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Abstract
In this paper we obtain existence and uniqueness of solutions of forward

stochastic differential equations driven by compensated Poisson random measures.
To this end, an Itô-Ventzell formula for jump processes is proved and the flow
properties of solutions of stochastic differential equations driven by compensated
Poisson random measures are studied.

1. Introduction

In recent years, there has been growing interests on jump processes, especially
Lévy processes, partly due to the applications in mathematical finance. In [7] a
Malliavin calculus was developed for Lévy processes. Among other things, the au-
thors in [7] introduced a forward integral with respect to compensated Poisson random
measures and showed that the forward integrals coincide with the Itô integrals when
the integrands are non-anticipating. The purpose of this paper is to solve the following
forward stochastic differential equation

(1.1) Xt = X0 +
Z t

0
b(!, s, Xs) ds+

Z t

0

Z
R
� (Xs�, z) eN(d�s, dz)

with possibly anticipating coefficients and anticipating initial values, whereeN(d�s, dz)
indicates a forward integral. To this end, we adopt a same strategy as in [21] where
anticipating stochastic differential equations driven byBrownian motion were studied.
We first prove an Itô-Ventzell formula for jump processes andthen go on to study the
properties of the solution of the stochastic differential equation:

(1.2) �t (x) = x +
Z t

0

Z
R
� (�s�, z) eN(ds, dz).

Surprisingly little is known in the literature about the flowproperties of�t (x) (see,
however, [6] for the case of multidimensional Lévy processes). We obtain bounds on
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208 B. ØKSENDAL AND T. ZHANG

�t (x), �0t (x) and (�0t (x))�1 under reasonable conditions on� , where�0t (x) stands for the
derivative of�t (x) with respect to the space variablex. Finally we show that the com-
position of�t with a solution of a random differential equation gives riseto a solution
to our equation (1.1). We also mention that a pathwise approach to forward stochastic
differential equations driven by Poisson processes is considered in [13].

The rest of the paper is organized as follows. Section 2 is thepreliminaries. In
Section 3, we prove the Itô-Ventzell formula. The flow properties of solutions of sto-
chastic differential equations driven by compensated Poisson random measures are stud-
ied in Section 4, where the main result is also presented.

2. Preliminaries

In this section, we recall some of the framework and preliminary results from [7],
which we will use later. Let� = S 0(R) be the Schwartz space of tempered distributions
equipped with its Borel� -algebraF = B(�). The spaceS 0(R) is the dual of the
Schwartz spaceS(R) of rapidly decreasing smooth functions onR. We denote the
action of! 2 � = S 0(R) on f 2 S(R) by h!, f i = !( f ).

Thanks to the Bochner-Milnos-Sazonov theorem, the white noise probability mea-
sure P can be defined by the relationZ

� ei h!, f i d P(!) = e
R

R
 ( f (x)) dx�i� R

R
f (x) dx, f 2 S(R),

where the real constant� and

 (u) =
Z

R

(eiuz� 1� iuz1fjzj<1g) �(dz)

are the elements of the exponent in the characteristic functional of a pure jump Lévy
process with the Lévy measure�(dz), z 2 R, which, we recall, satisfies

(2.1)
Z

R

1^ z2 �(dz) <1.

Assuming that

(2.2) M :=
Z

R

z2 �(dz) <1,

we can set� =
R

R
z1fjzj>1g �(dz) and then we obtain that

E[h � , f i] = 0 and E[h � , f i2] = M
Z

R

f 2(x) dx, f 2 S(R).

Accordingly thepure jump Lévy process with no drift

� = �(!, t), ! 2 �, t 2 R+,
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that we do consider here and in the following, is the cadlag modification of h!,�(0,t ]i,! 2 �, t > 0, where

(2.3) �(0,t ](x) =

(
1, 0< x � t

0, otherwise, x 2 R,

with �(!, 0) := 0, ! 2 �. We remark that, for allt 2 R+, the values�(t) belong to
L2(P) := L2(�,F , P).

The Lévy process� can be expressed by

(2.4) �(t) =
Z t

0

Z
R

z eN(ds, dz), t 2 R+,

where eN(dt, dz) := N(dt, dz) � �(dz) dt is the compensated Poisson random measure
associated with�.

Let Ft , t 2 R+, be the completed filtration generated by the Lévy process in(2.4).
We fix F = F1.

Let L2(�) = L2(R+, B(R+), �) denote the space of the square integrable functions
on R+ equipped with the Borel� -algebra and the standard Lebesgue measure�(dt),
t 2 R+. Denote byL2(�) := L2(R,B(R),�) the space of the square integrable functions
on R equipped with the Borel� -algebra and the Lévy measure�. Write L2(P) :=
L2(�, F , P) for the space of the square integrable random variables.

For the symmetric functionf 2 L2((�� �)m) (m = 1, 2,: : : ), define I0( f ) := f for
f 2 R.

Im( f ) := m!
Z 1

0

Z
R

� � � Z t2

0

Z
R

f (t1, x1, : : : , tm, xm) eN(dt1, dx1) � � � eN(dtm, dxm)

(m = 1, 2,: : : )
and setI0( f ) := f for f 2 R. We have

Theorem 2.1 (Chaos expansion).Every F 2 L2(P) admits the(unique) repre-
sentation

(2.5) F =
1X

m=0

Im( fm)

via the unique sequence of symmetric functions fm 2 L2((�� �)m), m = 0, 1,: : : .
Let X(t ,z), t 2 R+, z 2 R, be a random field taking values inL2(P). Then, for all

t 2 R+ and z 2 R, Theorem 2.1 provides the chaos expansion via symmetric functions

X(t , z) =
1X

m=0

Im( fm(t1, z1, : : : , tm, zm; t , z)).
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Let f̂m = f̂m(t1, z1, : : : , tm+1, zm+1) be the symmetrization offm(t1, z1, : : : , tm, zm; t , z)
as a function of them+ 1 variables (t1, z1), : : : , (tm+1, zm+1) with tm+1 = t and zm+1 = z.

