Expect: 51 Matches: 8 Hypoxanthine/auanine phosphoribosyltransferase 0S=Ferroglobus placidus (strain DSM 10642 / AEDI11200) GN=hpt PE=3 SV=1
5.	HISS BACLD Mass: 27423 Score: 40 Expect: 55 Matches: 6 Imidazole glycerol phosphate synthase subunit HisF OS=Bacillus licheniformis (strain ATOC 14580 / DSM 13 / JCM 2505 / NBRC 12200 / NCIMB 9375 / NBRL NRS-1284 / Gibson 46) GN+hisF FE=3 SV=1
6.	MATK_DICE_ Mass: 62416 Score: 40 Expect: 59 Matches: 11 Maturase K 0S=Dioscorea elechantipes GN=matK FE=3 SV=1
7.	<u>IF2A PYRAB</u> Mass: 31892 Score: 39 Expect: 63 Matches: 10 Translation initiation factor 2 subunit alpha 08-Pyrococcus abyssi (strain GE5 / Orsay) GN=eif2a PE=1 SV=1
8.	<u>PS82_THEGJ</u> Mass: 22006 Score: 39 Expect: 73 Matches: 8 Proteasome subunit beta 2 05=Thermococcus gammatolerans (strain DSM 15229 / JCM 11827 / EJ3) GN=psmB2 PE=3 SV=1
9.	A <u>TFF_CANDA</u> Mass: 20612 Score: 38 Expect: 81 Matches: 9 ATP synthase subunit 4. mitochondrial OS=Candida glabrata (strain ATOC 2001 / OSS 138 / JOM 3761 / NBRC 0622 / NRRL Y-65) GN=ATP4 FE=3 SV=1
10.	AFF4 HUMAN Mass: 127788 Score: 38 Expect: 81 Matches: 18 AF4/FMP2 family member 4 0S=Homo sapiers GN=AFF4 PE=1 SV=1
11.	<u>ITRIA BCEBA</u> Mass: 80079 Score: 87 Expect: le+002 Matches: 5 tRNA pseudouridine symthase A 08-Bdellovibrio bacteriovorus (strain ATCC 15856 / DSM 50701 / NCIB 9529 / HD100) GN=truA FE=3 SV=1
12.	NDC_PARCP Mass: 15273 Score: 37 Expect: le+002 Matches: 7 Nucleoside diphosphate kinase 0S=Paracoccus denitrificans (strain Pd 1222) GN=ndk PE=3 SV=1
13.	ALEVE DAVEE Mass: 37213 Score: 37 Expect: 1e+002 Matches: 8 Aurora kinase B OS-Danio rerio GN=aurkb PE=2 SV=1
14.	<u>IPYR HNEDU</u> Mass: 19470 Score: 37 Expect: 1.1e+002 Matches: 6 Inorganic pyrophosphatase 08=Haemophilus ducreyi (strain 35000HP / ATOC 700724) GN=ppa PE=3 SV=1
15.	PIR9_0LOTE Mass: 58689 Score: 37 Expect: 1.2e+002 Matches: 15
15.	<u>PUR9_CLOTE</u> Mass: 56669 Score: 37 Expect: 1.2e+002 Matches: 15 Bifunctional purine biosynthesis protein PurH 0S=Clostridium tetani (strain Massachusetts / E88) QN=purH PE=3 SV=1
16.	BUIC 2001N Mass: 17555 Score: 38 Expect: 1:.3e4002 Matches: 4 U1 mail Inclear riboncleoprotein (CS+Bos taums 0H>MPC FF:2 SV=1 Score: 4 Score: 4 Score: 5 Score: 5
17.	BR19_MAIZE Mass: 10750 Score: 8 Expect: 1.4e+002 Matches: 9 305 ribosomal protein S19, chloroplastic GS=2ea muys GH=ros]9+A FE=3 SV=4 RS19_SMLPL Mass: 1070 Score: 8 Expect: 1.4e+002 Matches: 9 305 ribosomal protein S18, chloroplastic GS=3acdmann hbrid Hbres19+A FE=3 SV=1 RS19_SMLP Mass: 1070 Score: 8 Expect: 1.4e+002 Matches: 9 305 ribosomal protein S18, chloroplastic GS=3acdmann hbres19 FE=3 SV=1 RS19_SMLP Mass: 1070 Score: 8 SV=1 SV=1 305 ribosomal protein S19, chloroplastic GS=3acdmann FE=3 SV=1 305 ribosomal protein S19, chloroplastic GS=3acdmann FE=3 SV=1 305 ribosomal
18.	<u>RL27 PEPO8</u> Mass: 10421 Score: 36 Expect: 1.4e+002 Matches: 5 505 ribosomal protein L27 05=Peptoclostridium difficile (strain 630) QN=rpmA PE=3 SV=1
19.	EFG_BACCE_ Mass: 1332 Score: 35 Expect: 1.6e+002 Matches: 3 Eloneation factor G (Fraament) 05-Bacillus cereus GN=fusA PE=1 SV=2
20.	ATFF RALPJ Mass: 17223 Score: 35 Expect: 1.7e+002 Matches: 6

20.	<u>ATFF RALPJ</u> Mass: 17223 Score: 35 Expect: 1.7e+002 Matches: 6 ATP synthase subunit b OS=Ralstonia pickettii (strain 12.)) GN=atpF PE=3 SV=1
21.	<u>Y010 084WF</u> Mass: 39543 Score: 35 Expect: 1.9e+002 Matches: 8 Uncharacterized protein ORF10 08-0streid herpesvirus 1 (isolate France) GN=0RF10 PE=4 SV=1
22.	Sig (LDB) Mass: 9513 Score: 35 Expect: 1.9e+002 Matches: 6 305 Pibosonal protein 518 OS-Clostridium botulinum (strain ATDC 19877 / Type AD (AH=nesR PE=3 SV=1 Sig (LDB) Mass: 9513 Score: 35 Expect: 1.9e+002 Matches: 6 305 Pibosonal protein 518 OS-Clostridium botulinum (strain 657 / Type Bd) (BH=nesR PE=3 SV=1 Sig (LDB) Mass: 9513 Score: 35 Expect: 1.9e+002 Matches: 6 305 Pibosonal protein 518 OS-Clostridium botulinum (strain 1b1 / ATDC 5502 / NTD: 1319 / Type A) ON=nesR PE=3 SV=1 Sig (LDB) Mass: 9513 Score: 35 Expect: 1.9e+002 Matches: 6 305 Pibosonal protein 518 OS-Clostridium botulinum (strain 1b1 / ATDC 5502 / NTD: 1319 / Type A) ON=nesR PE=3 SV=1 Sig (LDB) Mass: 9513 Score: 35 Expect: 1.9e+002 Matches: 6 305 Pibosonal protein 518 OS-Clostridium botulinum (strain 0kra / Type B) ON=nesR PE=3 SV=1 Sig (LDB) Mass: 9513 Score: 35 Expect: 1.9e+002 Matches: 6 305 Pibosonal protein 518 OS-Clostridium botulinum (strain 1cameland / MCE 10281 / Type F) ON=nesR PE=3 SV=1 <td< th=""></td<>
23.	<u>Y570_MYCGA</u> Mass: 8303 Score: 34 Expect: 2e+002 Matches: 3 UPF0154 protein MYCGA5700 OS=Myccplasma gallisepticum (strain R(low / passage 15 / clone 2)) GN=MYCGA5700 PE=3 SV=1
24.	<u>RS20_M00TA</u> Mass: 11783 Score: 34 Expect: 2e+002 Matches: 6 305 ribosomal protein S20 05=Moorella thermoacetica (strain ATCC 30073) GN=rpsT PE=3 SV=1
25.	RL9_BUC45 Masss: 16648 Score: 34 Expect: 2e+002 Matches: 8 505 ribosomal protein L9 05=Buchera ashidicola subse. Acyrthosinhon pisum (strain 5A) GN=rpl[PE=3 SV=1 RL9_BUC41 Masss: 16648 Score: 34 Expect: 2e+002 Matches: 8 505 ribosomal protein L9 05=Buchera ashidicola subse. Acyrthosinhon pisum (strain APS) GN=rpl[PE=3 SV=1 RL9_BUC41 Mass: 16648 Score: 34 Expect: 2e+002 Matches: 8 505 ribosomal protein L9 05=Buchera ashidicola subse. Acyrthosinhon pisum (strain Tuc7) GN=rpl[PE=3 SV=1
26.	PROD HAEDU Mass: 20342 Score: 34 Expect: 2.1e+002 Matches: 7 RNA chaperone ProD 05=Haemochilus ducreyi (strain 35000HP / ATCC 700724) GN=proD PE=3 SY=1
27.	R27A2_ARATH Mass: 16340 Score: 34 Expect: 2.4e+002 Matches: 4 605 ribosomal protein L27a-2 Cis-Arabidopsis that ina Git PEC/27AB PE-2 Sv=1 605 ribosomal protein L27a-2 Cis-Arabidopsis that ina Git PEC/27AB PE-2 Sv=1 605 ribosomal protein L27a-2 Cis-Arabidopsis that ina Git PEC/27AB PE-2 Sv=1 605 ribosomal protein L27a-2 Cis-Arabidopsis that ina Git PE-2/27A PE-2 Sv=1 605 ribosomal protein L27a-2 Cis-Arabidopsis that ina Git PE-2/27A PE-2 Sv=1 605 ribosomal protein L27a-3 Cis-Arabidopsis that ina Git PE-2/27A PE-2 Sv=1 605 ribosomal protein L27a-3 Cis-Arabidopsis that ina Git PE-2/27A PE-2 Sv=2 605 ribosomal <t< th=""></t<>
28.	<u>H150 (ECSW</u> Mass: 27861 Score: 34 Expect: 2.4e+002 Matches: 5 Imidazole glycerol phosphate synthase subunit HisF 0S=Geobacillus sp. (strain WCH70) GN=hisF PE=3 SV=1
29.	<u>BT5_APATH</u> Mass: 40098 Score: 34 Expect: 2.5e+002 Matches: 7 BTE/POZ and TAZ domain-containing protein 5 OS=Arabidopsis thaliana QN=BT5 PE=1 SV=1

Type of search :	Sequence Query
Enzyme :	Lys-N
Fixed modifications :	Carboxymethyl (C)
Mass values :	Monoisotopic
Protein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
Fragment Mass Tolerance:	± 0.6 Da
Max Missed Cleavages :	1
Instrument type :	Default
Query1 (825,6694,1+):	<no title=""></no>
Query2 (829.7115.1+):	<no title=""></no>
	seq(C-G)
Query3 (832.5867.1+):	<no title=""></no>
Query4 (837.5821,1+):	<no title=""></no>
:	seq(C-G)
Query5 (846.6149,1+):	<no title=""></no>
Query6 (849.5739,1+):	<no title=""></no>
Query7 (851.6666,1+):	<no title=""></no>
Query8 (852.6093,1+):	<no title=""></no>
:	seq(C-I)
Query9 (852.6093,1+):	<no title=""></no>
	seq(C-L)
Query10 (857.6361.1+):	<no title=""></no>
Query11 (857.6544,1+):	<no title=""></no>
Query12 (861.2213,1+):	<no title=""></no>
Query13 (861.2609,1+):	<no title=""></no>
Query14 (861.2654,1+):	<no title=""></no>
Query15 (869.6453,1+):	<no title=""></no>
Query16 (877.2189,1+):	<no title=""></no>
Query17 (887.6663,1+):	<no title=""></no>
:	seq(C-G)

TF mass+c

User Email	: Y Wang : kahn20003@gmail.com
Search title Database	: : SwissProt 2016 03 (550740 sequences: 196582750 residues)
Timestamp Top Score	: 14 Apr 2016 at 07:12:05 GMT : 175 for <mark>TRFE_BOVIN,</mark> Serotransferrin OS=Bos taurus GN=TF PE=2 SV=1
Mascot Score	Histogram
Protein score is -10 Protein scores grea	≫Log(P), where P is the probability that the observed match is a random event. ter than 70 are significant (p<0.05).
e 1110	
¹ ²⁰ ¹ ²⁰	
- 15 - - 9	
ž 10-	
5 -	
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
o · o ·	
Concise Prote	in Summary Report
Format As Conci	se Protein Summary V Help
Signif	icance threshold p(0.05 Max number of hits 200
Prefe	rred taxonomy All entries
Re-Search All	Search Unmatched
1. <u>TRFE_BOVI</u>	Mass: 79907 Score: 175 Expect: 1.7e-012 Matches: 11
Serotrans	ferrin OS=Bos taurus GN=TF PE=2 SV=1
2. EFG_BACCE	Mass: 1332 Score: 45 Expect: 18 Matches: 3
2. <u>EFG_BACCE</u> Elongatio	Mass: 1332 Score: 45 Expect: 18 Matches: 3 n factor G (Fragment) OS=Bacillus cereus GN=fusA PE=1 SV=2
 MURD_LACG UDP-N-ace 	A Mass: 51710 Score: 41 Expect: 47 Matches: 3 tylmuramov/lalanineD-alutamate lizase 08-Lactobacillus zasseri (strain ATOC 33323 / DSM 20243 / JCM 1131 / NCIMB 11718 / AM63) GN=murD PE=3 SV=
4. RUIC_BOVI	N Mass: 17555 Score: 39 Expect: 66 Matches: 2
RUIC_CANL	nuclear ribonucleoprotein t US-Bos taurus un-Swint PE-2 SV-2 E Mass: 17555 Score: 39 Expect: 66 Matches: 2
U1 small RU1C CHIC	nuclear ribonucleoprotein C OS=Canis lupus familiaris GN=SNRPC PE=3 SV=1 K Mass: 17557 Score: 39 Expect: 66 Matches: 2
UI small	nuclear ribonucleoprotein C OS=Gallus gallus GN=SNRPC PE=3 SV=1 Nenes 17449 - Senes 20 - Eveneti 60 Metabast 2
U1 small	mass: 1/440 Score: 39 Expect: 00 matches: 2 nuclear ribonucleoprotein C OS=Danio rerio GN=snmpc PE=2 SV=1
<u>RUIC_HUMA</u> U1 small	N Mass: 17555 Score: 39 Expect: 66 Matches: 2 nuclear ribonucleoprotein C-0S=Homo sapiens GN=SNRPC-PE=1-SV=1
RUIC_MACM	U Mass: 17555 Score: 39 Expect: 66 Matches: 2
RU1C_MOUS	E Mass: 17525 Score: 39 Expect: 66 Matches: 2
UI small RUIC_RAT	nuclear ribonucleoprotein U US=Mus musculus UN=Snrpc PE=1 SV=1 Mass: 17525 Score: 39 Expect: 66 Matches: 2
U1 small RU1C YEM	nuclear ribonucleoprotein C OS-Rattus norvegicus GN-Snrpc PE-3 SV-1 A Mars: 17534 - Scora: 39 - Evnect: 66 Matches: 2
U1 small	nuclear ribonucleoprotein C 06-Xenopeut avers GN=snrpc FE-2 SV=1
UI small	K_ Mass: 17552 Score: 39 Expect: 66 Matches: 2 nuclear ribonucleoprotein ClOS=Xenopus tropicalis GN=snrpc PE=2 SV=1
5. <u>Y570_MYOG</u> UPF0154 p	A. Mass: 8303 Score: 39 Expect: 69 Matches: 2 rotein MNC345700 DSHMocolasma zallisecticum (strain R(low / passaze 15 / clone 2)) GNHMYCG45700 PE=3 SV=1
6. TRUA_BDEB	Mass: 30073 Score: 38 Expect: 78 Matches: 2
thNA pseu	douridine synthase A US-Eddellovibrio bacteriovorus (strain AlU, 15396 / USM 50701 / NULB 5529 / HUIOU) GN-trua PE-3 SV-1
 <u>RS9_NEIG1</u> 30S ribos 	Maass: 143/1 Score: 38 Expect: 91 Matches: 2 mal protein S9 05*Neiseria acnormhoeae (strain ATC 700825 / FA 1090) GN=nes] PE=3 SV=1
RS9_NEIG2	Mass: 14371 Score: 38 Expect: 91 Matches: 2 mell encete: 90 02*bit encete and encete (state in NO2110/E) ON-mell EC-2 9/11
RS9_NEIMO	Mass: 14417 Score: 38 Expect: 91 Matches: 2
30S ribos RS9 NFIMA	omal protein S9 05+Neisseria meningitidis serogroup C (strain 053442) GN=rpsI FE=3 SV=1 Mass: 14417 Score: 38 Fynect: 91 Matches: 2
30S ribos	omal protein S9 OS=Neisseria meningitidis serogroup C (strain 053442) GN=rpsI PE=3 SV=1
30S ribos	mass: 14417
RS9_NEIMB 30S_ribon	Mass: 14417 Score: 38 Expect: 91 Matches: 2 mal.protein S9 OSeNeisseria meningitidis serveroup B (strain MOSR) GNamel PE33 SNa1
	Mass: 14417 Sorpe: 38 Expect: 91 Matches: 2

	1000 rithosmal mass. 1000 rithosmal mass. 1000 rithosmal profein S3 05446 seria emittidis seriorus B (strain MDS8) GH=npsIFE=3 SV=1 1000 rithosmal profein S3 05446 seria meningitidis seriorus C / seriorupe 2a (strain ATCC 700532 / DSM 15464 / FAMT8) GH=npsIFE=3 SV=1 1030 rithosmal profein S3 05476 seria meningitidis seriorus C / seriorupe 2a (strain ATCC 700532 / DSM 15464 / FAMT8) GH=npsIFE=3 SV=1 1030 rithosmal profein S3 05476 modecaterium violacum (strain ATCC 7472 / DSM 30191 / JCM 1249 / NERC 12614 / NCTM 9131 / NCTC 9757) GH=npsIFE=3 SV=1
8.	M <mark>RAZ_WHANS</mark> Mass: 17461 Score: 38 Expect: 96 Matches: 2 Transcriptional regulator MraZ OS⇒Marinomonas sp. (strain MMYLI) GN⇒mraZ PE=3 SV=1
9.	<u>RS20_MODTA</u> Mass: 11763 Score: 37 Expect: le+002 Matches: 2 305 ribosoma1 protein S20 05=Moorella thermoacetica (strain ATOC 39073) 0N≈rpsT PE=3 SV=1
10.	TFF1_TREPA Mass: 19465 Score: 37 Expect: 1e+002 Matches: 2 Antiaen TpF1 0S=Tresponema pallidum (strain Nichols) (N=tpf1 FE=1 SV=2 TFF1_TREPE Mass: 19483 Score: 37 Expect: 1e+002 Matches: 2 Antiaen TyF1 0S=Tresponema pallidum subsp. perterue FE=3 SV=2
11.	Y <mark>00F_SHEON Maass:</mark> 15475 Score: 38 Expect: 1.4e+002 Matches: 2 Putative pre-16S rRNA nuclease OS-Shewanella oneidensis (strain MR-1) QH-S0_3847 PE=3 SV=1
12.	R27A2_ARATH Mass: 16340 Score: 36 Expect: 1.4e+002_Matches: 2 605_ribosomal protein L27a-2 OEsArabidopsis thaliana GN=FR127AB_FE-2 Sv=1 R27A3_ARATH Mass: 16503 Score: 36_Expect: 1.4e+002_Matches: 2 605_ribosomal protein L27a-3 OEsArabidopsis thaliana GN=FR127AC PE=2 SV=2
13.	<u>RSMA MWASM</u> Mass: 33164 Score: 36 Expect: 1.5e+002 Matches: 2 Ribossmal RNA small subunit methyltransferase A OS=Mannheimia succiniciproducens (strain MBEL55E) GN=rsmA PE=3 SV=1
14.	<u>RS5_PSYMF</u> Mass: 17279 Score: 35 Expect: 1.6e+002 Matches: 2 305 ribosomal protein S5 08=Psychrobacter sp. (strain PRwf-1) QN≅rpsE FE=3 SV=1
15.	<u>TSAD FWEDU</u> Mass: 37301 Score: 35 Expect: 1.7e+002 Matches: 2 tRNA N6-adenosine threory/carbamoy/transferase 05-Haemochilus ducreyi (strain 35000HP / ATCC 700724) GN=tsaD FE=3 SV=1

16. <u>MED26 XENLA</u> Mass: 66196 Score: 35 Expect: 1.8e+002 Matches: 2 Mediator of RNA polymerase II transcription subunit 26 05=Xenopus laevis (NHmed26 PE=2 SV=1

	Mediator of RNA polymerase II transcription subunit 26 OS=Xenopus laevis GN=med26 PE=2 SV=1
17.	A <u>UFB_MUISE</u> Mass: 59042 Score: 35 Expect: 1.9e+002 Matches: 2 Amine oxidase[flavin-containing]B 05=Nus musculus GN=Mado PE=1 SV=4
18.	P <u>GK_CNF01</u> Mass: 42755 Score: 34 Expect: 2e+002 Matches: 2 Phosphoglycerate kinase OS=Corynebacterium diphtheriae (strain ATCC 700971 / NCTC 13129 / Biotype gravis) GN=pgk PE=3 SV=1
19.	ESI RAT Mass: 28503 Score: 34 Expect: 2e+002 Matches: 2 ESI protein homolog, mitochondrial OS-Rattus norvegicus PE=1 SV=2
20.	(<u>P2E1_CANLF</u> Mass: 56853 Score: 34 Expect: 2.3e+002 Matches: 2 Cytochrome P450 2E1 0S-Canis lupus familiaris GN-CYP2E1 PE=2 SV=1
21.	<u>CYC2_AFIMA</u> Mass: 13838 Score: 34 Expect: 2.5e+002 Matches: 2 Cytochrome c2 C8=Afifella marina PE=1 SV=1
22.	<u>GUAA SOCOM</u> Mass: 58973 Score: 33 Expect: 2.6e+002 Matches: 2 GMP synthase [glutamine-hydrolyzing] CS-Sodalis glossinidius (strain morsitans) GN=guaA PE=3 SV=1 GMP synthase [glutamine-hydrolyzing] OS-Cronobacter sakazakii (strain ATOC BMA-894) (N=guaA PE=3 SV=1
23.	<u>BT5_ARATH</u> Mass: 43098 Score: 33 Expect: 2.7e+002 Matches: 2 BTB/PDZ and TAZ domain-containing protein 5 OS=Arabidopsis thaliana QN=BT5 PE=1 SV=1
24.	N <u>HSE_COROI</u> Mass: 82551 Score: 83 Expect: 2.7e+002 Matches: 2 Homoserine kinase OS=Corynebacterium diphtheriae (strain ATOC 700971 / NCTC 13129 / Biotype gravis) GN=thrB PE=3 SV=1
25.	M <mark>ATK_ZINCF Mass:</mark> 62479
26.	E <u>FF_PSYCK</u> Maass: 21006 Score: 33 Expect: 2.8e+002 Matches: 2 Elongation factor P CS-Psychrobacter cryohalolentis (strain K5) GN=efp PE-3 SV=1
27.	HISE BACLD Mass: 27423 Score: 33 Expect: 3e+002 Matches: 2 Imidazole glycerol phosphate synthase subunit HisF 05+Bacillus licheniformis (strain ATOC 14580 / DSM 13 / JCM 2505 / NERC 12200 / NCIMB 9375 / NERL NES-1264 / Gibson 46) GN+hisF PE=3 SV=1
28.	P <mark>FA5 KULLA Mass: 4</mark> 1222 Score: 33 Expect: 3e+002 Matches: 2 Palmitoy transferase PFA5 0S=Kluyveromyces lactis (strain ATOC 8585 / CBS 2359 / DSM 70799 / MERC 1267 / MFRL Y-1140 / MM87) GN⊨PFA5 PE=3 SV=1
29.	CCFL MOLEE Mass: 40345 Score: 33 Expect: 3e+002 Matches: 2
29.	1 <mark>026_W0USE Mass: 40345 Score:</mark> 33 Expect: 3e+002 Matches: 2 CD5 antigen-like OS=Mus musculus GN=Cd51 PE=1 SV=3
30.	<u>SSB_MYCPE</u> Maass: 21466 Score: 32 Expect: 3.2e+002 Matches: 2 Single-stranded DNA-binding protein 05=Nvcoplasma penetrans (strain HF-2) GN-ssb PE=3 SV=1
31.	<u>QCST_CR068</u> Mass: 40112 Score: 32 Expect: 3.2e+002 Matches: 2 Aminomethyltransferase OS=Cronobacter sakazakii (strain ATOC BAA-884) GN=acvT PE=3 SV=1
32.	<u>GP42_EBV68</u> Mass: 25879 Score: 32 Expect: 3.4e+002 Matches: 2 Glycoprotein 42 05=Epstein-Barr virus (strain B95-8) GN=BZLF2 FE=1 SV=1

Type of search :	Sequence Query
Enzyme :	Lys-N
Fixed modifications :	Carboxymethyl (C)
Mass values :	Monoisotopic
Protein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
Fragment Mass Tolerance:	± 0.6 Da
Max Missed Cleavages :	1
Instrument type :	Default
Query1 (829.7115.1+):	<no title=""></no>
	seq(C-G)
Query2 (837.5821,1+):	<no title=""></no>
:	seq(C-G)
Query3 (852.6093,1+):	<no title=""></no>
:	seq(C-I)
Query4 (852.6093,1+):	<no title=""></no>
:	seq(C-L)
Query5 (887.6663,1+):	<no title=""></no>
:	seq(C-G)
Query6 (911.6262,1+):	<no title=""></no>
:	seq(C-V)
Query7 (919.6888,1+):	<no title=""></no>
:	seq(C-V)
Query8 (951.5214,1+):	<no title=""></no>
:	seq(C-G)
Query9 (957.5470,1+):	<no title=""></no>
:	seq(C-K)
Querv10 (957.5470.1+):	<no title=""></no>

CYC mass

MATRIX Mascot Search Results

User : Y Wang Email : kahn20003@gmail.com Search title : Database : SwissProt 2016_03 (550740 sequences: 196582750 residues) Timestamp : 14 Apr 2016 at 05:21:29 GMT Top Score : 43 for H_P_RICCN, Histone-like DNA-binding protein OS=Rickettsia conorii (strain ATCC VR-613 / Malish 7) GN=RC1088 PE=3 SV=1 Mascot Score Histogram

Protein score is -10#Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p(0.05).

Concise Protein Summary Report

Concise Frotei	n Summary Report		
Format As Concis	e Protein Summary 🖌	Help	
Signific	ance threshold p< 0.05	Max number of hits 200	
Prefer	red taxonomy All entries		~
Re-Search All S	earch Unmatched		

1.	<u>HLP.RICON</u> Masss: 10732 Score: 43 Expect: 30 Matches: 9 Histone-like DNA-binding protein OS-Rickettsia conorii (strain ATCC VR-613 / Malish 7) GN=RC1088 FE=3 SV=1
2.	CYC_HORSE Mass: 11941 Score: 42 Expect: 31 Matches: 10
2.	<u>CYC_HCRSE</u> Mass: 11941 Score: 42 Expect: 31 Matches: 10 Cytochrome c CS=Equus caballus GN=CYCS FE=1 SV=2
3.	<u>RR4 QUSRE</u> Mass: 23499 Score: 40 Expect: 58 Matches: 8 Plastid 30S ribosomal protein S4 OS=Cuscuta reflexa GN=rps4 PE=3 SV=1
4.	K <u>ATG KORVE</u> Mass: 83080 Score: 38 Expect: 85 Matches: 12 Catalase-peroxidase OS=Koribacter versatilis (strain Ellin345) GN=katG PE=3 SV=1
5.	<u>AFP6 YARLI</u> Mass: 44375 Score: 38 Expect: 94 Matches: 10 Actin-like protein AFP6 OS=Yarrowia lipolytica (strain CLIB 122 / E 150) GN=AFP6 PE=3 SV=1
6.	<u>RR4 CUSEX</u> Masss: 23490 Score: 37 Expect: 1e+002 Matches: 7 Plastid 30S ribosomal protein S4 OS=Cusouta exaltata GN=ros4 PE=3 SV=1
7.	<u>SSE EFFH2</u> Masss: 18385 Score: 37 Expect: 1.1e+002 Matches: 7 Single=strand=binding protein (05=Baci lus phage phi20 NF FE-1 SV=1 <u>SSE EFF20</u> Masss: 18322 Score: 37 Expect: 1.1e+002 Matches: 7 Single=strand=binding protein 05=Baci lus phage PZA 0H=5 FE-3 SV=1
8.	<u>HLP RICRI</u> Mass: 10713 Score: 36 Expect: 1.3e4002 Matches: 8 Histone-like DNA-binding protein OS-Rickettsia rickettsii PE-3 SV=1
9.	R <u>L23_STRE4</u> Mass: 10861 Score: 36 Expect: 1.3e+002 Matches: 8 505 ribosomal protein L23 OS=Streptococcus equi subsp. equi (strain 4047) ON=rpIW PE=3 SV=1
10.	RS9_FHCP2Masss: 17423 Score: 35 Expect: 1.6e+002 Matches: 8 305 ribosomal protein S9 05=Rhodcoseudomonas palustris (strain HaA2) GN=rps1_FE=3_SV=1
11.	MSCL_FROMH Maass: 14919 Score: 35 Expect: 1.7e+002 Matches: 5 Large=conductance mechanosersitive channel OS=Proteus mirabilis (strain HI4320) GN=mscL_PE=3 SV=1
12.	<u>ORF14_SPVIC</u> Mass: 4266 Score: 35 Expect: 1.8e+002 Matches: 6 Uncharacterized protein ORF14 OS=Spiroplasma virus SpVI-C74 GN+ORF14 FE=4 SV=1
13.	R <u>L28_PSEF3</u> Mass: 8903 Score: 34 Expect: 2.2e+002 Matches: 6 505 ribosomal protein L28 0S=Pseudomonas fluorescens (strain SBM25) GN=romB PE=3 SV=1
14. 14.	<u>VAT CAMP</u> Mass: 17833 Score: 34 Expect: 2.4e+002 Matches: 10 Aphid transmission protein 05=Cauliflower mosaic virus (strain PV147) O8+00F II PE=3 SV=1 <u>VALLAMP</u> Mass: 17635 Score: 34 Expect: 2.4e+002 Matches: 10 Aphid transmission protein 05=Cauliflower mosaic virus (strain PV147) GN=00F II PE=3 SV=1
15.	<u>DBP7_ASP0L</u> Mass: 83800 Score: 33 Expect: 2.5e+002 Matches: 12 ATP-dependent RNA helicase dop7 OS=Assersillus clavatus (strain ATCC 1007 / C8S 513.65 / DSM 816 / NCTC 3887 / NRRL 1) GN=dop7 PE=3 SV=1
16.	RL18_PSDMY Mass: 12637 Score: 33 Expect: 2.8e+002 Matches: 6 505 ribosomal protein L18 0S=Pseudomonas mendocina (strain ymp) QN=rpIR FE=3 SV=1
17.	CYC_EQUAS Mass: 11927 Score: 32 Expect: 3.1e+002 Matches: 9 Ovtochrome c OS=Equue sairuus QN=CYCS FE=1 SV=2 CYC_EQUAD Mass: 11927 Score: 32 Expect: 3.1e+002 Matches: 9 Ovtochrome c OS=Equue burchelli QN=CYCS FE=1 SV=2
18.	<u>DNAK RENSM</u> Mass: 66526 Score: 32 Expect: 3.1e+002 Matches: 11 Chaperone protein DnaK OS-Renibacterium salmoninarum (strain ATOC 33209 / DSM 20767 / JCM 11484 / NERC 15589 / NCIMB 2235) GN=dnaK PE=3 SV=1
19.	P <mark>YRH PELCO Mass:</mark> 25884 Score: 32 Expect: 3.1e+002 Matches: 7 Uridylate kinase 05-Pelobacter carbinolicus (strain DSM 2380 / Gra Bd 1) GN=pyrH PE=3 SV=1
20.	A <u>TPA BUOWI</u> Mass: 55394 Score: 32 Expect: 3.2e+002 Matches: 9 ATP synthase subunit alpha, chloroplastic OS=Bunus microphylla GN=atpA PE=3 SV=1
21.	RR4 LLC3A Mass: 23324 Score: 32 Expect: 3.2e4002 Matches: 7 305 ribosomal protein 54, chloroplastic OS-Lactuca sativa G4Fres4 FE-3 SV=1 RR4 FELAN Mass: 2324 Score: 32 Expect: 3.2e4002 Matches: 7 305 ribosomal protein 54, chloroplastic OS-Helianthus annus GN=rps4 PE-3 SV=1
22.	ICE2_DROME Mass: 78889 Score: 32 Expect: 3.4e+002 Matches: 10 Little elongation complex subunit 2 OS=Drosophila melanogaster GN=Ice2 FE=1 SV=1
23.	RR4 DAUCA Mass: 23398 Score: 32 Expect: 3.4e+002 Matches: 8 305 ribosomal protein S4, chloroplastic GS-Daucus carota GN=rps4 PE=3 SV=1
24.	EFIS_GEOLS Mass: 33519 Score: 32 Expect: 3.6e+002 Matches: 10 Elongation factor Ts OS-Geobacter lovleyi (strain ATOC BAA-1151 / DSM 17278 / SZ) QN=tsf PE=3 SV=1
25.	M <u>IAA CMLBD</u> Mass: 96265 Score: 32 Expect: 3.9e+002 Matches: 10 tFNA dimethylallyltransferase OS=Caldicellulosinuptor bescii (strain ATOC BAA-1888 / DSM 6725 / Z-1320) GN=miaA FE=3 SV=1
26.	UBIG HMEPS Mass: 27310 Score: 32 Expect: 3.9e+002 Matches: 7