DEFINITION 2.1. [11], [12] The random fieldX(t ,z), t 2 R+, z 2 R, is Skorohod
integrableif

P1
m=0(m+1)!k f̂mk2L2((���)m+1) <1. Then itsSkorohod integral with respect

to eN, i.e. Z
R+

Z
R

X(t , z) eN(Æt , dz),

is defined by

(2.6)
Z

R+

Z
R

X(t , z) eN(Æt , dz) :=
1X

m=0

Im+1( f̂m).

The Skorohod integral is an element ofL2(P) and

(2.7)






Z

R+

Z
R

X(t , z) eN(Æt , dz)






2

L2(P)

=
1X

m=0

(m + 1)! k f̂mk2L2((���)m+1).

Moreover,

(2.8) E
Z

R+

Z
R

X(t , z) eN(Æt , dz) = 0.

The Skorohod integral can be regarded as an extension of the Itô integral toan-
ticipating integrands. In fact, the following result can be proved. Cf.[11], [12], [5],
[7], [18] and [21].

Proposition 2.2. Let X(t , z), t 2 R+, z 2 R, be a non-anticipating(adapted)
integrand. Then the Skorohod integral and the Itô integral coincide in L2(P), i.e.

Z
R+

Z
R

X(t , z) eN(Æt , dz) =
Z

R+

Z
R

X(t , z) eN(dt, dz).

DEFINITION 2.2. The spaceD1,2 is the set of all the elementsF 2 L2(P) whose
chaos expansion:F = E[F ] +

P1
m=1 Im( fm), satisfies

kFk2
D1,2

:=
1X

m=1

m �m! k fmk2L2((���)m) <1.
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The Malliavin derivative Dt ,z is an operator defined onD1,2 with values in the standard
L2-spaceL2(P � �� �) given by

(2.9) Dt ,zF :=
1X

m=1

mIm�1( fm( � , t , z)),

where fm( � , t , z) = fm(t1, z1, : : : , tm�1, zm�1; t , z).

Note that the operatorDt ,z is proved to be closed and to coincide with a certain dif-
ference operator defined in [22].

We recall theforward integral with respect to the Poisson random measureeN de-
fined in [7].

DEFINITION 2.3. Theforward integral

J(�) :=
Z T

0

Z
R

�(t , z) eN(d�t , dz)

with respect to the Poisson random measureeN, of a caglad stochastic function�(t , z),
t 2 R+, z 2 R, with

�(t , z) := �(t , z,!), ! 2 �,

is defined as

(2.10)
Z T

0

Z
R

�(t , z) eN(d�t , dz) := lim
m!1

Z T

0

Z
R

�(t , z)IUm
eN(d�t , dz)

if the limit exists in L2(P). Here Um, m = 1, 2,: : : , is an increasing sequence of
compact setsUm � R n f0g with �(Um) <1 such that limm!1 Um = R n f0g.

The relation between the forward integral and the Skorohod integral is the
following.

Lemma 2.1 ([7]). If �(t ,z)+ Dt+,z�(t ,z) is Skorohod integrable and Dt+,z�(t ,z) :=
lims!t+ Ds,z�(t , z) exists in L2(P � � � �), then the forward integral exists in
L2(P) andZ T

0

Z
R

�(t , z) eN(d�t , dz) =
Z T

0

Z
R

Dt+,z�(t , z) �(dz) dt

+
Z T

0

Z
R

(�(t , z) + Dt+,z�(t , z)) eN(Æt , dz).
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3. The Itô-Ventzell formula

Consider the following two forward processes depending on aparameterx 2 R:

Ft (x) = F0(x) +
Z t

0
Gs(x) ds+

Z t

0

Z
R

Hs(z, x) eN(d�s, dz),

Yt (x) = Y0(x) +
Z t

0
Ks(x) ds+

Z t

0

Z
R

Js(z, x) eN(d�s, dz),

where the integrands are such that the above integrals belong to L2(� � R, P � dx).
Let h , i denote the inner product in the spaceL2(R, dx).

Lemma 3.1. It holds that

hFt , Yt i = hY0, F0i + Z t

0
hFs, Ksi ds+

Z t

0
hYs, Gsi ds+

Z t

0

Z
R

hHs(z, � ), Js(z, � )i �(dz) ds

+
Z t

0

Z
R

[hFs�, Js(z, � )i + hHs(z, � ), Ys�i + hHs(z, � ), Js(z, � )i] eN(d�s, dz).

(3.11)

Proof. Let ei , i � 1 be an orthornormal basis ofL2(R, dx). For eachi � 1,
we have

hFt , ei i = hF0, ei i + Z t

0
hGs, ei i ds+

Z t

0

Z
R

hHs(z, � ), ei i eN(d�s, dz),

hYt , ei i = hY0, ei i + Z t

0
hKs, ei i ds+

Z t

0

Z
R

hJs(z, � ), ei i eN(d�s, dz).

By the Itô’s formula for forward processes in [7],

hFt , ei ihYt , ei i = hF0, ei ihY0, ei i + Z t

0
hFs, ei ihKs, ei i ds+

Z t

0
hYs, ei ihGs, ei i ds

+
Z t

0

Z
R

[hFs�, ei ihJs(z, �), ei i + hHs(z, � ), ei ihYs�, ei i
+ hHs(z, � ), ei ihJs(z, �), ei i] eN(d�s, dz)

+
Z t

0

Z
R

hHs(z, � ), ei ihJs(z, � ), ei i �(dz) ds.

(3.12)

Taking the summation overi , we get (3.11).

We now state and prove an Itô-Ventzell formula for forward processes. LetXt be
a forward process given by

(3.13) Xt = X0 +
Z t

0
�s ds+

Z t

0

Z
R


 (s, z) eN(d�s, dz).
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Theorem 3.1. Assume that Ft (x) is C1 w.r.t. the space variable x2 R. Then

Ft (Xt ) = F0(X0) +
Z t

0
F 0

s(Xs)�s ds

+
Z t

0

Z
R

[Fs(Xs + 
 (s, z))� Fs(Xs)� F 0
s(Xs)
 (s, z)] �(dz) ds

+
Z t

0
Gs(Xs) ds+

Z t

0

Z
R

[Hs(z, Xs + 
 (s, z))� Hs(z, Xs)] �(dz) ds

+
Z t

0

Z
R

[Fs�(Xs� + 
 (s, z))� Fs�(Xs�) + Hs(z, Xs� + 
 (s, z))] eN(d�s, dz).

(3.14)

Here, and in the following,F 0
s(x) denotes the derivative ofFs(x) with repect tox.

Proof. We are using the same method as in [21]. Let� 2 C1
0 (R, R+) withR

R
�(x) dx = 1. Define for" > 0, �"(x) = "�1�(x="). It follows from Theorem 4.6 in

[7] that

�"(Xt � x) = �"(X0 � x) +
Z t

0
�0"(Xs � x)�s ds

+
Z t

0

Z
R

[�"(Xs + 
 (s, z)� x)� �"(Xs � x)� �0"(Xs � x)
 (s, z)] �(dz) ds

+
Z t

0

Z
R

[�"(Xs� + 
 (s, z)� x)� �"(Xs� � x)] eN(d�s, dz).

(3.15)

Using Lemma 3.1 we get thatZ
R

Ft (x)�"(Xt � x) dx

=
Z

R

F0(x)�"(X0 � x) dx +
Z t

0

Z
R

Fs(x)�s�0"(Xs � x) dx

+
Z t

0
ds
Z

R

Fs(x) dx

� Z
R

[�"(Xs + 
 (s, z)� x)� �"(Xs � x)� �0"(Xs � x)
 (s, z)] �(dz)

+
Z t

0
ds
Z

R

Gs(x)�"(Xs � x) dx

+
Z t

0
ds
Z

R

�(dz)
Z

R

Hs(z, x)[�"(Xs + 
 (s, z)� x)� �"(Xs � x)] dx

+
Z t

0

Z
R

�Z
R

Fs�(x)[�"(Xs� + 
 (s, z)� x)� �"(Xs� � x)] dx

+
Z

R

Hs(z, x)�"(Xs� + 
 (s, z)� x) dx

� eN(d�s, dz).

(3.16)
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Integrating by parts,Z
R

Ft (x)�"(Xt � x) dx

=
Z

R

F0(x)�"(X0� x) dx +
Z t

0

Z
R

F 0
s(x)�s�"(Xs � x)dx

+
Z t

0
ds
Z

R

Fs(x) dx
Z

R

[�"(Xs + 
 (s, z)� x)� �"(Xs � x)] �(dz)

� Z t

0
ds
Z

R

F 0
s(x) dx

Z
R

�"(Xs � x)
 (s, z)] �(dz)

+
Z t

0
ds
Z

R

Gs(x)�"(Xs � x) dx

+
Z t

0
ds
Z

R

�(dz)
Z

R

Hs(z, x)[�"(Xs + 
 (s, z)� x)� �"(Xs � x)] dx

+
Z t

0

Z
R

�Z
R

Fs�(x)[�"(Xs� + 
 (s, z)� x)� �"(Xs� � x)] dx

+
Z

R

Hs(z, x)�"(Xs� + 
 (s, z)� x) dx

� eN(d�s, dz).

(3.17)

Since�" approximates to identity as"! 0, letting "! 0 we obtain that

(3.18)

Ft (Xt ) = F0(X0) +
Z t

0
F 0

s(Xs)�s ds

+
Z t

0

Z
R

[Fs(Xs + 
 (s, z))� Fs(Xs)� F 0
s(Xs)
 (s, z)] �(dz) ds

+
Z t

0
Gs(Xs) ds+

Z t

0

Z
R

[Hs(z, Xs + 
 (s, z))� Hs(z, Xs)] �(dz) ds

+
Z t

0

Z
R

[Fs�(Xs� + 
 (s, z))� Fs�(Xs�) + Hs(z, Xs� + 
 (s, z))] eN(d�s, dz).

Next we are going to deduce an Itô-Ventzell formula for Skorohod integrals using
the relation between the forward integral and the Skorohod integral. Consider

(3.19)
Xt = X0 +

Z t

0
�s ds+

Z t

0

Z
R


 (s, z) eN(Æs, dz),

Ft (x) = F0(x) +
Z t

0
Gs(x) ds+

Z t

0

Z
R

Hs(z, x) eN(Æs, dz).

The stochastic integrals here are understood as Skorohod integrals. Let Ĥs(z, x) =
Ss,zHs(z, x), 
̂ (s, z) = Ss,z
 (s, z), where Ss,z is an operator satisfying

Ss,zG + Dt+,z(Ss,zG) = G
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for any smooth random variableG. See [7] for details.