26.	<u>UBIG HAEPS</u> Mass: 27310 Score: 32 Expect: 3.9e+002 Matches: 7 Ubiquinone biosynthesis O-methyltransferase OS-Haemochilus parasuis serovar 5 (strain SH0165) GN=ubiG PE=3 SV=1
27.	<u>RS17.CH_PN</u> Mass: 9883 Score: 31 Expect: 4e+002 Matches: 9 305 ribosomal protein S17 05=Chlamodia pneumoniae GN=rps0 PE=3 SV=1
28.	<u>RP4_DRUMI</u> Mass: 23729 Score: 31 Expect: 4e+002 Matches: 8 Plastid 30S ribosomal protein S4 OS=Orobanche minor GN=rps4 PE=3 SV=1
29.	I <mark>TAG_WOLPM Mass:</mark> 28351 Score: 31 Expect: 4.1e+002 Matches: 8 tRNA (guanine-N(7)-)-methyltransferase OS=Nolbachia pipientis wMel QN=trnB PE=3 SV=1
30.	R <u>L14_STRMJ</u> Mass: 13013 Score: 31 Expect: 4.2e+002 Matches: 8 505 ribosomal protein L14 05=Streptococcus mutans serotype c (strain ATOC 700610 / UA159) GN=rpIN PE=3 SV=1
31.	<u>RL28 HWHCH</u> Mass: 8972 Score: 31 Expect: 4.3e+002 Matches: 7 50S ribosomal protein L28 0S=Hahella chejuensis (strain KCTC 2396) GN=rpmB PE=3 SV=1
32.	<u>VMPC4 PYRH0</u> Mass: 17179 Score: 31 Expect: 4.6e*002 Matches: 7 Ribonuclease VacC4 QS=Pyrococcus horikoshii (strain ATOC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3) GN=vacC4 PE=1 SV=1
33.	<mark>EFF_X000M_ Mass</mark> : 20693 Score: 81 Expect: 4.3e+002 Matches: 6 Elongation factor P 05=Sodalis glossinidius (strain morsitans) GN=efp PE=3 SV=1
34.	<u>Y921_STAHJ</u> Mass: 19235 Score: 31 Expect: 4.8e+002 Matches: 6 UFF0340 protein SH0921 OS-Staphylococcus haemolyticus (strain JCSC1435) GN=SH0921 FE=3 SV=1
35.	Y2358_BAOLD Mass: 11830 Score: 30 Expect: 4.9e+002 Matches: 6 Nucleoid-associated protein BLi00029/BL02358 GS-Bacillus licheniformis (strain ATCC 14580 / DSM 13 / JCM 2505 / NBRC 12200 / NC1MB 3375 / NBRL NRS-1264 / Gibson 46) GN-BLi00029 PE=3 SV=1
36.	FLiJ_SMLTI Mass: 17869 Score: 30 Expect: 4.9e+002 Matches: 5 Flagellar Flij protein OS-Salmonella typhi (DN=Fil) FE3 SV=1 ELUSALTV Mass: 17889 Score: 30 Expect: 4.9e+002 Matches: 5 Flagellar Flij protein OS=Salmonella typhimurium (strain LT2 / SSS01412 / ATOC 700720) GN=flij PE=1 SV=1
37.	ODEAS H.MMAy Mass: 291832 Score: 30 Expect: 5e+002 Matches: 23 Collagen alpha-5(VI) chain 0S=Homo sapiens GN=CDL6A5 PE=1 SV=1 SV=1 SV=1
38.	L <u>YSM NEUCR</u> Mass: 84375 Score: 30 Expect: 5.3e+002 Matches: 11 Homoaconitase, mitochondrial OS-Neurospora crassa (strain ATOC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) GN=1ys-4 PE=3 SV=1
50.	<u>Lion Induxa</u> mass, 0077 JULNE, 00 LXDEL, J.GETOVE matches, 11 Homoaconitase, mitochondrial OS-Neurospora crassa (strain ATOC 24608 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) GNETys-4 PE-3 SV=1
39.	<u>ATPA.RHILO</u> Mass: 55088 Score: 30 Expect: 5.4e+002 Matches: 8 ATP synthase subunit alpha 05≒Rhizobium loti (strain MAFF303099) GN=atpA PE=3 SV=1
40.	<u>ISPE (LLOMB</u> Mass: 31458 Score: 30 Expect: 5.5e+002 Matches: 10 4-diphosphocytidy1-2-C-methy1-D-erythritol kinase OS=Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / WOM B-1787) GN≓ispE PE=3 SV=1
41.	<mark>RS9_FML3 Mass</mark> : 16680 Score: 30 Expect: 5.6e+002 Matches: 6 30S ribosomal protein S9 0S=Rhizobium leguminosarum bv. viciae (strain 3841) GN=rpsI PE=3 SV=1
42.	RL34_LFEP2 Mass: 5701 Score: 30 Expect: 5.9e+002 Matches: 7 508 ribosomal protein L34 05=Ureaplasma parvum servar 3 (strain ATOC 27815 / 27 / NCTC 11796) GN=rpmH PE=3 SV=1 RL34_LFEP2 Mass: 5701 Score: 30 Expect: 5.9e+002 Matches: 7 50S ribosomal protein L34 0S=Ureaplasma parvum servar 3 (strain ATOC 700970) GN=rpmH FE=3 SV=1
43.	R <u>128_SHEHH</u> Mass: 9224 Score: 30 Expect: 5.9e+002_Matches: 6 505_ribosomal protein L28_05=Shemanel la halifaxensis (strain HMH=EBA) GN=romB PE=3_SV=1 <u>R_28_SHEPA</u> Mass: 9240 Score: 30 Expect: 5.9e+002_Matches: 6 505_ribosomal protein L28_05=Shemanel la pealeana (strain ATOC 700345 / ANG-SOI) GN=rpmB PE=3_SV=1
44.	R <u>L28 FSEP1</u> Mass: 8975 Score: 30 Expect: 6.2e+002 Matches: 7 505 ribosomal protein L28 05=Pseudomonas putida (strain F1 / ATOC 700007) GN=rpmB PE=3 SV=1

Type of search : Enzyme : Fixed modifications :	Sequence Query Lys-N <u>Carboxymethyl (C)</u> Monoisotopic
Fragment Mass Tolerance:	± 0.5 Da ± 0.6 Da
Max Missed Cleavages : Instrument type :	Default
Query2 (828.7350,1+): Query3 (828.8386,1+):	<no title=""></no>
Query4 (832.8204,1+): Query5 (856.7492,1+):	<no title=""> <no title=""></no></no>
Query6 (859.9046,1+):	<no title=""></no>

CYC mass/mass+c

A SC	IRIX Mascot Search Results
User Email	: Y Wang : kahr20003@gmail.com
Searc Datab Times Top S	title : swissProt 2016_03 (550740 sequences; 198582750 residues) tamp : 14 Apr 2016 at 07:29:14 GMT sore : 137 for CVC-UMRSE, Cytochrome c OS=Equus caballus GN=CYCS PE=1 SV=2
Masc	ot Score Histogram
Proteir Proteir	score is -10#Log(P), where P is the probability that the observed match is a random event. scores greater than 70 are significant (p<0.05).
0 - 0 Hits	50 Protein Sore
Conc	ise Protein Summary Report
Form	t As Concise Protein Summary V Help
	Significance threshold p< 0.05 Max number of hits 200 Preferred taxonom/ All entries
Re-Se	arch All Search Unmatched
1.	OCLUMSE Mass: 11194 Score: 137 Expect: 1.1.0=008 Matches: 10 Ortochrome o OSHGause caballus (NHONS FEI 3V-2 Expect: 0.41 Matches: 5 Ortochrome o OSHGause caballus (NHONS FEI 3V-2 Expect: 0.41 Matches: 5 Ortochrome o OSHGaropus pisantess (NHONS FEI 3V-2 Expect: 0.41 Matches: 5 Ortochrome o OSHGaropus pisantess (NHONS FEI 3V-2 Expect: 0.41 Matches: 5 Ortochrome o OSHGaropus pisantess (NHONS FEI 3V-2 Expect: 0.01 Matches: 5 Ortochrome o OSHGaropus pisantess (NHONS FEI 3V-2 Expect: 0.01 Matches: 4 Ortochrome o OSHGaropus pisantess (NHONS FEI 3V-2 Expect: 35 Matches: 4 Ortochrome o OSHGaropus pisantess (NHONS FEI 3V-2 Expect: 35 Matches: 4 Ortochrome o OSHGaropus pisantess (NHONS FEI 3V-2 Expect: 35 Matches: 4 Ortochrome o OSHGaropus pisantess (NHONS FEI 3V-2 Expect: 35 Matches: 4 Ortochrome o OSHGaropus pisantess (NHONS FEI 3V-2 Expect: 35 Matches: 4 Ortochrome o OSHGaropus pisantess (NHONS FEI 3V-2 Expect: 35 Matches: 4 Ortochrome o OSHGaropus pis
2.	CVC_BULS Mass: 11927 Score: 100 Expect: 5.8e-005 Matches: 9 Ortochrome c OS-Educe Score: 100 Expect: 5.8e-005 Matches: 9 Ortochrome c OS-Educe Score: 100 Expect: 7.8e-005 Matches: 9 Ortochrome c OS-Educe Score: 100 Expect: 7.8e-005 Matches: 9 Ortochrome c OS-Educe Score: 40 Expect: 7.1 Matches: 5 Ortochrome c OS-Mirrowa Score: 40 Expect: 19 Matches: 5 Ortochrome c OS-Mirrowa Score: 45 Expect: 19 Matches: 5 Ortochrome c OS-Mirrowa Score: 45 Expect: 19 Matches: 5 Ortochrome c OS-Mirrowa Score: 45 Expect: 19 Matches: 5 Ortochrome c OS-Mirrowa Score: 45 Expect: 19 Matches: 5 Ortochrome c OS-Mirrowa Score: 45 Expect: 19 Matches: 5 Ortochrome c OS-Mirrowa Score: 45 Expect: 19 Matches: 5 Ortochrome c OS-Mirrowa Score: 5 S
3.	CYC <u>2 BOVIN</u> Mass: 11848 Score: 62 Expect: 0.35 Matches: 5 Cytochrome c 2 05=Bos taurus GN=CYCT PE=3 SV=3
4.	<u>CYC ALLMI</u> Mass: 11733 Score: 62 Expect: 0.38 Matches: 5 Cytochrome c 0S=Alligator mississippiensis FE=1 SV=2
5.	CYC_BOWIN Masss: 11812 Score: 43 Expect: 8 Matches: 6 Ovtochrome CSPBot tarurus GM=07X5 FE1 SV=2 Ovtochrome CSP3Les score: 43 Expect: 8 Matches: 6 Ovtochrome CS=000000000000000000000000000000000000
	Cytochrome c OS=Ovis aries GN=CYCS PE=1 SV=2
6.	<u>RL5_BORAL</u> Mass: 20185 Score: 46 Expect: 16 Matches: 7 50S ribosomal protein L5 OS=Bordetella avium (strain 197N) GN=mplE PE=3 SV=1
7.	BMF_DOVIN Mass: 10284 Score: 44 Expect: 20 Matches: 3 Barrier-to-autointegration factor 05-Bos taurus GN-BMFI FE-3 SV=1 Barrier-to-autointegration factor 05-Homo sapiers GN-BMFI FE-1 SV=1 Barrier-to-autointegration factor 06-Pongo abelii GN-BMFI FE-1 SV=1 Barrier-to-autointegration factor 06-Pongo abelii GN-BMFI FE-1 SV=1
8.	<u>CYC RABIT</u> Mass: 11800 Score: 43 Expect: 29 Matches: 5 Cytochrome c 0S=0ryctolagus cuniculus GM=CYCS PE=1 SY=2
9.	<u>Y989 METJA</u> Mass: 12743 Score: 41 Expect: 45 Matches: 4 Uncharacterized protein MJ0889 0S=Methanocaldococcus jannaschii (strain ATOC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NERC 100440) GN=MJ0889 PE=4 SV=1
10.	BL5_BORGR Mass: 2026 Score: 40 Expect: 51 Matches: 6 508 Flobecomal protein L5 058 Score: 40 Expect: 51 Matches: 6 508 Flobecomal protein L5 058 Flobecomal protein L5 Score: 40 Expect: 51 Matches: 6 508 Flobecomal protein L5 OS*Bordetella parapertussis (strain 1702 / ATCC BAA-587 / NCTC 13253) QN=rp/IE FE=3 SV=1 505 Flobecomal protein L5 OS*Bordetella parapertussis (strain 122 / ATCC BAA-587 / NCTC 13253) QN=rp/IE FE=3 SV=1 505 Flobecomal protein L5 OS*Bordetella parapertussis (strain 122 / ATCC BAA-589 / NCTC 13253) QN=rp/IE FE=3 SV=1 505 Flobecomal protein L5 OS*Bordetella parapertussis (strain Tohman 1 / ATCC BAA-589 / NCTC 13251) GN=rp/IE FE=3 SV=1
11.	<u>RL5 PM0FT</u> Mass: 20165 Score: 39 Expect: 69 Matches: 4 50S ribosomal protein L5 0S=Rhodoferax ferrireducens (strain ATOC BAA-621 / DSM 15236 / T118) QN=rpIE PE=3 SV=1
12.	A <u>IPA EUMI</u> Mass: 55394 Score: 39 Expect: 74 Matches: 8 ATP synthase subunit alpha, chloroplastic CS=Buxus microphylla GM-atcA PE-3 SV=1
13.	HISS_LISM6 Mass: 23241 Score: 38 Expect: 78 Matches: 5 Imidazole glycerol phosphate synthase subunit HisH 05-Listeria welshimeri serovar 6b (strain ATCC 35897 / DSM 20650 / SLCC5334) GN=hisH PE-3 SV-1
14.	M_RA_THEND Mass: 45440 Score: 38 Expect: 83 Matches: 8 UDP-N-acetylglucosamine 1-carboxyvinyltransferase (8:Thermodesulfovibrio yellowstonii (strain ATOC 51303 / DSM 11347 / YP87) QN=murA PE=3 SV=1
15.	<u>RL5 POLSI</u> Mass: 20219 Score: 38 Expect: 96 Matches: 4 505 ribosomal protein L5 05≑Polaromonas sp. (strain JS666 / ATCC BAA-500) QN=rpIE FE=3 SV=1

16 RIMO SOLIF Mass: 51927 Score: 37 Evnect: 1 let002 Matches: 6

16.	<u>RIMO SOLUE</u> Mass: 51927 Score: 37 Expect: 1.1e+002 Matches: 6 Ribosomal protein S12 methylthiotransferase RimO OS=Solibacter usitatus (strain Ellin6076) GN=rimO FE=3 SV=1
17.	[NLJ FELPS Mass: 74285 Score: 37 Expect: 1.2e+002 Matches: 11 DNA ligase 0S=Helicobacter pylori (strain Shi470) GN=ligA PE=3 SV=1
18.	<mark>HPCA_MYCA5 Mass:</mark> 88351 Score: 36 Expect: 1.3e+002 Matches: 7 Heat-inducible transcription repressor HrcA OS=Mycooplasma arthritidis (strain 158L3-1) GN=hrcA PE=3 SV=1
19.	<mark>RR4_JSPMA Mass</mark> : 22677 Score: 36 Expect: 1.4e+002 Matches: 6 30S ribosomal protein S4, chloroplastic (Fragment) 0S=Asparagus maritimus (N=rps4 FE=3 SV=1
20.	<u>DCILICHICX</u> Mass: 56206 Score: 36 Expect: 1.4e+002 Matches: 6 Cytoplasmic dynein 1 light intermediate chain 1 OS=Gallus gallus GN=D1ND1L11 FE=1 SV=1
21.	P <mark>YRE CELUU Maass:</mark> 23288 Score: 36 Expect: 1.4e+002 Matches: 5 Orotate phoschoribosyltransferase OS-Cellvibrio japonicus (strain Ueda107) GN=pyrE PE=3 SV=1
22.	MPR3_BOTFB Mass: 51823 Score: 36 Expect: 1.4e+002 Matches: 6 Probable Xaa-Pro aminopeptidase pepP 0S=Botryotinia fuckeliana (strain B05.10) (N=pepP PE=3 SV=1
23.	P <mark>F62_YEAST Mass:</mark> 53515 Score: 36 Expect: 1.4e+002 Matches: 9 Polyademylation factor subunit 2 OS=Saccharomyces cerevisiae (strain ATOC 204508 / S288c) QN=PFS2 PE=1 SV=1
24.	A <u>CC03 PETHY</u> Mass: 36540 Score: 36 Expect: 1.4e+002 Matches: 6 1-aminocyclopropane-1-carboxylate oxidase 3 OS-Petunia hybrida GNE4003 PE=3 SV=1
25.	A <mark>RL6 MOUSE</mark> Maas: 21120 Score: 36 Expect: 1.4e+002 Matches: 5 ADP-rribosvlation factor-like protein 6.0S=Mus musculus GN=Ar16.PE=1.SV=1
26.	<u>RR4 (USRE</u> Masss: 23499 Score: 36 Expect: 1.5e+002 Matches: 6 Plastid 30S ribosomal protein S4 OS=Cuscuta reflexa (N+rps4 PE=3 SV=1
27.	W <u>EOG PHOLL</u> Mass: 27935 Score: 35 Expect: 1.7e+002 Matches: 5 UDP-N-acetyl-D-mannosaminuronic acid transferase OS=Photorhabdus luminescens subsp. laumondii (strain DSM 15139 / CIP 105565 / TTO1) GN=wecG PE=3 SV=1
28.	<u>SLEP_MOUSE</u> Mass: 31873 Score: 35 Expect: 1.9e+002 Matches: 5 Histone RNA hairpin-binding protein OS=Mus musculus GN=Slbp PE=1 SV=1
29.	RR4 CALFG Mass: 23504 Score: 35 Expect: 1.9e+002 Matches: 5
29.	<u>RR4 CALFG</u> Mass: 23504 Score: 35 Expect: 1.9e+002 Matches: 5 305 ribosomal protein S4, chloroplastic GS-Calycanthus floridus var. glaucus GN=rps4 PE=3 SV=1
30.	<u>ATPA ACUOB</u> Maass: 54768 Score: 34 Expect: 2e+002 Matches: 8 ATP synthase subunit alpha, chloroplastic 0S=Acutodesmus obliquus QN=atpA FE=3 SV=1
31.	EZ704. BMOLD Mass: 65949 Score: 34 Expect: 2e+002 Matches: 4 Septation ring formation regulator EzrA 08-Bacillus licheniformis (strain ATOC 14580 / DSM 13 / JOM 2505 / NBRC 12200 / NCIMB 9375 / NBRL NRS-1264 / Gibson 46) GN=ezrA PE=3 SV=1
32.	<u>SSE_PPPV2</u> Mass: 18335 Score: 34 Expect: 2.1e+002 Matches: 6 Single-strand-binding protein 06-Bacillus phage phi29 0N+5 PE=1 SV=1

[vpe of search :	Sequence Querv
nzyme	Lvs-N
ixed modifications :	Carboxymethyl (C)
ass values :	Monoisotopic
rotein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
ragment Mass Tolerance:	± 0.6 Da
Max Missed Cleavages :	1
Instrument type :	Default
Query1 (820.9055.1+):	<no title=""></no>
Query2 (828.7350,1+):	<no title=""></no>
Query3 (828.8386,1+):	<no title=""></no>
:	seq(C-T)
Query4 (832.8204,1+):	<no title=""></no>
Query5 (856.7492,1+):	<no title=""></no>
Query6 (859.9046,1+):	<no title=""></no>
Query7 (861.4703,1+):	<no title=""></no>
Query8 (861.6490,1+):	<no title=""></no>
Query9 (864.8382,1+):	<no title=""></no>
Query10 (872.6738,1+):	<no title=""></no>
Query11 (877.3892,1+):	<no title=""></no>
Query12 (877.4345,1+):	<no title=""></no>
Query13 (879.7843,1+):	<no title=""></no>
Query14 (907.8780,1+):	<no title=""></no>
Query15 (907.8818,1+):	<no title=""></no>
:	seq(C-K)
Query16 (907.8818,1+):	<no title=""></no>
:	sea(C-Q)

CYC mass+c

Menne Mascot Search Results		
Iser : Y Wang mail : kahn20003@gmail.com earch title : maetama : SwissProt 2016_03 (550740 sequences; 196582750 residues) imestamp : 14 Apr 2016 at 07:29:21 GMT op Score : 176 for CYC_HORSE, Cytochrome c OS=Equus caballus GN=CYCS PE=1 SV=2		
Aascot Score Histogram		
rotatin score is $-104Log(P)$, where P is the probability that the observed match is a random event. rotatin scores greater than 70 are significant (pr(0.05).		
a b b b b b b b b b b b b b b b b b b b		
Concise Protein Summary Report		
Format As Concise Protein Summary V Help		
Significance threshold p/ 0.05 Max number of hits 200		
Preferred taxonomy (All entries v		
Re-Search All Search Unmatched		
 OCLEMESE Mass: 11941 Score: 18 Expect: 1.4e-012 Matches: 3 OCLEMESE Mass: 11927 Score: 18 Expect: 9.7e-007 Matches: 6 OCLEMESE Mass: 11927 Score: 18 Expect: 9.7e-007 Matches: 6 OCLEMESE Mass: 11927 Score: 18 Expect: 9.7e-007 Matches: 6 OCLEMESE Mass: 11927 Score: 18 Expect: 9.7e-007 Matches: 6 OCLEMESE Mass: 11927 Score: 18 Expect: 9.7e-007 Matches: 6 OCLEMESE Mass: 11927 Score: 18 Expect: 9.7e-007 Matches: 6 OCLEMESE Mass: 11927 Score: 18 Expect: 9.7e-007 Matches: 6 OCLEMESE Mass: 11707 Score: 18 Expect: 9.7e-007 Matches: 3 OCLEMESE Mass: 11707 Score: 18 Expect: 9.7e-007 Matches: 3 OCLEMESE Mass: 11707 Score: 18 Expect: 9.7e-007 Matches: 3 OCLEMESE Mass: 11707 Score: 18 Expect: 9.7e-007 Matches: 3 OCLEMESE Mass: 11708 Score: 18 Expect: 9.4etches: 3 OCLEMESE Mass: 11708 Score: 18 Expect: 9.4etches: 3 OCLEMESE Mass: 11708 Score: 18 Expect: 9.4etches: 3 OCLEMESE Mass: 11718 Score: 18 Expect: 9.4etches: 3 OCLEMESE Mass: 11714 Score: 18 Matches: 3 OCLEMESE Mass: 11714 Score: 18 Expect: 9.4etches: 3 OCLEMESE Mass: 11714 Score: 18 Expect: 9.4etches: 3 OCLEMESE Mass: 11714 Score: 18 Expect: 3 Matches: 3 OCLEMESE Mass: 11714 Score: 18 Expect: 3 Matches: 3 OCLEMESE Mass: 11714 Score: 18 Expect: 3 Matches: 3 OCLEMESE Mass: 11714 Score: 18 Expect: 3 Matches: 3 OCLEMESE Mass: 11714 Score: 18 Expect: 3 Matches: 3 OCLEMESE Mass: 11714 Score: 18 Expect: 3 Matches: 3 OCLEMESE Mass: 11714 Score: 18 Expect: 3 Matches: 3 OCLEMESE Ma		
P. <u>CYC2 BOVIN</u> Mass: 11848 Score: 82 Expect: 0.0036 Matches: 4 Cytochrome c 2 CG=Bos taurus GN=CYCT PE=3 SV=3		
t. <u>CYC_ALLMI</u> Mass: 11733 Score: 81 Expect: 0.0043 Matches: 4 Cytochrome c CS=Alligator mississippiensis PE=1 SV=2		
Cytochrome c CS=Alligator mississippiensis PE=1 SV=2		
L B <u>BF_EWIN</u> Mass: 1024 Score: 60 Expect: 0.5 Matches: 3 Barrier-to-audointegration factor 059-bas tauns 049-BBHF FE+3 SV=1 BMF_HAMN Mass: 10284 Score: 60 Expect: 0.5 Matches: 3 Barrier-to-audointegration factor 059-bano sapienes QHEBANF1 FE=3 SV=1 Barrier-to-audointegration factor 059-bone abelii QHEBANF1 FE=3 SV=1		
i. <u>DCILI_DHIOX</u> Mass: 56206 Score: 44 Expect: 23 Matches: 3 Cytoplasmic dynein 1 light intermediate chain 1 08-0allus gallus GNEDYNCILII PE=1 SV=1		
Image: Solution Sorre: 43 Expect: 30 Mitches: 2 Sign interment Sorre: 43 Expect: 30 Mitches: 2 Sign interment Sorre: 43 Expect: 30 Mitches: 2 Sign interment Sorre: 45 Sorre: 44 Expect: 37 Mitches: 2 Sign interment Sorre: 42 Expect: 37 Mitches: 2 Sorre: 42 Expect: 37 Sign interment Sorre: 42 Expect: 37 Mitches: 2 Sorre: 42 Expect: 37 Sign interment Sorre: 42 Expect: 37 Mitches: 2 Sorre: 42 Expect: 37 Sign interment Sorre: 42 Expect: 37 Mitches: 2 Sorre: 42 Expect: 37 Sign interment Sorre: 42 Expect: 37 Mitches: 2 Sorre: 42 Expect: 37 Sign interment Sorre: 42 Expect: 37 Mitches: 2 Sorre: 42 Expect: 37 Sign interment Sorre: 42 Expect: 37 Mitches: 2 Sorre: 42 Expect: 37 Sign interment Sorre: 42 Expect: 37 Mitches: 2 Sorre: 42 Expect: 37 Sign interment Sorre: 42 Expect: 37		
. <u>MIC27.ZYCRC</u> Mass: 26633 Score: 40 Expect: 49 Matches: 2 MICOS complex subunit MIC27 C9=Zyzossaccharomyces rouxii (strain ATCC 2623 / C8S 732 / MERC 1130 / NCYC 568 / NERL Y-229) GN=MIC27 PE=3 SV=1		
Supersorrof-stellate-like protein 05-Drosohila melanoaster 04-551 PE-2 SV-1		

9. <u>RL5_RHOFT</u> Mass: 20165 Score: 39 Expect: 65 Matches: 2

9.	R.S. FuPCI Mass: Mass: Construction School Schol School School School School School Schol School Scho
	50S ribosomal protein L5 OS=Polaromonas naphthalenivorans (strain CJ2) GN=nplE PE=3 SV=1
	RES PULS Mass: 20219 Score: 38 Expect: 81 Matches: 2
	SUS FIDOSOMAL POTETILIS US-FOLATOMONAS SD. (Strain JS000 / ALLU DAR-SUU) ENERDIE FE-S SY-I RES RURAL Mass: VIIAS Score: 37 Evenet 1:164/00 Matchas: 2
	505 ribosomal protein L5 OS=Bordetella avium (strain 197N) GN=rpIE PE=3 SV=1
	RL5 EXRER Mass: 20261 Score: 37 Expect: 1e+002 Matches: 2
	50/S ribosomal protein L5 (USBordetella bronchiseptica (strain AlUC BAA-588 / NCUC 13252 / KBSU) GN=rplE PE=3 SV=1 DE DRODA Money 2021 Senarch 27 Evenet Laculo Matchaet 2
	NLI DUNTA MARSS 20201 SCOTE 3/ EXPECT. IETUZ MARTENES 2 505 ribosomal protein 15 OS=Bordetella parapertussis (strain 12822 / ATOC BAA-587 / NCTC 13253) GN=rolE PE=3 SV=1
10.	<u>1989 METUA</u> Mass: 12743 Score: 39 Expect: 66 Matches: 2 Uncharacterized protein MU0989 05-Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) GN=MU0989 PE=4 SV=1
11.	H <u>165 L1800</u> Mass: 23241 Score: 33 Expect: 74 Matches: 2 Imidazoleglycerol phosphate synthase subunit HisH OS=Listeria welshimeri serovar 6b (strain ATCC 35897 / DSM 20650 / SLCC5334) GN=hisH PE=3 SV=1
12.	RL14_ARTAI Mass: 13280 Score: 38 Expect: 94 Matches: 2 508 ribosomal protein L14 05=Arthrobacter aurescens (strain TCI) 04=piN PE=3 SV=1 RL14_ARTCA Mass: 13280 Score: 38 Expect: 94 Matches: 2 508 ribosomal protein L14 05=Arthrobacter chlorophenolicus (strain ATCC 700700 / DSM 12829 / JCM 12860 / NCIM6 13784 / A6) GN=rpIN PE=3 SV=1 RL14_ARTCA Mass: 13280 Score: 38 Expect: 94 Matches: 2
	50S ribosomal protein L14 OS=Arthrobacter sp. (strain FB24) GN=rpIN PE=3 SV=1

Type of search :	Sequence Query
Enzyme :	Lys-N
Fixed modifications	<u>Carboxymethyl (C)</u>
Mass values	Monoisotopic
Protein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
Protein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
Fragment Mass Tolerance:	± 0.6 Da
Max Missed Cleavages	1
Instrument type :	Default
Queryl (828.8386,1+):	(no title)
0	seq(L-1)
QUELYZ (307.8818,1.7.	sea(C-K)
Dueru3 (907 8818 1+)	(no title)
4461,90 (001.0010)1 /	sea(C-Q)
Querv4 (992.8366.1+):	<no title=""></no>
	seq(C-I)
Query5 (992.8366,1+):	<no title=""></no>
	seq(C-L)
Query6 (1016.7344,1+):	<no_title></no_title>
	seq(C-F)
Query/ (1038.6964,1+):	<no_title></no_title>
0	Seq(L-F)
Queryo (1134.0323,1*):	seg(C-E)
Query9 (1274 6438 1+)	(no title)
ade190 (1214.0400,1.7.	seg(C-F)
Query10 (1286,6981,1+):	<no title=""></no>
	seq(C-F)
Query11 (1296.8462,1+):	<no_title></no_title>
	seq(C-R)
Query12 (1350.8030,1+):	<no title=""></no>
0 10 (1050 0000 1.)	sea(U-I)
Query13 (1350.8030,1+):	vno title/
Query14 (1354 7767 1+)	seq(U-L)
adery14 (1354.7707,117.	sea(C-N)
Querv15 (1408.7645.1+)	<no title=""></no>
	seq(C-I)
Query16 (1408.7645,1+):	<no title=""></no>
	seq(C-L)
Query17 (1424.8444,1+):	<no title=""></no>
	seq(C-K)
Query18 (1424.8444,1+):	<no title=""></no>
0	seq(U-W)
Query13 (1447.7640,1+):	<pre>\no title/ oog(C-D)</pre>
	(no title)
add1920 (1400.7240,117).	sea(C-1)
	004(0 1)

MB mass

MATRIX Mascot Search Results

User : Y Wang Email : kahn20003@gmail.com Search titl : Database : SwissProt 2016.03 (550740 sequences; 196582750 residues) Timestamp : 14 Apr 2016 at 05:55:30 GMT Top Score : 42 for TRUB_LISIN, tRNA pseudouridine synthase B 0S=Listeria innocua serovar 6a (strain CLIP 11262) GN=tru8 PE=3 SV=1

Mascot Score Histogram

Protein score is -10+Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p(0.05).

Concise Protein Summary Report

 As
 Concise Protein Summary
 Help:

 Significance threshold pc
 0.05
 Max. number of hits
 200

 Preferred taxonomy
 All entries
 v
 Format As Concise Protein Summary V

Re-Search All Search Unmatched

1. TRUBLISIN Mass: 34120 Score: 42 Expect: 38 Matches: 15 tRNA pseudouridine synthase B 05=Listeria innocua serovar 6a (strain 0LIP 11262) GN=truB PE=3 SV=1

	tMMA pseudouridine synthase B US=Listeria innocua serovar 6a (strain UL1Y 11262) UM=truB YE=3 SY=1
2.	<u>RPO2 MARPO</u> Mass: 160810 Score: 39 Expect: 65 Matches: 23 DNA-directed RNA polymerase subunit beta'' OS=Marchantia polymorpha GN=rpoC2 PE=3 SV=1
3.	<u>RL6 GEOLR</u> Mass: 19356 Score: 38 Expect: 91 Matches: 11 505 ribosomal protein L6 05-Geobacter uraniireducens (strain Rf4) GN=rpIF FE=3 SV=1
4.	P <u>INF_SACE1</u> Mass: 29255 Score: 37 Expect: le+002 Matches: 12 Orotidine 5'-phosehate decarboxylase OS-Saccharomycopsis fibulizera GN=URA3 PE=3 SV=1
5.	IFI BURAP Mass: 8471 Score: 37 Expect: 1e+002 Matches: 7 Translation initiation factor IF-1 06=Borrelia afzelii (strain PKo) QN=infA PE=3 SV=1 <u>IFI BUREP</u> Mass: 8470 Score: 30 Expect: 6=002 Matches: 6 Translation initiation factor IF-1 06=Borrelia bavariensis (strain ATOC BAA-2496 / DSM 23469 / PBi) QN=infA PE=3 SV=1 <u>IFI BUREP</u> Mass: 8470 Score: 30 Expect: 6=002 Matches: 6 Translation initiation factor IF-1 06=Borrelia bavarienties (strain ATOC BAA-2496 / DSM 23469 / PBi) QN=infA PE=3 SV=1 <u>IFI BUREP</u> Mass: 8470 Score: 30 Expect: 6=002 Matches: 6 Translation initiation factor IF-1 05=Borrelia bavarienteri (strain ATOC 39210 / B31 / CIP 102532 / DSM 4680) QN=infA PE=3 SV=3
6.	<u>RS7_MAGSA</u> Mass: 17846 Score: 36 Expect: 1.3e+002 Matches: 10 305 ribosomal protein S7 05=Magnetospirillum magneticum (strain AMB-1 / ATOC 700264) GN=rpsG PE=3 SV=1
7.	P <u>HYA PEA</u> Mass: 125167 Score: 36 Expect: 1.3e+002 Matches: 17 Phytochrome A 05=Pisum sativum GN=PHYA FE-3 SV=1 <u>PHYA LATSA</u> Mass: 125309 Score: 30 Expect: 5=+002 Matches: 16 Phytochrome type A OS=Lathyrus sativus GN=PHYA FE-3 SV=1
8.	R <u>L18 RICPU</u> Mass: 13331 Score: 36 Expect: 1.4e+002 Matches: 12 505 ribosomal protein L18 05=Rickettsia peacockii (strain Rustic) QN≐rpIR FE=3 SV=1
9.	<u>TEGY ELMMK</u> Mass: 35757 Score: 35 Expect: 1.8e+002 Matches: 9 Tesument protein UL51 homolog OS=Elephantid herpesvirus 1 (isolate Asian elephant/Berlin/Kiba/1998) PE-3 SV=1
10.	P <u>CP_STAHJ</u> Mass: 22833 Score: 34 Expect: 2e+002 Matches: 9 Pyrrolidone-carboxylate peptidase 05-Staphylococcus haemolyticus (strain JCSC1435) QN=pcp PE=3 SV=1
11.	<u>(20025_UOLSE</u> Mass: 20002 Score: 33 Expect: 2.7e+002 Matches: 8 Uncharacterized protein C18orf25 homolog OS=Mus musculus PE=1 SV=1
12.	<u>TOP1_CAEEL</u> Mass: 94435 Score: 33 Expect: 3e+002 Matches: 20 DNA topoisomerase 1 0S=Caenorhabditis elegans GN=top-1 PE=2 SV=1
12.	<u>turiturett</u> Mass: 34430 ocore: 33 Expect: 3emuuu Matches: 20 DNA topoisomerase 1 OS=Caenorhabditis elegans GN=top-1 PE=2 SN=1
13.	F <u>ABP4 RAT</u> Mass: 14815 Score: 32 Expect: 3.1e+002 Matches: 11 Fatty acid-binding protein, adipocyte OS=Rattus norvesicus QN=Fabp4 PE=1 SV=3
14.	<u>39541.NA.PA</u> Mass: 7288 Score: 32 Expect: 3.2e+002 Matches: 8 Cytotoxin 1 05=Naja pallida PE=1 SV=1
15.	PEPAD CLOAG Mass: 50380 Score: 32 Expect: 3.2e*002 Matches: 15 Putative polysaccharide biosynthesis protein with aminopeptidase-like domain 0S=Clostridium acetobutylicum (strain ATCC 824 / DSM 782 / JCM 1419 / LMG 5710 / WOM B-1787) GN=CA_C2195 FE=1 SV
16.	R <u>L14_MYCVP</u> Mass: 13398 Score: 32 Expect: 3.4e+002 Matches: 7 505 ribosomal protein L14 05=Mycobacterium vanbaalenii (strain DSM 7251 / PYR-1) QN=rpIN PE=3 SV=1
17.	RL31_PYRAB Mass: 11019 Score: 32 Expect: 3.5e+002 Matches: 9 505 ribosomal protein L31e 05:Pyrococcus abyssi (strain GE5 / Orsay) GN=rp131e FE=3 SV=1
18.	<u>ANGOA H.MMAN</u> Mass: 160476 Score: 32 Expect: 3.7e+002 Matches: 30 Ankyrin repeat domain-containing protein 30A OS=Homo sapiens GN=ANKFD30A PE=2 SV=3
19.	<u>3842 N4.NMC</u> Mass: 7259 Score: 32 Expect: 3.8e+002 Matches: 10 Cytotoxin 2 OS=Naja mossambica PE=1 SV=1
20.	L <u>PAD_CHLCV</u> Mass: 39098 Score: 32 Expect: 3.9er002 Matches: 10 UDP-3-0-acylglucosamine N-acyltransferase (Se-Chlamydophila caviae (strain CPIC) GN=1pxD PE=3 SV=1
21.	R <u>L14_BEUC1</u> Mass: 13366 Score: 32 Expect: 3.9e+002 Matches: 6 505 ribosomal protein L14 OS=Beutenbergia cavernae (strain ATOC BAA-8 / DSM 12333 / NBRC 16432) DN=rpIN FE=3 SV=1
22.	R <u>128 HAEDU</u> Mass: 9049 Score: 31 Expect: 4e+002 Matches: 5 505 ribosomal protein L28 05=Haemophilus ducreyi (strain 35000HP / ATOC 700724) GN=rpmB PE=3 SV=1
23.	SUCD_STAAC Mass: 31754 Score: 31 Expect: 4.1e+002 Matches: 10 Succiny1-CoA liases (AUP-forming) subunit alpha 05-Staphylococcus aureus (strain 00L) GN=sucD PE=3 SV=1 SUCD_STAAM Mass: 31754 Score: 31 Expect: 4.1e+002 Matches: 10 Succiny1-CoA liases (AUP-forming) subunit alpha 05-Staphylococcus aureus (strain NLE0 / ATCC 700699) GN=sucD PE=3 SV=1 SUCD_STAAM Mass: 31754 Score: 31 Expect: 4.1e+002 Matches: 10 Succiny1-CoA liases (LAP-forming) subunit alpha 05-Staphylococcus aureus (strain N315) GN=sucD PE=3 SV=1
	1400 14000 M. 13200 A. 141 F. 1. 4.7 1000 M.L.L. 10

	WCHIYI WY FISASE DAL TOTIHING JIWATIT AIMA WYUGAWYUGAWY AUROS (STRAITHIND) WYUGAU FCH VYH
24.	MYG_NDPC Mass: 17270 Score: 81 Expect: 4.7e+002 Matches: 12 Myoglobin 05=Indopacetus pacificus GN-MB PE=2 SV=3
25.	MP2K7_HLMMN Mass: 47919 Score: Score: Expect: 4.9e+002 Matches: 12 Dual specificity mitogen-activated protein kinase kinase 7.0S+0002 Matches: 12 Score: 30 Expect: 4.9e+002 Matches: 12 Dual specificity mitogen-activated protein kinase kinase 7.0S+002 Matches: 12 Score: 30 Expect: 4.9e+002 Matches: 12 Dual specificity mitogen-activated protein kinase kinase 7.0S+002 Matches: 12 Score: 30 Expect: 4.9e+002 Matches: 12 Dual specificity mitogen-activated protein kinase kinase 7.0S+002 Matches: 12 Score: 30 Expect: 4.9e+002 Matches: 12 Dual specificity mitogen-activated protein kinase kinase 7.0S+002 Matches: 12 Score: 30 Score: 30
26.	Y1 <u>355 LAODA</u> Mass: 9109 Score: 30 Expect: 6e+002 Matches: 7 UPF0291 protein Ldb1355 C6=Lactdeacillus delbrueckii subsp. bulgaricus (strain ATCC 11842 / DSM 20081 / JCM 1002 / NBRC 13953 / NC1MB 11778) GN=Ldb1355 PE=3 SV=1
27.	R <u>L11_ASH00</u> Mass: 19948 Score: 30 Expect: 8e+002 Matches: 10 60S ribosomal protein L11 OS=Ashbya gossypii (strain ATOC 10895 / CBS 109.51 / FGSC 9923 / NFRL Y-1056) GN=RPL11 PE=3 SV=1
28.	<u>38A1 NAUMO</u> Mass: 7285 Score: 30 Expect: 6.2e+002 Matches: 8 Cytotoxin 1 OS=Naja mossambica PE=1 SV=1
29.	RL14_DESAG Mass: 13269 Score: 29 Expect: 8.5e+002 Matches: 7 50S ribosomal protein L14 OS=Desulfovibrio alaskensis (strain G20) GN=rpIN PE=3 SV=1
30.	<u>Y113_ADE07</u> Mass: 11666 Score: 29 Expect: 6.6e+002 Matches: 7 Uncharacterized 11.3 kDa early protein OS≑Human adenovirus B serotype 7 FE≅4 SV=1
31.	<u>Y1938 ARCFU</u> Mass: 26245 Score: 29 Expect: 6.9e+002 Matches: 8 UPF0278 protein AF_1938 05=Archaeoglobus fulsidus (strain ATOC 49558 / VC-16 / DSM 4304 / JDM 9628 / NBRC 100126) GN=AF_1936 PE=3 SV=1
32.	<u>EFTS_THET8</u> Mass: 22515 Score: 29 Expect: 7.1e+002 Matches: 8 Eloneation factor Ts 08=Themnus themnophilus (strain H68 / ATOC 27634 / DSM 579) GN⊨tsf PE=1 SV=1
33.	<u>Y3756 GEOLR</u> Mass: 14558 Score: 29 Expect: 7.3e+002 Matches: 11 UFF0102 protein Gura_3756 OS=Geobacter uraniireducens (strain Rf4) QN=Gura_3756 PE=3 SV=1
34.	<u>Y1989_DESHY</u> Mass: 18518 Score: 29 Expect: 7.3e+002 Matches: 14 UFP0234 protein DSY1998 05=Desulfitobacterium hafniense (strain 151) ON=DSY1898 PE=3 SV=2 Y3[27_DESH) Mass: 18518 Score: 29 Expect: 7.3e+002 Matches: 14 UFP0234 protein Dhaf_3127 05=Desulfitobacterium hafniense (strain DC8-2 / DSM 10604) GN=Dhaf_3127 PE=3 SV=1
	UPF0234 protein Dhaf_3127 OS=Desulfitobacterium hafniense (strain DCB-2 / DSM 10664) GN=Dhaf_3127 PE=3 SV=1
35.	M ¹⁶ EOLBJ Mass: 17072 Score: 29 Expect: 7.6e+002 Matches: 13 Moslebin C8=Fause burchelli GN=MB FE=1 SV=2 M ¹⁶ LHDSE Mass: 17072 Score: 29 Expect: 7.6e+002 Matches: 13 Moslebin C8=Equue caballus GN=MB FE=1 SV=2
36.	<u>RS10 FENB</u> Mass: 11654 Score: 28 Expect: 7.8e+002 Matches: 7 30S ribosomal protein S10 OS=Fervidobacterium nodosum (strain ATOC 35602 / DSM 5306 / Rt17-B1) GN=rpsJ PE=3 SV=1
37.	NUCR2_CH_T3 Mass: 21902 Score: 28 Expect: 8e+002 Matches: 9 NMDH-ouinone oxidoreductase subunit B 2 0S=Chloroherpeton thalassium (strain ATOC 35110 / GB=78) GN=nucR2 FE=3 SV=1
38.	NORC_VIENL Mass: 27744 Score: 28 Expect: 8.3e+002 Matches: 9 Na(+)-translocating NADH-quinone reductase subunit C OS=Vibrio alginolyticus GN=narC PE=1 SV=3
39.	POLO_META3 Mass: 17880 Score: 28 Expect: 8.5e+002 Matches: 7 Pyruvoyl-dependent arginine decarboxylase 0S=Methanococcus aeolicus (strain Mankai-3 / ATOC BAA-1280) GN=pdaD PE=3 SV=1
40.	N <u>UL11 MUSE</u> Mass: 81810 Score: 28 Expect: 8.7e+002 Matches: 13 Nucleolar protein 11 0S=Mus musculus GN=Nol111 PE=2 SV=1
41.	<u>PROA_VIBTL</u> Mass: 44794 Score: 28 Expect: 8.7e+002 Matches: 10 Gammarglutamy/ phosphate reductase 06=Vibrio tasmaniensis (strain LGP32) GN=proA PE=3 SV=1
Sear	ch Paramatars

Type of search :	Sequence Query
Enzyme :	Lys-N
Fixed modifications :	Carboxymethyl (C)
Mass values :	Monoisotopic
Protein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
Fragment Mass Tolerance:	± 0.6 Da
Max Missed Cleavages :	1
Instrument type :	Default
Query1 (832.7192.1+):	<no title=""></no>
Query2 (836.7806.1+):	<no title=""></no>
Query3 (836.8319,1+):	<no title=""></no>
Query4 (848.8024,1+):	<no title=""></no>
0 F /0F1 0000 1.1	· ···· ·

MB mass/mass+c

SCIENCE Ma	scot Search Results
User Email Seereb title	: Y Wang : kahn20003@gmail.com
Search title Database Timestamp	: SwissProt 2016_03 (550740 sequences; 196582750 residues) : 14 Apr 2016 at 07:22:29 GWT
Top Score Maggat Spara	: 133 for MYG_EOUBU, Myoglobin OS=Equus burchelli GN=MB PE=1 SV=2
Protein score is -10	mistogram #Log(P), where P is the probability that the observed match is a random event.
Protein scores grea	er than 70 are significant (p<0.05).
Mulder of Htts	0 00 100 120 140 Protein Score
Concise Protei	n Summary Report
Format As Concis	e Protein Summary V Help
Prefe	red taxonomy All entries
Re-Search All	earch Unmatched
 MrG EDGB MrG HORS MrG HORS	Muss: 1702 Score: 133 Expect: 2.8e-008 Matches: 13 0:6=suus burchetling NHME FE-1 SV=2 Muss: 17072 Score: 133 Expect: 2.8e-008 Matches: 13 0:6=suus cala.lug GHHB FE-1 SV=2 Muss: 17072 Score: 135 Expect: 2.8e-008 Matches: 13 0:6=suus cala.lug GHHB FE-1 SV=2 Muss: 17028 Score: 155 Expect: 0.19 Matches: 13 0:6=suus cala.lug GHHB FE-1 SV=2 Muss: 17268 Score: 155 Expect: 0.19 Matches: 8 0:6=suus cala.lug GHHB FE-1 SV=2 Muss: 17268 Score: 155 Expect: 0.19 Matches: 8 0:6=suus cala.lug GHHB FE-1 SV=2 Muss: 17268 Score: 155 Expect: 0.19 Matches: 8 0:6=suo: cala.lug GHHB FE-1 SV=2 Muss: 17268 Score: 155 Expect: 1.9 Muss: 17268 0:6=store: cala.lug GHHB FE-1 SV=2 Muss: 17268 Score: 155 Expect: 1.9 Muss: 17268 0:6=store: cala.lug GHHB FE-1 SV=2 Muss: 17268 Score: 155 Expect: 1.4 Matches: 7 0:6=Macrouw: cala.lug GHHB FE-1 SV=2 Muss: 17068 Score: 14 Expect: 2.6 Muss: 17068 0:6=Lepi leagu: musstel inus GHHB FE-1 SV=2 Muss: 17068 Score: 14 Score: 14
Myoglobin MYG_MAGFA Myoglobin MYG_NYCCO Myoglobin MYG_CABIT Myoglobin MYG_CADZI Myoglobin MYG_CADZI Myoglobin	05°Perodicticus potto edwarsi 05°H80°FE-1 5%-2 Mass: 1786° Score: 73 Expect: 0.027 Matches: 10 05°Hoctaca fascicularis 04H80 FE-1 5%-2 Mass: 17210 Score: 56 Expect: 0.87 Matches: 7 05°Hocticebus coucars 01°H80 FE-1 5%-2 Mass: 1726 Score: 55 Expect: 1.6 Matches: 7 6°Gondata sconiculus 04H80 FE-1 5%-2 Mass: 1726 Score: 55 Expect: 1.7 Matches: 7 6°Gondata sconiculus 04H80 FE-1 5%-2 Mass: 1729 Score: 55 Expect: 1.7 Matches: 7 6°Gondata sconiculus 04H80 FE-1 5%-2 Mass: 1709 Score: 55 Expect: 1.7 Matches: 6 6°Gotolemur crassicuadus 04H80 FE-1 5%-2
3. <u>MYG LINEC</u> Modelobin <u>MYG LESIA</u> Mygelobin <u>MYG LINEC</u> MYG LINEC Mygelobin <u>MYG LINEC</u> Mygelobin <u>MYG LINEC</u> Mygelobin <u>MYG LINEC</u> Mygelobin <u>MYG LINEC</u> Mygelobin <u>MYG LINEC</u> Mygelobin <u>MYG LINEC</u> Mygelobin <u>MYG LINEC</u> Mygelobin <u>MYG LINEC</u> Mygelobin <u>MYG LINEC</u> Mygelobin <u>MYG LINEC</u>	Mass: 17270 Score: 80 Expect: 0.0005 Matches: 12 08-indexactus graditions GNHB FF:2 Strate Expect: 0.0026 Matches: 11 08-indexactus graditions GNHB FF:2 Strate Expect: 0.0026 Matches: 11 08-indexactus graditions GHHB FF:1 Str2 0.0026 Matches: 11 08-indexactus GHHB FF:1 Str2 0.0026 Matches: 11 08-indexactus GHHB FF:1 Str2 Str2 Matches: 10 08-indexactur cort is GHHB FF:1 Str2 Matches: 0 08-indexactur cort is Str2 </td
4. <u>MYG_HALGR</u> Mvoglobin <u>MYG_PHOVI</u> Mvoglobin <u>MYG_PUSSI</u> Mvoglobin	Mass: 17417 Score: 75 Expect: 0.018 Matches: 11 05Hblichoenus groups GNMMB FEE1 SV=2 Mass: 17417 Score: 75 Expect: 0.018 Matches: 11 05Phoca vitulina GNHB FEE1 SV=2 Mass: 17417 Score: 70 Expect: 0.018 Matches: 11 05Phoca vitulina GNHB FEE1 SV=2 Mass: 17472 Score: 70 Expect: 0.054 Matches: 3 05Phoca situlina GNHB FEE1 SV=2 Score: 70 Expect: 0.054 Matches: 3 Score: 70 Expect: 0.054 Matches: 3
5. <u>MYG_CASFI</u>	Mass: 17140 Score: 67 Expect: 0.12 Matches: 10
Myoglobin 6. MYG FRYPA	vo-Lastor Tiber WHWB HE-I SYFZ Mass: 17137 Score: 66 Expect: 0.13 Matches: 10
Myoglobin My <u>og</u> lobin My <u>og</u> lobin My <u>og</u> lobin My <u>og</u> lobin Myoglobin	063EFr/throodus patas GN+BEFE: SV+2 Mass: 17173 Score: 86 Expect: 0.13 Matches: 10 67-palo anulois GN+BFE: SV+2 Mass: 17173 Score: 86 Expect: 0.13 Matches: 10 65-Semnoiltecus entellus GN+BFE: SV-2
7. MYG_GORBE Myoglobin MYG_HUMAN Myoglobin MYG_HYLAG Myoglobin MYG_PANTR Myoglobin WYG_PONTR	Mass: 17221 Score: 65 Expect: 0.19 Matches: 10 06=Gor11a gor11a gor

	MWORIGUIN US-Han Trogicovites UN-MD Trc-1 07-2 Ming PUNPY Mass: 1718 Score: 65 Expect: 0.19 Matches: 10 Muselobin OS-Promeo programmas GHIB FE-1 SV-2 Ming SMEY Mass: 1726 Score: 65 Expect: 0.19 Matches: 10 Muselobin OS-Symphalangus syndactylus GN-HB FE-1 SV-2
8.	M ¹ G.ADTIR Mass: 17150 Score: 64 Expect: 0.22 Matches: 9 Moslobin 08%Adus trivirsatus GNNB FE=1 SV=2 M ¹ G.CALLA Mass: 17164 Score: 64 Expect: 0.22 Matches: 9 Myoslobin 08=Callithrix jacchus GN=MB FE=1 SV=2
9.	MYG_KOGER Mass: 17357 Score: 60 Expect: 0.56 Matches: 9 Moslobin C8Hosia brevices: QN+BEFE: SV+3 <u>MYG_KOGSI</u> Mass: 17357 Score: 60 Expect: 0.56 Matches: 9 Myoslobin C8Hosia sima QN-MB FE:1 SV+2
10.	MYG QLOME Mass: 17205 Score: 58 Expect: 0.78 Matches: 9 Myoglobin 05=Globicephala melas GN=MB PE=1 SV=2
11.	M <u>MG BALPH</u> Mass: 17206 Score: 58 Expect: 0.78 Matches: 9 Myoglobin 05=Balaencotera physalus GN=MB PE=1 SV=2
12.	MIG.PHYCO Mass: 17320 Score: 58 Expect: 0.87 Matches: 9 Moselobin 05=Physeter catodon GH-M6 PE=1 SV=2
13.	MYG_MELME Mass: 17088 Score: 47 Expect: 12 Matches: 5 Mooslobin 05=Meles meles QH=MB PE=1 SV=2
14.	MYGLAGLA Mass:17155 Score:45 Expect:16 Matches:6 Myoglobin 05=Lagothrix lagotricha QN-MB PE=1 SV=2
15.	MIG_RULAE Mass: 17068 Score: 45 Expect: 19 Matches: 5 Myoglobin OS=Rousettus aegyptiacus GN=MB PE=1 SV=2
16.	(<u>BIA_SULTO</u> Mass: 49305 Score: 42 Expect: 35 Matches: 14 Cobwrinate a.c-diamide swnthase CS≈Sulfoldbus tokodaii (strain DSM 16993 / JCM 10545 / NBRC 100140 / 7) GN=cbiA PE=3 SV=1

Type of search : Fnzvme :	Sequence Query Ivs-N
Type of search :	Sequence Query
Enzyme :	Lys-N
Fixed modifications :	<u>Carboxymethyl (C)</u>
Mass values :	Monoisotopic
Protein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
Fragment Mass Tolerance:	± 0.6 Da
Max Missed Cleavages :	1
Instrument type :	Default
Querv1 (832,7192,1+);	<no title=""></no>
Query2 (836 7806.1+):	(no title)
Query3 (836 8319 1+)	(no title)
Query4 (848 8024 1+)	(no title)
0.00005 (854, 8063, 1+)	(no title)
0 up ry6 (854, 8812, 1+)	(no title)
0uery7 (861 4492 1+)	(no title)
(001, 4402, 11)	
Queryo (073.0373,11).	
Queryo (074.0000,11).	
Query10 (676.6433,1+).	Sho title
Query11 (877.3990,1+):	Sho title
Query12 (883.7411,1+):	Sho title?
Query13 (885.3963,1+):	sno title?
Query14 (887.3798,1+):	<no td="" title?<=""></no>
Query15 (894./490,1+):	<no title=""></no>
Query16 (895.6907,1+):	<no title=""></no>
Query1/ (906.8528,1+):	<no title=""></no>
Query18 (920.//06,1+):	<no_title></no_title>
	seq(C-L)
Query19 (920.7706,1+):	<no title=""></no>
:	seq(C-I)
Query20 (930.7698,1+):	<no title=""></no>
Query21 (934.7915,1+):	<no title=""></no>
Query22 (934.8109,1+):	<no title=""></no>
Query23 (935.3672.1+):	<no title=""></no>
Query24 (937.8259.1+):	<no title=""></no>
Querv25 (942.7434.1+);	<no title=""></no>
Querv26 (950,8102,1+);	<no title=""></no>
Query27 (952 8257.1+):	<no title=""></no>
Query28 (952,8307,1+):	<pre>sno title></pre>
	sea(C-T)
Query29 (954 7599 1+)	(no title)
Query30 (955 8085 1+)	(no title)
0.00000000000000000000000000000000000	(no title)
Query32 (962 7/15 1+)	(no title)
Query22 (962 9021 1+)	(no title)
wuervaa (a07.00a1.1+).	SHO TITLEZ

MB mass+c

SCIENCE Mas	cot Search	Results
-------------	------------	---------

User : Y Wang Email : kahn/2003@gumail.com Search title : Database : SwissProt 2016_03 (550740 sequences; 196582750 residues) Timestamp : 14 Apr 2016 at 07:22:38 GMT Top Score : 2011 for MVC_EQUEU, Myoglobin OS=Equus burchelli GN=MB PE=1 SV=2

Mascot Score Histogram

Protein score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p(0.05).

Concise Protein Summary Report

Format As	Concise Protein Summary V	Help
	Significance threshold p< 0.05	Max number of hits 200
	Preferred taxonomy All entries	v

Re-Search All Search Unmatched

Ke-Se		earch onmatched	
1.	MYG_EQUEU	Mass: 17072 Score: 201 Expect: 4.4e-015 Matches: 9	Э
	MYG_HORSE Myoglobin	Mass: 17072 Score: 201 Expect: 4.4e-015 Matches: 8	Э
	MYG_HORSE	Mass: 17072 Score: 201 Expect: 4.4e-015 Matches: 8	Э
	MYG_HALOR	Mass: 17417 Score: 99 Expect: 7.3e-005 Matches: 5 08Halicheerus grupus GMMB PE=1 SV-2	5
	MYG_PHOVI	Mass: 17417 Score: 99 Expect: 7.3e-005 Matches: 5 OS=Phoca vitulina GN=MB PF=1 SV=2	5
	MYG_PUSSI Mvoslobin	Mass: 17472 Score: 99 Expect: 7.3e-005 Matches: 5 08=Pusa sibirica GN=MB PE=1 SV=2	5
	MYG_INDPC Myoglobin	Mass: 17270 Score: 98 Expect: 9.6e-005 Matches: 5 OS=Indopacetus pacificus GN=MB PE=2 SV=3	5
	MYG_MESCA Myoglobin	Mass: 17256 Score: 98 Expect: 9.6e-005 Matches: 5 OS=Mesoplodon carlhubbsi GN=MB PE=1 SV=2	5
	MYG_MESST Myoslobin	Mass: 17256 Score: 98 Expect: 9.6e-005 Matches: 5 OS=Mesoplodon stejnegeri GN=MB PE=2 SV=3	ĵ
	MYG_CANLF Myoglobin	Mass: 17326 Score: 96 Expect: 0.00016 Matches: 5 OS=Canis lupus familiaris GN=MB PE=1 SV=2	
	MYG_LYCPI Myoslobin	Mass: 17353 Score: 96 Expect: 0.00016 Matches: 5 OS=Lycaon pictus GN=WB PE=1 SV=2	
	MYG_OTOME Myoslobin	Mass: 17326 Score: 96 Expect: 0.00016 Matches: 5 08=0tocyon megalotis GN=MB PE=1 SV=2	
	MYG_VULCH Myoglobin	Mass: 17326 Score: 96 Expect: 0.00016 Matches: 5 OS=Vulpes chama GN=MB PE=1 SV=2	
	MYG_KOGER Myoglobin	Mass: 17357 Score: 76 Expect: 0.013 Matches: 4 0S=Kogia breviceps GN=MB PE=2 SV=3	
	MYG <u>KOGSI</u> Myoslobin	Mass: 17357 Score: 76 Expect: 0.013 Matches: 4 OS=Kogia sima GN=MB PE=1 SV=2	
	MYG_PHYCD Myoslobin	Mass: 17320 Score: 76 Expect: 0.013 Matches: 4 OS=Physeter catodon GN=MB PE=1 SV=2	
	MYG_BALAC Myoslobin	Mass: 17275 Score: 75 Expect: 0.018 Matches: 4 OS=Balaenoptera acutorostrata GN=MB PE=1 SV=2	
	MYG_BALBO Myoslobin	Mass: 17238 Score: 75 Expect: 0.018 Matches: 4 OS=Balaenoptera borealis GN=MB PE=2 SV=3	
	MYG <u>BALED</u> Myoglobin	Mass: 17238 Score: 75 Expect: 0.018 Matches: 4 OS-Balaenoptera edeni GN=MB PE=2 SV=3	
	MYG <u>BALPH</u> Myoglobin	Mass: 17206 Score: 75 Expect: 0.018 Matches: 4 OS=Balaenoptera physalus GN=MB PE=1 SV=2	
	MYG_DELLE Myoslobin	Mass: 17165 Score: 75 Expect: 0.018 Matches: 4 OS=Delphinapterus leucas GN=MB PE=1 SV=2	
	MYG_ESCRO Mvoslobin	Mass: 17238 Score: 75 Expect: 0.018 Matches: 4 OS=Eschrichtius robustus GN=MB PE=1 SV=2	
	Myoglobin	Mass: 17205 Score: 75 Expect: 0.010 Matches: 4 OS=Eschrichtius robustus GN=MB PE=1 SV=2	
	MYG_GLOME Myoglobin	Mass: 17205 Score: 75 Expect: 0.018 Matches: 4 OS=Globicephala melas GN=MB PE=1 SV=2	
	MYG_INIGE Myoslobin	Mass: 17191 Score: 75 Expect: 0.018 Matches: 4 OS=Inia geoffrensis GN=MB PE=1 SV=2	
	MYG_MEGNO Myoslobin	Mass: 17252 Score: 75 Expect: 0.018 Matches: 4 OS=Megaptera novaeangliae GN=MB PE=1 SV=2	
	MYG_ZIPCA Myoslobin	Mass: 1/298 Score: 75 Expect: 0.018 Matches: 4 08=Ziphius cavirostris GN=MB PE=1 SV=2	
	MYG <u>MACRU</u> Myoslobin	Mass: 1/258 Score: /4 Expect: 0.025 Matches: 4 OS=Macropus rufus GN=MB PE=1 SV=2	
	Myoslobin	Mass: 1/063 Score: 5/ Expect: 1 Matches: 3 OS=Lepilemur mustelinus GN=MB PE=1 SV=2	
	My <u>G_RUUAE</u> Myoslobin	Mass: 1/068 Score: 5/ Expect: 1.2 Matches: 3 OS=Rousettus aegyptiacus GN=MB PE=1 SV=2	
	My <u>G_IUPG</u> Myoslobin	Mass: 1/088 Score: 5/ Expect: 1.2 Matches: 3 OS=Tupaia glis GN=MB PE=1 SV=2	
	Myoslobin	Mass: 1/086 Score: 5/ Expect: 1.2 Matches: 3 OS=Meles meles GN=MB PE=1 SV=2	
	Myoglobin	mass: 17009 Score: 06 Expect: 1.4 Matches: 3 OS=Zalophus californianus GN=MB PE=1 SV=2	
2.	MYG_PERPO	Mass: 17052 Score: 125 Expect: 1.7e-007 Matches: 6	3
	MYG_MACFA	Mass: 17165 Score: 100 Expect: 5.5e-005 Matches: 5	ō

Myoglobin	US=Perodicticu	s potto edwars	I GNEMB PEEL SVEZ	
MYG_MACEA	Mass: 17165	5 Score: 10	0 Expect: 5.5e-0	05 Matches:
Myoglobin	OS=Macaca fasc	icularis GN=MB	PE=1 SV=2	
MYG_RABIT	Mass: 17210	Score: 79	Expect: 0.0065	Matches: 4
Mvoglobin	0S=Oryctolagus	cuniculus GN=1	MB PE=1 SV=2	
MYG_NYCCO	Mass: 16944	4 Score: 79	Expect: 0.0073	Matches: 4
Myoglobin	OS=Nycticebus	coucang GN=MB F	PE=1 SV=2	
MYG_CASEI	Mass: 17140	Score: 78	Expect: 0.0089	Matches: 4
Myoglobin	OS=Castor fibe	r GN=MB PE=1 S)	/=2	
MYG_ERYPA	Mass: 17137	7 Score: 78	Expect: 0.0089	Matches: 4
Myoglobin	0S=Erythrocebu	s patas GN=MB A	PE=1 SV=2	
MYG_GORBE	Mass: 17221	1 Score: 78	Expect: 0.0089	Matches: 4
Myoglobin	OS=Gorilla gor	illa beringei (GN=MB PE=1 SV=2	
MYG_HUMAN	Mass: 17231	1 Score: 78	Expect: 0.0089	Matches: 4
Myoglobin	OS=Homo sapien	s GN=MB PE=1 Si	/=2	
MYG_HYLAG	Mass: 17261	1 Score: 78	Expect: 0.0089	Matches: 4
Mvoslobin	OS=Hylobates a	gilis GN=MB PE:	=1 SV=2	

	MYG_HYLAG	Mass: 17261 Score: 78 Expect: 0.0089 Matches: 4	
	MYG_ONDZI	Mass: 17257 Score: 78 Expect: 0.0089 Matches: 4	
	MYG_PANTR	Mass: 17240 Score: 78 Expect: 0.0089 Matches: 4	
	Myoglobin MYG_PAPAN	USPAn troglodytes GNEMB PEEL SVE2 Mass: 17137 Score: 78 Expect: 0.0089 Matches: 4	
	MYG_PONPY	Mass: 17187 Score: 78 Expect: 0.0089 Matches: 4	
	MyogTobin MYG_SEMEN	Mass: 17137 Score: 78 Expect: 0.0089 Matches: 4	
	Myog Tob in MYG_SYMSY	Mass: 17261 Score: 78 Expect: 0.0089 Matches: 4	
	Myoglobin MYG_0T0CR	US=Symphalangus syndactylus GN=MB HE=1 SY=2 Mass: 17091 Score: 78 Expect: 0.0091 Matches: 4	
	Myoglobin <u>MYG_LAGLA</u> Myoglobin	US=Utolemur crassicaudatus UN=MB PE=1 SV=2 Masss: 17155 Score: 56 Expect: 1.4 Matches: 3 OS=Lagothrix lagotricha GN=MB PE=1 SV=2	
3.	MYG_AOTTR	Mass: 17150 Score: 94 Expect: 0.00021 Matches: 5	
	Myoglobin MY <u>G_CALJA</u> Myoglobin	us-notus trivirgatus un-mer-i sv-2 Mass: 1764 Score: 94 Expect: 0.00021 Matches: 5 OS=Callithrix jacchus GN=MB PE=1 SV=2	

Search Parameters Search Parameters
Type of search
Enzyme
Enzyme
Eixed modifications
EixesN
Eixed modifications
Evolution
EixesN
Eixed modifications
EixesN
Eixed modifications
EixesN
Eixes

MYH mass

MATRIX Mascot Search Results

User : Y Wang Email : Kahn/2008@gmail.com Search title : Database : SwissProt 2016_03 (550740 sequences; 196582750 residues) Timestamp : 14 Apr 2016 at 08:37:08 GMT Top Score : 55 for PPII_STANJ, Putative peptidyl-prolyl cis-trans isomerase OS-Staphylococcus haemolyticus (strain JCSC1435) GN-SH1997 PE=3 SV=1 Top Score : 55 for PPII_STANJ, Putative peptidyl-prolyl cis-trans isomerase OS-Staphylococcus haemolyticus (strain JCSC1435) GN-SH1997 PE=3 SV=1

Mascot Score Histogram

Protein score is -10#Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p<0.05).