Theorem 3.2. Assume that Ft (x) is C1 w.r.t. the space variable x2 R. Then

Ft (Xt ) = F(X0)+
Z t

0
F 0

s(Xs)

��s�Z
R

Ds+,z
̂ (s,z)�(dz)

�
ds+

Z t

0
Gs(Xs)ds

+
Z t

0
ds
Z

R

[Fs(Xs + 
̂ (s,z))�Fs(Xs)�F 0
s(Xs)
̂ (s,z)] �(dz)

+
Z t

0
ds
Z

R

[ Ĥs(z, Xs + 
̂ (s,z))� Ĥs(z, Xs)] �(dz)

+
Z t

0
ds
Z

R

Ds+,z[Fs�(Xs�+ 
̂ (s,z))�Fs�(Xs�)+ Ĥs(z, Xs + 
̂ (s,z))] �(dz)ds

+
Z t

0
ds
Z

R

f[Fs�(Xs�+ 
̂ (s,z))�Fs�(Xs�)+ Ĥs(z, Xs + 
̂ (s,z))]

+ Ds+,z[Fs�(Xs�+ 
̂ (s,z))�Fs�(Xs�)+ Ĥs(z, Xs + 
̂ (s,z))]geN(Æs,dz).

(3.20)

Proof. Using the relation between forward integrals and Skorohod integrals, we
rewrite Xt and Ft (x) as

Xt = X0 +
Z t

0

��s � Z
R

Ds+,z
̂ (s, z) �(dz)

�
ds+

Z t

0

Z
R


̂ (s, z) eN(d�s, dz),

Ft (x) = F0(x) +
Z t

0

�
Gs(x)� Z

R

Ds+,zĤs(z, x) �(dz)

�
ds+

Z t

0

Z
R

Ĥs(z, x) eN(d�s, dz).

It follows from Theorem 3.1 that

Ft (Xt ) = F0(X0)+
Z t

0
F 0

s(Xs)

��s�Z
R

Ds+,z
̂ (s,z)�(dz)

�
ds

+
Z t

0
ds
Z

R

[Fs(Xs + 
̂ (s,z))�Fs(Xs)�F 0
s(Xs)
̂ (s,z)] �(dz)+

Z t

0
Gs(Xs)ds

+
Z t

0
ds
Z

R

[ Ĥs(z, Xs + 
̂ (s,z))� Ĥs(z, Xs)] �(dz)

+
Z t

0
ds
Z

R

[Fs�(Xs�+ 
̂ (s,z))�Fs�(Xs�)+ Ĥs(z, Xs + 
̂ (s,z))] eN(d�s,dz)

= F(X0)+
Z t

0
F 0

s(Xs)

��s�Z
R

Ds+,z
̂ (s,z)�(dz)

�
ds+

Z t

0
Gs(Xs)ds

+
Z t

0
ds
Z

R

[Fs(Xs + 
̂ (s,z))�Fs(Xs)�F 0
s(Xs)
̂ (s,z)] �(dz)

+
Z t

0
ds
Z

R

[ Ĥs(z, Xs + 
̂ (s,z))� Ĥs(z, Xs)] �(dz)
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+
Z t

0
ds
Z

R

Ds+,z[Fs�(Xs�+ 
̂ (s,z))�Fs�(Xs�)+ Ĥs(z, Xs + 
̂ (s,z))] �(dz)ds

+
Z t

0
ds
Z

R

f[Fs�(Xs�+ 
̂ (s,z))�Fs�(Xs�)+ Ĥs(z, Xs + 
̂ (s,z))]

+ Ds+,z[Fs�(Xs�+ 
̂ (s,z))�Fs�(Xs�)+ Ĥs(z, Xs + 
̂ (s,z))]geN(Æs,dz).

EXAMPLE 3.1 (Stock price influenced by a large investor with inside information).
Suppose the priceSt = St (x) at time t of a stock is modelled by a geometric Lévy pro-
cess of the form

(3.21) dSt (x) = St�(x)

��(t , x) dt +
Z

R

�(t , z) Ñ(dt, dz)

�
, S0 > 0 (constant).

(See e.g. [2] for more information about the use of this type of process in financial
modelling.) Herex 2 R is a parameter and for eachx and z the processes�(t) =�(t , x,!) and �(t , z) = �(t , z,!) areFt -adapted, whereFt is the filtration generated by
the driving Lévy process

�(t) =
Z t

0

Z
R

z eN(ds, dz).

Suppose the value of this “hidden parameter”x is influenced by a large investor with
inside information, so thatx can be represented by a stochastic processXt of the form

(3.22) x = Xt = X0 +
Z t

0
�(s) ds+

Z t

0

Z
R


 (s, z) eN(d�s, dz); X0 2 R

where �(t) and 
 (t , z) are processes adapted to a larger insider filtrationGt , satisfy-
ing Ft � Gt for all t � 0. (For a justification of the use of forward integrals in the
modelling of insider trading, see e.g. [7]).

Combing (3.21) and (3.22) and using Theorem 3.1 we see that the dynamics of
the corresponding stock priceSt (Xt ) is, with S0t (x) = (�=�x)St (x),

d(St (Xt )) = S0t (Xt )�(t) dt

+
Z

R

fSt (Xt + 
 (t , z))� St (Xt )� 
 (t , z)S0t (Xt )g �(dz) dt

+ St (Xt )�(t , Xt ) dt

+
Z

R

fSt (Xt + 
 (t , z))� St (Xt )g�(t , z) �(dz) dt

+
Z

R

fSt�(Xt� + 
 (t , z))� St�(Xt�) + St�(Xt� + 
 (t , z))�(t , z)g eN(d�t , dz).

(3.23)
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By the Itô formula

St (x) = S0 exp

�Z t

0
�(s, x) ds+

Z t

0

Z
R

(ln(1 + �(s, z))� �(s, z)) �(dz) ds

+
Z t

0

Z
R

ln(1 + �(s, z)) eN(ds, dz)

�
,

(3.24)

and hence

S0t (x) = St (x)
Z t

0
�0(s, x) ds,

where

�0(s, x) =
��x
�(s, x).

Substituted into (3.23) this gives

dSt (Xt ) = St (Xt )

��(t) +�(t , Xt ) +
Z t

0
�0(s, Xt ) ds

�
dt

+
Z

R

�
St (Xt + 
 (t , z))(1 + �(t , z))

� St (Xt )

�
1 + �(t , z) + 
 (t , z)

Z t

0
�0(s, Xt ) ds

�� �(dz) dt

+
Z

R

fSt�(Xt� + 
 (t , z))(1 + �(t , z))� St�(Xt�)g eN(d�t , dz).

(3.25)

4. Forward SDEs driven by Poisson random measures

Let b(!, s, x) : � � R+ � R ! R, � (x, z) : R � R ! R be measurable mappings
(possibly anticipating). LetX0 be a random variable. In this section, we are going to
solve the following forward SDE:

(4.26) Xt = X0 +
Z t

0
b(!, s, Xs) ds+

Z t

0

Z
R

� (Xs�, z) eN(d�s, dz).

Let �t (x), t � 0 be the stochastic flow determined by the following non-anticipating
SDE:

(4.27) �t (x) = x +
Z t

0

Z
R

� (�s�(x), z) eN(ds, dz).

Define

b̂(!, s, x) = (�0s)�1(x)b(!, s, �s(x)).
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Consider the differential equation:

(4.28)
dYt

dt
= b̂(!, t , Yt ), Y0 = X0.

Theorem 4.1. If Yt , t � 0 is the unique solution to equation(4.28), then Xt =�t (Yt ), t � 0 is the unique solution to equation(4.26).

Proof. It follows from Theorem 3.1 that

Xt = �t (Yt ) = X0 +
Z t

0
�0s(Ys)b̂(!, s, Ys) ds+

Z t

0

Z
R

� (�s�(Ys�), z) eN(d�s, dz)

= X0 +
Z t

0
b(!, s, Xs) ds+

Z t

0

Z
R

� (Xs�, z) eN(d�s, dz).

Next we are going to provide appropriate conditions under which (4.28) has a
unique solution. To this end, we need to study the flow generated by the solution of
the following equation:

(4.29) Xt (x) = x +
Z t

0

Z
R

� (Xs�(x), z) eN(ds, dz).

Let (p, Dp) denote the point process generating the Poisson random measureN(dt,dz),
where Dp, called the domain of the point processp, is a countable subset of [0,1)
depending on the random parameter!.

Proposition 4.1. Let k� 1. Assume that for l= 1, 2,: : : , 2k,

(4.30)
Z

R

j� (y, z)jl �(dz) � C(1 + jyjl ).
Let Xt (x), t � 0 be the unique solution to equation(4.29). Then, we have

(4.31) E

"
sup

0�t�T
jXt (x)j2k

#
� CT, k(1 + jxj2k).

Proof. It follows from Itô’s formula that

(Xt (x))2k

= x2k +
Z t

0

Z
R

[(Xs�(x) + � (Xs�(x), z))2k � (Xs�(x))2k]eN(ds, dz)

+
Z t

0

Z
R

[(Xs(x) + � (Xs(x), z))2k � (Xs(x))2k � 2k(Xs(x))2k�1� (Xs(x), z)] �(dz) ds.

(4.32)
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Denote byMt the martingale part in the above equation. We have

[M]1=2
t =

 X
0�s�t

(1Ms)
2

!1=2

=

0
� X

0�s�t ,s2Dp

[(Xs�(x) + � (Xs�(x), p(s)))2k � (Xs�(x))2k]2

1
A

1=2

� X
0�s�t ,s2Dp

j(Xs�(x) + � (Xs�(x), p(s)))2k � (Xs�(x))2kj.

(4.33)

By Burkholder’s inequality,

E

"
sup

0�s�t
jMsj

#
� C E

�
[M]1=2

t

�

� E

2
4 X

0�s�t ,s2Dp

j(Xs�(x) + � (Xs�(x), p(s)))2k � (Xs�(x))2kj
3
5

= E

�Z t

0

Z
R

j(Xs�(x) + � (Xs�(x), z))2k � (Xs�(x))2kj N(ds, dz)

�

= E

�Z t

0

Z
R

j(Xs(x) + � (Xs(x), z))2k � (Xs(x))2kj ds�(dz)

�
.

By the Mean-Value Theorem, there exists�(s, z,!) 2 [0, 1] such that

(Xs(x) + � (Xs(x), z))2k � (Xs(x))2k

= 2k(Xs(x) + �(s, z,!)� (Xs(x), z))2k�1� (Xs(x), z).

Therefore,

E

"
sup

0�s�t
jMsj

#
� Ck E

�Z t

0
dsjXs(x)j2k�1

Z
R

j� (Xs(x), z)j �(dz)

�

+ Ck E

�Z t

0
ds
Z

R

j� (Xs(x), z)j2k �(dz)

�

� Ck + Ck

Z t

0
E[jXs(x)j2k] ds.

(4.34)
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By Taylor expansion, there exists�(s, z,!) 2 [0, 1] such that

E

�Z t

0

Z
R

j(Xs(x) + � (Xs(x), z))2k � (Xs(x))2k � 2k(Xs(x))2k�1� (Xs(x), z)j �(dz) ds

�

= 2k(2k� 1)E

�Z t

0

Z
R

j(Xs(x) + �(s, z,!)� (Xs(x), z))2k�2j j� (Xs(x), z)j2 ds�(dz)

�

� Ck E

�Z t

0
dsjXs(x)j2k�2

Z
R

j� (Xs(x), z)j2 �(dz)

�

+ Ck E

�Z t

0
ds
Z

R

j� (Xs(x), z)j2k �(dz)

�

� Ck + Ck

Z t

0
E[jXs(x)j2k] ds.

(4.35)