Concise Protein Summary Report

Format As	Concise Protein Summary V	Help
	Significance threshold p< 0.05	Max number of hits 200
	Preferred taxonomy All entries	~

Re-Search All Search Unmatched

1.	<u>PPII_STAHJ</u> Mass: 21712 Score: 55 Expect: 1.9 Matches: 10 Putative peptidyl-prolyl cis-trans isomerase 0S=Staphylococcus haemolyticus (strain JCSC1435) GN=SH1997 PE=3 SV=1
2.	<u>NCAP_INEAD</u> Mass: 61831 Score: 41 Expect: 45 Matches: 17
2.	NCAP_INEAD Mass: 61831 Score: 41 Expect: 45 Matches: 17 Nucleoprotein CS=Influenza B virus (strain B/Ann Arbor/1/1966 [wild-type]) GN=NP FE=3 SV=1
3.	M <u>TCD_TETTH</u> Mass: 19529 Score: 37 Expect: 1e+002 Matches: 11 Cadmium metallothionein CS=Tetrahymena thermophila GN=MTTI PE=1 SV=1
4.	Y <u>11071_STAAR</u> Mass: 10769 Score: 35 Expect: 1.7e+002 Matches: 7 UPF0223 protein SAR1071 OS-Staphylococcus aureus (strain MRSA252) GN=SAR1071 PE=3 SV=1
5.	<u>SECA BACSK</u> Mass: 95717 Score: 35 Expect: 1.8e+002 Matches: 18 Protein translocase subunit SecA OS=Bacillus clausii (strain KSM-K16) GN=secA PE=3 SV=1
6.	<u>TIF2_DROME</u> Mass: 118766 Score: 34 Expect: 2e+002 Matches: 20 Transcription termination factor 2 05=Drosophila melanozaster GN=1ds FE=1 SV=2
7.	Y <u>1094_THEMA</u> Mass: 50515 Score: 34 Expect: 2e+002 Matches: 14 Uncharacterized RNA methyltransferase TM_1094 0S=Thermotoga maritima (strain ATCC 43589 / MS88 / DSM 3109 / JCM 10099) GN=TM_1094 PE=3 SV=1
8.	WT12_DENW Mass: 6082 Score: 34 Expect: 2.3e+002 Matches: 6 Kunitz-type serine protease inhibitor dendrotoxin DBE1 05-Dendroaspis angusticeps FE=1 SV=1 State Score: 34 Expect: 2.3e+002 Matches: 6 Kunitz-type serine protease inhibitor long essilon-dendrotoxin Arg55 05-Dendroaspis angusticeps FE=1 SV=1 State Score: 34 Expect: 2.3e+002 Matches: 6
9.	<u>AKT2_MOUSE</u> Mass: 56112 Score: 33 Expect: 2.6e+002 Matches: 10 RAC-beta serine/threonine-protein kinase 05=Mus musculus QN=Akt2 PE=1 SV=1
10.	<u>Y2215_THIDA</u> Mass: 20161 Score: 33 Expect: 2.7e+002 Matches: 9 Probable transcriptional resulatory protein Tbd_2215 OS=Thiobacillus denitrificans (strain ATOC 25259) GN=Tbd_2215 PE=3 SV=1
11.	(<u>4.64.(1.10)</u> Mass: 15227 Score: 33 Expect: 2.7e+002 Matches: 7 Globin, monomeric component M-IV OS-Glycera dibranchiata PE-1 SV-2
12.	<u>RL15_CHLCH</u> Mass: 19963 Score: 33 Expect: 3e+002 Matches: 8 50S ribosomal protein L15 OS=Chlorobium chlorochromatii (strain CaD3) GN=rp10 PE=3 SV=1
13.	(<u>GPX4_P16</u> Mass: 22845 Score: 33 Expect: 3e+002 Matches: 7 Phospholipid hydroperoxide slutathione peroxidase, mitochondrial OS-Sus scrofa GN=GPX4 FE=1 SV=3
14. 14.	<u>ILVE SYN3</u> Mass: 34104 Score: 33 Expect: 3e+002 Matches: 10 Probable branched-chain-mainoracid aminotraneferase 0S-Swechocystis sp. (strain POC 6803 / Kazusa) QN=iIvE PE=3 SV=1 <u>ILVE SYN73</u> Mass: 34104 Score: 33 Expect: 3e+VU2 Matches: 10 Probable branched-chain-mainoracid aminotraneferase 0S-Swechocystis sp. (strain POC 6803 / Kazusa) GN=iIvE PE=3 SV=1
15.	<u>AM&R1_CHICX</u> Mass: 38598 Score: 33 Expect: 3e+002 Matches: 10 Ankyrin repeat domain-containing protein 1 0S=Gallus gallus GN=AM&RDI PE=2 SV=1
16.	<u>EJF2A_D1001</u> Mass: 68455 Score: 32 Expect: 3.1e+002 Matches: 12 Eukaryotic translation initiation factor 2A OS=Dictyostelium discoideum QN=eif2a PE+3 SV=1
17.	<u>(LPB_AQUME</u>
18.	<u>RK12_EUG9R</u> Mass: 14420 Score: 32 Expect: 3.2e+002 Matches: 7 50S ribosomal protein L12, chloroplastic 0S=Euglena gracilis QN=rp112 PE=3 SV=1
19.	KND_WOLPM Mass: 24177 Score: 32 Expect: 3.2e4002 Matches: 8 Adenylate kinase 05+Wolbachia pipientis wMel GN=ack FE=3 SV=1
20.	<u>RSZ PSE46</u> Mass: 27176 Score: 32 Expect: 3.4e+002 Matches: 12 305 ribosomal protein S2 05=Pseudoalteromonas atlantica (strain T6c / ATOC BAA-1087) GN=rpsB PE=3 SV=1
21.	P <mark>/R1_CH4028 Mass:</mark> 40710 Score: 32 Expect: 3.5e+002 Matches: 9 Protein PMR1 OS=Chaetomium alobosum (strain ATOC 6205 / OSS 148.51 / DSM 1962 / NBRC 6347 / NBRL 1970) GN=PXR1 PE=3 SV=2
22.	R <u>L23_STRSV</u> Mass: 10829 Score: 32 Expect: 3.6e+002 Matches: 3 505 ribosomal protein L23 08=Streptococcus sanguinis (strain SK36) DN=rpIW PE=3 SV=1
23.	<u>SIGA_RACSP</u> Mass: 43429 Score: 32 Expect: 3.9e+002 Matches: 10 RNA polymerase signa factor SigA OS=Bacillus sp. ON=sigA FE=3 SV=1
24.	RL30_METNE5 Mass: 17342 Score: 32 Expect: 3.9e+002 Matches: 12 508 ribosomal protein L30P 08-Methanococcus maripaludis (strain 05 / ATCC BAA-1333) 0N=rp130p FE=3 SV=1 RL30_METN2 Mass: 17342 Score: 32 Expect: 3.9e+002 Matches: 12 50S ribosomal protein L30P 08=Methanococcus maripaludis (strain 07 / ATCC BAA-1331) 0N=rp130p FE=3 SV=1
25.	Y <mark>115_METJA Mass:</mark> 18237 Score: 31 Expect: 4e+002 Matches: 12 Uncharacterized protein MJ0115-08=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2861 / JAL-1 / JCM 10045 / NBRC 100440) GN=MJ0115 PE=4 SV=1
26.	NIFA_CYAP7 Mass: 52233 Score: 31 Expect: 4.3e+002 Matches: 10 Probable cytosol aminopeptidase 0S=Cyanothece sp. (strain POC 7424) QN=pepA PE=3 SV=1

	rrobable cytosol aminopeptidase us-uyanothece sp. (strain ruu /424) un-pepa rrc-0 sy-i
27.	N <u>UP1_YEAST</u> Mass: 113629 Score: 31 Expect: 4.3e+002 Matches: 15 Nucleoporin NUP1 OS+Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=NUP1 FE=1 SV=1
28.	<u>RS18_SYNUB</u> Mass: 8252 Score: 31 Expect: 4.4e+002 Matches: 6 305 ribosomal protein S18 05=Synechococcus sp. (strain JA-2-38'a(2-13)) (N=rpsR PE=3 SV=1
29.	PH <u>VC2_BACHD</u> Mass: 27145 Score: 31 Expect: 4.4e+002 Matches: 11 Phosphonates import ATP-binding protein PhvC 2 0S=Bacillus halodurans (strain ATCC BAA+125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) GN=phvC2 PE=3 SV=2
30.	A <u>RP7_ARATH</u> Mass: 40285 Score: 31 Expect: 4.6e+002 Matches: 8 Actin+related protein 7 08=Arabidopsis thaliana GN=APP7 PE-1 SV=1
31.	RIMK_C00291 Mass: 33345 Score: 31 Expect: 4.7e4002 Matches: 9 Probable alpha-t-glutanate ligase 05-Coxiella burnetii (strain CbuCuE35) (NFrimK FE:3 SV=1 RIMK_C0022 Mass: 33345 Score: 31 Expect: 4.7e4002 Matches: 9 Probable alpha-t-glutanate ligase 05-Coxiella burnetii (strain CbuCuE0212) (NFrimK FE:3 SV=1 Rime 1000000000000000000000000000000000000
32.	<u>HISG FLAJI</u> Mass: 27212 Score: 30 Expect: 4.9e+002 Matches: 8 Imidazole glycerol phosphate synthase subunit HISF 05=Flavobacterium johnsoniae (strain ATCC 17061 / DSM 2064 / UM101) GN=hisF PE=3 SV=1
33.	(<u>GFEA_PROA2</u> Mass: 18273 Score: 30 Expect: 5.1e+002 Matches: 7 Transcription elongation factor GreA 08:Prostheocohloris aestuarii (strain DSM 271 / SK 413) QN∈greA PE=3 SV=1
34.	RECA_MICPE Mass: 86963 Score: 30 Expect: 5.3e+002 Matches: 12 Protein RecA_0S=My-coplasma penetrans (strain HF-2) GN=recA_FE=3 SV=1
35.	RL23_STRS2 Mass: 10057 Score: 30 Expect: 5.3e+002 Matches: 8 505 ribosomal protein L23 05=Streptococcus suis (strain 88H4K3) 0H=rp1H PE=3 SV=1 RL23_STRSV Mass: 10857 Score: 30 Expect: 5.3e+002 Matches: 8 505 ribosomal protein L23 0S=Streptococcus suis (strain 0521H33) GN=rp1H PE=3 SV=1
36. 30.	0 <u>06 LECPH</u> Mass: 36985 Score: 30 Expect: 5.3e+002 Matches: 8 GTPase Obg OS=Legionella eneumochila subsp. pneumochila (strain Fhiladelphia 1 / ATOC 33152 / DSN 7513) GN=obg PE=3 SV=2 US <u>> LEVF</u> MBSS: 30500 Score: 30 Expect: 3.3e+002 Matches: 0 GTPase Obg OS=Legionella eneumochila subsp. pneumochila delelphia 1 / ATOC 33152 / DSN 7513) GN=obg PE=3 SV=2
37.	HBB_CICCI Mass: 16370 Score: 30 Expect: 5.4e+002 Matches: 6 Hemoglobin subunit beta 05=Ciconia ciconia GN+E8 FE=1 SV=1
38.	<u>3H401 ASPOR</u> Mass: 21940 Score: 30 Expect: 5.5e+002 Matches: 7 3-budroxyanthranilate 3.4-dioxysenase 1 OS-Aspersillus oryzae (strain ATOC 42149 / RIB 40) GN=bna1-1 PE=3 SV=1
39.	MTBO8_MTMA Mass: 26786 Score: 30 Expect: 5,5e+002 Matches: 8 Myb-related protein 308 03=Antirthinum majus GN=MTB308 PE-2 SV=1
40.	Blass: IOR5 Score: 30 Expect: 5,6e+002 Matches: 9 505 Fibosomal protein 123 STR2 Mass: 1071 Strain Chall III / ATCC 35105 / CHI / DLI / V288) QN = rp IW PE=3 SV=1 212.5 STR2 Mass: 1073 Score: 30 Folder 9 505 Fibosomal protein L23 STR2 Mass: 1073 Score: 30 Folder 9 505 Fibosomal protein L23 STR2 Mass: 1073 Score: 30 Folder 9 505 Fibosomal protein L23 STR2 Mass: 1073 Score: 30 Expect: 5.6e+002 Matches: 9 50 5105 Fibosomal protein L23 STR2 Mass: 1073 Score: 30 Expect: 5.6e+002 Matches: 9 50 5105 Fibosomal Folder 10

Sequence Query
Lys-N
<u>Carboxymethyl (C)</u>
Monoisotopic
Unrestricted
± 0.5 Da
± 0.6 Da
1
Default
<no title=""></no>
27 000 N

MYH mass/mass+c

MATRIX Mascot Search Results

User : Y Wang Email : Kahn/20003@gmail.com Search title : Database : SwissProt 2016_03 (550740 sequences; 196582750 residues) : 14 Apr 2016 at 08:38:17 GMT Top Score : 143 for MYHI_PIG, Myosin-1 OS=Sus scrofa GN=MYHI PE=2 SV=1

Mascot Score Histogram Protein score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p(0.05).

Aurober of Hits 50 100 110 Protein Score

cise Protein Su v Re c

Cor	icise Protein	Summary Repo	ort		
For	rmat As Concise P	rotein Summary 👻	H	elp	
	Significar	nce threshold p< 0.0	05 N	ax number of hits 200	J
	Preferred	d taxonomy All entri	ies		~
Re-	Search All Sear	ch Unmatched			
1.	<u>MYH1_PIG</u> Myosin-1 OS≕	Wass: 223963 \$ Sus scrofa GN=MYI	Score: 143 H1 PE=2 SV=1	Expect: 2.8e-009	Matches: 32
2.	MYH1_BOVIN	Mass: 223780	Score: 142	Expect: 3.5e-00	09 Matches: 31
~	MARK DOUTLI	N 000700	0 140	E 1 0 E 0	

2.	<u>MMH1 BOVIN</u> Mass: 223780 Score: 142 Expect: 3.5e-009 Matches: 31 Mycsin-1 CS=Bos taurus GN=MMH1 FE=2 SV=2
3.	<u>MTHI CANLF</u> Mass: 223938 Score: 138 Expect: 8.7e-009 Matches: 32 Myosin-1 OS=Canis Lucus familiaris GN=MTHI PE=3 SV=2
4.	MMH MOSE Mass: 224131 Score: 138 Expect: 8.7e-009 Matches: 33 Mycsin-1 CS=Mus musculus GN=Myh1 PE=1 SV=1
5.	M <u>MH RMBIT</u> Mass: 223856 Score: 134 Expect: 2.2e-008 Matches: 30 Myosin-4 Os=Oryctolagus cuniculus QN=MMH4 FE=1 SV=1
6.	M <u>MHLHDRSE</u> Mass: 223788 Score: 132 Expect: 3.5e-008 Matches: 30 Myosin-1 OS=Equus caballus GN=MMH PE=2 SV=1
7.	M <u>MH1 HUMAN</u> Mass: 223993 Score: 129 Expect: 6.9e-008 Matches: 35 Myosin-1 OS=Homo sapiens QN=MMH PE=1 SV=3
8.	<u>MYH4 P16</u> Mass: 224025 Score: 127 Expect: 1.1e-007 Matches: 32 Myosin-4 OS=Sus scrofa GN=MYH4 PE=2 SV=1
9.	M <u>MH2 CANLF</u> Mass: 224000 Score: 99 Expect: 7.3e-005 Matches: 23 Motosin-2 OS=Canis Lucus familiaris GN=MMH2 PE=3 SV=1
10.	MH2_PIG Mass: 223940 Score: 98 Expect: 8.3e-005 Matches: 22 Mycein+2 0S=Sus scrofa GN=MH2 PE-2 SV=1 SV=1
11.	MMC2_HDESE Mass: 223538 Score: 96 Expect: 0.00014 Matches: 25 Mycsin-2 CS=Equus caballus GN=MM-2 PE-2 SV=1
12.	MMH4_MOUSE Mass: 223848 Score: 94 Expect: 0.0002 Matches: 29 Mvosin+4 OS=Mus musculus GN=Mvh4 PE-22 Sv=1 MMH4 Mass: 223869 Score: 94 Expect: 0.00022 Matches: 29 Mvosin+4 OS=Mattus norvesious GN=Mvh4 PE-1 Sv=1
13.	M <u>MHHMAN</u> Mass: 223918 Score: 94 Expect: 0.00021 Matches: 30 Myosin-4 OS=Homo sapiens GN=MMH4 PE=1 SV=2
14. 14.	MYHB_HLMAN Mass: 223811 Score: 90 Expect: 0.00058 Matches: 19 Mvosin*8 05:Hvmo sapiers (MHMYH8 (FE:1 SV-3) Expect: 0.00058 Matches: 19 Mvosin*8 05:Hvmo sapiers (HHMYH8 (FE:1 SV-3) Expect: 0.00058 Matches: 19 Mvosin*8 05:Hvmo sapiers (HHMYH8 (FE:1 SV-3) Expect: 0.00058 Matches: 19
15.	MM-2 EDVIN Mass: 224108 Score: 89 Expect: 0.00085 Matches: 23 Morein=2 05=80s taurus QH=MM42 FE=2 SV=1
16.	M <u>MR9 CMLF</u> Mass: 228677 Score: 84 Expect: 0.0024 Matches: 22 Mycsin-8 OS=Canis Lucus familiaris GN=MMH8 PE=3 SV=1
17.	M <u>MH4_CNNLF</u> Mass: 223791 Score: 70 Expect: 0.05 Matches: 26 Moresin=4 OS=Canis Lucus familiaris GN=MMH4 PE=3 SV=1
18.	MYH8 MOLSE Mass: 223872 Score: 70 Expect: 0.056 Matches: 22 Mycein+8 0S=Mus musculus GN=Myh8 PE=2 SV=2
19.	MYH2 HIMAN Mass: 223950 Score: 70 Expect: 0.06 Matches: 24 Myosin-2 OSHomo sapiens QN=MYH2 PE=1 SV=1
20.	<u>MYSS RABIT</u> Mass: 125760 Score: 55 Expect: 1.7 Matches: 21 Myosin heavy chain, skeletal muscle (Fragments) 05=0ryctolagus cuniculus PE=1 SV=2
21.	<u>MTH13 HAMAN</u> Mass: 224625 Score: 45 Expect: 17 Matches: 20 Myosin:13 OS=Homo sapiens GN=MTH13 PE=2 SV=2
22.	<u>MMH3_CANLF</u> Mass: 224304 Score: 44 Expect: 22 Matches: 20 Myosin-13 C8=Canis lupus familiaris CN=MMH3 PE=3 SV=1
23.	<mark>R98E_MEIST Mass:</mark> 14431 Score: 42 Expect: 32 Matches: 6 305 ribosomal protein S8e 05=Methanosshaera stadtmanae (strain ATOC 43021 / DSM 3091 / JCM 11832 / MCB=3) GN≠rps8e PE=3 SV=1
24.	P <u>PII STAHJ</u> Mass: 21712 Score: 42 Expect: 33 Matches: 8 Putative peptidyl-prolyl cis-trans isomerase OS-Stanhylococcus haemolyticus (strain JCSC1435) GN-SH1997 PE-3 SV-1
25.	<u>PTP14_STYFL</u> Mass: 13836 Score: 42 Expect: 38 Matches: 4 Tyrosine-protein phosphatase 14 (Fragment) 0S=Styela plicata QN=STY-14 PE=2 SV=1
26.	U <u>SELYEAST</u> Mass: 20089 Score: 41 Expect: 48 Matches: 5 Protein transport protein USEI US-Saccharomyces cerevisiae (strain ATOC 204508 / S208c) GN=USEI PE=1 SV=1

27. <u>GYR9_B0R9U</u> Mass: 71522 Score: 40 Expect: 53 Matches: 7 DNA syrase subunit B 0S=Borrelia bursdorferi (strain ATCC 35210 / B31 / CIP 102532 / DSM 4680) GN=syrB PE=3 SV=4

21.	Uno Locado malase, r/22, OCUEN-40 = Locado 1, Marco 1, Ma
28.	MTND YEAST Mass: 21088 Score: 40 Expect: 54 Matches: 4 1.2-dihydroxy-3-keto-5-methylthiopentene dioxyzenase QS-Saccharomyces cerevisiae (strain ATOC 204508 / S288c) QN=ADI1 PE=1 SV=1
29.	<u>QNAJMANSM</u> Mass: 41675 Score: 39 Expect: 63 Matches: 7 Chaperone protein DnaJ OS=Mannheimia succiniciproducens (strain MEELSEE) QN=dnaJ PE=3 SV=2
30.	<u>EFP FRASN</u> Mass: 20055 Score: 39 Expect: 68 Matches: 5 Elongation factor P 05:Frankia sp. (strain EANIpec) QN=efp PE=3 SV=1
31.	M <mark>MH3_MOUSE Maass:</mark> 224754 Score: 39 Expect: 74 Matches: 19 Moosin-3 OS=Mus musculus GN=MoH3 FE=2 SV=2
32.	<u>SYY_STRUD</u> Masss: 47186 Score: 38 Expect: 89 Matches: 8 TyrosinetRNA lizase.0S-Streptococcus uberis (strain ATCC BAA-854 / 0140J) GN=tyrS PE=3 SV=1
33.	Y <mark>CX8_CYAPA Mass:</mark> 20097 Score: 37 Expect: 1.1e+002 Matches: 5 Uncharacterized protein in petA-psaM intergenic region OS-Cyanophora paradoxa PE=1 SV=1
34.	TAL DESMO Masss: 20021 Score: 37 Expect: 1.1e+002 Matches: 4 Probable transaldolase OS=Desulfitobacterium harniense (strain DUS-2 / DSM 10604) ON=tal PE=3 SV=1 TAL DESMY Masss: 2020 Score: 37 Expect: 1.1e+002 Matches: 4 Probable transaldolase OS=Desulfitobacterium hafniense (strain Y51) GN=tal PE=3 SV=1
35.	<u>YL287 YEASI</u> Mass: 41192 Score: 37 Expect: 1.2e+002 Matches: 10 Uncharacterized protein YLR287C 0S=Saccharomyces cerevisiae (strain ATOC 204508 / S288c) QN=YLR287C PE=1 SV=1
36.	<u>(SE15_B4CS)</u> Mass: 37704 Score: 36 Expect: 1.4e+002 Matches: 8 Sporulation protein cse15 OS=Bacillus subtilis (strain 168) GN=cse15 FE=2 SV=1
37.	R <u>AD50_SCHPO</u> Mass: 150212 Score: 36 Expect: 1.4e+002 Matches: 18 DNA repair protein rad50 08=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=rad50 FE=1 SV=3
38.	B <u>AFL BOVIN</u> Mass: 10757 Score: 36 Expect: 1.4e+002 Matches: 2 Barrier-to-autointegration factor-like protein 05-Bos taurus GN-BANF2 PE-3 SV=1
39.	<u>Y1071_STAAR</u> Mass: 10769 Score: 36 Expect: 1.5e+002 Matches: 6 UFF0223 protein SAR1071 05=Staphylococcus aureus (strain MRSA252) GN=SAR1071 PE=3 SV=1
**	
40.	MUTS_LEPBJ Mass: 97582 Score: 36 Expect: 1.6e+002 Matches: 16 DNA mismatch remair protein MutS 08:Leptospira borgapetersenii serovar Hardio-bovis (strain JB197) QN=mutS PE=3 SV=1 <u>MUTS_LEPB, Mass: 97582 Score: 36 Expect: 1.6e+002 Matches: 16</u> DNA mismatch remair protein MutS 0S:Leptospira borgapetersenii serovar Hardio-bovis (strain L550) GN=mutS PE=3 SV=1
41.	<u>MM18 CHIOX</u> Mass: 223664 Score: 35 Expect: 1.6e+002 Matches: 24 Myosin-3 CS=6allus gallus GN=MM18 PE=2 SV=3
42.	R <mark>ORG_ARATH Mass:</mark> 138234 Score: 35 Expect: 1.7e+002 Matches: 8 RNA-dependent RNA polymerase 6 OS=Arabidopsis thaliana GN=RORG PE=1 SV=1
43.	<u>SLAIDEIAC</u> Mass: 17712 Score: 35 Expect: 1.8e+002 Matches: 4 Snaclec agglucetin subunit alpha-1 06-Deinagkistrodon acutus PE=1 SV=1
44.	ATSFI H.MAN Mass: 20948 Score: 35 Expect: 1.9e+002 Matches: 6 ATP synthase F(0) complex subunit B1, mitochondrial 06=Homo sapiens GN=ATP6FI PE=1 SV=2
45.	PINH_EOLL Mass: 9187 Score: 35 Expect: 1.9e+002 Matches: 3 Putative DNA-invertase from prophage CP4-44 (Fragment) CS-Escherichia coli (strain K12) GN⊨pinH PE-5 SV-2
46.	<u>RV23_PSEAK</u> Mass: 11021 Score: 34 Expect: 2e+002 Matches: 5 505 ribosomal protein L23, chloroplastic 05=Pseudendoclonium akinetum GN=rp123 FE=3 SV=1
47.	<u>SPR2E_HOUSE</u> Mass: 9154 Score: 34 Expect: 2.1e+002 Matches: 3 Small proline-rich protein 2E 0S=Maus musculus GN=Sprn2e PE=2 SV=1

ype of search :	Sequence Query
nzyme	Lys-N
ixed modifications :	Carboxymethyl (C)
lass values :	Monoisotopic
rotein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
ragment Mass Tolerance:	± 0.6 Da
fax Missed Cleavages :	1
nstrument type :	Default
Query1 (822.8399,1+):	<no title=""></no>

: seq(C-F) Query2 (825.8382,1+): <no title>

MYH mass+c

MATRIX SCIENCE	lascot Search Results
User Email Search title	:Y Wang : kahn20003@gmail.com
Database Timestamp Top Score	: SwissProt 2016_03 (550740 sequences; 196582750 residues) : 14 Apr 2016 at 08:36:32 GMT : 144 Exp 2016 at 08:36:32 GMT
Mascot Scol	e Histogram
Protein score is Protein scores g	-10#Log(P), where P is the probability that the observed match is a random event. eater than 70 are significant ($\rho(0.05)$.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Concise Pro	Protein Score
Format As O	ncise Protein Summary Help
Si	nificance threshold pC 0.05 Max number of hits 200
Pr	All entries v
Re-Search All	Search Ummatched
Nosci ni Nine 2 Nosci ni Nine 2 Nosci ni Nine 2 Nine 2 Nin	1.65Hut musculus GMHMAH IF:1 SV=1 2.65-Dusserofa GMHME FE:2 SV=1 2.65-Dusse familiaris GMHME FE:2 SV=1 2.65-Dusser GMHME FE:2 SV=1
Myosin 3. MYH4_R/	1 ©S=Equus caballus GN=M/H1 PE=2 SV=1 BIT Mass: 228856 Score: 142 Expect: 3.5e=009 Matches: 14
Myosin-	4 05-07y-ctolagus curiculus (NHM/H PE=1 SV=1
4. <u>MYH1_C/</u>	UE Ress: 223938 Score: 142 Expect: 3.5e-009 Matches: 14
5. <u>MYH4 P1</u> Myosin- <u>MYH4 H1</u> Myosin- <u>MYH8 C/</u> Myosin- <u>MYH8 M</u> Myosin- <u>MYH13 (</u> Myosin-	I contains I conta
6. <u>MYH1_H</u>	MMN Mass: 223993 Score: 129 Expect: 6.9e-008 Matches: 13 1 05=Homo sapiers GN=MMH PE=1 SV=3
7. MYSS_R/	811 Mass: 125760 Score: 66 Expect: 0.14 Matches: 7 heavy chain, skeletal muscle (Framents) 05-0n-ctolaxus cuniculus PE-1 SV-2
8. MYHS_HL Myosin-	MM Mass: 224669 Score: 46 Expect: 14 Matches: 6 3 05+Homo sapiers GN+MM3 FE=1 SV=3
9. <u>GYRB_BC</u> DNA_gyr	1800 Mass: 71522 Score: 44 Expect: 22 Matches: 3 ase subunit B 05=Borrelia burgabrferi (strain ATCC 35210 / B31 / CIP 102532 / DSM 4680) QN=xvrB PE=3 SV=4
10. BAFL_BO Barrier	VIN Mass: 10757 Score: 42 Expect: 32 Matches: 2 -to-autointegration factor-like protein OS=Bos taurus GNEBAMF2 PE=3 SV=1
11. DNAJ_M	NMM Mass: 41675 Score: 40 Expect: 54 Matches: 3 ne protein DnaJ 05-Mannheimia succiniciproducens (strain MBELSED QN=dnaJ PE=3 SV=2
12. <u>CASP_AF</u>	ATH Mass: 79751 Score: 38 Expect: 96 Matches: 4
Proteir	unar uuraruuusis mariaa Brukor FE-1 07-2

13. SPECE MODE: Mass: 9154 Score: 37 Expect: 1.2e+002 Matches: 2 Small prolimerrich protein 2E 05-Mus musculus DR-Spr2e FE-2 SV=1 SPE21 MODE: Mass: 9104 Score: 37 Expect: 1.2e+002 Matches: 2 Subject: 1.2e+002 Matches: 2 Subject: 1.2e+002 Matches: 2
| | <u>9P21_MUSE</u> Mass: 9104 Score: 37 Expect: 1.2e*002 Matches: 2
Small proline:rich eroteing JC GSMus musculos MS-67r2 JP25 SV-1 |
|-----|--|
| 14. | PINH_ECOLLI Maass: 9187 Score: 86 Expect: 1.3e+002 Matches: 2
Putative DNA-invertase from prophage CP4-44 (Fragment) 03-Escherichia coli (strain K12) GN-pinH PE=5 SV=2 |
| 15. | <u>PTP14_STVPL</u> Mass: 13836 Score: 36 Expect: 1.4e+002 Matches: 2
Tyrosine-protein phosphatase 14 (Fragment) 05=Stypla plicata GN=STV-14 PE=2 SV=1 |
| 16. | H <u>SULPSD//</u> Mass: 49846 Score: 36 Expect: 1.4e+002 Matches: 3
ATP-dependent protease ATPase subunit HsIU 0S=Pseudomonas mendocina (strain ymp) QN=hsIU PE=3 SV=1 |
| 17. | Y <u>NOA.BACSU</u> Mass: 12075 Score: 38 Expect: 1.6e+002 Matches: 2
Uncharacterized protein YddA OS-Bacillus subtilis (strain 168) QN=yddA PE=4 SV=1 |
| 18. | <u>TCAL7.FAT</u> Mass: 12100 Score: 35 Expect: 1.7e+002 Matches: 2
Transcription elongation factor A protein-like 7 05=Rattus norvegicus GN=Tceal7 PE=3 SV=1 |
| 19. | <u>EFF_FRASN</u> Mass: 20055 Score: 35 Expect: 1.7e+002 Matches: 2
Eloneation factor P 05=Frankia sp. (strain EANIpec) GN=efp FE=3 SV=1 |
| 20. | M <u>TND YEAST</u> Mass: 21088 Score: 35 Expect: 1.8e+002 Matches: 2
1.2-dihydroxy-3-keto-5-methylthiopentene dioxygenase 05=Saccharomyces cerevisiae (strain ATOC 204508 / S288c) GN=ADI1 PE=1 SV=1 |
| 21. | A <u>TG10_VMP0</u> Mass: 22918 Score: 35 Expect: 1.9e+002 Matches: 2
Ubiguitin-like-conjugating enzyme ATG10 OS=Vandermaltozyma polyspora (strain ATCC 22028 / DSM 70294) GN=ATG10 PE=3 SV=1 |
| 22. | <u>INPA.CH.IR</u> Mass: 28270 Score: 35 Expect: 1.9e+002 Matches: 2
Tryptophan synthase alpha chain OS=Chlamydia trachomatis (strain D/UH-3/Ck) GN=trpA FE=3 SV=1 |
| 23. | PROFHELMN Mass: 14450 Score: 35 Expect: 1.9e+002 Matches: 2
Profilin C9=Helianthus annuus PE=1 SV=1 |
| 24. | TAL DESHD Masss: 20021 Score: 34 Expect: 2e+002 Matches: 2
Probable transaldolase 05-Desulfitobacterium hafniense (strain DOS-2 / DSM 10084) GN=tal PE=3 SV=1
TAL DESHY Mass: 2020 Score: 34 Expect: 2e+002 Matches: 2
Probable transaldolase OS=Desulfitobacterium hafniense (strain Y51) GN=tal PE=3 SV=1 |
| 25. | <u>(H10 CMLS4</u> Mass: 10270 Score: 34 Expect: 2.2e+002 Matches: 2
10 kBa chaperonin OS=Caldanaerobacter subterraneus subsp. tenaconaensis (strain DSM 15242 / JCM 11007 / MBRC 100824 / MB4) GN=aroS PE=3 SV=1 |
| | 10 kDa chaperonin OS=Caldanaerobacter subternaneus subsp. teneconsensis (strain DSM 15242 / JCM 11007 / NBRC 100824 / MB4) GN=sroS PE=3 SV=1 |
| 26. | MFULMOUSE Mass: 26770 Score: 34 Expect: 2.2e+002 Matches: 2
Marnose+P-dolichol utilization defect 1 protein 0S=Mus musculus QN=Modul PE=1 SV=1 |
| 27. | AL <u>B1_PSOTE</u> Mass: 19436 Score: 34 Expect: 2.3e+002 Matches: 2
Albumin-1 03=Psophocarsus tetraanonlobus PE-1 SV-1 |

Type of search :	Sequence Query
Enzyme :	Lys-N
Fixed modifications :	Carboxymethyl (C)
Mass values :	Monoisotopic
Protein Mass :	Unrestricted
Peptide Mass Tolerance	+ 0 5 Da
Fragment Mass Tolerance	+ 0.6 0.
May Missed Cleavages	1
Instrument two	Default
0	
Query1 (022.0000,1+).	
0	seq(U-F)
Queryz (823.8700,1+):	No title/
· · · · · · · · · · · · · · · · · · ·	seq(L-V)
Query3 (836.8388,1+):	<no_title></no_title>
	seq(C-Y)
Query4 (856.8398,1+):	<no_title></no_title>
:	seq(C-T)
Query5 (857.8071,1+):	<no title=""></no>
:	seq(C-Y)
Query6 (857.8754.1+):	<no title=""></no>
	seq(C-I)
Querv7 (857.8754.1+);	<no title=""></no>
	seg(C-L)
Query8 (865.8724.1+):	<pre>sho title></pre>
	sea(C-K)
Querv9 (865 8724 1+)	(no title)
uder) 0 (000.012.111).	seg(C-0)
0uoru10 (997 9425 1+)	(no title)
Guery10 (037.0423,1.7.	cog(C-E)
0	
Query11 (307.7300,1+).	
0 10 (007 7000 1.)	Sequence
Query12 (307.7966,1+):	(no title)
	sequent

PYGM mass

MATRIX Mascot Search Results

User : Y Wang Email : kahn20003@gmail.com Search title : Database : SwissProt 2016_03 (550740 sequences; 196582750 residues) Timestamp : I4 Apr 2016 at 09:10:30 GMT Top Score : 39 for HIS2_METEK, Phosphoribosyl-ATP ругорhosphatase 0S=Methylobacillus flagellatus (strain KT / ATCC 51484 / DSM 6875) GN=hisE PE=3 SV=1 Top Score : 39 for HIS2_METEK, Phosphoribosyl-ATP ругорhosphatase 0S=Methylobacillus flagellatus (strain KT / ATCC 51484 / DSM 6875) GN=hisE PE=3 SV=1

Mascot Score Histogram

Protein score is -10#Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p<0.05).

Concise Protein Summary Report

Format As	Concise Protein Summary V	Help
	Significance threshold p< 0.05	Max number of hits 200
	Preferred taxonomy All entries	v

Re-Search All Search Unmatched

1.	<u>HIS2 METFK</u> Mass: 11579 Score: 39 Expect: 68 Matches: 7 Phosphoribosyl-ATP pyrophosphatase 05=Nethylobacillus flagellatus (strain KT / ATOC 51484 / DSM 6875) GN=hisE PE=3 SV=1
2.	PSTB_SACD2 Mass: 32647 Score: 38 Expect: 94 Matches: 9
2.	<u>PSTB_SMC02</u> Mass: 92847 Score: 98 Expect: 94 Matches: 9 Phosphate import ATP-binding protein PStB DS=Saccharophagus degradans (strain 2-40 / ATOC 43961 / DSM 17024) GN=pstB PE=3 SV=1
3.	RHOUEDVIN Mass: 28502 Score: 36 Expect: 1.3e+002 Matches: 10 Rho-related GTP-binding protein RhoU 05=Bos taurus GN=RHOU PE=2 SV=1
4.	EFA LAOLA Mass: 34773 Score: 35 Expect: 1.7e*002 Matches: 13 GiPase Era 05*Lactococcus lactis subso. lactis (lerain LL10403) GiPase Era 05*Lactococcus lactis subso. lerain Era 35% FRA_LAOL Masss: 34773 Score: 35 Expect: 1.7e*002 Matches: 13 GiPase Era 05*Lactococcus lactis subso. cremoris (strain MG1843) OH=ra FE=3 SV=1 EFA_LAOL Masss: 3478 Score: 35 Score: 35 SV=1 EFA_LAOL Masss: 3478 Score: 35 Sv=1 EFA GiPase Era 05*Lactococcus lactis subso. cremoris (strain MG1843) OH=ra FE=3 SV=1 GiPase Era 05*Lactococcus lactis subso. cremoris (strain SK11) GH=ra FE=3 SV=1
5.	R <u>AP1_PH1P0</u> Mass: 21313 Score: 35 Expect: 1.7e+002 Matches: 8 Ras-related protein Rap-1 0S=Physarum polycechalum GN=RAP1 PE-2 SV=1
6.	R <u>XT3_YEAST</u> Mass: 33907 Score: 34 Expect: 2e+002 Matches: 10 Transcriptional regulatory protein RXT3 05-Saccharomyces cerevisiae (strain ATOC 204508 / S288c) GN=RXT3 PE=1 SV=1
7.	<u>RL1_CAR42</u> Mass: 24778 Score: 34 Expect: 2e+002 Matches: 10 505 ribosoma1 protein L1 05=Carboxydothermus hydrogenoformans (strain ATCC BA4-161 / DSM 6008 / Z-2901) GN=rp1A PE=3 SV=1
8.	<u>NIR BMENI</u> Masss: 124019 Score: 33 Expect: 2.7e+002 Matches: 23 Nitrite reductase [NADUP)H] OS-EmericeIIa nidulans (strain FGSC A4 / ATOC 38163 / CBS 112.46 / NFRL 194 / M139) GN=niiA PE=3 SV=2
9.	P <mark>GC2_METEY Mass:</mark> 35072 Score: 32 Expect: 3.2e+002 Matches: 9 2∵phosphoglycerate kinase 05=Methanothemus fervidus (strain ATC) 43054 / DSM 2088 / JCM 10308 / V24 S) GN=pgk2 PE=1 SV=1
10.	I <u>INO FRAIN</u> Mass: 28391 Score: 32 Expect: 3.3e+002 Matches: 12 tRNA (guanine-N(1)-)-methyltransferase QS=Francisella tularensis subsp. novicida (strain UI12) QN=trmD PE=3 SV=1
11. 	<u>PYRH.METS5</u> Maass: 24295 Score: 32 Expect: 3.4e+002 Matches: 7 Uridvlate kinase 05≈Metallosphaera sedula (strain ATCC 51383 / DSM 5348) QN=pvrH PE=3 SV=1
12.	<u>AFR8_ARATH</u> Mass: 25629 Score: 32 Expect: 3.7e+002 Matches: 9 Two-component response regulator ARR8 OS=Arabidopsis thaliana QN-ARR8 PE=1 SV=1
13.	<mark>ARGB BACAH - Ma</mark> ss: 27804 - Score: 31 - Expect: 4e+002 - Matches: 12 Acetylglutamate kinase 0S-Bacillus thuringiersis (strain Al Hakam) QN=argB PE=3 SV=2
	Acetylglutamate kinase US-Bacillus thuringiensis (strain Al Hakam) UNFarge PLES SVFZ
14.	<u>ILVC.HELPY</u> Mass: 36665 Score: 31 Expect: 4.3e+002 Matches: 13 Ketol-acid reductoisomerase 0S-Heliocbacter pylori (strain ATOC 700392 / 26695) GN=ilvC PE=3 SV=1
15.	<u>ALBA METNAJ</u> Mass: 9922 Score: 31 Expect: 4.4e+002 Matches: 8 DNA/RNA-binding protein Alba OS=Methanoculleus marisnigri (strain ATOC 35101 / DSM 1488 / JR1) GN=albA PE=3 SV=1
16.	<u>Y988 METJA</u> Mass: 37757 Score: 31 Expect: 4.8e+002 Matches: 10 Uncharacterized protein MU0888 0S=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) GN=MU0988 PE=4 SV=1
17.	RL28_LADC3 Mass: 6973 Score: 30 Expect: 5.1e+002 Matches: 7 505 ribosomal protein L28 05=Lactobacillus casei (strain ATCC 334) (NFrmB FE=3 SV=1 RL28_LAD28 Mass: 6973 Score: 30 Expect: 5.1e+002 Matches: 7 505 ribosomal protein L28 05=Lactobacillus casei (strain BL23) GN=rmB PE=3 SV=1
18.	ALBU PONAB Mass: 71465 Score: 30 Expect: 5.3e+002 Matches: 18 Serum albumin OS=Pongo abelii ON=ALB PE=2 SV=2
19.	A <mark>PT_CHEM_</mark> Mass: 19180 Score: 30 Expect: 5.6e+002 Matches: 6 Adenine phosphoribosvitransferase CS=Chilorobium phaeovibrioides (strain DSM 285 / 1980) GN=apt PE=3 SV=1
20.	M <u>FB RICBR</u> Mass: 33322 Score: 30 Expect: 5.8e+002 Matches: 12 UDP-N-acetylenolpyruvoylajucosamine reductase 08-Rickettsia bellii (strain RML389-C) GN=murB PE=3 SV=1
21.	O <u>HLB_PROMS</u> Mass: 59218 Score: 30 Expect: 5.9e+002 Matches: 12 Light-independent protochlorophyllide reductase subunit B_OS=Prochlorococcus marinus (strain AS9601) QN=chIB_PE=3_SV=1
22.	<mark>SLRA_VIEPA Mass: 47464 Score: 29 Expect: 6.3e+002 Matches: 12</mark> Chaperone SurA 05=Vibrio parahaemolyticus serotype 03:K6 (strain RIMD 2210633) GN=surA FE=3 SV=1
23.	FABA_VIBC3 Maass: 19146 Score: 29 Expect: 6.3e+002 Matches: 6 3*bd/moxodecamov/=facy/=carrier=portein_deHvdratase 05+Vibrio_cholerae_serotype 01 (strain_ATCC_39541 / Classical_Ogawa_395 / 0395) GN=fabA_PE=3 SV=1 FABA_VIB24 Mass: 19146 Score: 29 Expect: 6.3e+002 Matches: 6 3*bd/moxodecamov/=facy/=carrier=portein_deHvdratase 05+Vibrio_cholerae_serotype 01 (strain_ATCC_39315 / El Tor_Inaba_N16961) GN=fabA_PE=3 SV=1 FABA_VIB24 Mass: 19146 Score: 29 Expect: 6.3e+002 Matches: 6 3*bd/moxodecamov/=facy/=carrier=portein_deHvdratase 05+Vibrio_cholerae_serotype 01 (strain_ATCC_39315 / El Tor_Inaba_N16961) GN=fabA_PE=3 SV=1 4*bd/moxodecamov/=facy/=carrier=portein_deHvdratase 05+Vibrio_cholerae_serotype 01 (strain_M06-2) GN=fabA_PE=3 SV=1
24.	<u>MAMS_ARATH</u> Mass: 55832 Score: 29 Expect: 6.3e+002 Matches: 15 Methylthicalkylmalate synthase 3, chloroplastic OS=Arabidopsis thaliana GN=MAMA FE=1 SV=1

	Methylthioalkylmalate synthase 3, chloroplastic US=Arabidopsis thaliana GN=MAMMS HE=1 SV=1
25.	<u>AEP2_YEAS1</u> Mass: 68173 Score: 29 Expect: 6.5e+002 Matches: 15 AlPase expression protein 2, mitochondrial 05=Saccharomyces cerevisiae (strain RMI1-1a) QM=AEP2_PE=3 SV=1 <u>APP2_VEAS6</u> Mass: 68146 Score: 29 Expect: 6.5e+002 Matches: 15 AlPase expression protein 2, mitochondrial 05=Saccharomyces cerevisiae (strain ARRI1631) QM=AEP2 PE=3 SV=1 <u>APP3_VEAS6</u> Mass: 68173 Score: 39 Expect: 6.5e+002 Matches: 15 AlPase expression protein 2, mitochondrial 05=Saccharomyces cerevisiae (strain Lalvin ECI118 / Prise de mousse) QM=AEP2 PE=3 SV=1 <u>APP3_VEAS6</u> Mass: 68173 Score: 39 Expect: 6.5e+002 Matches: 15
26.	<u>KAD_PSEFS</u> Masss: 23309 Score: 29 Expect: 6.8e+002 Matches: 6 Adenylate kinase 05=Pseudomonas fluorescens (strain SBM25) QN=adk PE=3 SV=1
27.	<u>Y6887_D1001</u> Mass: 4917 Score: 29 Expect: 7.1e+002 Matches: 7 Putative uncharacterized protein DDB_09285187 03=Dictyostelium discoideum QN=DDB_09285187 PE=4 SV=1
28.	ARCD_STAAL Mass: 27063 Score: 29 Expect: 7.1e+002 Matches: 10 3°-dehydroquirate dehydratase CS=Stabylococcus surveus (strain M3 / ATCC 700893) GN=aroD FE=3 SV=1 ARCD_STAAL Mass: 27063 Score: 29 Expect: 7.1e+002 Matches: 10 3°-dehydroquirate dehydratase CS=Stabylococcus surveus (strain H9) GN=aroD FE=3 SV=1 ARCD_STAAL Mass: 27063 Score: 29 Expect: 7.1e+002 Matches: 10 3°-dehydroquirate dehydratase CS=Stabylococcus surveus (strain H9) GN=aroD FE=3 SV=1 ARCD_STAAL Mass: 27063 Score: 29 Expect: 7.1e+002 Matches: 10 3°-dehydroquirate dehydratase CS=Stabylococcus surveus (strain H9) GN=aroD FE=3 SV=1 ARCD_STAAL Mass: 27063 Score: 29 Expect: 7.1e+002 Matches: 10 3°-dehydroquirate dehydratase CS=Stabylococcus surveus (strain H315) GN=aroD FE=3 SV=1 ARCD_STAAL Mass: 27063 Score: 29 Expect: 7.1e+002 Matches: 10 3°-dehydroquirate dehydratase CS=Stabylococcus surveus (strain H315) GN=aroD FE=3 SV=1 ARCD_STAAL Mass: 27063 Score: 29 Expect: 7.1e+002 Matches: 10 3°-dehydroquirate dehydratase CS=Stabylococcus surveus (strain H315) GN=aroD FE=3 SV=1 ARCD_STAAL Mass: 27063 Score: 29 Expect: 7.1e+002 Matches: 10 3°-dehydroquirate dehydratase CS=Stabylococcus surveus (strain H315) GN=aroD FE=3 SV=1 ARCD_STAAL Mass: 27063 Score: 29 Expect: 7.1e+002 Matches: 10 3°-dehydroquirate dehydratase CS=Stabylococcus surveus (strain H315) GN=aroD FE=3 SV=1 ARCD_STAAL Mass: 27063 Score: 29 Expect: 7.1e+002 Matches: 10 3°-dehydroquirate dehydratase CS=Stabylococcus surveus (strain H315) GN=aroD FE=3 SV=1 ARCD_STAAL MASS Score: 29 Expect: 7.1e+002 Matches: 10 3°-dehydroquirate dehydratase CS=Stabylococcus surveus (strain H315) GN=aroD FE=3 SV=1 3°-dehydroquirate dehydratase CS=
29.	MCH E0071 Mass: 32491 Score: 29 Expect: 7.3e+002 Matches: 10 Malate dehvdrogenase 05=Escherichia coli 07:K1 (strain 1A139 / ExPEC) 04=mch PE=3 SV=1 Malate dehvdrogenase 05=Escherichia coli 07:K52:H18 (strain UMU28 / ExPEC) 04=mch PE=3 SV=1 Malate dehvdrogenase 05=Escherichia coli 01:7:K52:H18 (strain UMU28 / ExPEC) 04=mch PE=3 SV=1 Malate dehvdrogenase 05=Escherichia coli (strain SMG-3-5 / SECEC) 04=mch PE=3 SV=1 Malate dehvdrogenase 05=Escherichia coli (strain SMG-3-5 / SECEC) 04=mch PE=3 SV=1
30.	<u>NLA2 ARATH</u> Mass: 103706 Score: 29 Expect: 7.4e+002 Matches: 15 Nitrate reductase [NADH] 2 05=Arabidossis thaliana GN=NLA2 PE=1 SV=1
31.	<u>SYCLACAC</u> Mass: 55092 Score: 29 Expect: 7.4e+002 Matches: 11 CysteinetRNA ligase 0S=Lactobacillus acidophilus (strain ATOC 700396 / NCK56 / N2 / NCPM) GN=cysS PE=3 SV=1
32.	<u>YG3W_YEAST</u> Mass: 44504 Score: 29 Expect: 7.4 <i>e</i> +002 Matches: 13 Uhcharacterized protein YGR108C GS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=YGR168C PE=4 SV=1
32.	<u>YG3W YEASI</u> Mass: 44504 Score: 29 Expect: /.4e+002 Matches: 13 Uhcharacterized protein YGR168C C8=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=YGR168C PE=4 SV=1
33.	<u>BUCC_APLCA</u> Mass: 53483 Score: 29 Expect: 7.6e+002 Matches: 9 Buccalin OS=Aplysia californica PE=1 SV=2
34.	<u>AEP2_YEAS7</u> Mass: 08231 Score: 28 Expect: 7.8e+002 Matches: 17 ATPase expression protein 2, mitochondrial OS=Saccharomyces cerevisiae (strain YJM709) GN=AEP2 PE=3 SV=1
35.	<u>RL17_W1040</u> Mass: 13613 Score: 28 Expect: 8.1e+002 Matches: 7 505 ribosomal protein L17 05≈Morcoplasma mobile (strain ATOC 43863 / 163K / NDTC 11711) GN=rp10 PE=3 SV=1
36.	ATF QUITH Mass: 20228 Score: 28 Expect: 8.9e+002 Matches: 10 ATP swithase subunit b, chloroplastic OS=Guillardia theta GN=atpF PE=3 SV=1
37.	RL354_H0USE Mass: 12662 Score: 28 Expect: 9.4e*002 Matches: 7 60S ribosomal protein L35a 0S=Mus musculus QN=Rp135a PE=1 SV=2 SV=2 <t< th=""></t<>

Type of search : Enzyme Fixed modifications Mass values : Protein Mass : Portied Mass Tolerance: Prentied Mass Tolerance: Max Missed Cleavages : Cuerry (822:8594,1+2): Cuerry (822:8594,1+2): Cuerry (823:8783,1+2): Cuerry (833:8587,1+2): Cuerry (833:8587,1+2): Cuerry (842:8783,1+2): Cuerry (842:8783,1+2): Cuerry (842:871,1+2): Cuerry (842:871,1+2): Cuerry (842:871,1+2): Cuerry (842:871,1+2): Cuerry (842:871,1+2): Cuerry (842:871,1+2): Cuerry (842:871,1+2): Cuerry (842:871,1+2): Cuerry (842:871,1+2):	Sequence Ouery Lys-M Carboxymethyl (C) Monoisotoric Unrestricted \pm 0.5 Da \pm 0.6 Da 1 Default (no title) (no title)
Query8 (845.8452,1+):	(no title)
Query8 (845.8452,1+):	(no title)
Query10 (854.3198,1+):	(no title)
Query11 (855.3137,1+):	(no title)
Query12 (857.8131,1+):	(no title)
Query13 (859.8748,1+):	(no title)
Query14 (961.4601.14):	(no title)

PYGM mass/mass+c

MATRIX Mascot Search Results

User : Y Wang Email : kahn/2003@gmail.com Search titl : Database : SwissProt 2016_03 (550740 sequences; 196582750 residues) Timestamp : 14 Apr 2016 at 09:24:26 GMT Top Score : 124 for PYGMLFABIT, Glycogen phosphorylase, muscle form OS=Oryctolagus cuniculus GN=PYGMLPE=1 SV=3

Mascot Score Histogram

Protein score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p(0.05).

15							
10							
5		Ι.					
0	20	40	60	80	100	120 Protein	140
	15 10 5 0	15 10 5 0 20					

Concise Protein Summary Report

Format As	Concise Protein Summary V	Help
	Significance threshold p< 0.05	Max number of hits 200
	Preferred taxonomy All entries	v

Re-Search All Search Unmatched

1.	PY <u>GN_RNBIT</u> Mass: 9750 Score: 124 Expect: 2.2e-007 Matches: 14 Glycogen phosphorylase, muscle form US=Oryctolagus cuniculus GN=PYGM FE=1 SV=3
2.	PYON HUMAN Mass: 97495 Score: 101 Expect: 4.4e-005 Matches: 11
2.	PYGM HLMAN Mass: 97495 Score: 101 Expect: 4.4e-005 Matches: 11 Glycogen phosphorylase, muscle form 05Homo sapiers GNPPGM FEI SV=6 PYGM MACFA Mass: 9753 Score: 101 Expect: 4.4e-005 Matches: 11 Glycogen phosphorylase, muscle form 05Hacaca fascicularis ON=PYGM FE=2 SV=3
3.	PYGM_MOLSE Mass: 97689 Score: 81 Expect: 0.0048 Matches: 9 Glycogen phosphorylase, muscle form OS=Mus musculus GN+Pygm PE=1 SV=3 State State State
4.	PYGM_SHEEP Mass: 97710 Score: 78 Expect: 0.0091 Matches: 9 Glycogen phosphorylage, muscle form 05=0vis aries GNHPYGM_PE=2 3V=3 PYGM_BOVIN Mass: 97866 Score: 80 Expect: 0.32 Matches: 8 Glycogen phosphorylage, muscle form 05=Bos taurus GN=PYGM_PE=1 3V=3
5.	PYGM_RAT Mass: 97734 Score: 80 Expect: 0.62 Matches: 8 Glycosen phosphorylase, muscle form US=Rattus norvesicus GN=Pygm PE=1 SV=5
6.	<u>(NAJ MYCPU</u> Mass: 42383 Score: 46 Expect: 14 Matches: 11 Chaperone protein DnaJ 05=Nkuccolasma pulmonis (strain UAB CTIP) (NE-dnaJ PE=3 SV=2
7.	RL1_CARM2 Mass: 24778 Score: 45 Expect: 19 Matches: 8 505 ribosomal protein L1 05=Carboxydothermus hydrogenoformans (strain ATOC BAA-161 / DSM 6008 / Z-2901) GN=rp1A PE=3 SV=1
8.	F <mark>NMI_NEIMA_Mass:</mark> 18239 Score: 42 Expect: 32 Matches: 7 Fimbrial protein OS-Neisseria meningitidis serogroup A / serotype 4A (strain Z2491) QN=pilE PE=1 SV=1
9.	<u>HIS2_METFK</u> Mass: 11579 Score: 41 Expect: 40 Matches: 5 Phosphoribosyl-ATP pyrophosphatase (05-Methylobacillus flagellatus (strain KT / ATOC 51484 / DSM 6875) GN=hisE PE-3 SV=1
10.	<mark>SLRA_VIEPA Mass: 47464 Score: 39 Expect: 68 Matches: 12</mark> Chaperone SurA OS=Vibrio parahaemolyticus serotype 08:K6 (strain RIMD 2210833) GN=surA PE=3 SV=1
11.	<u>RL22 CALS8</u> Mass: 13884 Score: 38 Expect: 91 Matches: 7 505 ribosomal protein L22 OS=Caldicellulosiruptor saccharolyticus (strain ATOC 43494 / DSM 8903 / Tp8T 6331) GN=rpIV FE=3 SV=1
12.	WIHDEH Mass: 49553 Score: 37 Expect: 1e+002 Matches: 7 Protein WIOS=Hendra virus (isolate Horse/Autralia/Hendra/1984) GN=P/V/C PE=3 SV=1
13.	<mark>EFIS_THIDA Mass:</mark> 31135 Score: 37 Expect: 1e+002 Matches: 9 Elongation factor Ts 0S=Thiobacillus denitrificans (strain ATOC 25259) 0N=tsf PE=3 SV=1
	Elongation factor Is US=Thiobacillus denitrificans (strain AIUU 25209) UN=tst PE=3 SV=1
14.	<u>RLUC PASMU</u> Mass: 37194 Score: 36 Expect: 1.3e+002 Matches: 8 Ribosomal large subunit pseudouridine synthase C OS=Pasteurella multocida (strain Pm70) QN=rluC PE=3 SV=1
15.	Y <u>BEY BOREP</u> Mass: 17828 Score: 36 Expect: 1.4e+002 Matches: 5 Endoribonuclease YbeY OS-Borreliella bavariensis (strain ATOC BAA-2486 / DSM 23468 / PBi) GN=vbeY PE=3 SV=1
16.	IAA3_ARATH Mass: 21913 Score: 36 Expect: 1.4e+002 Matches: 10 Auxin-responsive protein IAA3 OS=Arabidopsis thaliana QN=IAA3 PE=1 SV=1
17.	RL21_SHESM Mass: 11356 Score: 36 Expect: 1.5e+002 Matches: 5 505 ribosomal protein L21 05-Shewanella sp. (strain MR-4) GNF=pUI EF=3 SV=1 RL21_SHESM Mass: 11356 Score: 36 Expect: 1.5e+002 Matches: 5 505 ribosomal protein L21 05-Shewanella sp. (strain MR-7) GNF=pUI PE=3 SV=1
18.	R <u>L10E.METS5</u> Mass: 20052 Score: 35 Expect: 1.6e+002 Matches: 5 50S ribosomal protein L10e 0S=Metallosphaera sedula (strain ATOC 51363 / DSM 5348) GN=rp110e PE=3 SV=1
19.	<u>CIFI_SCHPO</u> Mass: 36053 Score: 35 Expect: 1.7e+002 Matches: 6 Calmexin-independence factor 1 OS=Schizosaccharomyces pombe (strain 972 / ATOC 24843) GN=cif1 PE=4 SV=1
20.	<mark>KSBA,HVEDU</mark> Maass: 64539 Score: 35 Expect: 1.7e+002 Matches: 7 Lipid A export ATP+binding/permease protein MsbA OS=Naemochilus ducreyi (strain 35000HP / ATOC 700724) QN=msbA PE=3 SV=1
21.	<u>Y214.RICFE</u> Mass: 64599 Score: 35 Expect: 1.7e+002 Matches: 8 Putative export ATP-binding/permease protein RF_0214 OS-Rickettsia felis (strain ATOC VR-1525 / URRMMCal2) GN=RF_0214 PE=3 SV=2
22.	HICHI_DICOI Mass: 61161 Score: 35 Expect: 1.8e+002 Matches: 9 3-hudroxo-3-methylslutaryl-coenzyme A reductase 1 0S-Dictyostelium discoideum GNEhmsA PE=2 SV=1
23.	<u>RPOA BREEN</u> Mass: 34825 Score: 35 Expect: 1.9e+002 Matches: 8 DNA-directed RNA polymerase subunit alpha 08-Brevibacillus brevis (strain 47 / JCM 6285 / NBRC 100599) QN=rpoA PE=3 SV=1
24.	ARD_STAAL Mass: 27063 Score: 34 Expect: 2e*002 Matches: 9 S-debrdonoutinet debrdstase DS-Stable/Lococcus aureus (Strain Md / AICC 700698) (N=aroD FE=3 SV=1 ARD_STAAL Mass: 27063 Score: 34 Expect: 2e*002 Matches: 9 S-debrdonoutinet debrdstases DS-Stable/Lococcus aureus (Strain .HF) (N=aroD FE=3 SV=1 ARD_STAAL Mass: 27063 Score: 34 Expect: 2e*002 Matches: 9 S-debrdonoutinet debrdstase DS-Stable/Lococcus aureus (Strain .HF) (N=aroD FE=3 SV=1 ARD_STAAL Mass: 27063 Score: 34 Expect: 2e*002 Matches: 9 S-debrdonoutinet debrdstase DS-Stable/Lococcus aureus (Strain .HF) (N=aroD FE=3 SV=1 Mass: 27063 Score: 34 Expect: 2e*002 Matches: 9