(4.32), (4.34) and (4.35) imply that

E

"
sup

0�s�t
jXs(x)j2k

#
� Ck + Ck

Z t

0
E[jXs(x)j2k] ds.

Applying Gronwall’s lemma we get

E

"
sup

0�t�T
jXt (x)j2k

#
� CT, p(1 + jxj2k).

Proposition 4.2. Assume that�� (y, z)=�y exists and

(4.36) sup
y

Z
R

������ (y, z)�y

����
l �(dz) <1,

for l = 1, 2,: : : , 2k. Let X0t (x) denote the derivative of Xt (x) w.r.t. x. Then there exists
a constant CT, k such that

(4.37) E

"
sup

0�t�T
jX0

t (x)j2k

#
� CT, k.

Proof. Differentiating both sides of the equation (4.29) weget

(4.38) X0
t (x) = 1 +

Z t

0

Z
R

�� (Xs�(x), z)�y
X0

s�(x) eN(ds, dz).

Put

h(s, z) =
�� (Xs�(x), z)�y

X0
s�(x).
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By Itô’s formula,

(X0
t (x))2k = 1 +

Z t

0

Z
R

[(X0
s�(x) + h(s, z))2k � (X0

s�(x))2k] eN(ds, dz)

+
Z t

0

Z
R

[(X0
s(x) + h(s, z))2k � (X0

s(x))2k � 2k(X0
s(x))2k�1h(s, z)] �(dz) ds.

(4.39)

Denote the martingale part of the above equation byM. Reasoning as in the proof of
Proposition 4.1 we have that

E

"
sup

0�s�t
jMsj

#
� C E

�
[M]1=2

t

�

� C E

�Z t

0

Z
R

j(X0
s�(x) + h(s, z))2k � (X0

s�(x))2kj N(ds, dz)

�

= E

�Z t

0

Z
R

j(X0
s�(x) + h(s, z))2k � (X0

s�(x))2kj ds�(dz)

�

� Ck E

�Z t

0
dsjX0

s(x)j2k�1
Z

R

jh(s, z)j �(dz)

�

+ Ck E

�Z t

0
ds
Z

R

jh(s, z)j2k �(dz)

�

� Ck E

�Z t

0
dsjX0

s(x)j2k
Z

R

������ (Xs�(x), z)�y

���� �(dz)

�

+ Ck E

"Z t

0
dsjX0

s(x)j2k
Z

R

������ (Xs�(x), z)�y

����
2k �(dz)

#

� Ĉk + Ĉk

Z t

0
E[jX0

s(x)j2k] ds,

(4.40)

where

Ĉk = Ck

 
sup

y

Z
R

������ (y, z)�y

���� �(dz) + sup
y

Z
R

������ (y, z)�y

����
2k �(dz)

!
.

A similar treatment applied to the second term in (4.39) yields

E

�����
Z t

0

Z
R

[(X0
s(x) + h(s, z))2k � (X0

s(x))2k � 2k(X0
s(x))2k�1h(s, z)] �(dz) ds

����
�

� Ck + Ck

Z t

0
E[jX0

s(x)j2k] ds.

(4.41)
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Combining (4.39), (4.40) and (4.41) we get

E

"
sup

0�s�t
jX0

s(x)j2k

#
� Ck

�
1 +

Z t

0
E[jX0

s(x)j2k] ds

�
.

An application of the Gronwall’s inequality completes the proof.

Our next step is to give estimates for (X0
t (x))�1. Define

Zt =
Z t

0

Z
R

�� (Xs�(x), z)�y
eN(ds, dz).

Then we see that

X0
t (x) = 1 +

Z t

0
X0

s�(x) d Zs.

Define

Wt =: �Zt +
Z t

0

Z
R

(�� (Xs�(x), z)=�y)2

1 + �� (Xs�(x), z)=�y
N(ds, dz).

Let Yt (x), t � 0 be the solution to the equation:

(4.42) Yt (x) = 1 +
Z t

0
Ys�(x) dWs.

An application of Itô’s formula shows thatYt (x) = (X0
t (x))�1.

Proposition 4.3. Assume

(4.43) sup
y

Z
R

���� (�� (y, z)=�y)2

1 + �� (y, z)=�y

����
l �(dz) <1,

for l = 1, : : : , 2k. Then there exists a constant CT, k such that

(4.44) E

"
sup

0�t�T
jYt (x)j2k

#
� CT, k.

Proof. Note that

Yt (x) = 1� Z t

0
Ys�(x)

Z
R

�� (Xs�(x), z)�y
eN(ds, dz)

+
Z t

0
Ys�(x)

Z
R

(�� (Xs�(x), z)=�y)2

1 + �� (Xs�(x), z)=�y
N(ds, dz).

(4.45)
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Set

f (s, z) = Ys�(x)
(�� (Xs�(x), z)=�y)2

1 + �� (Xs�(x), z)=�y
,

h(s, z) = �Ys�(x)
�� (Xs�(x), z)�y

.

By Itô’s formula,

(Yt (x))2k = 1 +
Z t

0

Z
R

[(Ys�(x) + h(s, z))2k � (Ys�(x))2k] eN(ds, dz)

+
Z t

0

Z
R

[(Ys�(x) + f (s, z))2k � (Ys�(x))2k] N(ds, dz)

+
Z t

0

Z
R

[(Ys(x) + h(s, z))2k � (Ys(x))2k � 2k(Ys(x))2k�1h(s, z)] �(dz) ds.