	3-detydroquinate detydratase US>taptylococcus aureus (strain JHB) UNFardU FE3 SYF1 <u>ARO_STAM</u> Mass: 2708 Score: 34 Excect: 2e/020 Matches: 9 3-detydroquinate detydratase US>taptylococcus aureus (strain MAG) / ATCC 700690 GNFardD FE3 SVF1 <u>ARO_STAM</u> Mass: 2708 Score: 34 Excect: 2e/020 Matches: 9 3-detydroquinate detydratase OS>taptylococcus aureus (strain N815) GNFardD FE3 SVF1
25.	R <u>HOU BOVIN</u> Mass: 28502 Score: 34 Expect: 2e+002 Matches: 8 Rho-related GTP-binding protein RhoU 05=Bos taurus GN=RHOU PE=2 SV=1
26.	<u>RL22 CHLPD</u> Mass: 13257 Score: 34 Expect: 2e+002 Matches: 4 505 ribosomal protein L22 OS=Chlorobium phaeobacteroides (strain DSM 206) QN=rpIV PE=3 SV=1
27.	<u>SST2_904P0</u> Mass: 49839 Score: 34 Expect: 2.4e+002 Matches: 10 AMSH-like protease sst2 05=Schizosaccharomyces pombe (strain 972 / ATOC 24843) GN=sst2 FE=1 SV=1
28.	H <u>P183_CHICX</u> Mass: 62103 Score: 34 Expect: 2.5e+002 Matches: 10 Heterochromatin protein 1-binding protein 3 OS=Gallus gallus GN=HP1BP3 PE=2 SV=1
29.	RL <u>4 EREEN</u> Mass: 22546 Score: 33 Expect: 2.6e+002 Matches: 5 50S ribosomal protein L4 0S=Brevibacillus brevis (strain 47 / JOM 6285 / NERC 100599) GN=rpID PE=3 SV=1
30.	<u>OHIO RIOPR</u> Mass: 10444 Score: 33 Expect: 2.8e+002 Matches: 6 10 kDa chaperonin OS-Rickettsia prowazekii (strain Madrid E) QN-groS PE=3 SV=1
31.	E8_VACCC Mass: 31973 Score: 33 Expect: 2.8e+002 Matches: 3 Protein E8 05=Vaccinia virus (strain Copenhagen) (NEE8R FE-2 SV=1 E8_VACCM Mass: 31808 Score: 33 Expect: 2.8e+002 Matches: 3 Protein E8 0S=Vaccinia virus (strain Hestern Reserve) CNE-VACHR064 PE=1 SV=1
32.	LIPA <u>BNRT1</u> Mass: 86478 Score: 33 Expect: 2.8e+002 Matches: 3 Lipoyl synthase 0S=Bartonella tribocorum (strain CIP 105476 / IBS 506) 0N=1ipA PE=3 SV=1
33.	DMPA_RICAE Mass: 20231 Score: 32 Expect: 3.2e4002 Matches: 6 41-bdroxy-tetrahvdrodipicolinate synthase GSRIcketsia africae (strain ESF-5) GN=dapA PE=3 SV=1 UMPA_RICAI Mass: 2020 Score: 32 Expect: 3.2e4002 Matches: 6 41-bdroxy-tetrahvdrodipicolinate synthase GSRIcketsia africae (strain ESF-5) GN=dapA PE=3 SV=1 QMPA_RICAI Mass: 20207 Score: 32 Expect: 3.2e4002 Matches: 6 41-bdroxy-tetrahvdrodipicolinate synthase GSRIcketsia arcicketsii (BrdapA PE=3 SV=1 Mass: 20217 Score: 32 Expect: 3.2e4002 Matches: 6 41-bdroxy-tetrahvdrodipicolinate synthase GSRIcketsia arcicketsii (Intain Iowa) (M+dapA PE=3 SV=1 Mass: 20217 Score: 32 Expect: 3.2e4002 Matches: 6 41-bdroxy-tetrahvdrodipicolinate synthase GSRIcketsia ricketsii (strain Iowa) (M+dapA PE=3 SV=1 Mass: 20217 Score: 32 Expect: 3.2e4002 Matches: 6 41-bdroxy-tetrahvdrodipicolinate synthase GSRIcketsia ricketsii (strain Iowa) (M+dapA PE=3 SV=1 Mass: 20217 Score: 32 Expect: 3.2e4002 Matches: 6 Figure 1000 Figure 1000 <td< th=""></td<>
34.	<u>TENI_VEAST</u> Mass: 18882 Score: 32 Expect: 3.2e+002 Matches: 4 Telomere length regulation protein TENI 05-Saccharomyces cerevisiae (strain ATOC 204508 / S288c) GN=TENI PE=1 SV=1
35.	Y <u>NG_CNNTS</u> Mass: 18717 Score: 32 Expect: 3.5e+002 Matches: 3 Uncharacterized 18.6 kDa protein in alpha-glucosidase 3'region OS=Candida tsukubaensis PE=4 SV=1
36.	<u>(STTI_HAMAN</u> Mass: 27492 Score: 32 Expect: 3.6e+002 Matches: 3 Glutathione S-transferase theta-1 OS+Homo sapiens GN=GSTTI FE=1 SV=4
37.	<u>YB008 YEAST</u> Mass: 9765 Score: 32 Expect: 3.6e+002 Matches: 4 Uncharacterized protein YBL008W-A OS-Saccharomyces cerevisiae (strain ATOC 204508 / \$288c) QN=YBL008W-A PE=3 SV=1
38.	0 <u>CE4_LEPCE</u> Mass: 2274 Score: 32 Expect: 3.6e+002 Matches: 3 Ocellatin-4 OS=Leptodactylus ocellatus PE=1 SV=1

: Sequence Querv
: Lys-N
Carboxymethyl (C)
: Monoisotopic
: Un restricted
e ; ± 0.5 Da
ce: ± 0.6 Da
: 1
: Default
+): <no title=""></no>
: seq(C-A)
+): <no title=""></no>
: seq(C-Y)
+): <no title=""></no>
+): <no title=""></no>
1) · /nn +:+1n/

PYGM mass+c

User Email Search title Database Timestamp Top Score	: Y Mana : Kahr200030@mmail.com : : SwissProt 2016_03 (550740 sequences; 190582750 residues) : 14 Apr 2016 at 09:24:40 GMT : 15 for Produ_NADI, Givogen phosphorylase, muscle form OS=Oryctolagus cuniculus GM=PYGM PE=1 SV
Mascot Score	Histogram
Protein score is -1 Protein scores gre	OHLog(P), where P is the probability that the observed match is a random event. ater than 70 are significant ($\rho(0.05)$
st 10 2 0 0	

Format As	Concise Protein Summary V	Help
	Significance threshold p< 0.05	Max number of hits 200
	Preferred taxonomy All entries	~

Re-Se	earch All Search Unmatched
1.	PYGH_ROREIT Mass: 97750 Score: 157 Expect: 1.1e-010 Matches: 9 Givcepen phosphorylase, muscle form 05-0pyctolagus cuniculus GN+PYGH FE-1 SV-3 PYGH_HAM Mass: 9748 Score: 12 FYGH_HAM Mass: 9745 Score: 12 Expect: 4.4e-07 Matches: 7 Givcepen phosphorylase, muscle form 05-Hom sapiers GN+PYGH FE-1 SV-3 PYGH_HAM Mass: 9745 Score: 12 FYGH_HAM Mass: 9745 Score: 12 Expect: 4.4e-07 Matches: 7 Givcepen phosphorylase, muscle form 05-Hom sapiers GN+PYGH FE-1 SV-3 PYGM_FE-2 SV-3 PYGM_FE-2 SV-3 FYGM_MCFA Mass: 9775 Score: 12 Expect: 4.4e-07 Matches: 7 Givcepen phosphorylase, muscle form 05-Hom sapiers GN+PYGH FE-1 SV-3 PYGM_FE-2 SV-3 PYGM_FE-2 SV-3 FYM_MOFA Mass: 9776 Score: 13 Expect: 1.0e-07 Matches: 7 Givcepen phosphorylase, muscle form 05-Hom sapiers GN+PYGH FE-1 SV-3 PYGM_FE-2 SV-3 PYGM_FE-2 SV-3 FYM_MOFA Mass: 9776 Score: 13 Expect: 1.0e-07 Matches: 16 Givcepen phosphorylase, muscle form 05-Hom sapiers GN+PYGH FE-1 SV-3 PYGM_FE-1 SV-3 PYGM_FE-1 SV-3 FYM_MOFA Mass: 97784 Score: 13 Expect:
2.	PYGM MOLSE Mass: 97889 Score: 96 Expect: 0.00013 Matches: 6 Glycogen phosphorylase, muscle form OS=Mus musculus GN=Pysm PE=1 SV=3
3.	<u>YL170 MINIV</u> Mass: 51830 Score: 44 Expect: 25 Matches: 3 Putative FNIP repeat-containing protein L170 OS=Acanthamoeba polyphaga mimivirus GN=MIMI_L170 FE=4 SV=1
4.	<u>DNAJMCPU</u> Mass: 42383 Score: 42 Expect: 38 Matches: 3 Chaperone protein DnaJ US=My-ccolasma pulmonis (strain UAB CTIP) QN=dnaJ PE=3 SV=2
5.	R <u>L30 BACLD</u> Mass: 6633 Score: 40 Expect: 55 Matches: 2 505 ribosomal protein L30 0S=Bacillus licheniformis (strain ATOC 14580 / DSM 13 / JCM 2505 / NBRC 12200 / NCIMB 9375 / NBRL NRS-1264 / Gibson 46) QN⊨rpmD PE=3 SV=1
6.	Y <u>AG_CNNTS</u> Mass: 18717 Score: 40 Expect: 62 Matches: 2 Uncharacterized 18.6 kDa protein in alpha-glucosidase 3'region OS-Candida tsukubaensis PE=4 SV=1
7.	E8_VACOC Mass: 31973 Score: 36 Expect: 1.2e+002 Matches: 2 Protein E8 US:Vaccinia virus (strain Oxpenhagen) QHESR PE:2 SV=1 <u>B3 VACOR</u> Mass: 3188 Score: 36 Expect: 1.2e+002 Matches: 2 Protein E8 US:Vaccinia virus (strain Western Reserve) QHEVADWR064 PE:1 SV=1
8.	<u>DOF53_ARATH</u> Mass: 28531 Score: 36 Expect: 1.3e+002 Matches: 2 Dof zinc finger protein DOF5.3 OS=Arabidopsis thaliana QN=DOF5.3 FE=2 SV=1
9.	<u>Y8778 D1001</u> Mass: 14040 Score: 36 Expect: 1.3e+002 Matches: 2 Putative uncharacterized protein DDB_0228001 OS=Dictyostelium discoideum GN=DDB_02286001 PE=4 SV=1
10.	<u>RL22 CALS8</u> Mass: 13984 Score: 36 Expect: 1.3e+002 Matches: 2 505 ribosomal protein L22 OS=Caldicellulosinutor saccharolyticus (strain ATCC 43494 / DSM 8903 / Tp8T 6331) QN≤rpIV PE=3 SV=1
11.	RL21_SFEB2 Mass: 11403 Score: 36 Expect: 1.3e+002 Matches: 2
11.	9219 Mass: 1100 Sor: 30 Expect: 1.3e-002 Matches: 2 96 riboral Order Sor: 30 Expect: 1.3e-002 Matches: 2 96 riboral order Sor: 30 Expect: 1.3e-002 Matches: 2 96 riboral order Sor: 30 Expect: 1.3e-002 Matches: 2 96 riboral Sor: 30 Expect: 1.3e-002 Matches: 2
12.	I <u>ENI YEASI</u> Mass: 18882 Score: 36 Expect: 1.4e+002 Matches: 2 Telomere length regulation protein TENI 08=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=TENI PE=1 SV=1
13.	R <u>L22 CHLPD</u> Mass: 13257 Score: 38 Expect: 1.4e+002 Matches: 2 505 ribosomal protein L22 OS-Chlorobium phaeobacteroides (strain DSM 206) QN=rpIV PE=3 SV=1
14	I DA DADTI Wares 28479 Scores 28 Example 1 Author 2

149

14.	L <u>IPA BARTI</u> Mass: 88478 Score: 36 Expect: 1.4e+002 Matches: 2 Lipoyl synthase OS-Bartonella tribocorum (strain CIP 105476 / IBS 506) GN=1ipA PE=3 SV=1
15.	<u>(STTLHAMM</u> Mass: 27492 Score: 36 Expect: 1.5e+002 Matches: 2 Glutathione S-transferase theta-1 OS=Homo sapiens GN=GSTTL FE=1 SV=4
16.	<u>RLIQE METS5</u> Mass: 20052 Score: 36 Expect: 1.6e+002 Matches: 2 505 ribosomal protein L10e 05=Metallosphaera sedula (strain ATOC 51363 / DSM 5348) GN⊨rp110e PE≈3 SV=1
17.	U <u>FPP2_PSEHT</u> Mass: 28077 Score: 35 Expect: 1.7e+002 Matches: 2 UndecaprervI-diphosphatase 2.0S=Pseudoalteromonas haloplanktis (strain TAC 125) GN=upp2_PE=3 SV=1
18.	<u>NIP7_DICO1</u> Mass: 20975 Score: 35 Expect: 1.9e+002 Matches: 2 805 ribosome subunit biogenesis protein NIP7 homolog COS-Dictyostelium discoideum GN=nip7 PE=3 SV=1
19.	<u>\$15 CHLF</u> Mass: 48647 Score: 34 Expect: 2.2e+002 Matches: 2 SerinetRNA ligase 05-Chlamydophila felis (strain Fe/C-56) GN=serS PE=3 SV=1
20.	F <u>OLDI.SYNWM</u> Mass: 29876 Score: 34 Expect: 2.3e+002 Matches: 2 Bifunctional protein FolD 1 0S≈Syntrophomonas wolfei subsp. wolfei (strain DSM 22458 / Goettingen) GN=folD1 FE=3 SV=1
21.	FAT3 HLWAN Mass: 508747 Score: 33 Expect: 2.6e+002 Matches: 4 Protocacherin Fat 3 05=Homo sapiens GN=FAT3 PE=2 SV=2
22.	<u>SUCCACICJ</u> Mass: 42214 Score: 33 Expect: 2.6e+002 Matches: 2 Succinv1-CoA ligase [ADP-forming] subunit beta OS-Acidiphilium cryptum (strain JF-5) GN-sucC PE=3 SV=1
23.	L <u>NIPAV</u> Mass: 259899 Score: 83 Expect: 2.8e+002 Matches: 8 RMA-directed RNA polymerase L 05=Nipah virus GN=L PE=3 SV=1
24.	HIS4_METPP Mass: 28822 Score: 83 Expect: 2.9e+002 Matches: 2 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase OS=Methylibium petroleishilum (strain PMI) GN=hisA PE=3 SV=1
25.	<u>YE008 YEAST</u> Mass: 9765 Score: 33 Expect: 3e+002 Matches: 2 Uncharacterized protein YEL008W-A 05=Saccharomuces cerevisiae (strain ATOC 204508 / 5288c) GN=YEL008W-A PE=3 SV=1
26.	L <u>PXK PSEA6</u> Mass: 34416 Score: 32 Expect: 3.2e+002 Matches: 2 Tetraacy/disaccharide 4'-kinase 0S=Pseudoalteromonas atlantica (strain T6c / ATOC BAA-1087) GN=1pxK PE=3 SV=1
97	10/24 DAME Wass: 35671 Score: 32 France: 3 Actiliz Matches: 2
27.	<u>TWC/A_DWVE</u> Mass: 35671 Score: 32 Expect: 3.3e+002 Matches: 2 Thioredaxin-related transmembrane protein 2-A 0S-Danio rerio GN=tmc2a PE=2 SV=1
28.	W <u>HENCH</u> Mass: 49553 Score: 32 Expect: 3.3e+002 Matches: 2 Protein W 05+Hendra virus (isolate Horse/Autralia/Hendra/1994) GN=P/V/C PE=3 SV=1
29.	<u>P0F7_S0HP0</u> Mass: 42428 Score: 32 Expect: 3.4e4002 Matches: 2 F-box protein pof7 05%chizosaccharomyces pombe (strain 972 / ATOC 24843) GN=pof7 FE=1 SV=2

CA mass

MATRIX Mascot Search Results

User : Y Wang Email : Kahn20003@gmail.com Search title : Database : SwissProt 2016_03 (550740 sequences; 196582750 residues) Timestamp : 14 Apr 2016 at 09:50:30 GMT Top Score : 48 for CAH2_BOVIN, Carbonic anhydrase 2 OS=Bos taurus GN=CA2 PE=1 SV=3

Mascot Score Histogram

Protein score is =10+Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p<0.05).

Conc	ise Protein Summary Report
Form	at As Concise Protein Summary V Hele
	Significance threshold p< 0.05 Max. number of hits 200
	Preferred taxonomy All entries v
Re-Se	earch All Search Unmatched
1.	<u>CM-R2_BOVIN</u> Mass: 20006 Score: 48 Expect: 8.5 Matches: 11 Carbonic anhydrase 2 OS-Bos taurus GM-CA2 PE=1 SV=3
2.	RSI6_SHEFN Mass: 9318 Score: 38 Expect: 78 Matches: 5
2.	<u>RS16_SHEFN</u> Mass: 9318 Score: 38 Expect: 78 Matches: 5 30S ribosomal protein S16 OS=Shewanella frigidimarina (strain NC1MB 400) QN=rpsP PE≈3 SV=1
3.	METN2_STAME Mass: 38372 Score: 38 Expect: 98 Matches: 9 Meth/onine import ATP-binding protein Meth/starby/locccus aureus (strain bovine RF122 / ET3-1) GN=metN2 FR4 METN2_STAME Mass: 38351 Score: 38 Expect: 98 Meth/anine import ATP-binding protein Meth/2 CSSN Matches: 9 Meth/score Score: 38 Matches: 9 Matches: 9 Meth/score Score: 38 Score: 38 Score: 38 Meth/score Score: 38 Matches: 9 N=meth/2 FE1 SV=1
4.	<u>AP-4 complex suburit sigma-1</u> OS=Homo sapiens GN=#P431 FE=2 SV=1
5.	<u>AP451_HULSE</u> Mass: 18881 Score: 37 Expect: 1.1e+002 Matches: 8 AP-4 complex suburit sigma-1 OS=Mus musculus GN=Ap4s1 PE-2 SV=1
6.	0080 PYNFU Mass: 32432 Score: 37 Expect: 1.2e+002 Matches: 7 Probable cobalamin biosynthesis protein Cobb OS-Pyrococcus furiosus (strain ATOC 43587 / DSM 3638 / JCM 8422 / Vc1) GN=cobb PE=3 SV=1
7.	<u>B100 (1.088</u> Mass: 25775 Score: 36 Expect: 1.4e+002 Matches: 8 ATP-dependent dethicbiotin synthetase BioD OS=Clostridium botulinum (strain Eklund 17B / Type B) GN=bioD PE=3 SV=1
8.	L <u>EUD CYTH3</u> Mass: 22288 Score: 38 Expect: 1.4e+002 Matches: 8 3-iscorcov/malate defwdratase small subunit OS=Dxtophaga hutchinsonii (strain ATCC 33406 / NCIMB 9469) GN=1euD PE=3 SV=1
9.	RMI SALSA Mass: 24532 Score: 36 Expect: 1.6e+002 Matches: 9 GTP-binding nuclear protein Ran 05=Salmo salar GN=ran PE=2 5/1=1
10.	<u>SLAPLBACAN</u> Mass: 88668 Score: 35 Expect: 1,7e+002 Matches: 20 S-layer protein sap 0S=Bacillus anthracis GN=sap PE=1 SV=1
11.	R <u>S17_STR00</u> Mass: 10714 Score: 35 Expect: 1.7e+002 Matches: 9 305 ribosomal protein S17 05=Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) GN=rps0 PE=3 SV=1
12.	<u>1872_DICD1</u> Mass: 131280 Score: 35 Expect: 1.8e+002 Matches: 19 Serine/threonine=protein kinase dst2 05=Dictyostelium discoideum GN=dst2 PE=3 SV=1
13.	<u>Y723_THEEP</u> Mass: 12245 Score: 34 Expect: 2e+002 Matches: 7 Nucleoid-associated protein t1r0723 05=Thermosynechococcus elongatus (strain BP-1) QN=t1r0723 PE=3 SV=1
	Nucleoid-associated protein tIrU/23 US=Ihermosynechococcus elongatus (strain BY-1) UN=tIrU/23 PE=3 SV=1
14.	PLSX_PEPO6 Mass: 37029 Score: 34 Expect: 2.3e+002 Matches: 12 Phosphate acyltransferase 05=Peptoclostridium difficile (strain 630) QN=plsX_FE=3 SV=1
15.	ATPF_VIBC3 Mass: 17707 Score: 33 Expect: 2.6e+002 Matches: 9 ATP swnthase subunit b 05°Vibrio-cholerae serotype 01 (strain ATOC 39541 / Classical Ogawa 395 / 0395) GN=atpF PE=3 SV=1 ATP swnthase subunit b 05°Vibrio-cholerae serotype 01 (strain ATOC 39315 / El Tor Inaba N16961) GN=atpF PE=3 SV=1
16.	<u>RL18 PYRIL</u> Mass: 23217 Score: 33 Expect: 2.6e+002 Matches: 10 50S ribosomal protein L18 0S=Pyrobaculum islandicum (strain DSM 4184 / JCM 9189 / GEO3) GN⊨rp118 PE=3 SV=1
17.	<u>CAR2_SHEEP</u> Mass: 29193 Score: 33 Expect: 2.6e+002 Matches: 7 Carbonic anhydrase 2 0S=0vis aries GH=CA2 PE=1 SV=2
18.	<u>00.402 H.MAN</u> Mass: 17291 Score: 33 Expect: 2.9e+002 Matches: 7 0CIA domain-containing protein 2 0S≒Homo sapiens QN=CO[AD2 PE=1 SV=1
19.	RL15.RICAE Mass: 16738 Score: 32 Expect: 3.5e+002 Matches: 10 508 ribosomal protein L15 05=Rickettsia africae (strain ESF-5) GN+rp10 FE-3 SV±1 RL15.RICAM Mass: 16738 Score: 32 Expect: 3.5e+002 Matches: 10 508 ribosomal protein L15 05=Rickettsia conorii (strain ATC: VR=818 / Malish 7) GN=rp10 PE=3 SV±1 RL15.RICPU Mass: 16742 Score: 32 Expect: 3.5e+002 Matches: 10 505 ribosomal protein L15 05=Rickettsia peacockii (strain Rustic) RN=rp10 PE=3 SV±1
20.	RMA14_CANUL Mass: 91733 Score: 32 Expect: 3.6e+002 Matches: 20

<u>NNAI4_LANNU_____</u>Mass: 91733 Score: 32 Expect: 3.6e4UU2 Matches: 20 mRNA 3'-end-processing protein RNAI4 OS=Candida albicans (strain SC5314 / ATOC MYA-2876) GN=RNA14 PE=3 SV=1
 mtNA 3* end-processing protein 160414 US-Candida albicans (strain SU3314 7 AUCL WTA-287

 CDC42_EDVIN
 Mass: 21593

 Score: 32
 Expect: 3.7e4002

 Matches: 6
 Gell division control protein 42 homolog 05%bs taurus 04*CDC42

 CDC42_EDVIN
 Mass: 21593

 Score: 32
 Expect: 3.7e4002

 Matches: 6
 Gell division control protein 42 homolog 05%bs taurus 04*CDC42

 CDC42_EDVIN
 Mass: 21593

 Score: 32
 Expect: 3.7e4002

 Matches: 6
 Gell division control protein 42 homolog 05%bs taurus 04*CDC42

 CDC42_HIMAN
 Mass: 21593

 Score: 32
 Expect: 3.7e4002

 Matches: 6
 Gell division control protein 42 homolog 05%homo samicers 04*CDC42

 CD11 division control protein 42 homolog 05%homo samicers 04*CDC42

 CD14_MUSE
 Mass: 21593

 Score: 32
 Expect: 3.7e4002

 Matches: 6
 Gell division control protein 42 homolog 05%homo samicers 04*CD42

 CD14_MUSE
 Mass: 21593

 Score: 32
 Expect: 3.7e4002

 Matches: 6
 Gell division control protein 42 homolog 05%homo samicers 04*CD42

 CD14_MUSE
 Mass: 21593

 Score: 32
 Expect: 3.7e4002

 Matches: 6
 Gell division control protein 42 homolog 05%homo samicers 04*GH24
 21.

	QC042_MUSE Mass: 21593 Score: 32 Expect: 3,7e402 Matches: 6 Cell division control protein 42 homolog 05-Mus musulus QHCdd42 PE-1 SV-2 Cell division control protein 42 homolog 05-Sus scora GH=C042 PE-2 SV-2 Cell division control protein 42 homolog 05-Sus scora GH=C042 PE-1 SV-2 QC042_R1 Mass: 21593 Score: 32 Expect: 3,7e402 Matches: 6 Cell division control protein 42 homolog 05-Sus scora GH=C042 PE-1 SV-2 Cell division control protein 42 homolog 05-Fattus norvegicus QH=C042 PE-1 SV-2
22.	<mark>ENGB_STRUD - Mass:</mark> 22675 - Score: 32 - Expect: 3.9e+002 - Matches: 7 Probable GTP-binding protein EngB OS=Streptococcus uberis (strain ATOC BAA-854 / 0140J) GN≔engB PE=3 SV=1
23.	<u>YIDC.BUCAP</u> Mass: 62678 Score: 32 Expect: 3.9e+002 Matches: 12 Membrane protein insertase YidC 0S=Buchnera aphidicola subsp. Schizaphis graminum (strain Sg) GN=yidC PE=3 SV=3
24.	<u>90816 YEAST</u> Mass: 8996 Score: 31 Expect: 4e+002 Matches: 6 Protein transport protein SSS1 05=Saccharomyces cerevisiae (strain ATOC 204508 / S288c) GN=SSS1 FE=1 SV=2
25.	A <u>TFF_PHUL</u> Mass: 17396 Score: 31 Expect: 4.7e+002 Matches: 7 ATP synthase subunit b 0S=Photorhabdus luminescens subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) GN=atrF PE=3 SV=1
26.	Y <u>PEY ALANO</u> Mass: 17880 Score: 31 Expect: 4.7e+002 Matches: 6 Endoribonuclease YbeY 05=Alkaliphilus metalliredigens (strain 0YMF) QN=ybeY FE=3 SV=1
27.	<u>R520_RH008</u> Mass: 8265 Score: 30 Expect: 5e+002 Matches: 6 305 ribosomal protein S20 05=Rhodococcus opacus (strain B4) GN=rpsT FE=3 SV=1
28.	<u>YHEB_SOPPO</u> Mass: 34075 Score: 30 Expect: 5.3e+002 Matches: 7 Uncharacterized oxidoreductase C215.11c OS=Schizosaccharomuces pombe (strain 972 / ATOC 24843) GN=SPBC215.11c PE=3 SV=1
29.	<u>IG.VP_BPSV9</u> Mass: 26634 Score: 30 Expect: 5.4e+002 Matches: 7 Ia-like virion protein 0S=Serratia phage KSP90 PE=1 SV=2
30.	F16P2_BRANA Mass: 37537 Score: 30 Expect: 5.4e+002 Matches: 8 Fructose-1,6-bisphosphatase, cytosolic OS-Brassica napus PE=2 SV=1
31.	<u>HISI GEOMG</u> Mass: 24122 Score: 30 Expect: 5.4e+002 Matches: 6 ATP phosphoribos/ltransferase OS-Geobacter metallireducens (strain GS-15 / ATOC 53774 / DSM 7210) GN+hisG PE=3 SV=1
32.	<u>EF2_DEBHA</u> Mass: 93715 Score: 30 Expect: 5.8e+002 Matches: 14 Eloneation factor 2 05-Debaryomyces hansenii (strain ATOC 36239 / 085 767 / JCM 1990 / NBRC 0083 / IGC 2968) GN=EFT1 PE=3 SV=1
33.	Itili SULTO Mass: 41325 Score: 30 Expect: 6e+002 Matches: 12
33.	<u>THIISULTO</u> Mass: 41825 Score: 80 Expect: 6e+002 Matches: 12 Probable tRNA sulfurtransferase 05=Sulfolobus tokodaii (strain DSM 16983 / JOM 10545 / NBRC 100140 / 7) GN=thi[PE=3 SV=1
34.	PSAF_PROMU Mass: 7617 Score: 30 Expect: 8e+002 Matches: 5 Photosystem 1 reaction center subunit 1V 05=Prodhlorcoccus marinus (strain MIT 9301) QN=psaE_PE=3 SV=1 PSAF_PROMU Mass: 7631 Score: 30 Expect: 8e+020 Matches: 5 Photosystem 1 reaction center subunit 1V 05=Prodhlorcoccus marinus (strain MIT 9312) QN=psaE_PE=3 SV=1 Photosystem 1 reaction center subunit 1V 05=Prodhlorcoccus marinus (strain AS9601) GN=psaE_PE=3 SV=1 Photosystem 1 reaction center subunit 1V 05=Prodhlorcoccus marinus (strain AS9601) GN=psaE_PE=3 SV=1 Photosystem 1 reaction center subunit 1V 05=Prodhlorcoccus marinus (strain AS9601) GN=psaE_PE=3 SV=1
35.	K <u>HD AROME</u> Mass: 23829 Score: 30 Expect: 6.2e+002 Matches: 8 Adenylate kinase 03=Aromatoleum aromaticum (strain EXNI) QN=adk FE+3 SV=1
36.	O <u>VFB_STAST</u> Mass: 34210 Score: 30 Expect: 6.2e+002 Matches: 11 Conserved virulence factor B_OSStaphylonoccus saprophyticus shap, saprophyticus (strain ATO: 15305 / DSM 20229) GN=rofB_PF=3.5V=1

Type of search :	Sequence Query
nzyme :	Lys-N
ixed modifications :	Carboxymethyl (C)
llass values :	Monoisotopic
Protein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
ragment Mass Tolerance:	± 0.6 Da
Max Missed Cleavages :	1
Instrument type :	Default
Query1 (825.8243,1+):	<no title=""></no>
Query2 (843.7685,1+):	<no title=""></no>
Query3 (857.8776,1+):	<no title=""></no>
Query4 (858.8570,1+):	<no title=""></no>
Query5 (859.6968,1+):	<no title=""></no>
Query6 (859.7891,1+):	<no title=""></no>
Query7 (867.8433,1+):	<no title=""></no>
Query8 (868.7808,1+):	<no title=""></no>
Query9 (872.7726,1+):	<no title=""></no>
Query10 (873.7632,1+):	<no title=""></no>
Query11 (877.3825,1+):	<no title=""></no>
Query12 (881.6504,1+):	<no title=""></no>
Query13 (882.7706,1+):	<no title=""></no>
Query14 (884.7656,1+):	<no title=""></no>
finani15 (885 6591 1+).	(no title)

CA mass/mass+c

SCIENCE M	ascot Search Results
User	: Y Wang
Email	: kahn20003@gmail.com
Search title	:
Database	: SwissProt 2016_03 (550740 sequences; 196582750 residues)
Timestamp	: 14 Apr 2016 at 03:50:38 GMT
Top Score	: 126 Apr (2442 PDDNL carbonic advudrase 2, 05=Bac taurus (245042 PE=1, SV=3
Mascot Score	Histogram
Protein score is -	$O^{H}Log(P)$, where P is the probability that the observed match is a random event.
Protein scores gre	ater than 70 are significant ($g(0.05)$.
0 20 40	
Concise Prot	sin Summary Report
Format As Con	ise Protein Summary 👻 Help
Sign	iicance threshold p< 0.05 Max. number of hits 200
Pret	arred taxonomy All entries
Re-Search All	Search Unmatched
1. <u>CAH2_BOV</u> Carbonic <u>CAH2_HUM</u> Carbonic <u>CAH2_HUM</u> Carbonic	N Mass: 20986 Score: 126 Expect: 1.4e-007 Matches: 10 anhvdrase 2 OS-Bos taurus QH=Cd2 FE: 1 SV=2 Mass: 20986 Score: 50 Expect: 6.2 Matches: 4 anhvdrase 2 OS-Bhomo sapiers GH=Cd2 FE: 1 SV=2 Matches: 4 Matches: 4 Matches: 4 anhvdrase 2 OS-Bhomo sapiers GH=Cd2 FE: 1 SV=2 Matches: 4 Matches: 4 Matches: 4 anhvdrase 1 SH-Bhomo sapiers GH=Cd2 FE: 1 SV=2 Matches: 4 Matches: 4 Matches: 4
2. <u>CAH2_SHE</u> Carbonic	P_ Mass: 29183 Score: 82 Expect: 0.0032 Matches: 7 anhydrase 2 0S=0vis aries QN=CA2 PE=1 SV=2
3. <u>CAH2_RAB</u>	I Mass: 29598 Score: 57 Expect: 1.1 Matches: 7
Carbonic	anhydrase 2 US-Onyctolagus cuniculus GNEA2 FE=1 SV=3
4. UBF1_HUM Nucleola UBF1_RAT Nucleola	M Mass: 89698 Score: 52 Expect: 3.2 Matches: 16 * transcription factor 1 05-Homo sapiens QN=UBTF FE: 1 SV=1 Mass: 89229 Score: 52 Expect: 3.6 Matches: 11 * transcription factor 1 05-Hattos norvegicus GN=Ubtf FE: 1 SV=1 Score: 52 Expect: 3.6 Matches: 11
5. <u>UBF1_MOU</u>	E Mass: 88011 Score: 48 Expect: 8 Matches: 12
Nucleola	•transcription factor 1 05:Mus musculus GN=Ubtf FE:1 SV=1
6. <u>CAH2_RAT</u> Carbonic <u>CAH2_MOU</u> Carbonic	Mass: 29270 Score: 44 Expect: 22 Matches: 6 anhvdrase 2. 05:Ratus norvegicus GNE0a2 PE=1 SV=2 Expect: 50 Matches: 5 anhvdrase 2. 05:Ratus nusculus GNE0a2 PE=1 SV=4 Expect: 50 Matches: 5 anhvdrase 2. 05:Ratus nusculus GNE0a2 PE=1 SV=4 Expect: 50 Matches: 5
7. <u>CHLB_CHA</u>	U Mass: 58116 Score: 40 Expect: 50 Matches: 8
Light-in	Beendent protochlorophyllide reductase subunit B 05=0hara vulgaris GN=chlB PE=3 SV=1
8. <u>ATPF_GEO</u>	L Mass: 22911 Score: 39 Expect: 89 Matches: 5
ATP synt	ase subunit b DS=Geobacter sulfurreducens (strain ATOC 51573 / DSM 12127 / PCA) GN=atpF FE=3 SV=2
9. PT117_YE Protein	
10. FEN_META	Mass: 37587 Score: 37 Expect: 1.2e+002 Matches: 12
Flap end	nuclease 1 06=Methanococcus aeolicus (strain Nankai-3 / A102 BAA-1280) GN=fen PE=3 SV=1
11. <u>Y1720_HA</u> Uncharac	
12. <u>AP4S1_HU</u>	WI MMass: 17168 Score: 36 Expect: 1.4e+002 Matches: 8
AP-4_com	Jex.subunit sigma-1 05∺Komo sapiens GH≂AP4SI FE=2 SV=1
13. <u>AP4S1_MO</u>	EE Mass: 16981 Score: 36 Expect: 1.4e+002 Matches: 8
13. <u>AP4S1_M0</u>	<u>RE</u> Mass: 16881 Score: 36 Expect: 1.4e+002 Matches: 8
AP-4 com	√lex subunit siama-1 0S=Mus musculus GN=Ap4s1 PE=2 SV=1
14. <u>ASB15_B0</u>	1N Mass: 66736 Score: 36 Expect: 1.5e+002 Matches: 4
Ankyrin	epeat and SOCS box protein 15 0S=Bos taurus QN=A6815 PE=2 SV=2
15. LARP7_MO	6 <u>5</u> Mass: 65226 Score: 36 Expect: 1.5e+002 Matches: 9
La-relat	ed protein 7 C5=Mas musculus GN=Larp7 FE=1 SV=2
16. <u>SYGA_HEL</u>	S Mass: 34801 Score: 35 Expect: 1.8e+002 Matches: 5
Glycine-	tRNA lizase alpha subunit 06=Helicobacter pylori (strain Sni470) GN=gly0 PE=3 SV=1
17. <u>TIG_DESR</u>	Mass: 48727 Score: 35 Expect: 1.8e+002 Matches: 14
Trigger	actor 05=Desulfotomaculum reducems (strain MI-1) 0N+tip FE-3 SN-1
18. MSP2_ASC	1 J Mass: 14355 Score: 35 Expect: 1.9e+002 Matches: 2
Major sp	rm protein isoform beta (SPHscaris suum FE=1 SV+3
19. CAMP1_XE	La Mass: 177217 Score: 34 Expect: 2e+002 Matches: 12
Calmodul	n-regulated spectrin-associated protein 1 05:Xencous laevis QN-camesa0 FE=2 SV=1
20. RYBPB_DA	FE Mass: 28882 Score: 34 Expect: 2.1e+002 Matches: 6
RING1 an	J YN1-binding protein B 05-Danio rerio GN=rybob PE-2 SV=1
21. <u>RS17_STR</u> 30S_ribo	
22. ASSY_DAN	E Mass: 47505 Score: 33 Expect: 2.5e+002 Matches: 8
Argining	succinate swithase 05-Danio rerio GH-assi PE-2 SM-1
23. <u>Y723_THE</u>	B Mass: 12245 Score: 3 Expect: 2.6e*002 Matches: 7
Nucleoid	associated nortein 1 (n/72) (3EThermesurechonous elongatus (strain 6P-1) (3Eth/1/72) PF-3 SV-1
24. <u>DNAA2_CH</u>	Mass: 51729 Score: 33 Expect: 2.7e/002 Matches: 9 How Score: 33 Expect: 2.7e/002 Matches: 9
25. <u>GCH1_C</u> AM	י רפרו כמו (הו הו הו הו היה אלה היה היה היה היה היה היה היה היה היה ה
GTP cycl	Avdrolase 1 OS=Campylobacter concisus (strain 13826) GN=FolE PE=3 SV=1

 Z6.
 UREE BACHD
 Mass: 17320
 Score: 32
 Expect: 3.3e+002
 Matches: 4

26.	U <u>REE BACHD</u> Mass: 17320 Score: 32 Expect: 3.3e+002 Matches: 4 Urease accessory protein UreE CS=Bacillus halodurans (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) GN=ureE PE=3 SV=1
27.	E <u>N01_BP14</u> Masss: 38315 Score: 32 Expect: 3.3e+002 Matches: 5 Exonuclease subunit 1 0S=Enterobacteria phage T4 QN=47 PE=1 SV=1
28.	<u>CSN6_DEBHA</u> Mass: 53267 Score: 32 Expect: 3.5e+002 Matches: 5 COP9 signalosome complex subunit 5 05-Debaryomyces hansenii (strain ATOC 36239 / 083 767 / JOM 1990 / NBRC 0083 / 1GC 2968) GN=RR11 PE=3 SV=2
29.	M <mark>URA BUCBP Mass: 4</mark> 5326 Score: 32 Expect: 3.6e+002 Matches: 9 UDP-N-acetylglucosamine 1-carboxyvinyltransferase OS-Buchnera aphidicola subsp. Baizongia pistaciae (strain Bp) GN=murA PE=3 SV=1
30.	<u>PLRA_SYNFH</u> Mass: 47713 Score: 32 Expect: 3.6e+002 Matches: 3 Adenylosuccinate synthetase 0S=Syntrophobacter fumaroxidans (strain DSM 10017 / MPOB) BN⊨purA FE=3 SV=1
31.	MINE ALCES Mass: 9450 Score: 32 Expect: 3.6e+002 Matches: 3 Cell division topological specificity factor OS-Alcanivorax borkumensis (strain ATOC 700651 / DSM 11573 / NCIMB 13689 / SK2) GN=minE PE=3 SV=1
32.	<mark>SYGA,HELPG Mass:</mark> 34711 Score: 32 Expect: 3.6e+002 Matches: 3 GlycinetRNA ligase alpha subunit 05-Helicobacter pylori (strain G27) QN=glyQ PE=3 SV=1
33.	R <u>PC1 DEBHA</u> Mass: 163618 Score: 32 Expect: 3.8e+002 Matches: 12 DNA-directed RNA polymerase III subunit RPC1 OS-Debaryomyces hansenii (strain ATOC 36239 / OES 767 / JOM 1990 / NERC 0083 / IGC 2968) GN=RPC1 PE=3 SV=2
34.	<u>RS15_THEAC</u> Mass: 16504 Score: 32 Expect: 3.9e+002 Matches: 6 30S ribosomal protein S15 OS=Thermoplasma acidoshilum (strain ATOC 25005 / DSM 1728 / JCM 9062 / NBRC 15155 / AMRC-C165) GN=rps15 PE=3 SV=1
35.	<u>RL21 BAUCH</u> Mass: 12172 Score: 31 Expect: 4e+002 Matches: 5 505 ribosoma1 protein L21 0S=Baumannia cicadellinicola subsp. Homalodisca coagulata GN=rpIU PE=3 SV=1
36.	UL24 ELHM Mass: 26729 Score: 31 Expect: 4.1e+002 Matches: 6 Protein UL24 homolog OS=Elephantid herpesvirus 1 (isolate Asian elephant/Berlin/Kiba/1998) PE=2 SV=1
37.	<u>P2C76 JRATH</u> Mass: 46106 Score: 31 Expect: 4.2e+002 Matches: 7 Probable protein phosphatase 2C 76 OS=Arabidopsis thal iana ON=At5g53140 FE=2 SV=1
38.	L <mark>IPA_RHCPS</mark> Mass: 35521 Score: 31 Expect: 4.2e+002 Matches: 3 Lipoyl synthase 05=Rhodopseudomonas palustris (strain BisB5) QN=lipA FE-3 SV=1
39.	PD40_META3
39.	<u>PD4D_META3</u> Mass: 17860 Score: 31 Expect: 4.4e+002 Matches: 4 Pyruwoyl-dependent arginine decarboxylase 08=Methanococcus aeolicus (strain Nankai-3 / ATOC BAA-1280) GN=pdaD FE≤3 SV=1
40.	A <u>IFF_VIBC3</u> Mass: 17707 Score: 31 Expect: 4.4e+002 Matches: 7 AIP swnthase subunit b 0S=Vibrio cholerae serotype 01 (strain ATCC 39541 / Classical Ogawa 395 / 0385) GN=atoF PE=3 SV=1 <u>AIPF_VIBC4</u> Mass: 17707 Score: 31 Expect: 4.4e+002 Matches: 7 AIP synthase subunit b 0S=Vibrio cholerae serotype 01 (strain ATCC 39315 / El Tor Inaba N16961) GN=atoF PE=3 SV=1
41.	<u>R87.EX182</u> Mass: 17976 Score: 31 Expect: 4.4e+002 Matches: 4 30S ribosomal protein S7 0S=Exiguodacterium sibiricum (strain DSM 17280 / JCM 13490 / 255-15) GN=rpsG PE=3 SV=1
42.	N <u>PH2 VM000</u> Mass: 77899 Score: 31 Expect: 4.5e+002 Matches: 6 RNA helicase NPH-TI OS=Vaccinia virus (strain Copenhazen) GN=NPH2 PE=2 SV=1
43.	ILV <u>5 (RYS)</u> Mass: 62686 Score: 31 Expect: 4.6e+002 Matches: 5 Ketol-acid reductoisomerase, chloroplastic OS=Oryza sativa subsp. japonica GN=0505g0573700 PE=1 SV=1
44.	K <u>MD FELP8</u> Mass: 24348 Score: 31 Expect: 4.7e+002 Matches: 4 Adenylate kinase 05=Pelodictyon phaeoclathratiforme (strain DSM 5477 / BU-1) (N=adk FE=3 SV=1
45.	MCE_ASFB7 Masss:100427 Score: 31 Expect: 4.7e+002 Matches: 10 Probable mRNA-capping enzyme 05=African swine fever virus (strain Badajoz 1971 Vero-adapted) GN=Ba71V-101 PE=3 SV=1 MCE_ASFP4 Masss:100439 Score: 31 Expect: 4.7e+002 Matches: 10 Probable mRNA-capping enzyme 05=African swine fever virus (isolate Tick/South Africa/Pretoriuskop Pr4/1996) GN=Pret-113 PE=3 SV=1

CA mass+c

User Email Searc	: Y Wang : kahn20003@gmail.com :h title :
Datat Times	xase : SwissProt 2016_03 (550740 sequences; 196582750 residues) stamp : 14 Apr 2016 at 09:50:46 GMT Sorre : 142 for CAMY BWTWD, Cathonic aphwdrase 2 (DS=Bos taurus GN=CA2 PE=1 SV=3
Masc	con Score Histogram
Protei Protei	n score is $-104L_{04}(P)$, where P is the probability that the observed match is a random event. In scores greater than 70 are significant (s/0.06).
\$ 15-	
.H 30 Ja	
Numbe	
, i	50 100 155 Protein Score
Cond	sise Protein Summary Report
Form	tet As Concise Protein Summary ✓ Help Significance threehold n/ 0.05 Max number of hits 200
	Preferred taxonomy All entries
Re-S	earch All Search Unmatched
1.	<u>CM+2_BOVIN</u> Mass: 20096 Score: 142 Expect: 3.5e-009 Matches: 6 Carbonic anhydrase 2 03=Bos taurus GM+CA2 FE=1 SV+3
	<u>(AP/ (NSI)</u> Mass: 20908 Score: 62 Expect 1:0.30 Matches: 3 Carbonic anhydrase 2:05-0nyctolagus cuniculus GN-GAZ PE=1:SV=3 CM2:01017 Mass: 2:05-0nyctolagus cuniculus GN-GAZ PE=1:SV=3
	Carbonic and Marse 2 (DS-FUNCTIONAUS CONTINUE) (DS-FUNCTIONAUS) (DS-FUNCTI
	Carbonic anhydrase 2 05=Homo sapiens GN=CA2 PE=1 SV=2 <u>CAP2 PA1</u> Mass: 29270 Score: 38 Expect: 55 Matches: 2 DL = 1 - 0 - 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0
	Canonic amportanze z obritanicis morregicus metaz re-1 or-2 CAR2_MOLSE Mass: 29131 Score: 38 Expect: 35 Matches: 2 Carbonic amportanze 2 (35-Mus musculus (M-Ca2 FE-1 SV-4
2.	<u>CMV2_SHEEP</u> Mass: 29183 Score: 89 Expect: 0.00076 Matches: 4
3.	United amyorase 2 US-UNIS aries UNI-U2 TE-1 SV-2 UEF1_HUNN Mass: 89698 Score: 53 Expect: 3 Matches: 4
	Nucleolar transcription factor 1 OS=Homo sapiens ON=UBTF FE=1 SV=1 <u>UBF1_FNT</u> Mass: 89729 Score: 52 Expect: 3.2 Matches: 4
	Nucleolar transcription factor US-Mattus norvegicus WH90th H=1 VF1 U <u>BF1 W005E</u> Mass: 89801 Score: 52 Expect: 3.2 Matches: 4 Nucleolar transcription factor 1054bs mismus NullHf PF1 SV1
4.	MS72_ASS3U Maass: 14355 Score: 46 Expect: 13 Matches: 2 Major seem protein isoform beta 05-Ascaris suum (FE-1 SV-3
5.	PTI17_YEASI Masss: 12331 Score: 40 Expect: 53 Matches: 2 Protein FETI17. mitochondrial 05-Saccharomyces cerevisiae (strain ATO: 204508 / S288c) GN=PETI17 PE=3 SV=1
6.	ARCB_LACLA Mass: 30827 Score: 40 Expect: 54 Matches: 2 Acetylalutamate kinase OS=Lactococcus lactis subsp. lactis (strain IL1403) GN=argB PE=3 SV=1
7.	L <u>IPA PARLI</u> Mass: 38086 Score: 39 Expect: 69 Matches: 2 Licoy/synthase 05-Parvibaculum lavamentivorans (strain DS-1 / DSM 13023 / NCIMB 13966) GN=1ipA PE=3 SV=1
8.	PLRA_SYNFH Mass: 47713 Score: 39 Expect: 74 Matches: 2 Adenylosuccinate synthetase OS=Syntrochobacter funaroxidans (strain DSM 10017 / MPOB) QN=purA FE=3 SV=1
9.	<u>SPR1 MACMU</u> Mass: 10309 Score: 38 Expect: 78 Matches: 2 Corrifin CS=Macaca mulatta CH=SPRR1 FE-2 SV=1
10.	S <u>YGA HELP2</u> Mass: 34763 Score: 37 Expect: 1e+002 Matches: 2 Glycine-+tRNA ligase alpha subunit OS=Helicobacter pylori (strain P12) GN=glyQ PE=3 SV=1
	SYGA_HELPG Mass: 34711 Score: 37 Expect: 1e+002 Matches: 2 Glycine=tNM lisase alpha subunit 05+Helicobacter pylori (strain G27) GN=glyQ FE=3 SV=1
	<u>stus-Hitho</u> mass: 34711 Score: 37 Expect 1 e4702 Matches: 2 GlycinetRNA ligase alpha subunit 0SHelicobacter pylori (strain 027) 0N≈gly0 FE:3 SV=1 SYG4 HELP. Mass: 34760 Score: 37 Expect: 1 e4702 Matches: 2
	Glycine-tRNM ligase alpha subunit 08-Helicobacter pylori (strain 1989 / ATOC 700824) GN=glyQ PE=3 SV=1 SYGA HELPY Mass: 35204 Score: 37 Expect: 1e+002 Matches: 2
	Glyciner-ttWA ligase alpha subunit OSHHelicobacter pylori (strain ATOC 700392 / 26695) GN=alyO PE=3 SV=1 SYGA_FEPS Mass: 34601 Score: 37 Expect: 1.2e+002 Matches: 2 Clucines-tEWL ligne alba charit OSHbelicobacter pylori (ctrain SA/DVD) Diald/DE=3 SV=1
11.	ASSIS DOVIN Mass 66766 Score: 37 Expect: 1e-102 Matches: 2 Advance and SDS have protein 15 (Figher tames (#16915) FFF: 50:-2
12.	LIPA_RMCPS Mass: 35521 Score: 37 Expect: 1.1e+002 Matches: 2 Lipoyl synthesides-BPhodopesudmonas palustris (strain BisE) 0N+1ipA FE-3 SV-1
13.	0553_CANDA Mass: 49252 Score: 37 Expect: 1.2e+002 Matches: 2 Protein DSE3 OS-Candida glabrata (strain ATOC 2001 / C6S 138 / JOM 3761 / NBRC 0622 / NR9L Y-05) GN=DSE3 FE=3 SV=1
14.	ATFF_CETOL Mass: 22811 Score: 38 Expect: 1.3e+002 Matches: 2 ATP synthase subunit b 08=Geobacter sulfurreducers (strain ATOC 51573 / DSM 12127 / PCA) GN=atcF PE=3 SV=2
15.	HSUU CAUCH Mass: 46672 Score: 36 Expect: 1.4e+002 Matches: 2 ATP-dependent protease ATPase subunit Hall 05-Daulobacter crescentus (strain NA1000 / 0815N) (NH=hall PF=3 SV=1
	HSLU CAUCE Mass: 46672 Score: 36 Excect: 1.44-002 Matches: 2 ATP-dependent protease ATPase subunit HsIU OS=Caulobacter crescentus (strain ATOC 19089 / CB15) GN=hsIU PE=3 SV=1
16.	Y <mark>R773_MIMIVMass:</mark> 57161Score: 35Expect: 1.7e+002 Matches: 2 Putative BTB/P0Z_domain-containing protein R773_OS=Acanthamoeba polyphaga mimivirus GN=MIMI_R773_PE=3_SV=1
17.	<u>BIOW SULSY</u> Mass: 28542 Score: 35 Expect: 1.8e+002 Matches: 2 8-carbooyhexanoateCoA ligase 08=Sulfurihydrogenibium sp. (strain Y03ADP1) 0N=bioW FE=3 SV=1
18.	<u>OHLB CHANU</u> Mass: 58116 Score: 35 Expect: 1.9e+002 Matches: 2 Light-independent protochlorophyllide reductase subunit B 05=Chara vulgaris GN=chIB FE=3 SV=1
19.	<u>ILV5 GRYSJ</u> Mass: 62686 Score: 35 Expect: 1.9e+002 Matches: 2 Ketol=acid reductoisomerase, chlorcolastic 05=0nyza sativa subsp. japonica GN=0s05g0573700 PE=1 SV=1

	305 ribosomal protein S15 05=Thermoplasma acidophilum (strain ATOC 25005 / DSM 1728 / JCM 9062 / NBRC 15155 / AMRC-C165) GN=rps15 PE=3 SV=1
21.	Y <u>1720_H&EIN</u> Mass: 21850 Score: 34 Expect: 2.3e+002 Matches: 2 Uncharacterized protein HI_1720 OS=Haemophilus influenzae (strain ATOC 51907 / DSM 11121 / KM20 / Rd) GN=HI_1720 FE=3 SV=1
22.	CMPLICAL Mass: 177217 Score: 32 Expect: 3.6e+002 Matches: 3 Calmodulin-regulated spectrin-associated protein 1 05-Xenopus laevis GN-camsap1 PE=2 SV=1
23.	U <mark>ROCP_MOUSE</mark>
24.	<u>RK7 (XHAVU)</u> Masss: 17886 Score: 31 Expect: 4.2e+002 Matches: 2 305 ribosomal protein S7, chloroplastic 05=Chara vulgaris GN=rps7 PE=3 SV=1
25.	LIPALEPIC Mass: 34167 Score: 31 Expect: 4.5e+002 Matches: 2 Lipayl synthase 05tLeptospira interrogans serogroup Icterchaemorrhagiae serovar copenhageni (strain Fiocruz L1-130) GN=1ipA FE=3 SV=1 LIPALEPIN Mass: 34225 Score: 31 Expect: 4.5e+002 Matches: 2 Lipayl synthase 05tLeptospira interrogans serogroup Icterchaemorrhagiae serovar Lai (strain 56601) GN=1ipA PE=3 SV=1
26.	<u>PYR1_CNNL</u> Mass: 31373 Score: 30 Expect: 5e+002 Matches: 2 Protein PYR1 OS=Candida albicans (strain SC5314 / ATOC MYA-2878) GN=PYR1 PE=3 SY=1
27.	<u>(BIJ_METMI</u> Mass: 20039 Score: 30 Expect: 5e+002 Matches: 2 Cobalt-precorrin-6A reductase 05=Methanococcus maripaludis GN+cbiJ PE=3 SV=2
28.	<u>EAF6 YARL1</u> Mass: 15451 Score: 30 Expect: 5.4e+002 Matches: 2 Chromatin modification-related protein EAF6 OS=Yarrowia lipolytica (strain CLIB 122 / E 150) GN=EAF6 PE=3 SV=1
29.	RYM <u>PFB_DAMPE</u> Mass: 28882 Score: 30 Expect: 5.5e+002 Matches: 2 RINGI and Y11-binding protein B 05=Danio rerio GN=rydop PE=2 SV=1
30.	<u>IORGK_DROME</u> Mass: 34311 Score: 30 Expect: 5.8e+002 Matches: 2 IORGK domain-containing protein 1 OS=Drosophila melanogaster GN=035862 PE=1 SV=1
31.	<mark>HCRA.MEDM2 Mass:</mark> 73033 Score: 30 Expect: 6e+002 Matches: 2 Co8CoM heterodisulfide reductase iron-sulfur subunit A OS-Methanococcus maripaludis (strain S2 / LL) GN=hdrA PE=3 SV=2
32.	PHF_DENCE Mass: 81413 Score: 30 Expect: 6.2e+002 Matches: 2 Polyribonucleotide nucleotidy/transferase US=Competacterium glutanicum (strain R) GN=pnp FE=3 SV=1 PMF_DENCE Mass: 81385 Score: 30 Expect: 6.2e+002 Matches: 2 Polyribonucleotide nucleotidy/transferase US=Competacterium glutanicum (strain ATOC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025) GN=pnp FE=3 SV=1 PMF_DENCE Mass: 81385 Score: 30 Expect: 6.2e+002 Matches: 2 Polyribonucleotide nucleotidy/transferase US=Competacterium glutanicum (strain ATOC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025) GN=pnp FE=3 SV=1 Polyribonucleotide nucleotidy/transferase US=Competacterium glutanicum (strain ATOC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025) GN=pnp FE=3 SV=1 Polyribonucleotide nucleotidy/transferase US=Competacterium glutanicum (strain ATOC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025) GN=pnp FE=3 SV=1
33.	<u>SYY EHRCJ</u> Mass: 48023 Score: 29 Expect: 6.5e+002 Matches: 2 TyrosinetRNA ligase 05=Ehrlichia canis (strain Jake) GN=tyrS PE=3 SV=1
34.	N <u>PH2_VA000</u> Mass: 77899 Score: 29 Expect: 6.5e+002 Matches: 2 RNA helicase NPH-II OS-Vaccinia virus (strain Copenhagen) GN=NPH2 PE=2 SV=1
35.	<u>Y072_SOPPO</u> Mass: 64889 Score: 29 Expect: 6.8e+002 Matches: 2 UPF0649 protein C1442.02 GS-Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=SPCC1442.02 PE=1 SV=1
36.	<u>SYFB_FRATT</u> Mass: 88860 Score: 23 Expect: 6.9e+002 Matches: 2 PhenylalaninetRNA ligase beta subunit 05=Francisella tularensis subsp. tularensis (strain SOHJ S4 / Schu 4) GN=pheT PE=3 SV=1
37.	HSULTREDE Mass: 54034 Score: 28 Expect: 8e4002 Matches: 2

Type of search :	Sequence Query
Enzyme :	Lys-N
Fixed modifications :	Carboxymethyl (C)
Mass values :	Monoisotopic
Protein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
Fragment Mass Tolerance:	± 0.6 Da
Max Missed Cleavages :	1
Instrument type :	Default
Query1 (859.7891.1+):	<no title=""></no>
	seq(C-P)
Query2 (868.7808,1+):	<no title=""></no>
	seq(C-P)
Query3 (872.7726,1+):	<no title=""></no>
:	seq(C-P)
Query4 (885.6591,1+):	<no title=""></no>
:	seq(C-E)
Query5 (938.7394,1+):	<no title=""></no>
:	seq(C-P)
Query6 (939.7742,1+):	<no title=""></no>
	seq(C-P)
Query7 (951.7171.1+):	<no title=""></no>
	coa(C-V)

4P mass

MATRIX Mascot Search Results

User : Y Wang Email : Kahn20003@gmail.com Search tit : Database : SwissProt 2016_03 (550740 sequences; 196582750 residues) Timestamp : 14 Apr 2016 at 00:41:24 GMT Top Score : 34 for Y2104_S1RP1, UFF0246 protein SPy_2104/M5005_Spy1788 OS=Streptococcus pyogenes serotype M1 GN=SPy_2104 PE=3 SY=1

Mascot Score Histogram

Protein score is -10#Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p<0.05).

Concise Protein Summary Report

Format As	Concise Protein Summa	ry v	Help	
	Significance threshold	i p< 0.05	Max number of hits	200
	Preferred taxonomy	All entries		Ý

Re-Search All Search Unmatched

1.	<u>Y2104_STRP1</u> Mass: 29485 Score: 34 Expect: 2e+002 Matches: 14 UFF0246 protein SPy_2104/M5005_Sey1788 OS=Streptococcus pyogenes serotype MI GN=SPy_2104 FE=3 SV=1
2.	PFD2_MOUSE Mass: 18582 Score: 31 Expect: 4.6e+002 Matches: 14
2.	P <u>FTC2_MOLSE</u> Mass: 16582 Score: 31 Expect: 4.6e+002 Matches: 14 Prefoldin subunit 2 OS=Mus musculus GN=Pfdr2 FE=1 SV=2
3.	<u>AGF0 CLCPS</u> Mass: 24414 Score: 30 Expect: 6.2e+002 Matches: 18 Putative AsrB-like protein OS=Clostridium perfringens (strain SMT01 / Type A) GN=OPR_1532 PE=3 SV=1
4.	<u>RS20 MESFL</u> Mass: 8890 Score: 29 Expect: 6.9⇔002 Matches: 12 305 ribosomal protein S20 05≒Mesoplasma florum (strain ATCC 33453 / NBRC 100688 / NCTC 11704 / L1) GN=rpsT PE=3 SV=1
5.	<u>ATPO MYCMO</u> Mass: 21112 Score: 29 Expect: 6.9⇔4002 Matches: 31 ATP synthase subunit delta OS=Mycoplasma mobile (strain ATCC 43663 / 163K / NCTC 11711) GN=atpH PE=3 SV=1
6.	Y1742_STEP2 Mass: 20499 Score: 29 Expect: 7.4e+002 Matches: 12 UFF0246 protein Sove1712 OS=50 rentococcus progenes serotype Mill String String
7.	<u>RL6_FRATN</u> Mass: 19064 Score: 28 Expect: 7.8e+002 Matches: 10 505 ribosomal protein L6 05≑Francisella tularensis subsp. novicida (strain UI12) GN⊨rpIF FE=3 SV=1
8.	M <u>MYG VNPO</u> Mass: 85852 Score: 28 Expect: 9.8e+002 Matches: 35 ATP-dependent RNA helicase MAK5 OS=Vanderwaltozyma polyspora (strain ATOC 22028 / DSM 70294) QN=MAK5 PE=3 SV=1
9.	P <mark>D0H_SHEHH_ Mass:</mark> 24242 Score: 27 Expect: 1e+003 Matches: 15 Pyridoxine/pyridoxamine 5'-phosphate oxidase OS-Shewanella halifaxensis (strain HAW-EB4) (N=pdbH PE=3 SV=1
10.	MYG_EQLEU Mass: 17072 Score: 27 Expect: 1e+003 Matches: 27 Myoglobin (05=Exus burchelli (04+80 EF=1 SV=2) Score: 27 Expect: 1e+003 Matches: 27 Myoglobin (05=Exus caballus (04+106 PE=1 SV=2) Matches: 27 Matches: 27
11.	<u>Y1408 METJA</u> Mass: 40097 Score: 26 Expect: 1.3e+003 Matches: 28 Uncharacterized protein MJ1408 OS=Methanocaldococcus jannaschii (strain ATOC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NERC 100440) GN=MJ1408 PE=3 SV=2
12.	N <u>FFA.SHESH</u> Mass: 52860 Score: 26 Expect: 1.4e+003 Matches: 29 Cytochrome c=552 OS=Shewanella sediminis (strain HAWH-EB3) GN=nrfA PE=3 SV=1
13.	MIG_00FEE Mass: 17221 Score: 26 Expect: 1.4e+003 Matches: 23
13.	MYG.00762 Mass: 17221 Score: 26 Expect: 1.4e+003 Matches: 23 Myoslobin OS=Gorilla sorilla beringei GN+MB PE-1 SV=2
14.	<u>CONC ANGGA</u> Mass: 31887 Score: 26 Expect: 1.4e+003 Matches: 14 Cyclin-C OS=Anopheles gambiae GN=CycC PE=3 SV=2
15.	RF <u>C_SHEAM</u> Mass: 20833 Score: 26 Expect: 1.4e+003 Matches: 18 Ribosome-recycling factor OS=Snewanella amazonensis (strain ATCC BAA-1088 / SE2B) GN=frr FE=3 SV=1
16.	R <u>SI5 EDW19</u> Mass: 10203 Score: 26 Expect: 1.4e+003 Matches: 8 305 ribosomal protein SI5 05=Edwardsiella ictaluri (strain 83-146) GN=rps0 PE=3 SV=1
17.	<u>RS15 PECAS</u> Mass: 10133 Score: 26 Expect: 1.4e+003 Matches: 8 305 ribosomal protein S15 0S:Pectobacterium atrosepticum (strain SORI 1043 / ATOC BAA-672) GN=rps0 PE=3 SV=1
18.	<u>Y1712_CAMUR</u> Mass: 28428 Score: 26 Expect: 1.4e+003 Matches: 19 UPF0271 protein CJE1712_OS=Cameylobacter jejuni (strain RM1221) QN=CJE1712_PE=3_SV=1
19.	<u>Y1528 C4MJJ</u> Mass: 28414 Score: 26 Expect: 1.5e+003 Matches: 20 UFF02TJ protein CJ81176_1526 C8-Gampylobacter jeiuni subsp. jejuni serotype 0:23/36 (strain 81-176) GN=CJJ81176_1526 PE=3 SV=1 <u>Y1541_C4ML</u> @Mass: 28414 Score: 26 Expect: 1.5e+003 Matches: 20 UFF0271 protein Cj1541 OS=Campylobacter jejuni subsp. jejuni serotype 0:2 (strain ATCC 700819 / NCTC 11168) GN=Cj1541 PE=3 SV=1
20.	<u>SYY_SUL4C</u> Mass: 40880 Score: 25 Expect: 1.6e+003 Matches: 19 TyrosinetRNA ligase 0S-Sulfoldous acidocaldarius (strain ATOC 33909 / DSM 639 / JCM 8929 / NERC 15157 / NCIMB 11770) GN=tyrS PE=3 SV=1
21.	EFTS NUVAD Mass: 32084 Score: 25 Expect: 1.6e+003 Matches: 19 Elongation factor Ts 0S=Novosphingobium aromaticivorans (strain DSM 12444 / F199) GN=tsf PE=3 SV=1
22.	<u>RSR2_MULSE</u> Mass: 43908 Score: 25 Expect: 1.6e+008 Matches: 20 Arginine/serine-rich coiled-coil protein 2 0S=Mus musculus ON=Rsrc2 PE=2 SV=1
23.	PDVS_BAOCI Mass: 31561 Score: 25 Expect: 1.6e+003 Matches: 18 Pyridoxal 5'=phosphate synthase subunit Pdx5 06=Bacillus circulans GN=pdx5 PE=3 SV=1
24.	<u>AFR6 ARATH</u> Mass: 21341 Score: 25 Expect: 1.7e+003 Matches: 11 Two-component response regulator ARR6 OS=Arabidopsis thaliana GN=ARR6 PE=1 SV=2
25	1856 \$144\$ Mass: 22403 Score: 25 Expect: 1.7e+003 Matches: 15