(4.46)

Denote the three terms on the right hand side of (4.46) by It , II t , III t respectively.
Similar arguments as in the proof of Proposition 4.2 show that there exists a constant
C1 such that

E

�
sup

0�s�t
jIsj
� � C1

�
1 +

Z t

0
E[jYs(x)j2k] ds

�
.(4.47)

E

�
sup

0�s�t
jIII sj

� � C1

�
1 +

Z t

0
E[jYs(x)j2k] ds

�
.(4.48)

By the Mean Value Theorem, we have

E

�
sup

0�s�t
jII sj

� � E

�Z t

0

Z
R

j(Ys�(x) + f (s, z))2k � (Ys�(x))2kj N(ds, dz)

�

= E

�Z t

0

Z
R

j(Ys�(x) + f (s, z))2k � (Ys�(x))2kj ds� (dz)

�

� C E

�Z t

0
dsjYs�(x)j2k

Z
R

���� (�� (Xs�(x), z)=�y)2

1 + �� (Xs�(x), z)=�y

���� �(dz)

�

+ C E

"Z t

0
dsjYs�(x)j2k

Z
R

���� (�� (Xs�(x), z)=�y)2

1 + �� (Xs�(x), z)=�y

����
2k �(dz)

#

� C E

�Z t

0
dsjYs(x)j2k

�
,

(4.49)

where we have used the fact that

sup
y

Z
R

���� (�� (y, z)=�y)2

1 + �� (y, z)=�y

����
l �(dz) <1,
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for l = 1, : : : , 2k. It follows from (4.46), (4.47), (4.48) and (4.49) that

E

"
sup

0�s�t
jYs(x)j2k

#
� Ck

�
1 +

Z t

0
E[jYs(x)j2k] ds

�
.

The desired result follows from the Gronwall’s lemma.

Finally, we need some estimates for the derivative ofYt (x). Define

K (s, z) =: �Y0
s�(x)

�� (Xs�(x), z)�y
� Ys�(x)X0

s�(x)
�2� (Xs�(x), z)�y2

,

J(y, z) =:
(�� (y, z)=�y)2

1 + �� (y, z)=�y
,

L(y, z) =:
2(�� (y, z)=�y)(1 + �� (y, z)=�y)(�2� (y, z)=�y2)

(1 + �� (y, z)=�y)2

� (�2� (y, z)=�y2)(�� (y, z)=�y)2

(1 + �� (y, z)=�y)2
,

m(s, z) =: Y0
s�(x)J(Xs�(x), z) + Ys�(x)X0

s�(x)L(Xs�(x), z).

Proposition 4.4. Assume

(4.50) sup
y

Z
R

�����2� (y, z)�y2

����
l �(dz) <1,

and

(4.51) sup
y

Z
R

jL(y, z)jl�(dz) <1, sup
y

Z
R

jJ(y, z)jl�(dz) <1,

for l = 1,: : : , 2k. Then there exists a constant Ck such that E[sup0�s�t jY0
s(x)j2k] � Ck.

Proof. The proof is in the same nature as the proofs of previous propositions. We
only sketch it. Differentiating (4.45) we see that

(4.52) Y0
t (x) =

Z t

0

Z
R

K (s, z) eN(ds, dz) +
Z t

0

Z
R

m(s, z) N(ds, dz).

By Itô’s formula,

(Y0
t (x))2k =

Z t

0

Z
R

[(Y0
s�(x) + K (s, z))2k � (Y0

s�(x))2k] eN(ds, dz)

+
Z t

0

Z
R

[(Y0
s�(x) + m(s, z))2k � (Y0

s�(x))2k] N(ds, dz)

+
Z t

0

Z
R

[(Y0
s(x) + K (s, z))2k � (Y0

s(x))2k � 2k(Y0
s(x))2k�1K (s, z)] �(dz) ds.

(4.53)
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Let us denote the three terms on the right side by It , II t and IIIt . Reasoning in the
same way as in the proof of Proposition 4.2, we have

E

"
sup

0�s�t
jIsj
#

� E

�Z t

0

Z
R

j(Y0
s(x) + K (s, z))2k � (Y0

s(x))2kj ds�(dz)

�

� C E

"Z t

0
dsjY0

s�(x)j2k
Z

R

 ������ (Xs�(x), z)�y

���� +

������ (Xs�(x), z)�y

����
2k
!
�(dz)

#

+ C E

�Z t

0
dsjY0

s�(x)j2k�1jYs(x)X0
s(x)j Z

R

�����2� (Xs�(x), z)�y2

���� �(dz)

�

+ C E

"Z t

0
dsjYs(x)X0

s(x)j2k
Z

R

�����2� (Xs�(x), z)�y2

����
2k �(dz)

#
.

(4.54)

Since

sup
y

Z
R

������ (y, z)�y

����
l �(dz) <1, for l = 1, : : : , 2k,

and

sup
y

Z
R

�����2� (y, z)�y2

����
l �(dz) <1, for l = 1, : : : , 2k,

(4.54) is less than

C E

�Z t

0
dsj(Y0

s�(x)j2k

�
+ C E

�Z t

0
dsj(Y0

s�(x)j2k�1jYs(x)X0
s(x)j�

+ C E

�Z t

0
dsjYs(x)X0

s(x)j2k

�
.

(4.55)

Note that

E[jY0
s�(x)j2k�1jYs(x)X0

s(x)j] � Ck(E[j(Y0
s�(x)j2k] + E[jYs(x)X0

s(x)j2k]),

and from Propostion 4.3,

E

"
sup

0�s�T
jYs(x)X0

s(x)j�
#
<1, for � � 2k.

It follows from (4.55) that

(4.56) E

"
sup

0�s�t
jIsj
#
� C

�
1 + E

�Z t

0
jY0

s�(x)j2kds

��
.
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By a similar argument, we can show that

(4.57) E

"
sup

0�s�t
jIII sj

#
� C

�
1 + E

�Z t

0
jY0

s�(x)j2kds

��
.