UREG_STAAS Mass: 22403 Score: 25 Expect: 1.7e+003 Matches: 15 Urease accessory protein UreG QS=Staphylococcus aureus (strain MSSA476) GN=ureG PE=3 SV=1

Z9.	Uresse accessory protein UreG OS-Staphylococcus aureus (strain MSXM76) GNFureG PE-3 SV=1 Urease accessory protein UreG OS-Staphylococcus aureus (strain MSXM76) GNFureG PE-3 SV=1 Urease accessory protein UreG OS-Staphylococcus aureus (strain MM2) GNFureG PE-3 SV=1
26.	P <u>FD2_RAT</u> Mass: 16628 Score: 25 Expect: 1.7e+003 Matches: 10 Prefoldin subunit 2.05=Rattus norvesicus GN=Pfdn2_PE=2_SV=1
27.	RIMM_THEMA Mass: 20580 Score: 25 Expect: 1.8e+003 Matches: 10 Ribosome maturation factor RimM CB-Thermotoga maritima (strain ATOC 45589 / MSB8 / DSM 3109 / JCM 10099) QN=rimM PE=3 SV=1 Ribosome maturation factor RimM OS=Thermotoga petrophila (strain RVU-1 / ATOC BAA-488 / DSM 13995) GN=rimM PE=3 SV=1
28.	DAFLI BOVIN Mass: 11872 Score: 25 Expect: 1.8e+003 Matches: 8 Death-associated protein-like 1 05=Bos taurus GN=DAFLI PE=2 SV=1
29.	<mark>RL6_FRVP2 Mass:</mark> 19192 Score: 24 Expect: 2e+003 Matches: 11 50S ribosomal protein L6 0S=Francisella philomiragia subsp. philomiragia (strain ATOC 25017) QN≐npIF PE=3 SV=1
30.	<mark>RFF_METCA Mass</mark> : 21129 Score: 24 Expect: 2.1e+003 Matches: 9 Ribosome-recycling factor OS=Methylococcus capsulatus (strain ATOC 33009 / NCIMB 11132 / Bath) GN=frr PE=3 SV=1
31.	<u>GMPRI MOUSE</u> Mass: 37880 Score: 24 Expect: 2.1e+003 Matches: 14 GMP reductase 1 OS=Mus musculus GN=Gmor FE=1 SV=1
32.	D <u>NFD BUCBP</u> Mass: 30924 Score: 24 Expect: 2.1e+003 Matches: 17 2.3.4.5-tetrahydropyridine-2.6-dicarboxylate N-succinyltransferase 0S-Buchnera aphidicola subsp. Baizongia pistaciae (strain Bp) GN-dapD PE-3 SV-1
33.	I <u>BBC2_SOYEN</u> Mass: 10007 Score: 24 Expect: 2.1e+003 Matches: 8 Bowman-Birk type proteinase inhibitor C-II QS=Glycine max PE=1 SV=2
34.	<u>RUMA_PROM1</u> Mass: 25712 Score: 24 Expect: 2.1e+003 Matches: 16 Holliday junction ATP-dependent DNA helicase RuvA OS=Prodhlorococcus marinus (strain NATLIA) QN=ruvA PE=3 SV=1
35.	<u>Y1790_STRP2</u> Mass: 28453 Score: 24 Expect: 2.2e+003 Matches: 13 UFF0246 protein SexME_1790 DS=Strentococcus prosenes serotype MS (strain ATCC BAA-595 / MGAS315) GN=SexM3_1790 PE=3 SV=1 <u>V780_STRP2</u> Mass: 28453 Score: 24 Expect: 2.2e+003 Matches: 13 UFF0246 protein SPs1787 DS=Streptococcus progenes serotype MS (strain SS1-1) GN=SPs1787 PE=3 SV=1
36.	<u>MYX_CROUR</u> Mass: 5234 Score: 24 Expect: 2.3e+003 Matches: 7 Crotamine Ile-19 05=Crotalus durissus ruruima PE=1 SV+2
JD.	<u>мпл. цицик</u> mass: 2004 эсоге: 24 ехорест: 2.0emus matcnes: 7 Crotamine IIe-19 OS=Crotalus durissus ruruima PE=1 SV=2
37.	Y <mark>DDF_BACSU</mark> Mass: 13109 Score: 24 Expect: 2.3e+003 Matches: 13 Uncharacterized protein, YddF CG=Bacillus subtilis (strain 188) GN=vddF FE=4 SV=1
38.	<u>Y088_M/CPN</u> Mass: 11588 Score: 24 Expect: 2.4e+003 Matches: 8 Uncharacterized protein MPN_088 0S=My-coplasma pneumoniae (strain ATCC 28342 / M129) GN=MPN_088 PE=4 SV=1
39.	<u>RS5_STAMF</u> Masss: 23668 Score: 24 Expect: 2.4e+003 Matches: 13 305 ribosomal protein S5 05=Staphylothermus marinus (strain ATOC 43588 / DSM 3639 / JCM 9404 / F1) GN=rps5 PE=3 SV=1
40.	UBIELMAH Mass: 27288 Score: 24 Expect: 2.5e+008 Matches: 17 Ubiguinone/menaguinone biosynthesis C-methyltransferase UbiE 0S=Laribacter hongkongensis (strain HLHK9) GN=ubiE PE=3 SV=1
41.	PNJETH Mass: 46140 Score: 24 Expect: 2.5e+003 Matches: 15 Proteasome-activating nucleotidase 05=Methanothermobacter thermautotrophicus (strain ATOC 20096 / DSM 1053 / JCM 10044 / NERC 100330 / Delta H) QN=pan PE=3 SV=1
42.	<u>GLMU CMAPHZ</u> Mass: 48583 Score: 23 Expect: 2.6e+003 Matches: 19 Bifunctional protein GimU OS=Carboxydothemuus hydrogenoformans (strain ATCC BAA-161 / DSM 6008 / Z-2901) GN=glmU PE=3 SV=1
43.	RL22_DINSH Mass: 14224 Score: 23 Expect: 2.6e+003 Matches: 8 505 ribosomal protein L22 OS=Dinoroseobacter shibae (strain DSM 16493 / NCIMB 14021 / DFL 12) GN=rpIV PE=3 SV=1

Type of search : Enzyme : Fixed modifications : Mass values : Protein Mass : Protein Mass folerance: Frazment Mass folerance: Max Missed (leavages : Instrument type Ouery2 (514.8334,1+); Ouery2 (514.834,1+); Ouery2 (516.8336,1+); Ouery4 (516.8138,1+); Ouery4 (516.8138,1+);	Sequence Query Lys-N Carboxymethyl (C) Monoisotopic Unrestricted ± 0.5 Da ± 0.6 Da 1 Default (no title) (no title) (no title) (no title)
Query2 (514.6894.1+):	<no title=""></no>
Query3 (515.6702,1+):	<no title=""></no>
Query4 (516.6031,1+):	<no title=""></no>
Query5 (516.6136,1+):	<no title=""></no>
Query6 (516.6147,1+):	<no title=""></no>
Query7 (516.6308,1+):	<no title=""></no>

4P mass/mass+c

2	Mascot Search Results
User Email Search Databas Timesta Top Sco	: kahn20002 : kahn2003@mail.com title : 4P 0.5 lmiss se : SwissFort2016_0.4 (550960_sequences; 196692942 residues) mp: 17 Apr 2016 at 06:25:46 GMT mp: 17 Apr 2016 at 06:25:46 GMT re : 91 for MTG_GORGE, Myoglobin OS=Gorilla gorilla beringei GN=MB PE=1 SV=2
Mascot Protein s	t Score Histogram score is -10%Log(P), where P is the probability that the observed match is a random event.
Protein s Score Dis	scores greater than 70 are significant (pr(0.05). stribution
Concis	e Protein Summary Report
Format	As Conde Protein Summary V Help Significance threshold pt 0.05 Max number of hits 50
	Preferred taxonomy All entries
1.	Wind Field Score: 31 Expect: 0.0004 Matches: 21 Woolkohn GS-Sprilla porilla beringe: GN-BE FE:1 SV-2 Matches: 20 Woolkohn GS-Sprilla porilla beringe: GN-BE FE:1 SV-2 Matches: 20 Woolkohn GS-Sprilla pories Score: 35 Expect: 0.0016 Matches: 20 Woolkohn GS-Sprilla pories Score: 35 Expect: 0.0016 Matches: 20 Woolkohn GS-Sprilla pories Score: 35 Expect: 0.0016 Matches: 20 Woolkohn GS-Springe Januar syndactylus GN-BE FE:1 SV-2 Matches: 20 Matches: 20 Woolkohn GS-Springe Januar syndactylus GN-BE FE:1 SV-2 Matches: 19 Matches: 19 Woolkohn GS-Springe porgeouseus GN-BE FE:1 SV-2 Matches: 19 Matches: 19 Woolkohn GS-Springe porgeouseus GN-BE FE:1 SV-2 Matches: 19 Matches: 19 Woolkohn GS-Springe porgeouseus GN-BE FE:1 SV-2 Matches: 19 Matches: 18 Woolkohn GS-Springe porgeouseus GN-BE FE:1 SV-2 Matches: 18 Matches: 18 Woolkohn GS-Springe porgeouseus GN-BE FE:1 SV-2 Matches: 18 Matches: 18 Woolkohn GS-Springe porgeouseus GN-BE FE:1 SV-2 Matches: 18 Matches: 18 Woolkohn GS-Springe porgeouseus GN-BE FE:1 SV-2 Matches: 18 Matches: 18
2.	<u>WGEDUBU</u> Mass:17072 Score:80 Expect:0.00062 Matches:23 Movelobin GS=Equus burchelli GN+89 EE=1 SV+2 <u>WGS-LRCE</u> Mass:17072 Score:80 Expect:0.00062 Matches:23 Movelobin GS=Exue caballus GH-80 FE=1 SV-2
3.	Ministing Mass: 1723 Score: 38 Exact: 0.0025 Matches: 22 Moral doi: 05-Balaenootera aboralis 0HE0 FE2 SV-3 Exact: 0.0025 Matches: 22 Moral doi: 05-Balaenootera aboralis 0HE0 FE2 SV-3 Matches: 22 Moral doi: 05-Balaenootera aboralis 0HE0 FE2 SV-3 Matches: 22 Moral doi: 05-Balaenootera aboralis 0HE0 FE2 SV-3 Matches: 22 Moral doi: 05-Balaenootera aboralis 0HE0 FE2 SV-3 Matches: 22 Moral doi: 05-Balaenootera aboralis rovearalia 0HE0 FE2 SV-3 Matches: 22 Moral doi: 05-Balaenootera novearalia 0HE0 FE2 SV-2 Matches: 22 Moral doi: 05-Balaenootera novearalia 0HE0 FE2 SV-2 Matches: 21 Moral doi: 05-Balaenootera novearalia 0HE0 FE2 SV-2 Matches: 21 Moral doi: 05-Balaenootera novearalia 0HE0 FE2 SV-2 Matches: 11 Moral doi: 05-Balaenootera novearalia 0HE0 FE2 SV-2 Matches: 17 Moral doi: 05-Balaenootera novearalia 0HE0 FE2 SV-2 Matches: 17 Moral doi: 05-Bilaenootera novearalia 0HE FE3 SV-2 Matches: 17 Moral doi: 05-Bilaenootera novearalia 0HE FE3 SV-2 Matche
4.	MIC_INIC
5. h	Wooldbin OS=Inia aeoffrensis GN=MB PE=1 SV=2 WG_PHYCD Mass: 17320 Score: 81 Expect: 0.0045 Matches: 16 Wooldbin OS=Physeter catodon GN=MB PE=1 SV=2 Wooldbin OS=Kosia brevicens GN=MB PE=2 SV=3 Modelobin OS=Kosia brevicens GN=MB PE=2 SV=3 Modelobin OS=Kosia sima GN=MB PE=1 SV=2 Expect: 0.31 Matches: 14 Wooldbin OS=Kosia sima GN=MB PE=1 SV=2 —
6.	AL <u>80 E0VIN</u> Mass: 71279 Score: 74 Expect: 0.02 Matches: 31 Serum albumin 05-8os taurus GN=ALB PE=1 SV=4
7.	<u>MYG RABII</u> Maass: 17210 Score: 70 Expect: 0.056 Matches: 18 Woostobin 05=Onyctolaeus cuniculus GN=MB PE-I SV-2
8.	MYG (245F] Mass: 17140 Score: 70 Expect: 0.059 Matches: 21 Myoglobin 05=Castor fiber GN=MB FE=1 SV=2
9.	WCG_PEPFO Mass: 17052 Score: 67 Expect: 0.11 Matches: 20 Wooslobin 05=Perodicticus potto edwarsi GN=MB PE=1 SV=2
10.	WYG MACRU Mass: 17258 Score: 66 Expect: 0.13 Matches: 17 Wyosłobin CS=Macropus rufus GN=MB FE=1 SV=2
11.	<u>VYC-HORE</u> Mass: 11941 Score: 64 Expect: 0.21 Matches: 20 Cytochrome c OS-Equus caballus GN=CYCS FE=1 SV=2
12.	WNG PHOLA Mass: 17221 Score: 58 Expect: 0.37 Matches: 12 MogEdobin GS=Phocoeroides dalli dalli GAHER FE-1 SV-2 MogEdobin GS=Phocoena phocoena QN=MB FE-1 SV-2 MogEdobin GS=Phocoena phocoena QN=MB FE-1 SV-2
13.	MMG-ROUME Maass: 17068 Score: 55 Expect: 1.9 Matches: 16 Mooslobin 05=Rousettus aegyotiacus GN=MB FE=1 SV=2
14.	MMCHALER Mass: 17417 Score: 53 Expect: 2.9 Matches: 15 Movelobin 03-Halicherus groups GN-MB FE-1 SV-2 Movelobin 03+Phoca vitulina GN-MB FE-1 SV-2 Movelobin 03+Phoca vitulina GN-MB FE-1 SV-2

159

	MINITURYI MARSS: 1/4// Score: 30 Expect: 2.9 Matches: 10 Myoglobin 05-Phoca vitulina 0AHB/PE-1 S/+2 Myoglobin 05-Pusa sibirica 0AHMB/PE-1 S/+2 Myoglobin 05-Pusa sibirica 0AHMB/PE-1 S/+2
15.	MiG_CANLF Mass: 17326 Score: 52 Expect: 3.2 Matches: 17 Moselobin 08-Ganis Lyous familiaris (0N-MB FE-1 SV-2 Modelobin 08-Lyoan pictus RN-MB FE-1 SV-2 Matches: 17 Moselobin 08-Lyoan pictus RN-MB FE-1 SV-2 Matches: 17 Modelobin 08-Lyoan pictus RN-MB FE-1 SV-2 Matches: 17 Moselobin 08-Lyoan pictus RN-MB FE-1 SV-2 Matches: 17 Modelobin 08-Lyoan pictus RN-MB FE-1 SV-2 Matches: 17 Moselobin 08-Ryoan pictus RN-MB FE-1 SV-2 Matches: 17 Matches: 17 Matches: 17 Modelobin 08-Ryoan pictus RN-MB FE-1 SV-2 Matches: 17 Matches: 17 Matches: 17 Modelobin 08-Ryoan pictus RN-MB FE-1 SV-2 Matches: 17 Matches: 17 Matches: 17
16.	MYG.WLCH Mass: 17326 Score: 52 Expect: 3.2 Matches: 17 Myoslobin 05:Vulpes chama GN=MB FE=1 SV=2
17.	<u>CYC_SAISC</u> Mass: 11898 Score: 52 Expect: 3.5 Matches: 15 Cytochrome c CS=Saimiri sciureus GN=CYCS PE-3 SV=3
18.	IN2 HAMN Mass: 33483 Score: 52 Expect: 3.9 Matches: 20 Inhibitor of growth protein 2 OS=Homo sapiens GN=IN32 PE=I SV=2
19.	<u>CYC EQUAS</u> Mass: 11927 Score: 50 Expect: 4.9 Matches: 18 Ovtochrome c OS-Equas asinus QN=CYCS FE-1 SV=2 <u>CYC EQUES</u> Mass: 11827 Score: 50 Expect: 4.9 Matches: 18 Ovtochrome c OS-Equas burchelli QN=CYCS FE-1 SV=2
20.	MYG_CNDZ1 Mass: 17257 Score: 50 Expect: 5.1 Matches: 15 Myoglobin 08=0ndatra zibethicus QN=MB PE=1 SV=2
21.	M <u>OE_MYANL</u> Mass: 38813 Score: 50 Expect: 5.9 Matches: 14 Car-specific mRNA (nucleoside-2'-0-)-methyltransferase OS=Myxoma virus (strain Lausanne) GN=PAPS PE=3 SV=1

Ivpe of search :	Sequence Query
Enzyme	Lys-N
Fixed modifications	<u>Carboxymethyl (C)</u>
Mass values :	Monoisotopic
Protein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.5 Da
Fragment Mass Tolerance:	± 0.6 Da
Pentide Mass Interance :	
Fragment Mass Tolerance:	± 0.6 Da
Max Miccod Classages	1 0.0 Da
Instrument type	Default
0uorul (514 6924 1+)	(po titlo)
(0.14, 0.054, 14)	
(0.0000) = (0.000) = (0.0000) = (0.0000) = (0.0000) = (0.0000) = (0.0000) =	
Querys (515.0702,1+).	Sho title
Query4 (316.6031,1*):	No title/
Query5 (516.6136,1+):	Sno title?
Queryb (516.6147,1+):	Sno title?
Query/ (516.6308,1+):	<no title=""></no>
Query8 (517.6313,1+):	<no title=""></no>
Query9 (517.6412,1+):	<no title=""></no>
Query10 (517.6523,1+):	<no title=""></no>
Query11 (517.7459,1+):	<no title=""></no>
Query12 (518.6223,1+):	<no title=""></no>
Query13 (520.6114,1+):	<no title=""></no>
Query14 (520.6220,1+):	<no title=""></no>
Query15 (520.6280,1+):	<no title=""></no>
Query16 (520.6283,1+):	<no title=""></no>
Querv17 (522.5990.1+);	<no title=""></no>
Querv18 (522.6140.1+):	<no title=""></no>
Query19 (524,6058,1+):	<no title=""></no>
Query20 (524.6184.1+);	<no title=""></no>
Query21 (524.6210.1+);	<no title=""></no>
Query22 (524.6251.1+);	<no title=""></no>
Query23 (526 6209.1+):	(no title)
Query24 (531 7811.1+):	(no title)
Query25 (534 5982 1+)	(no title)
Query26 (534 6019 1+)	(no title)
0.00027 (534 6172 1+)	(no title)
Query28 (534 6274 1+)	(no title)
Query29 (5/3 5968 1+)	(no title)
Query20 (542,6021,1+)	
0_{10} m_{21} $(543.0021, 1.7)$	
0	
Query32 (545.0254,11).	
Query33 (544.5350,1+).	
Query34 (344.3371,1+):	
Queryss (540.0074,1*);	
Queryso (340.3881,1*):	
0	Seq(6-P)
Querys/ (34/.2504,1+):	Nno title?
Query38 (550,5665,1+):	Sno title>
Query38 (550.5//5,1+):	Sno title>
Query40 (550.5861,1+):	Sno title?

4P mass+c

	lascot Search Results
User	: kahn 20002
Email	: kahn 20003@gmail.com
Search title	: AP 0.5 limisis
Database	: SwissFrot 2016.03 (550740 sequences; 196582750 residues)
Timestamp	: 17 Apr 2016 at 0.4:44:57 GMT
Top Score	: 111 for MYC_EQUEU, Myoglobin OS=Equus burchelli GN=MB PE=1 SV=2
Mascot Scor	e Histogram
Protein score is Protein scores g Score Distributio	 IDPLog(P), where P is the probability that the observed match is a random event. reaser than 70 are significant (pr0.05). n
Concise Pro	tein Summary Report
Format As Co	ondse Protein Summary V Help
Sig	nificance threshold p< 0.05 Max number of hits 50
Pn	aferred taxonomy All entries
Re-Search All	Search Unmatched
Myoslob My <u>G</u> HOR Myoslob M <u>YG_PHY</u>	Control Control <t< th=""></t<>
Myoglob	in OS=Physeter catodon GN=MB PE=1 SV=2
<u>MYG_BAL</u>	<u>AC</u> Mass: 17275 Score: 90 Expect: 0.0005 Matches: 6
Myoslob	in US=Balaenoptera acutorostrata GN=M8 PE=1 SV=2
MYG_BAL	Mass: 17238 Score: 90 Expect: 0.0005 Matches: 6
MYG_BAL Myos Job	ED Mass: 17238 Score: 30 Expect: 0.0005 Matches: 6
MYG_BAL	Here Mass: 17206 Score: 90 Expect: 0.0005 Matches: 6 In 05-Balassentar physical coll-MR PE-1 SU-2
MYG_BAL	PH Mass: 17206 Score: 90 Expect: 0.0005 Matches: 6
Mvos lob	in 0S=Balaenoptera physalus GN=MB PE=1 SV=2
MYG_ESC	RO Mass: 17238 Score: 90 Expect: 0.0005 Matches: 6
Myoglob	in OS=Eschrichtius robustus GN=MB PE=1 SV=2
<u>MYG_INI</u>	GE Mass: 17191 Score: 90 Expect: 0.0005 Matches: 6
Myoslob	in OS=lnia geoffrensis GN=MB PE=1 SV=2
MYG_MEG Myoslob	NU Mass: 1/222 Score: 90 Expect: 0.0005 Matches: 6 in 08=Mesaptera novaeangliae GN=MB PE-1 SV=2 20 Maass 1/267 Score: 7
Myoslob Myoslob	in OS=Kogia breviceps GN=MB PE=2 SV=3 SI Mass: 17857 SI Mass: 17857
Myoglob	in OS=Kogia sina GN=MB PE=1 SV=2
MYG DEL	LE Mass: 17165 Score: 70 Expect: 0.059 Matches: 5
Myoslob	in OS=Delphinapterus leucas GN=MB PE=1 SV=2
MYG_GLO	ME Mass: 17205 Score: 70 Expect: 0.059 Matches: 5
Myoglob	in OS=Globicephala melas GN=MB PE=1 SV=2
<u>MYG_ZIP</u>	CA Mass: 17298 Score: 70 Expect: 0.059 Matches: 5
Myoslob <u>MYG_IND</u>	in OS-Ziphius cavirostris GN+MB PE=1 SV=2 PC Masss: 17270 Score: 68 Expect: 0.089 Matches: 5 control of the state of the
Myosiob MYG_MAC	in US-Indopacetus pacificus GN-MMS HE-2 SY=3 Au Mass: 17258 Score: 68 Expect: 0.089 Matches: 5 Au OS-Macrupa pfun (NHP PE-1 SY=2
MYG_MES Myoslob	in Os-Macropus rurus un-worte-i sy-z A Mass: 17256 Score: 68 Expect: 0.089 Matches: 5 in Os-Macropus rurus lbukheri (ANMR PE=1 SV=2
MYG_MES	ST Mass: 17256 Score: 68 Expect: 0.089 Matches: 5
Myos lob	in OS-Mesoplodon steinexeri GN-MB PE-2 SV=3
MYG_PHO	DA Mass: 17221 Score: 60 Expect: 0.51 Matches: 4
Myog lob	in 0S=Phocoenoides dalli dalli GN=MB PE=1 SV=2
<u>MYG_PHO</u>	PH Mass: 17221 Score: 60 Expect: 0.51 Matches: 4
Myoslob	in OS=Phocoena phocoena GN=MB PE=1 SV=2
MY <u>G</u> HAL	GR Mass: 17417 Score: 55 Expect: 1.7 Matches: 4
Mvoslob	in 0S=Halichoerus grypus GN=MB PE=1 SV=2
Myoslob	VI Mass: 1/4// Score: 00 Expect: 1.7 Matches: 4 in OS=Phoca vitulina GN=MB PE=1 SV=2 VI Manue: 1/4/2 Score: 55 Expect: 1.7 Matches: 4
Myoglob Myoglob	SI mass://4/2 Score:30 EXPect:1./ Matches:4 in 0S=Pusa sibirica GN=MB PE=1 SV=2 IE Mase:17298 Score:52 Expand:3.3 Matches:4
Myos lob	n Oscanis lupus familiaris GN=MB PE=1 SV=2
MYG L YC	PI Mass: 17353 Score: 52 Expect: 3.3 Matches: 4
Myoslob	n OS=Lycaon pictus GN=MB PE=1 SV=2
MYG_LYC	PI Mass: 17353 Score: 52 Expect: 3.3 Matches: 4
Myoslob	in OS=Lycaon pictus GN=MB PE=1 SV=2
MYG_0T0	ME Mass: 17326 Score: 52 Expect: 3.3 Matches: 4
Myoslob	in OS=Otocyon megalotis GN=MB PE=1 SV=2
<u>MYG_VUL</u>	<u>CH</u> Mass: 17326 Score: 52 Expect: 3.3 Matches: 4
Myoslob MYG_AOT	in 0S=Vulpes chama GN=MB Hz=1 SV=2 IR Masss: 17150 Score: 51 Expect: 4.5 Matches: 4 2024 Decider Dec
MyogTob	in USPAdus trivirastus UNMB FE-1 SVF2
MYG_CAL	JAL Maass: T7164 Score:S1 Expect: 4.5 Matches: 4
MyogTob	in OS=Callithrix jacchus ON=MB FE=1 SV=2
2. MYG_ERY	PA Mass: 17137 Score: 90 Expect: 0.0006 Matches: 6
Myoglob	in OS=Erythrocebus patas GN=MB PE=1 SV=2
MYG_GOR	EE Mass: 17221 Score: 90 Expect: 0.0006 Matches: 6
Myoslob	in 0S=Gorilla gorilla beringei GN=MB PE=1 SV=2
<u>MYG_HUM</u>	AN Mass: 17231 Score: 90 Expect: 0.0006 Matches: 6
Mvoslob	in OS=Homo sapiens GN=MB PE=1 SV=2
MYG_HYL	AG Mass: 17261 Score: 90 Expect: 0.0006 Matches: 6
Myoglob	in OS+Hylobates agilis GN=MB PE=1 SV=2
MYG_PAN	IN Mass: //240 Score: 90 Expect: 0.0006 Matches: 6
Myoglob	in OS=Pan troglodytes GN=MB PE=1 SV=2
MYC_PAP	NN Mass: 17127 Score: 90 Expect: 0.0008 Matches: 6
Myoslob	in OS-Papio anubis GN-MB PE=1 SV-2
Myoslob	PV Mass: 17187 Score: 90 Evnect: 0.0006 Matches: 6
Myoglob	in OS=Pongo pygmaeus GN=HB FE=1 SV=2
MYG_SEM	EN Mass: 17137 Score: 90 Expect: 0.0006 Matches: 6
Myoslob	in 08=Semnopithecus entellus GN=MB PE=1 SV=2
MYG_SYM	SY Mass: 17261 Score: 90 Expect: 0.0006 Matches: 6
Myoslob MYG_PER	in 05-Symphalangus syndactylus GN=MB PE=1 SV=2 <u>PO</u> Mass: 17052 Score: 74 Expect: 0.021 Matches: 5 PO De Core: 74 Expect: 0.021 Matches: 5
Myoslob MYG_RAB	in us-reroquicticus potto edwarsi un HMS HEFI SVF2 II. Mass: 17210 Score: 74 Expect: 0.021 Matches: 5 II. (SeDoctoleans curiculus (NEME PEI) SVF2
MYG_CAS	FI Mass: 17140 Score: 72 Expect: 0.032 Matches: 5
Myg_cas	in 0S=Castor fiber 0S+10# FE=1 SV=2
MYG_MAC	EA Mass: 17165 Score: 72 Expect: 0.032 Matches: 5
Myoslob	in 0S=Macaca fascicularis GN=MB FE=1 SV=2
MYG_OND	ZI Mass: 17257 Score: 56 Expect: 1.2 Matches: 4
Myoglob	in 0S=Ondatra_zibethicus GN=MB_PE=1 SV=2
MYG_ROU Marca Lob	AE Mass: 17068 Score: 56 Expect: 1.5 Matches: 4

MYG_ROUAE Mass: 17068 Score: 56 Expect: 1.5 Matches: 4 Mynalobin (S=Rousettus accordiance ON=MR PE=1 SV=2

	Myogiopin US-Rousettus aegyptiacus un-MM FE-i SY-2
3.	<u>ALBU BOVIN</u> Mass: 71279 Score: 74 Expect: 0.022 Matches: 8 Serum albumin 05=Bos taurus GN=ALB PE=1 SV=4
4.	<u>CYC_HURSE</u> Mass: 11941 Score: 71 Expect: 0.04 Matches: 5 Cytochrome c CS-Equus caballus GN=CYCS PE=1 SV=2
5.	T <u>RFE_BOVIN</u> Mass: 79907 Score: 64 Expect: 0.21 Matches: 6 Serotransferrin OS=Bos taurus GN=TF PE=2 SV=1
6.	IN2 HAMN Mass: 83483 Score: 59 Expect: 0.73 Matches: 4 Inhibitor of growth protein 2 05=Homo sapiens GN=ING2 PE=I SV=2
7.	<u>CYC_SAISC</u> Mass: 11898 Score: 54 Expect: 2 Matches: 4 Cytochrome c OS=Saimiri sciureus GN=CYCS PE-3 SV=3

Search Parameters

Spectra of peptides derived from BSA digested by different

proteases

Trypsin digest

Precursor

1674.75 RHPYFYAPELLYYAN

Precursor

RHPYFYAPELLYYA b+18 ion

1534.83 LKECmcCmcDKPLLEK

Precursor

LKECmcCmcDKPLLE b ion

1305.94 HLVDEPQNLIK

Precursor

HLVDEPQNLI b ion

AspN digest

2044.71 RHPYFYAPELLYYANK

Precursor

RHPYFYAPELLYYAN b+18 ion

1674.75 RHPYFYAPELLYYAN

Precursor

RHPYFYAPELLYYA b+18 ion

1534.83 LKECmcCmcDKPLLEK

Precursor

LKECmcCmcDKPLLE b ion

1305.94 HLVDEPQNLIK

Precursor

HLVDEPQNLI b ion

GluC digest

2560.40 RALKAWSVARLSQKFPKAEFVE

Precursor

RALKAWSVARLSQKFPKAEFV b+18 ion

1361.61 KKFWGKYLYE

Precursor

KKFWGKYLY b ion

1314.59 IAHRFKDLGEE

Precursor

IAHRFKDLGE b+18 ion

1285.76 KQIKKQTALVE

Precursor

KQIKKQTALV b ion

1076.70 LCmcKVASLRE

Precursor

944.69 YSRRHPE

LysN digest

2006.48 KVASLRETYGDMADCmcCmcE

Precursor

KVASLRETYGDMADCmcCmc b+18 ion

1930.70 KCmcCmcAADDKEACmcFAVEGP

Precursor

KCmcCmcAADDKEACmcFAVEG b ion

1779.63 KPDPNTLCmcDEFKADE

Precursor

1764.61 KQEPERNECmcFLSH

Precursor

KQEPERNECmcFLS b+18 ion

1465.52 KTCmcVADESHAGCmcE

Precursor

KTCmcVADESHAGCmc b ion

1443.67 KYICmcDNQDTISS

1293.65 KECmcCmcDKPLLE

Precursor

KECmcCmcDKPLL b ion

1145.67 KAWSVARLSQ

1130.87 KLVVSTQTALA

Precursor

KLVVSTQTAL b ion

1073.66 KSHCmcIAEVE

Precursor

KSHCmcIAEV b ion

1069.64 KQNCmcDQFE

922.75 KAEFVEVT

818.78 KATEEQL

Spectra of peptides with C-terminal amide

190

Mass (m/z)

KHGTVVLTALGG 1134.72

KHGTVVLTALG 1077.69

KHGTVVLTAL 1020.663

4700 MSMS Precursor 707.43 Spec #1 MC[BP = 707.4, 61535]

Eledoisin related peptide KFIGLM-NH₂ 707.43

Neuromedin C GNHWAVGHLM-NH₂ 1120.55

GNHWAVGHL 972.59 b-ion

GNHWAVGH 859.46

KHGTVVLTALGGIL 1378.89

Precursor

KHGTVVLTALGGI 1247.75

KHGTVVLTALGG 1134.67

KHGTVVLTALG 1077.65

KHGTVVLTAL 1020.62