For the second term, we have

E

"
sup

0�s�t
jII sj

#
� E

�Z t

0

Z
R

j(Y0
s�(x) + m(s, z))2k � (Y0

s�(x))2kj ds�(dz)

�

� Ck E

�Z t

0

Z
R

(jY0
s�(x)j2k�1jm(s, z)j + jm(s, z)j2k) ds�(dz)

�

� Ck E

�Z t

0

Z
R

jY0
s�(x)j2k(jJ(Xs�(x), z)j + jJ(Xs�(x), z)j2k) ds�(dz)

�

+ Ck E

�Z t

0

Z
R

(jY0
s�(x)j2k�1jYs�(x)X0

s�(x)j jL(Xs�(x), z)j) ds�(dz)

�

+ Ck E

�Z t

0

Z
R

jYs�(x)X0
s�(x)j2kjL(Xs�(x), z)j2k ds�(dz)

�

� Ck E

�Z t

0
jY0

s�(x)j2k ds

�
+ Ck E

�Z t

0
jYs�(x)X0

s�(x)j2k ds

�
,

� C

�
1 + E

�Z t

0
jY0

s�(x)j2k ds

��

(4.58)

where we have used the assumptions (4.51) and the fact that

E

"
sup

0�s�T
jYs�(x)X0

s�(x)j2k

#
<1.

Now (4.53), (4.56), (4.57) imply

E

"
sup

0�s�t
jY0

s(x)j2k

#
� Ck

�
1 +

Z t

0
E[jY0

s(x)j2k] ds

�
,

which yields the desired result by Gronwall’s inequality.

Let J(y, z), L(y, z) be defined as in Proposition 4.4.

Proposition 4.5. Assume

sup
y

Z
R

����� j � (y, z)�y j

����
l �(dz) <1,(4.59)

sup
y

Z
R

jL(y, z)jl�(dz) <1, sup
y

Z
R

jJ(y, z)jl�(dz) <1,(4.60)
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and

sup
y

Z
R

�����L(y, z)�y

����
l �(dz) <1, sup

y

Z
R

����� J(y, z)�y

����
l �(dz) <1,(4.61)

for l = 1, : : : , 2k, j = 1, 2, 3. Then there exists a constant Ck such that

E

"
sup

0�s�t
jY00

s (x)j2k

#
� Ck.

The proof of this proposition is entirely similar to that of Proposition 4.4. It is
omitted.

Theorem 4.2. Assume that b(!, s, x) is locally Lipschitz in x uniformly with re-
spect to(!, s) and

(4.62) jb(!, s, x)j � C(1 + jxjÆ),
for some constants C> 0 and Æ < 1. Moreover assume that(4.30), (4.36), (4.43),
(4.59), (4.60)and (4.61) hold for some k> (1 + Æ)=(1� Æ). Then the equation(4.28)
admits a unique solution. So does the equation(4.26).

Proof. Recall the Sobolev imbedding theorem: ifp > 1, then

(4.63) sup
x2R

jh(x)j � cpkhk1,p,

wherekhkp
1,p =

R
R

(jh(x)jp + jh0(x)jp) dx. Let � > 0, � > 0 and p > 1 be any param-
eters with 2�p > 1 and (2� � 1)p > 1. Set

fs(x) = (1 + x2)��Xs(x), gs(x) = (1 + x2)��Ys(x),

whereYs(x) = (X0
s(x))�1. For anyT > 0, using Proposition 4.2,

E

"
sup

0�s�T
k fskp

1,p

#

� C�,p

Z
R

E

"
sup

0�s�T
jXs(x)jp

#
[(1 + x2)�� p + jxjp(1 + x2)�(�+1)p] dx

+ C�,p

Z
R

E

"
sup

0�s�T
jX0

s(x)jp
#

(1 + x2)�� p dx

� Z
R

fjxjp((1 + x2)�� p + jxjp(1 + x2)�(�+1)p) + (1 + x2)�� pg dx <1.

(4.64)
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Similarly, by Proposition 4.4,

E

"
sup

0�s�T
kgskp

1,p

#

� C�,p

Z
R

E

"
sup

0�s�T
jYs(x)jp

#
[(1 + x2)��p + jxjp(1 + x2)�(�+1)p] dx

+ C�,p

Z
R

E

"
sup

0�s�T
jY0

s(x)jp
#

(1 + x2)��p dx

� Z
R

��
(1 + x2)��p + jxjp(1 + x2)�(�+1)p

�
+ (1 + x2)��p

	
dx <1.

(4.65)

By the Sobolev imbedding theorem there exist random constants C�,T (!) and C�,T (!)
such that

sup
0�s�T

jXs(x)j � C�,T (!)(1 + x2)� ,

and

sup
0�s�T

jYs(x)j � C�,T (!)(1 + x2)�.

The assumption (4.62) together with the above two inequalities gives

sup
0�s�T

jb̂(!, s, x)j = sup
0�s�T

fjYs(x)jjb(!, s, Xs(x))jg
� C(!)(1 + x2)�(1 + jXs(x)jÆ)
� M�,�,T (!)(1 + x2)�+�Æ.

(4.66)

If p > (1 + Æ)=(1� Æ), it is possible to choose� > 0 and� > 0 such that 2�p > 1,
(2� � 1)p > 1 and 2� + 2�Æ � 1. Therefore, there exists a random constantCT (!)
such that

(4.67) sup
0�s�T

jb̂(!, s, x)j � CT (!)(1 + jxj).
On the other hand, by the Sobolev imbedding Theorem and Proposition 4.4 we see
that (�0s)�1(x) is C1 in x and the derivative is bounded on compact sets. Combining
this fact with the assumption onb, it is easily seen that for a fixed!, b̂(!, s, x) is
locally Lipschitz in x uniformly with respect tos on any compact sets. It follows from
the general theory of ordinary differential equations that(4.28) admits a unique global
solution.
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